

Subunit vaccine technologies for bacterial enteric diseases: Shigella, ETEC and nontyphoidal Salmonella vaccines

Cal MacLennan Bill & Melinda Gates Foundation Global Vaccine and Immunization Research Forum 20 March 2018

IHME GBD 2015 RESULTS: ETIOLOGY OF GLOBAL U5 DIARRHEAL DEATHS

499,000 (95% CI: 447,000 – 558,000) U5 diarrheal deaths

SHIGELLA VACCINES

THE CASE FOR A SHIGELLA VACCINE

Shigella burden is greater than we thought...

Quantitative PCR reanalysis of GEMS increased *Shigella* attribution of moderate-tosevere diarrhea by ~2-3X per 100 child-years

Quantitative PCR reanalysis of MAL-ED increased *Shigella* attribution of community diarrhea by ~7X and ~3X per 100 child-years among infants 0-11m and 12-23m, respectively

...its impact on growth faltering is significant...

...and the threat of AMR is growing

Source: GEMS; MAL-ED; AMR data adapted from Gu et al. 2012 and 2015

(1)

3

From GEMS:

- Only 35% of Indian Shigella isolates were sensitive to ciprofloxacin (WHO-recommended antibiotic for Shigella dysentery)
- > 80% of African Shigella isolates were resistant to cotrimoxazole (most commonly prescribed antibiotic in African sites)

SHIGELLA CANDIDATE PIPELINE

PHASE 3 EFFICACY WITH SHIGELLA SONNEI CONJUGATE VACCINE IN YOUNG ADULTS

(Cohen D et al. Lancet 1997) Monovalent Shigella sonnei vaccine

Young Israeli military recruits

S. Sonnei LPS O-antigen – rEPA conjugate 25 ug/75 ug – single dose

Overall Vaccine Efficacy 74% (95%Cl 28-100)

Clinical Proof of Concept for O-antigen-based approach

(Passwell JH et al. Vaccine 2010) Bivalent vaccine S. sonnei/S. flexneri 2a

2 doses 6 weeks apart. 2 year follow up

71.1% vaccine efficacy against S. sonnei diarrhea at 3-4 yrs age, but not < 3yrs

Loss of efficacy with reduced IgG LPS O-antigen titer

Figure 2: Attack rates of culture-proven *S* sonnei shigellosis in recipients of *S* sonnei conjugate vaccine and controls in groups A–D

Bioconjugation: Simplified manufacturing of a safe and efficacious vaccine

- Periplasmic production
- Site specific, enzymatic conjugation
- ✓ *S. flexneri* 2a bioconjugate Flexyn2a: phase 1 and 2b clinical PoC
- > Multivalent Shigella bioconjugate (manufacturing ongoing):
- S. flexneri 2a, S. sonnei, S. flexneri 3a and 6

Flexyn2a vaccine: human challenge data

	Attack Rate N(%)		Vaccine Efficacy	
	Flexyn2a N=30	Placebo N=29	(%)	p-value
Shigellosis (primary endpoint)	13 (43.3)	18 (62.1)	30.2	0.11
More Severe Shigellosis* (post hoc analysis)	8 (27.6)	16 (53.3)	51.7	0.015
More Severe Diarrhea**(secondary endpoint)	2 (6.7)	7 (24.1)	72.4	0.07

*<u>severe</u> enteric symptoms included (no mild or moderate); ** \geq 10 loose stools (or \geq 1kg) in 24h

Correlate of protection

Significant correlation between **serum IgG anti Sf2a-LPS** and protection against Shigellosis (p=0.0061)

A synthetic carbohydrate-based vaccine candidate against *S. flexneri* 2a produced for a phase I clinical trial

https://clinicaltrials.gov/ct2/show/NCT02797236

Bioconjugate Chem <u>27</u> 883 (2016)

A synthetic carbohydrate-based vaccine candidate against *S. flexneri* 2a is strongly immunogenic in naive adults

https://clinicaltrials.gov/ct2/show/NCT02797236

GENERALIZED MODULE FOR MEMBRANE ANTIGENS (GMMA) GSK VACCINES INSTITUTE FOR GLOBAL HEALTH (GVGH)

Genetic modifications

 Increase GMMA production
Reduce toxicity

- Outer membrane vesicles
- Multiple antigens (O-antigen, outer membrane proteins)
- Straightforward production
- Potential low cost of good

GVGH (GSK) GMMA – PHASE 1 & 2

Phase 1 - French adults (Launay O et al EBioMedicine 2017)

Dose-escalating Phase 1 study with monovalent S. sonnei GMMA O-antigen/protein 0.059/1, 0.29/5, 1.5/25, 2.9/50 & 5.9/100 μ g 3 vaccinations, 4 weeks apart

Phase 2 - Kenyan adults (Obiero CW et al Front Immunol 2017)

- high pre-existing antibody titers make interpretation of findings difficult

Low IgG titers due to low O-antigen content of S. sonnei GMMA?

