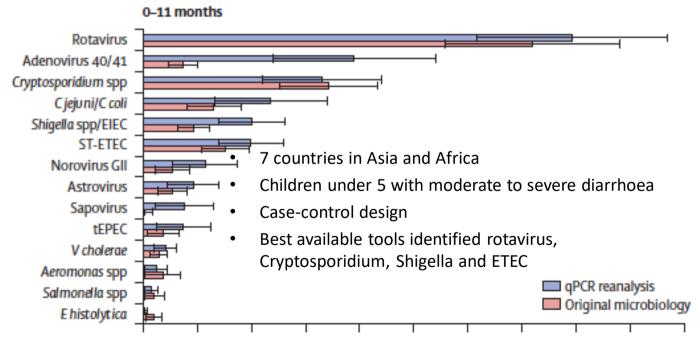


An update on rotavirus vaccines

Gagandeep Kang

- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development

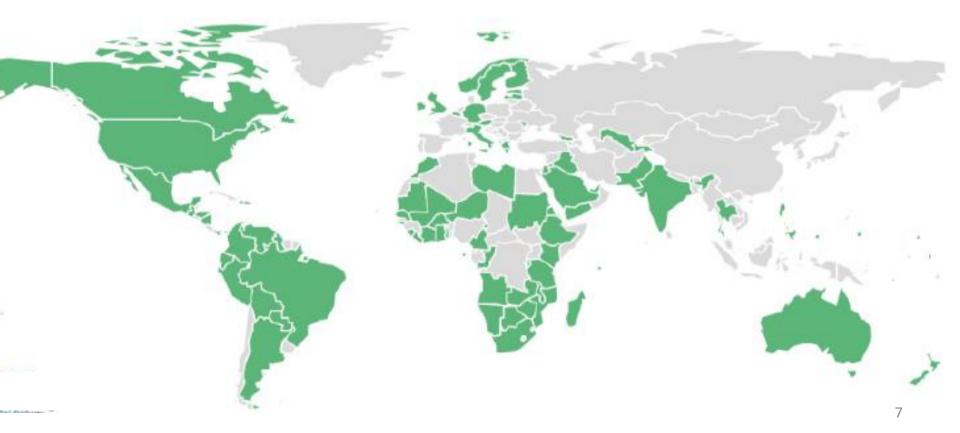
- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development


Introduction

- Deaths, <5 years
- 10. 2% (8.92% to 11.49%)
- -5.04% annual change

IHME, 2016

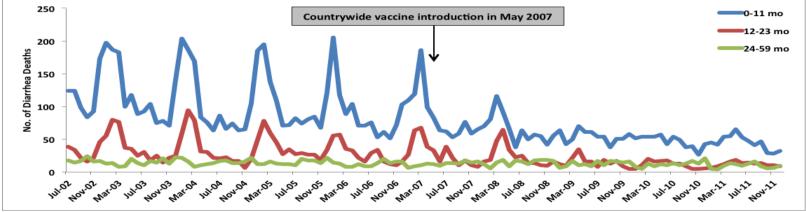
Rotavirus is the commonest cause of acute dehydrating gastroenteritis in young children



Rotavirus is democratic, and hygiene delays but does not prevent infection

- Rotavirus cannot be treated with antibiotics or other drugs
- Prompt treatment with oral rehydration therapy (ORT) can be effective in treating mild infections
- But many of the world's poorest children do not have access to ORT, despite the fact that it is effective and inexpensive
- IV fluids may be required if ORT is not administered, given too late or dehydration is too severe
- Rotavirus prevention by vaccination is key to improving child survival

93 countries with 86 with nationwide introductions in December 2017

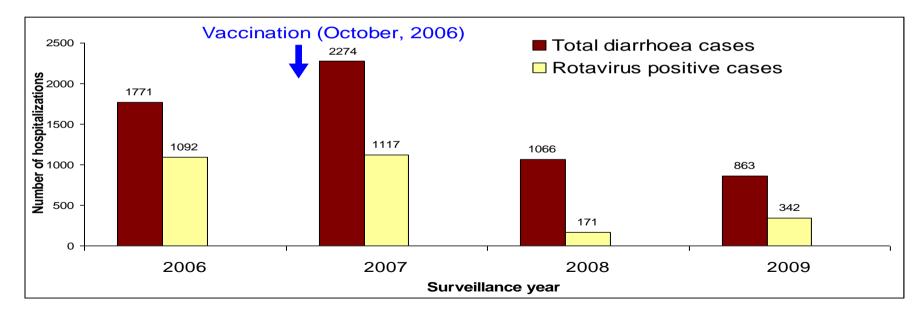

- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Vaccines that work and not so much
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development

