Nanoparticle Vaccines:

A success story for viral vaccine development

Global Vaccine & Immunization Research Forum 28th March 2023

Harry Kleanthous Vaccines R&D Strategy & External Innovation

SK bioscience

Key Messages

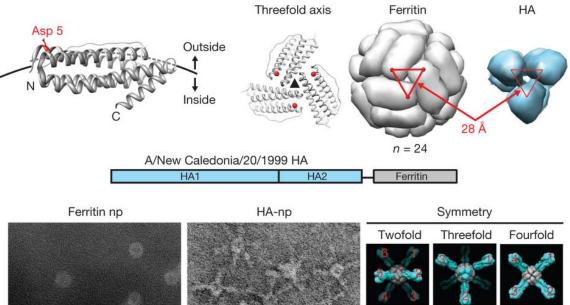
- Several Virus-Like Particle (VLP)-based vaccines targeting viral infections licensed
- Self-assembling proteins are a promising platform for structure-based vaccine delivery
- Particle-based vaccines deployed during pandemic had key attributes
 - Increased titer, potency, breadth and durability
 - Pre-clinical data predictive of clinical performance

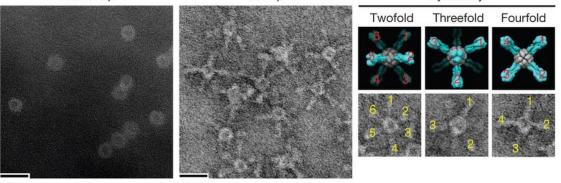
Particulate immunogens enhance immune responses through multiple mechanisms

Antigen presentation

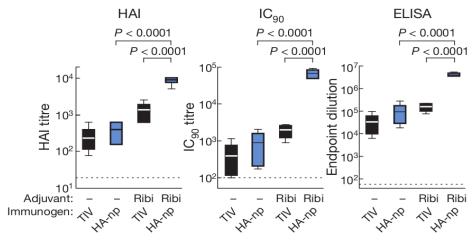
BACKGROUND - Licensed/Authorized Products using VLP Technology

- ~150 VLP/NP vaccines trials listed on ClinicalTrials.Gov (Clinical POC)
- Targets include HPV, HepB, SARS-CoV-2, human and avian influenza, Norovirus, HIV-1, Chikungunya virus, Coxsackieviruses, EBV, as well as against Melanoma, Adenocarcinoma, etc


Company	ID Target	Туре	Adjuvant	Vaccine	Development Stage	Key Attributes
Merck	HPV tetravalent	VLP	Amorphous Aluminum Hydroxyphosphate Sulfate	Gardasil	Licensed	Safety Potency Efficacy Schedule Dose sparing Breadth Durability Mfgr Scale (Boosters) (Mucosal)
Merck	HPV nonavalent	VLP	Amorphous Aluminum Hydroxyphosphate Sulfate	Gardasil 9	Licensed	
GSK	HPV bivalent	VLP	AS04	Cervarix	Licensed	
Novavax	Influenza SARS-CoV-2	NP NP	Matrix M Matrix M	NanoFlu Nuvaxovid/Covovax*	Phase 3 Approved	
GSK	Hepatitis B	VLP	Alum (PH and OH)	TwinRix	Licensed	
Dynavax	Hepatitis B	VLP	СрG	HEPLISAV-B	Licensed	
Serum Institute	Hepatitis B	VLP	Alum (AIOH)	Genevac-B	Licensed	
SK bioscience	SARS-CoV-2	NP	AS03	SKYCovione	Licensed	


* SK bioscience CDMO activity during SARS-CoV-2 pandemic

BACKGROUND - Self-assembling proteins proven a promising platform for structure-based vaccine delivery


Ferritin nanoparticles (VRC, NIH)

20 nm

20 nm

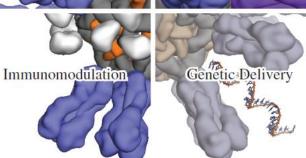
- Form highly ordered, monodisperse structures
- Trafficked like pathogens in vivo
- Seamless integration of antigen via genetic fusion
- Can be scalably manufactured
- Non-toxic
- Enable atomic-level engineering of both antigen and nanoparticle scaffold

