

Vaccinology in the Context of Pandemic Preparedness: The COVID-19 Experience

1	****	-	5.	
í		1	ÿ	
1	-	4	-	
~~~	(Propage)	æ		

Anthony S. Fauci, M.D. Director National Institute of Allergy and Infectious Diseases National Institutes of Health February 22, 2021

NIH National Institute

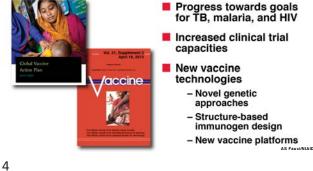
AS Fauci/NIAID

#### Vaccinology in the Context of Pandemic Preparedness

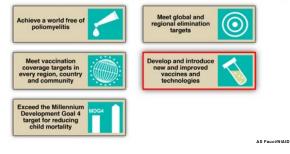
- "Decade of Vaccines": much accomplished much to do
- Vaccinology in 2021

2

- Pandemic preparedness and response
- Challenges for the next decade


AS Fauci/NIAID

1


#### Vaccinology in the Context of Pandemic Preparedness

- "Decade of Vaccines": much accomplished much to do
- Vaccinology in 2021
- Pandemic preparedness and response
- Challenges for the next decade
- 3

## A "Decade of Vaccines" 2011-2020

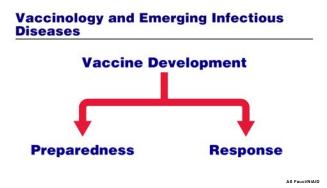


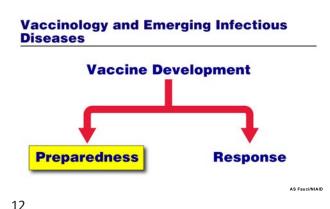
### Goals of the "Decade of Vaccines" (2011-2020)



### Vaccinology in the Context of Pandemic Preparedness

- "Decade of Vaccines": much accomplished much to do
- Vaccinology in 2021
- Pandemic preparedness and response
- Challenges for the next decade


# Vaccinology in 2021: Applying New Science to an Old Discipline




# Vaccinology in 2021: Applying New Science to an Old Discipline

- Rapid genetic sequencing for identification of new pathogens and genes encoding structural proteins that can form the basis for vaccine immunogens
- Delineation of atomic-level structures of viral proteins for structure-enabled immunogen design and protein engineering
- Cell sorting and sequencing technologies for single-cell analysis of immune responses
- Genetic knock-in technologies to develop animal models with human antibody genes for vaccine testing
- 8

#### Vaccinology in 2021: Applying New Vaccinology in the Context of Pandemic Science to an Old Discipline (cont.) Preparedness New vaccine platforms (e.g. DNA and RNA "Decade of Vaccines": much accomplished – vaccines; vector expression; nanoparticles) much to do Adjuvants to improve immune responses to vaccine Vaccinology in 2021 antigens Reverse vaccinology (1.0, 2.0) Pandemic preparedness and response Challenges for the next decade AS Fauci/NIAID AS Fauci/NIAID 9 10





#### Vaccine Development for Emerging Infectious Disease Threats: A 21st Century Approach

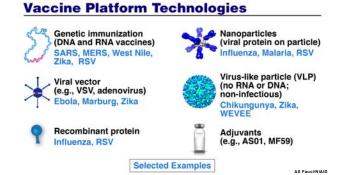
- Priority-Pathogen Approach
- Platform Approach
