castlevax[™]

A Mucosally-delivered Newcastle Disease Virus-vectored Booster Vaccine to Prevent SARS-CoV-2 Breakthrough Infection and Transmission

> Michael A. Egan, Ph.D. Chief Scientific Officer

The Global Vaccine and Immunization Research Forum (GVIRF) 2023 29 March 2023

Engineering innovative vaccines against viral pathogens by exploiting Newcastle Disease Virus

Advantages: NDV Vaccine Platform

- No pre-existing immunity; other APMV glycoproteins can be substituted if host immunity to NDV glycoproteins develops
- Flexible genome (up to 5 kb of RNA can be inserted)
- **Bilipid membrane** allows foreign antigens to be incorporated into the viral particle
 - A 1x10⁹ EID₅₀ dose of live virus delivers ~8mcg purified spike protein within vaccine inoculum
- Multiple Presentations:
 - Inactivated v. Live attenuated
 - Intranasal v. Intramuscular
 - Monovalent, Bivalent, v. Multivalent
- Safe and well tolerated
- Immunogenic

Example of an APMV vaccine vector against Antigen X

NDV's Manufacturing and Distribution Advantages

- Low cost of goods
- Grows to high titers in embryonated chicken eggs in same facilities for manufacturing influenza vaccines
- Simple manufacturing process, Successfully transferred to partners in Brazil, Mexico, Thailand, and Vietnam
- Can store inactivated formulation for at least 12 months at 2-8° C
- Cell line identified for development of cell culture manufacturing process

Ϋ

A plug-and-play <u>vaccine</u> <u>platform</u> to address virtually any existing or emerging viral threat By efficiently engineering NDV to express stabilized antigenic proteins native to infectious viruses, CastleVax can develop vaccines against them. These Pandemic / Epidemic / Endemic threats include (but are not limited to):

Pipeline

- COVID-19 (SARS-CoV-2)**
- Respiratory Syncytial Virus (RSV)*
- Human Metapneumovirus (HMPV)*
- Arenaviruses (including Lassa Virus)*
- Highly Pathogenic Avian Influenza Virus (e.g., H5N1)*

Future targets

- Filoviruses (including Ebola Virus)
- Henipaviruses
- Alphaviruses
- Rift Valley Fever Virus
- Hantavirus
- Hepatitis B Virus (HBV)
- Hepatitis C Virus (HCV)
- Cytomegalovirus (CMV)

pre-clinical stage
** Phase 3 clinical stage

An NDV-vectored Vaccine: NDV-HXP-S to Address SARS-CoV-2

T NDV-HXP-S is a late-stage SARS-CoV-2 vaccine

t Some lessons learned from the COVID-19 pandemic

Problem statements

- Global access to the most effective vaccines has not been efficient and equitable
- Currently licensed vaccines do not block SARS-CoV-2 infection and transmission

Readily available, low-cost, global production

Solutions

Mucosal immunity

An effective Pandemic Response Vaccine Platform must address these two issues

NDV can address the shortcomings of the vaccine response to the COVID-19 pandemic

1 Inequity in vaccine access

Program Goal: Provide LMICs the ability to produce their own low-cost, locally-produced systemic COVID booster vaccine

Lack of protection from infection and transmission

Program Goal: Develop a "nextgeneration" intranasal COVID booster vaccine capable of preventing breakthrough infection/transmission via mucosal immunity

Success in both of these areas will demonstrate the potential of the NDV-vectored vaccine platform to serve as an effective future pandemic response solution

LMIC partners are conducting Ph2/Ph3 clinical trials of their low-cost, locally-produced NDV-HXP-S systemic booster vaccine

Partner	Clinical Trial Status	Total Subject Enrolled	Estimated Ph 3 Completion
GPO (Thailand)	Ph 1/2 completed Ph 2 completed Ph 3 ongoing	N=210/250 N=300 N=4,000	Q4 2023
Avi Mex (Mexico)	Ph1 completed Ph2 completed Ph 2/3 ongoing	N=90 N=158 N=400/2,168	Q4 2023
Instituto Butantan (Brazil)	Ph1 completed Ph2/3 ongoing	N=320 N=400/4,000	Q1 2025
IVAC (Vietnam)	Ph 1/2 completed	N=120/300	

Vaccine Equity

Preliminary Findings:

IM delivery of the inactivated NDV-HXP-S vaccine boosts systemic immune responses equivalent to an mRNA booster and superior to a viral vector booster.

Potential for Global Production:

NDV can plug into the existing global influenza vaccine manufacturing infrastructure and support production of 3-6 billion of doses of vaccine per year and equitably meet worldwide vaccine needs. Abbreviated Target Product Profile (TPP) for CastleVax's live virus, intranasally-delivered booster vaccine

A single-dose, live, IN-delivered, multivalent, NDV-vectored SARS-CoV-2 booster vaccine that will effectively:

- Protect against severe disease and hospitalization caused by the circulating strains of SARS-CoV-2 (systemic immunity)
- Provide superior protection against breakthrough infection relative to existing IM administered SARS-CoV-2 booster vaccines (mucosal immunity)

Mucosal

Immunity

Intranasal immunization of Balb/c mice with NDV-HXP-S induces systemic and mucosal immune responses

Mucosal Immunity

high-titer S-specific IgG antibody responses in serum I delivery of NDV-HXP-S induced S-specific secretory IgA antibody responses in nasal wash (NW) and Bronchoalveolar lavage fluid (BALF) Intranasal immunization with NDV-HXP-S protects hamsters from SARS-CoV-2 challenge

		Immunization				Blood	
S:X	Group (n=6)	Vaccine	Route	Prime	Boost	Draw days	(10 ⁵ PFU)
	1	NDV-HXP-S	I.N.	D0	D22	D22,41	D44
	2	WT NDV	I.N.	D0	D22	D22,41	D44
	3	PBS	I.N.	D0	D22	D22,41	D44
	4	Healthy controls	N/A	N/A	N/A	D22,41	Mock

Mucosal Immunity

Sun W., Nat Comm. 2021 Oct 27;12(1):6197.