BACKGROUND - VLP Technologies targeting several respiratory viruses

Influenza RSV		COVID-19					
qNIV (Novavax)	IVX-121 (Icosavax)	SpFN (WRAIR)	Covifenz (Medicago)	RBD-VLP (MIT-SII)	GBP510 (SK bioscience)		
Vx: rHA + Matrix M	Vx: Pre-F trimer (no adjuvant)	Vx: rS2P + ALFQ	Vx: S2P VLP + AS03	Vx: RBD + Alum	Vx: RBD + AS03		
HA vaccine manoparticles VLP strategy: Budding Stage of Dev. Phase 3 POC: • Safe & immunogenic in older adults • More solicited AE • Non-inferior to licensed INV products • Qualitative & quantitati	 VLP strategy: i53-50 two component NP Stage of Dev.: Phase 1/2 POC: Immunogenic in rodent Immunogenic in young & Older Adults (RSV A & B) Dose sparing 	 VLP strategy: Ferritin NP Stage of Dev.: Phase 1/2 POC: Rapid protection @ viral replication in LRT & URT of NHPs. Protects @ pathology Dose sparing Safe & immunogenic in Ph 1 	 VLP strategy: Budding Stage of Dev. : Licensed POC: Robust & durable humoral immunity (Th-1 biased) Potent Fc-dependent non-neutralizing Ab Breadth against VOC 	 VLP strategy: HBsAg-SpyCatcher-Spytag Stage of Dev.: Phase 1 POC: Immune-focusing Potent CoV-2 specific VN Ab. Protects against viral challenge (URT & LRT) Dose sparing 	 VLP strategy: i53-50 two component NP Stage of Dev.: Licensed POC: Immune-focusing Elevated VN Ab titers & protection in NHPs Breadth @ VOC Pan-sarbecovirus Ab (Het. P-B) 		
vely enhanced humoral & cellular responses Mgfr: Sf9 insect cells	 Durable Unadjuvanted Mgfr: <i>E. coli</i> & CHO 	 Breadth (VOC & sarb- ecoviruses (3 doses) Mgfr: CHO 	 Elevated cellular responses Mgfr: Tobacco plants 	 Breadth of immunity against VOC Mgfr: Yeast 	 Safe & Imm (Ph 1/2/3) Basis of pansarbeco Vx Mgfr: <i>E. coli</i> & CHO 		

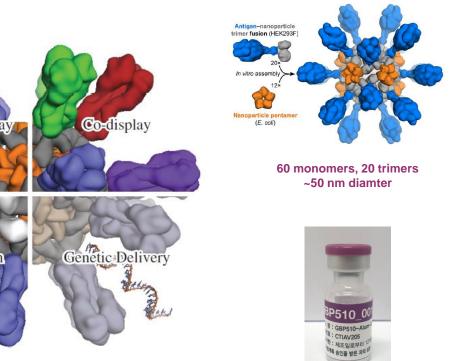
• VLP delivery being assessed across multiple global health targets (HIV, Malaria, Rotavirus)

SK bioscience USA 2023 – Nanoparticles


BACKGROUND - Structure-based immunogen design strategies

- BMGF invested in novel particle display for next-generation vaccines (subatomic accuracy, predictive algorithms)
- SK bioscience clinically de-risked platform as part of the pandemic response

Advantages:


- VLP display of immunogens are superior vaccines (HPV, HBV)
- Design of novel self-assembling protein scaffolds to <u>control size</u>, <u>shape</u>. # subunits, location & orientation of Ag precisely at atomic-level accuracy (complex Ag)
- Highly ordered, mono-disperse immunogens that are stable
- A repetitive array of Ag drives robust B cell activation (BCR clustering) and induces potent & durable immunity
- Co-display of multiple antigens (genetic fusion or 'Plug-and-display' approach)
- Inclusion of immunostimulatory molecules to exploit signaling pathways (molecular adjuvant)
- Genetic immunization (mRNA) using single-component nanoparticles