- Prototype-Pathogen Approach
- AS Fauciniaid

#### Vaccine Development for Emerging Infectious Disease Threats: A 21st Century Approach

- Priority-Pathogen Approach
- Platform Approach
- Prototype-Pathogen Approach

AS Fauctiniaid

### WHO R&D Blueprint: Priority Diseases, 2020


Ebola virus disease and Marburg virus disease	Lassa fever	Crimean-Congo haemorrhagic fever (CCHF)
Nipah and henipaviral diseases	Rift Valley fever (RVF)	Zika
Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS)	Disease X	COVID-19

#### 15

#### Vaccine Development for Emerging Infectious Disease Threats: A 21st Century Approach

- Priority-Pathogen Approach
- Platform Approach
- Prototype-Pathogen Approach

AS Fauci/NIAID



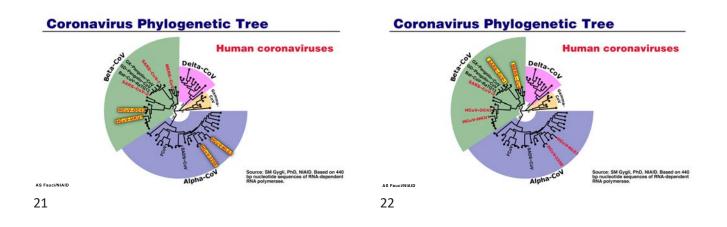
#### Vaccine Development for Emerging Infectious Disease Threats: A 21st Century Approach

- Priority-Pathogen Approach
- Platform Approach
- Prototype-Pathogen Approach

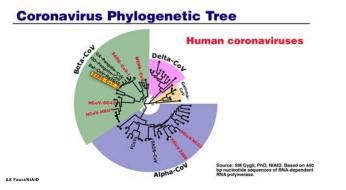
AS Fauci/NIAID

16

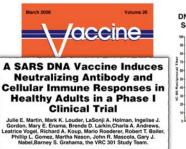
AS Fauci/NIAID

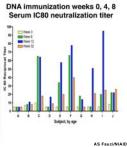

Prototype Pathogen Approach To Vaccine Development Build on Prior Experiences

#### Applying Strategies and Tools from One Virus to Inform Vaccine Design for Related Viruses

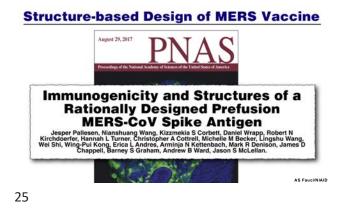

- Basic virology (e.g., neutralization mechanisms)
- Assays for preclinical and clinical settings
- Animal models
- Antigenic targets
- Optimal platforms
- Potential immune correlates
- Manufacturing strategies

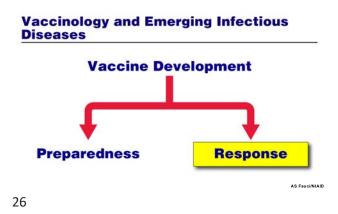
20

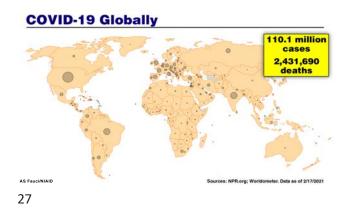

AS Fauci/NIAID




24



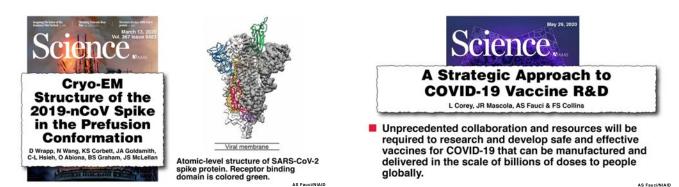






19

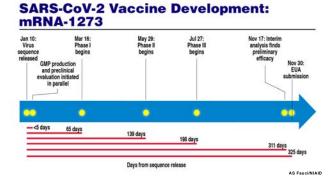




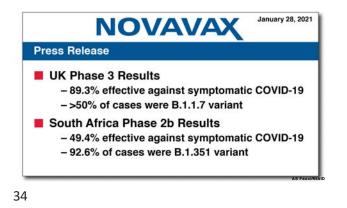





Using established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer.

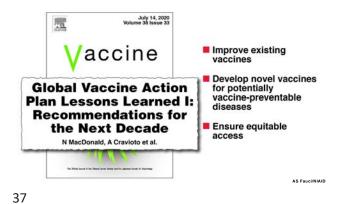

28




AS Fauci/NIAID

Platform		Developer	Status		
Nucleic Acid	الم	moderna	94% efficacy vs. symptomatic disease	-	- EUA
(mRNA)	en la		95% efficacy vs. symptomatic disease	-	EUA
Adenovirus Vector	the	Janssen J	72% efficacy in U.S. 85% efficacy overall vs. severe disease in U.S., South Africa, Latin Amer		EUA review Feb. 26
	S.	AstraZeneca	63% efficacy vs. sympton disease in U.K., Brazil an South Africa	matic d	
Recombinant Protein and Adjuvant	de	🥵 SANOFI 🎝	Phase 2 starts	+	Feb. 2021
	*•/	NOVAVAX	89% efficacy vs. symptomatic disease in U.K.	→	EUA TBD

Calculad OOVID 40 Vacations










## 