Potential protection through other non-O-antigen related mechanisms

- 2018 CHIM with current monovalent S. sonnei GMMA to assess efficacy of O-antigen-sparse GMMA
- 2019 matched 4-valent studies with Limmatech bioconjugate into target population

ETEC VACCINES

ETEC COLONIZATION FACTORS AND TOXINS

Whole cell

Fimbriae

Fimbrial tip adhesins

<u>Fimbriae</u> Intestinal adherence CFA*/I CFA/II CS**1, CS2, CS3 CFA/IV CS4, CS5, CS6 Others (CS17, CS14, PCF071)

<u>Toxins</u> Cause diarrhea LT (Thermal labile) ST (Thermal stable) LT/ST

CURRENT PIPELINE OF ETEC VACCINE DEVELOPMENT

ETVAX – SCANDINAVIAN BIOPHARMA

- 1st generation: efficacy against severe travelers' diarrhea, but not in Egyptian infants
- WHO recommended increased CF/CS content; add CS6; assess adding adjuvant (dmLT)
- 2nd generation: immunogenic in Ph1 trial in Swedish adults; then descending age study in Bangladesh; now in a travelers study

ETEC FIMBRIAL TIP ADHESIN (FTA) VACCINE

- Concept: Antibodies to adhesive fimbrial subunits abrogate intestinal adherence, preventing disease
- A multivalent vaccine approach covering four of the most prevalent colonization factors plus and LT
- Estimated to provide 75-80% coverage for most common ETEC strains.

PASSIVE OR ACTIVE IMMUNIZATION WITH CF/CS ANTIGENS CAN PROTECT IN CHIMS AND NHP CHALLENGE MODELS

CHIMS - Volunteer anti-CfaE bovine IgG passive immunoprophylaxis trial

End point	PE (%)	95% CL
All diarrhea	63	2, 86
Moderate- severe diarrhea	84	-6 <i>,</i> 98

Anti – CFA/I and CS17 bovine Ab also protective in passive immunization model

Protective efficacy of Class 5 adhesin-pilin fusions in *Aotus nancymaae* model of ETEC diarrhea

Class	Vaccine	Route	PE(%) ¹	P-value ²
5a	CfaE, LTB	ID	84	0.015
5b	CsbDA-CooA LTB	, ID	70	0.05
5c	CotDA, LTB	ID	45	0.07
CS6	CssBA, dmLT	ID	100	0.03

¹Protective efficacy against CF-homologous ETEC Strain ²Fisher's exact test, one-tailed

• CssBA+dmLT, phase 1 trial (IM route) currently underway

NONTYPHOIDAL SALMONELLA VACCINES

Invasive nontyphoidal *Salmonella* (iNTS) disease in Africa: RTS,S-AS01 phase 3 malaria vaccine trial, 2009 to 2014

11 sites across sub-Saharan Africa. Children < 5yrs. Salmonella responsible for **60%** of all bacterial bloodstream infections (bacteremias).

- <u>Incidence</u> All *Salmonella* S. Typhi NTS
- S. Typhimurium
- S. Enteritidis

per 100,000 PYO (95% Cls) **534** (471, 604) **66.5** (45.5, 93.9) **461** (402, 526): 283 (237, 334) 133 (102, 170)

A **monovalent typhoid vaccine** could have prevented **12.5%** of *Salmonella* bacteremias.

A **trivalent** *Salmonella* **vaccine** could have prevented **90.3%** of *Salmonella* bacteremias.

(MacLennan CA, Wiegand R, Westercamp N, Kariuki S, et al unpublished)

University of Maryland/Bharat Biotechnology Trivalent NTS/Typhi conjugates

S. Typhimurium

Architicture: Sun-type (end-link) Chemistry: thioether Linkers: GMBS (FliC lysines), aminooxy-thiol (COPS-KDO) Linkage: COPS-KDO -> protein amines

Conjugation pH: 5-7

Flic

<u>S. Enteritidis</u>

Architecture: Lattice (multipoint linkage) **Chemistry:** CDAP cyanylation Linkers: Adipic acid dihydrazide (FliC carboxyls) Linkage: COPS hydroxyls -> protein amines and carboxyls **Conjugation pH**: 9-10 **COPS** FliC FliC **Fli**