Multivalent Display Co-display

153-50 two-component icos ahedral nanoparticle

SK bioscience

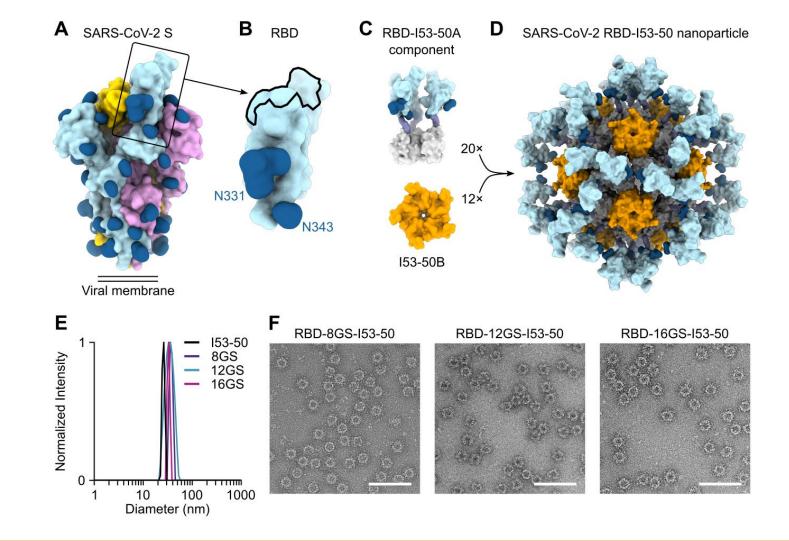
INSTITUTE FOR

Protein Desian

UNIVERSITY of WASHINGTON

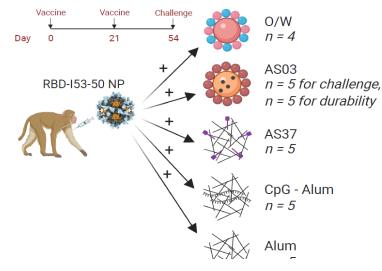
Institute for Protein Design – Structure-based Immunogen Design Strategies

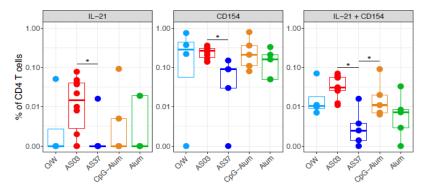
• SARS-CoV-2 RBD-I53-50 nanoparticles are produced in high yield and are highly monodisperse

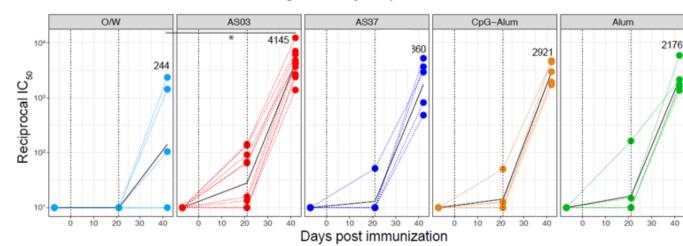


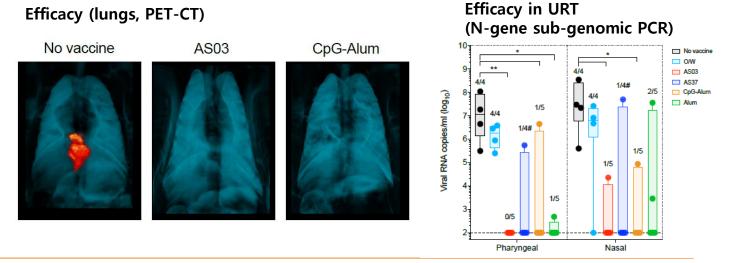
Brooke Fiala

David Veesler



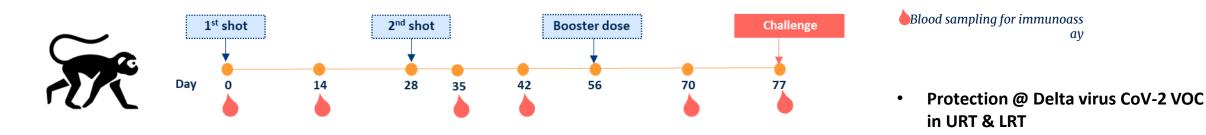

RBD-Nanoparticle Vaccines induce protective immunity (Stanford)