We're nearing completion of our Phase 1 clinical trial

Phase I (NCT05181709, Mount Sinai): on-going

- 18-59 yr old, COVID vaccinated
- Single booster dose with NDV-HXP-S expressing Wuhan S

Cohort	N	D1 Vaccinat Route/dose	ion (EID _{Fo})	Status	
1	5	Placebo	IN+IM	Fully Enrolled	
2	5	NDV-HXP-S	IN / 3.3x10 ⁸	Fully Enrolled	
3	5	NDV-HXP-S	IM / 3.3x10 ⁸	Fully Enrolled	
DSMB Review					
4	5	NDV-HXP-S	IN+IM / 6.6x10 ⁸	Fully Enrolled	
DSMB F	Review	I			
5	5	NDV-HXP-S	IN / 1.0x10 ⁹	Fully Enrolled	
6	5	NDV-HXP-S	IM / 1.0x10 ⁹	Fully Enrolled	
DSMB Review					
7	5	NDV-HXP-S	IN+IM / 2.0x10 ⁹	Full enrollment May2023	
total	35				

1st interim data report: 28 days after the 15th person enrolled (Sept 2022)

- Overall, NDV-HXP-S appears to be safe and well tolerated
- Only 1 Grade 2 event (headache) and 2 unrelated, isolated sample handling-related, laboratory abnormalities
- No related serious adverse events

2nd interim data report (May 2023):

- 28 days after cohort 5 has enrolled

Key Immune analysis for 2nd interim report:

- Serum S/RBD-specific IgG ELISA
- Serum Wuhan neutralization titer
- Saliva S-specific IgG/SIgA ELISA titers

Ready to kick-off Phase 2 clinical trial in Q4 2023

Phase II: live mucosal booster vaccine

- 18 59 yr old, COVID vaccinated
- Single booster dose, monovalent NDV-HXP-S expressing Omicron BA.5 S
- Single booster dose, bivalent NDV-HXP-S expressing Wuhan/BA.5 S
 - $\circ \quad$ vs. authorized bivalent mRNA booster vaccine

Cohort	N	D1 Vaccination Route/dose (EID ₅₀)	
1	10/2	Monovalent NDV-HXP-S-BA.5	IN / TBD
2	60	Bivalent NDV-HXP-S-Wuhan/BA.5	IN / TBD
3	60	Active Comparator: Bivalent mRNA Wuhan/BA.5	IM / TBD

Primary objectives: Demonstrate Safety

Secondary objective: Immunogenicity

- Demonstrate that mucosal delivery results in robust and high frequency mucosal immune responses
- Benchmark the ability of mucosal delivery of NDV-HXP-S to elicit mucosal and systemic immune responses relative to an active comparator vaccine delivered systemically

During a Type-C meeting conducted Feb 2023, US FDA reviewed and approved CastleVax's preclinical, manufacturing, clinical and regulatory strategy to advance through Phase 2

Clinical / Licensure strategy: IN delivered, live NDV-HXP-S

E Summary

- CastleVax's LMIC partners are in Phase 3 clinical studies with their low-cost, locally-produced NDV-vectored systemic booster vaccine for SARS-CoV-2.
 - Systemic administration elicits serum neutralizing antibody responses equivalent to currently licensed mRNA vaccines and significantly higher than ChAdOx1.
- CastleVax is in **Phase 1** with our **Intranasally (IN) delivered next-generation NDV-vectored vaccine** for SARS-CoV-2 which we believe will elicit robust mucosal immune responses necessary to protect against breakthrough infection and transmission.
- The progress we're making in the clinical development of NDV-HXP-S COVID-19 vaccine highlight the utility of NDV as a promising pandemic response vaccine platform:
 - **Flexible** platform allows for multiple routes of delivery/presentation; IN v. IM, inactivated v. live attenuated
 - Manufacture of NDV-vectored vaccines is simple, <u>low-cost</u> and can be easily transferred into the existing global influenza manufacturing infrastructure
 - Inactivated NDV-vectored vaccines have long-term **<u>stability</u>** at 4 to 8°C
 - The <u>safety</u> data from Phase 1 and 2 studies indicate that NDV-HXP-S is well tolerated with lower reactogenicity profiles than the two approved mRNA vaccines, the Novavax protein unit vaccine, and ChAdOx1
 - No NDV pre-existing immunity in humans

Jori Horberg Alan Jackimo Andrea True Kelly

Bruce Innis Steve McMaster

Ponthip Wirachwong Punee Pitisuttithum

Marcia Meseck Weina Sun Erik Lium Florian Krammer Adolfo Garcia-Sastre Peter Palese

Cristiano Goncalves Pereira

Bernardo Lozano Hector Chagoya Cortes

castlevax™

Thank You!

Contact Info:

Michael A. Egan (CSO): Michael.Egan@castlevax.com Jori Horberg (Head of Operations): Jori.Horberg@castlevax.com