S. Typhi (Typbar-TCV)

Architecture: Bead-on-string Chemistry: ADH/EDC Linkers: Adipic acid dihydrazide (Vi-TT carboxyls) Linkage: Vi-carboxyls-> TT carboxyls Conjugation pH: 6-7

TT

TT

CVD

21

Development of a glycoconjugate vaccine to prevent invasive *Salmonella* Typhimurium infections in sub-Saharan Africa

Scott M. Baliban^{1,2}, Mingjun Yang³, Girish Ramachandran^{1,2}, Brittany Curtis^{1,2}, Surekha Shridhar^{1,2}, Rachel S. Laufer^{1,2}, Jin Y. Wang^{1,2}, John Van Druff⁴, Ellen E. Higginson^{1,2}, Nicolas Hegerle^{1,2}, Kristen M. Varney⁵, James E. Galen^{1,2}, Sharon M. Tennant^{1,2}, Andrew Lees⁴, Alexander D. MacKerell, Jr.³, Myron M. Levine^{1,2,6}, Raphael Simon^{1,2}* (PLoS Negl Trop Dis 2017)

Glycoconjugates and GMMA

- GSK Vaccines Institute for Global Health vaccine approaches
- 1- Bivalent conjugate vaccine against iNTS(S. Typhimurium

(Rondini S et al, Infect Immunity 2015)

2- Bivalent GMMA vaccine against iNTS (S. Typhimurium and S. Enteritidis)

**S*. Typhimurium GMMA [†]*S*. Enteritidis GMMA

Equivalent S. Typhimurium GMMA and glycoconjugate vaccines compared in mice

Liver

(Supported by a BMGF Grand Challenges Explorations Award: 'A novel approach to manufacture of highly immunogenic and affordable polysaccharide vaccines for Global Health priority diseases.') Spleen

SUMMARY

- New subunit vaccine technologies in clinical trials for ETEC and Shigella
 - Shigella O-antigen-based approaches, building on 1st generation NIH conjugate vaccine efficacy
 - ETEC optimal approach less clear fimbrial tip adhesins as lead approach
- Nontyphoidal Salmonella O-antigen-based subunit vaccines to enter clinical trials in 2019
- Challenge of inducing sufficient immunity (and protection) in target populations children <1 year in LMICs
- Need to age-descend earlier to assess immunogenicity in target population
- Need to maximize information from controlled human infection models protection/correlates
- Correlates of protection lacking apart from IgG to Shigella O-antigen
- Assay standardization and qualification required for all three disease areas
- Need for clarity on regulatory pathways to licensure and implementation

BactiVac bacterial vaccinology network

- Part of the MRC UK's GCRF (Global Challenges Research Fund) Networks in Vaccines Research and Development initiative
- Promote and accelerate the development of vaccines against bacterial infections relevant to low and middle-income countries
- Encourage cross-collaboration between academic and industrial partners in developed and developing nations
- Catalyst projects and training awards
- Please join:

MINGH

http://www.birmingham.ac.uk/research/activity/immunologyimmunotherapy/research/bactivac/index.aspx

BactiVac 🖉

ACKNOWLEDGEMENTS

- Veronica Gambillara Limmatech/GSK
- Laurence Mulard Pasteur Institute
- Francesca Micoli GSK Vaccines Institute for Global Health
- Michael Prouty Naval Medical Research Center
- Lou Bourgeois PATH
- Mike Levine University of Maryland
- Laura Lamberti BMGF

BACK UP

SHIGELLA VACCINES

Four serogroups of Shigella

- Flexneri (6 serotypes)
- Sonnei (1 serotype)
- Bodyii (19 serotypes)
- Dysenteriae (15 serotypes)

- Invasive pathogen
- Complex multivalent vaccine construct likely required

Bioconjugation proven success of Shigella Vaccines

- ✓ Clinical safety and immunogenicity demonstrated with *S. dysenteriae* vaccine and *S. flexneri* 2a
- ✓ Clinical Proof of Concept (cPOC) shown for the monovalent Shigellabioconjugate Flexyn2a (WT-project 2013-2016), with efficacy data in CHIM
- ✓ Positive correlation identified for Flexyn2a between immune-response and protection
- In addition bioconjugate uses same Shigella antigens which were protective in the field with the chemical conjugate

confidential

Flexyn2a vaccine: human challenge data

	Attack Rate N(%)		Vaccine Efficacy	
	Flexyn2a N=30	Placebo N=29	(%)	p-value
Shigellosis (primary endpoint)	13 (43.3)	18 (62.1)	30.2	0.11
More Severe Shigellosis* (post hoc analysis)	8 (27.6)	16 (53.3)	51.7	0.015
More Severe Diarrhea**(secondary endpoint)	2 (6.7)	7 (24.1)	72.4	0.07