- RBD NPs elicit potent humoral & cellular immune responses (AS03, GSK; Alum-CpG, Dynavax)
- Protection in the LRT & URT (sub-genomic PCR & PET-CT)

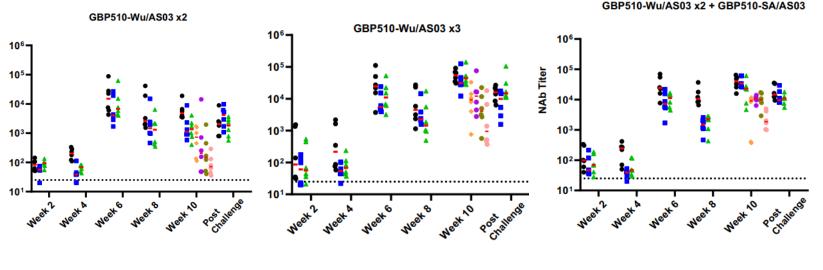

CMI responses (IL-21 & CD154)

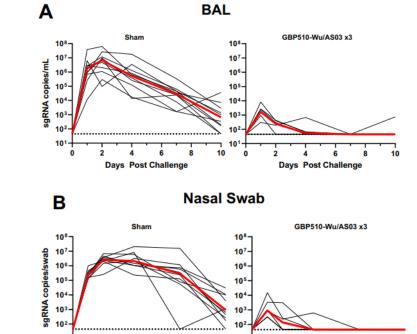
Markers of **formation** and persistence of **germinal centers**, critical for generation of affinity-matured plasma cells and memory B cells capable of mediating **durable** immunity

Authentic SARS-CoV-2 neutralizing antibody response


SK bioscience USA 2023 – Nanoparticles

٠

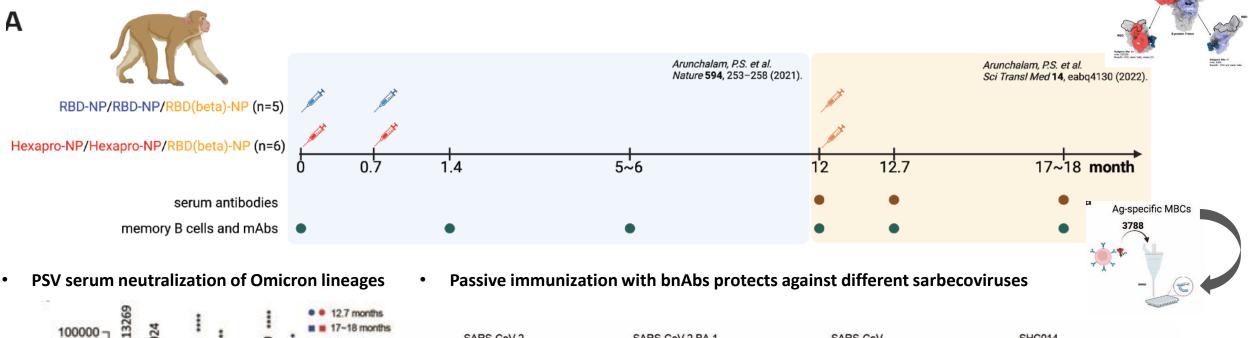

RBD-Nanoparticle Vaccine + AS03 protects against a CoV-2 VOC (Harvard)

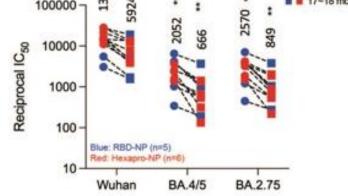


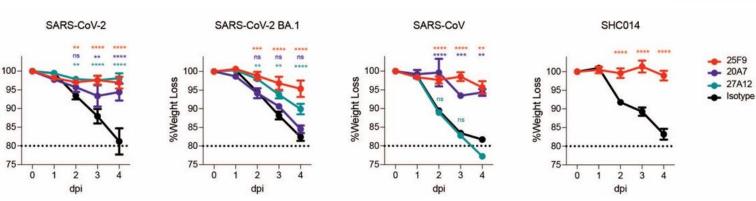
- Two or three dose immunization regimens (homologous & heterologous) elicit broad neutralizing Ab in NHPs against circulating CoV-2 variants
- Significant protection in the LRT and URT against a heterologous Delta challenge

