mRNA and adjuvants friends...or foes ?

Nathalie GARCON, PharmD PhD

Former GSK vice president adjuvant center and technology innovations

Former BIOASTER CEO/CSO

A look at the past

2

From chance

3

From chance .. to necessity

4

Understanding the present

5

An ideal adjuvant

6

• Have no bystander adverse effect

• Have a clear mechanism of action

• Effectively activate humoral and cellular immunity with no adverse reaction across populations, if not should be tailored to the population best benefiting from it.

• Be easy to produce, store and administer

Understanding the present

Critical part of the adjuvant design

8

• Current adjuvants can be natural (part of a plant, microbe), hemi synthetic (built on nature) or synthetic

Understanding the present • The revolution in the understanding of how innate immune system senses microbes brings huge opportunity for their design and development

• One size does not fit all (antigen, or target population, or needed immune modulation)

• Combination can be synergistic through a different mechanism of action (shown with AS01 only so far)

What we have learned

- The effect of combined adjuvant molecules is superior to the sum of its part
 - The effect of combined adjuvant molecules can be different than their single parts
- Adjuvants can bring pan protection and increase the breadth of the response
- Adjuvant can protect better than the original pathogen in frail population

- MPL : TLR4
- QS21 : Caspase 1
- MPL/QS21 : Syk activation
- Alum/MPL : HPV
- O/W emulsion : influenza
- MPL/QS21 : protection over 90% against zoster over 80 years of age
- Attenuated virus : protection bellow 30% over 80 years of age

Understanding the present

۰

.

Priming Veccine Vecci

What we have learned

10

The power of formulation

What about combinations?

Could adjuvant and mRNA be the best of both world?

LNP can act as adjuvant with rec proteins (mice)

Demonstrated with rHA recombinant antigen

(when using high doses)

Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral response. Alameh et al., 2021, Immunity 54, 2877– 2892 December 14, 2021

What does this means for mRNA?

Humoral response needs to be improved (level, breadth, duration)

Increase APC targeting and cytokine expression

Improving current LNP

What does this means for mRNA?

Humoral response needs to be improved (level, breadth, duration)

Addition of exogenous adjuvant

Improving current LNP

Gemcovac (lyophilized samRNA, emulsion adjuvant)

Michael J. Mitchell, Margaret M. Billingsley NaTure RevlewS | Drug DIsCover: y volume 20 | February 2021 | 101

Beyond current approaches

What is next ?

- What is next?
- Current mRNA technology as clearly demonstrated its value for fast emerging response
- Strengths (CD8 in naïve individuals) and weaknesses (low quantity and persistence versus recombinant/adjuvant and reactogenicity) have been highlights thanks to never before reached amount of vaccinated people within a short time has given a view on its strengths and weaknesses

• *It is possible today* to combine existing adjuvant technologies to new mRNA platform and may reach the best of both world

THANK YOU