0 000

Placebo

*severe enteric symptoms included (no mild or moderate); ** \geq 10 loose stools (or \geq 1kg) in 24h

Correlate of protection

Significant correlation between serum IgG anti **Sf2a-LPS** and protection against Shigellosis (p=0.0061)

ETEC MULTI-EPITOPE FUSION ANTIGEN (MEFA) VACCINE

- One MEFA expresses the dominant epitopes of CFAs in a single protein
- One MEFA expresses non-toxic LTA LTB and ST in a single protein
- MEFA vaccines stimulate neutralizing antibodies against each of these virulence antigens
- 28 out 28 piglets acquired toxin MEFA-induced antibodies were protected against STa+ ETEC challenge, whereas 26 out 32 control piglets developed watery diarrhea.
- Quantitative culture of piglet ileum showed reduced colonization following immunization Immunized group: 3.2 x10⁸ CFU Control group: 1.6 x 10⁹ CFU

CFA/I – grey, CS1 – brown, CS2 – yellow, CS3 – ocean blue, CS4 – blue, CS5 – purple, CS6 - green ; CfaB backbone - grey

Data courtesy of Weiping Zhang, KSU

Invasive nontyphoidal Salmonella (iNTS) disease a major neglected disease in Africa

- Commonest cause of bacteraemia in much of Sub-Saharan Africa
- High case fatality rate (~20%)
- High levels of AMR
- Diagnostic conundrum
- Conclusion: key target disease for vaccine development
- Affected groups:
 - Young immune-naïve children
 - HIV-infected individuals
 - Malaria-infected children

(Reddy EA, et al, Lancet Infect Dis 2010)

A role for antibodies in immunity to invasive nontyphoidal *Salmonella* disease

Research article

The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of *Salmonella* in African children

nature

(MacLennan CA, et al J Clin Invest 2008)

RESEARCH HIGHLIGHTS

Acquisition of bactericidal antibodies inversely corresponds to age at which African children are susceptible to iNTS

IMMUNOLOGY

Antibiotic antibodies

J. Clin. Invest. doi:10.1172/JCl33998 (2008) The discovery of functional antibodies against strains of *Salmonella* that do not cause typhoid raises hopes that a vaccine can be developed. In Africa, such strains kill up to 24% of infected children in communities in which appropriate antibiotics and bloodculture facilities are available.

Vaccines in development against iNTS

Name	Description	Developer	Stage of development	References
O:4,5/O:9-flagellin	O:4,5/O:9 Conjugate	University of Maryland	Preclinical	50,69
O:4,12-TT	O:4-TT Conjugate	NIH	Preclinical	51
Os-po	O:4-porin Conjugate	National Bacteriology Laboratory, Stockholm	Preclinical	146
O:4,5/O:9-CRM ₁₉₇	O:4,5/O:9 Conjugate	NVGH	Preclinical	145
WT05	Live attenuated	Microscience, Wokingham Berkshire	Phase 1	147
CVD 1921 and CVD 1941	Live attenuated	University of Maryland	Preclinical	148
S. Typhimuirum ruvB mutant	Live attenuated	Seoul National University	Preclinical	149
Salmonella hfq deletion mutant	Live attenuated	Indian Institute of Science Bangalore	Preclinical	150
SA186	Live attenuated	Istituto Superiore di Sanità Roma	Preclinical	151
MT13	Live attenuated	KIIT University Odisha	Preclinical	152
Various	Live attenuated, DNA adenine methylase mutants	University of California, Santa Barbara	Preclinical	153,154
Various	Live attenuated, regulated delayed attenuation	Arizona State University	Preclinical	155-157
Porins	S. Typhimurium porins	National Bacteriology Laboratory, Stockholm	Preclinical	146
OmpD	Outer membrane protein	University of Birmingham, UK	Preclinical	73
S. Typhimurium and S. Enteritidis GMMA	Generalized Modules for Membrane Antigens	NVGH	Preclinical	65,158,159

*an exhaustive list, particularly of all candidate vaccines in preclinical studies, is beyond the scope of this review

S. Typhimurium and S. Enteritidis GMMA and glycoconjugate vaccines compared in mice as monovalent formulations

Supported by a BMGF Grand Challenges Explorations Award: 'A novel approach to manufacture of highly immunogenic and affordable polysaccharide vaccines for Global Health priority diseases.'

In vivo infection study in mice immunized with GMMA and conjugate in bivalent formulation

Supported by a BMGF Grand Challenges Explorations Award: 'A novel approach to manufacture of highly immunogenic and affordable polysaccharide vaccines for Global Health priority diseases.'