• PSV neutralization confirms response against Omicron lineages

10

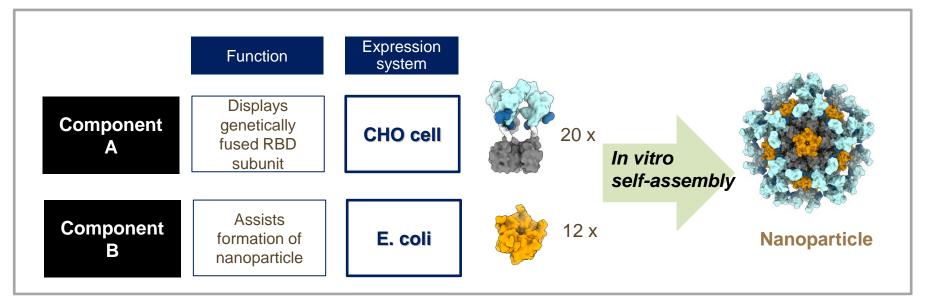

Days Post Challenge


Davs Post Challenge


RBD-Nanoparticle Vaccines induce durable & pan-sarbecovirus bnAbs (Stanford), bioscience

- AS03-adjuvanted NP immunization elicits potent and durable serum antibody responses & protects @ heterologous challenge
- Booster vaccination after primary immunization promotes bnAb's that target conserved regions of RBD with femtomolar affinity
- Passive immunization with 25F9 bnAb supports pan-sarbecovirus breadth

%Weight Loss


SK bioscience USA 2023 – Nanoparticles

Arunachalam et al. (2022) Sci. Transl. Med.14, 658: 1-16, Feng et al. (2023) bioRxiv. Jan 20. 10

SK bioscience – COVID-19 Vaccine: (GBP-510)

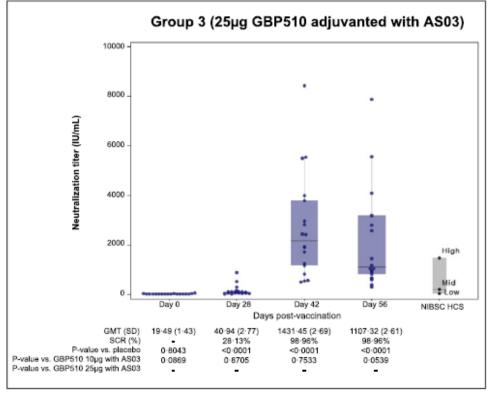
Project Overview

- SK bioscience (SK) has developed a novel nanoparticle vaccine candidate targeting the receptor binding domain (RBD) of SARS-CoV-2 Spike protein
- GBP510 consists of a self-assembling, two-component nanoparticle (RBD-16GS-I53-50) that was developed by the Institute for Protein Design (IPD) at the University of Washington using its synthetic structure-based vaccine design techniques.
 - Component A displaying genetically fused RBD protein
 - Component B forming a core pentametric nanoparticle structure, which self-assemble to display 60 copies of the SARS-CoV-2 Spike protein's RBD. Candidate vaccine tested with Alum and AS03.
- GBP510 provokes an enhanced immune response due to its molecular structure optimally displaying multiple antigens allowing affordable market access due to high productivity.

GBP510-Alum 10μ g and 25μ g

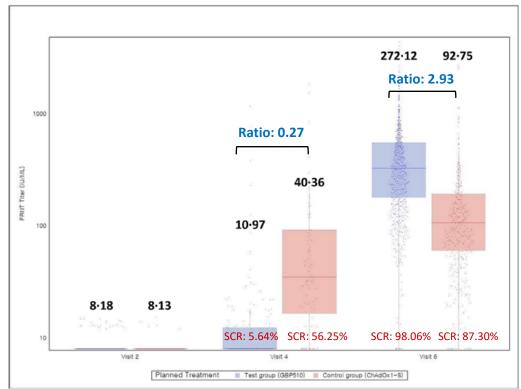
SK bioscience

GBP510-AS03 10µg or 25µg



Phase 1/2/3: Safety & immunogenicity of synthetic NP GBP-510/AS03

- Phase 1/2: Randomized, placebo-controlled, observer-blind study of GBP510- (2 doses; 28 d apart) in healthy adults (19 85)
 - Solicited events: mild-to-moderate in severity and transient; Higher reactogenicity in adjuvanted groups (post-dose 2)
 - 100% SCR (≥ 4-fold rise from baseline) after a 2-dose regimen (adjuvant required), PSV neutralization titers > NIBSC human convalescent sera standard
- Phase 3: Randomized, active-controlled (Vaxzevria), observer-blind multinational study in 4036 subjects (≥18 +, including > 65)
 - 1° endpoint met Superiority in GMT VN titers (FRNT) & non-inferiority in SCR (≥ 4-fold rise from baseline) of GBP510/AS03 compared to ChAdOx1-S


Phase 1/2: Immunogenicity (dose-finding)

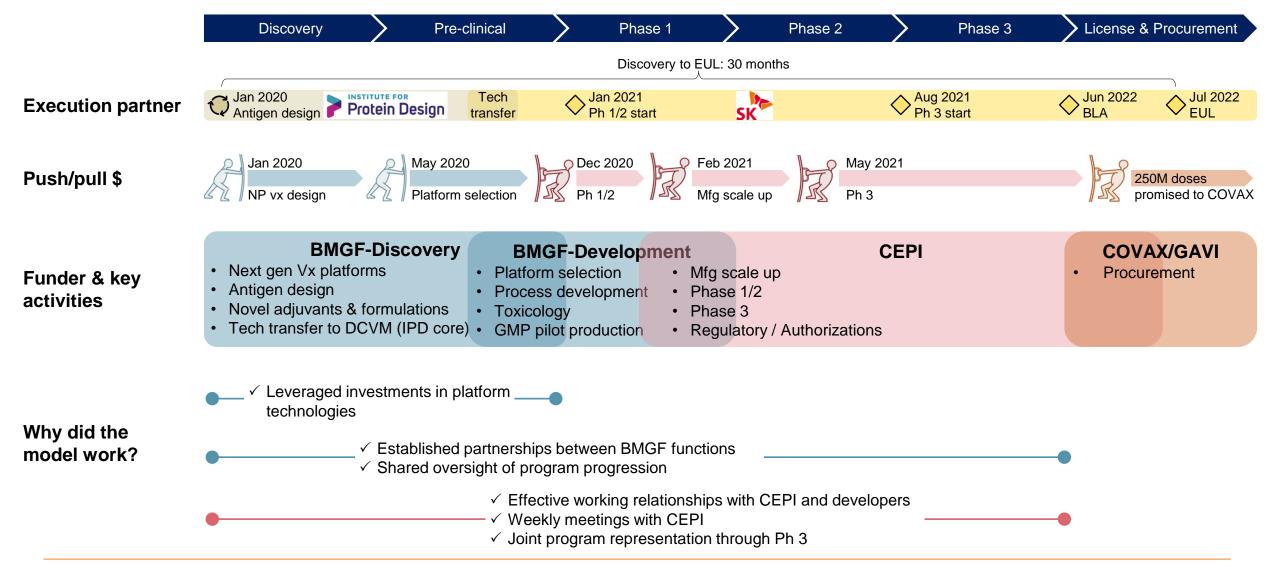
Boxplot showing individual neutralizing antibody titer to SARS-CoV-2 by PBNA (converted to IU/ml) for all participants (19-85).

GMTs and SCRs of neutralizing antibody to the SARS-CoV-2 by pseudovirus-based neutralization assay (per-protocol set)

Phase 3: Immunogenicity

Boxplot showing individual neutralizing antibody titer to SARS-CoV-2 by Focus Reduction Neutralization Test (FRNT) converted to IU/ml

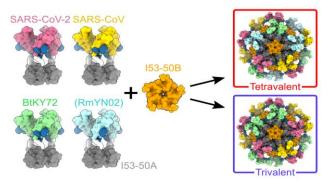
ANCOVA model with treatment group, age group (18^{64} , ≥ 65) as factors, and baseline antibody level as covariate. aGMT (adjusted)

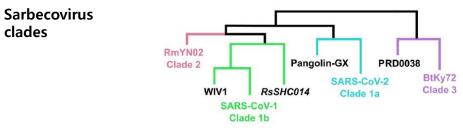

Visit 2: Baseline Visit 4: 4 weeks after 1st dose. Visit 6: 4 weeks after 2nd dose

SK bioscience USA 2023 – Nanoparticles

COVID-19 Response: A roadmap for a new Operating model

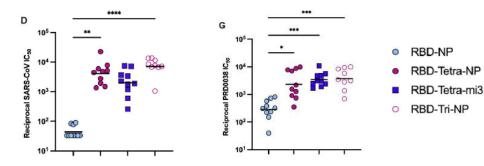
• Aligning novel technologies and academia to industry partners and funding agencies was key to successful partnership

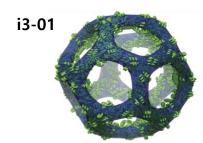

Nanoparticle Technology Advancements

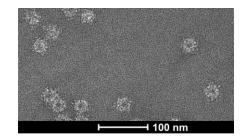


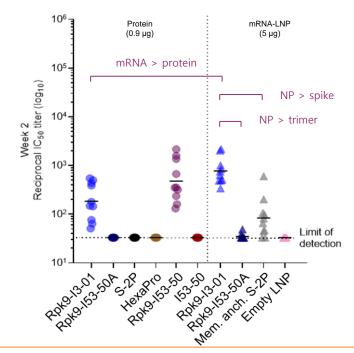
Mosaic Nanoparticles: A Pan-sarbecovirus Vaccine strategy

• Pre-clinical studies support breadth









mRNA Nanoparticles: Enhancing titer & longevity of immunity

- De-greased single-component NP for efficient cellular secretion
- POC met with RBD vaccines (single-dose vaccination)

Post-prime

John Wang

Alena Khmelinskaia

Grace Hendricks

SK bioscience USA 2023 – Nanoparticles

Walls et al. (2021) Cell 184, 5432–5447; Yang Hsia et al., Nature 2016;535(7610):136-9

Concluding remarks

- > Computationally designed protein nanoparticles are a clinically validated vaccine platform
- > SK bioscience successfully de-risked a novel synthetic NP platform for a SARS-CoV-2 vaccine
- > Pre-clinical data recapitulated in clinical trials
 - Homologous & heterologous prime-boost data pending
- > The platform has potential to address breadth & durability of immunity (Pan-Coronavirus Vx)
- > Successfully partnership ensured <u>licensure</u> in 30 months
- > Technology advancements show application to other platforms to enhance immunity

bioscience

Acknowledgements

IPD (UW) **Neil King**

Lauren Carter

Daniel Ellis

Brooke Fiala

Marcos Miranda

David Veesler

Lexi Walls

Stanford

Young-Jun Park

Bali Pulendran

Yupeng Feng

Prabhu Arunachalam

Rashmi Ravichandran

Emory Vaccine Protein Desian Center UNIVERSITY of WASHINGTON

Mehul Suthar

Tulane Regional **Primate Center**

Jay Rappaport Pyone pyone Aye

EMORY

Francois Villinger

UNC (Chapel Hill)

Ralph Baric Alex Schäfer

STANFORD

UNIVERSITY

BIMDC

Jin Park Yongwook Park **Hokeun Park** Jihwa Ryu Sally Choe Sujeen Lee Soojin Lee Kunse Lee Hun Kim

SK bioscience

GSK

Robbert Van der Most

Derek O'Hagan Agathe Philippot **Rino Rappuoli**

IVI

Jerome Kim

Byoung-Shik Shim Sang Hwan Seo Simone D'Souza Patchara Thaisrivichai

In-kyu Yoon

Jochen Auerbach Ramin Sabet-Azad Vincent Loh Tom Johnston Raimonda Viburiene

CEPI

SK bioscience

BMGF

David Vaughn Lynda Stuart John Hennessey Ian Hudson Peter Dull Max Silverman Ana Older Aguilar Holger Kanzler Karen Makar Chris Karp

BILL&MELINDA GATES foundation