Rotavirus vaccines	Rotarix (GSK)	Rotateq (Merck)	Rotavac (Bharat Biotech)	RotaSIIL (Serum)	Rotavin (Polyvac)	LLR (Lanzhou)	Rotashield (Wyeth, Biovirx)
Licensure	Several countries, 2006	Several countries, 2006	India, 2014	India, 2017	Vietnam, 2012	China, 2000	Several countries, 1998
Pre-qual	Yes	Yes	Yes	No	No	No	No
Strains	Monovalent, human derived G1P8	Pentavalent, WC3 G6P5 bovine, reassortants G1- 4, P8	Monovalent, human neonatal derived G9P11	Pentavalent, UK Bovine G6P5, reassortants G1-4, G9	Monovalent, human G1P8	Monovalent, lamb G10P12	Tetravalent, RRV G3P3 rhesus backbone, reassortants G1, 2, 4
No of doses	Two	Three	Three	Three	Тwo	One per year for 3 yr	Three (two neonatal)
Age first dose	6 weeks	6 weeks	6 weeks	6 weeks	6 weeks	2-36 mon	6 weeks
Dosage	10 ⁶ of live attenuated human G1P[8] particles	2.0-2.8 x 10 ⁶ infectious units per reassortant	10 ⁵ FFU of live rotavirus	10 ^{5.6} infectious units per reassortant	10 ^{6.3} of live attenuated human G1P[8] particles	>5.5 log CCID ₅₀	1 x 10 ⁵ plaque- forming units (pfu) of each component 9

	Setting	Vaccine	Schedule	1st yr efficacy	2 nd yr efficacy	Combined
What do						
vaccino	Latin America	RV1	2, 4 months	83% (67-92)	79% (66-87)	81% (71-87)
vaccine	Europe	RV1	3, 5 months	96% (90-99)	86% (76-92)	90% (85-94)
efficacy	Asia (HIC)	RV1	3, 5 months	96% (85-100)		
data	USA, Finland	RV5	2, 4, 6 months	98% (88-100)		
	South Africa	RV1	10, 14 weeks	72% (40-8)		32% (-71-75)
show?	South Africa	RV1	6, 10, 14 wks	82% (55-94)		85% (35-98)
 Few head to head studies in 	Malawi	RV1	10, 14 wks	49% (11-72)	3% (-101-53)	34% (-2-58)
the same	Malawi	RV1	6, 10, 14 wks	50% (11-72)	33% (-49-71)	42% (9-64)
population	Africa	RV5	6, 10, 14 wks	64% (40-79)	20% (-16-44)	39% (19-55)
Efficacy trial	Ghana	RV5	6, 10, 14 wks	65% (36-82)	29% (-65-71)	56% (28-73)
data indicates that mono- and	Kenya	RV5	6, 10, 14 wks	83% (26-98)	-55% (-1753-82)	64% (-6-90)
multivalent vaccines have	Mali	RV5	6, 10, 14 wks	1% (-432-82)	19% (-23-47)	18% (-23-45)
similar efficacy	Asia	RV5	6, 10, 14 wks	51% (13-73)	46% (1-71)	48% (22-66)
in broadly similar settings	Vietnam	RV5	6, 10, 14 wks	72% (-45-97)	65% (-48-94)	64% (8-91)
0	Bangladesh	RV5	6, 10, 14 wks	46% (-1-72)	39% (-18-70)	43% (10-64)
	India	Rotavac	6, 10, 15 wks	56% (37-70)	49% (17-68)	55% (40-66)

- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs South America, Africa and India
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development

Impact on mortality in Mexico

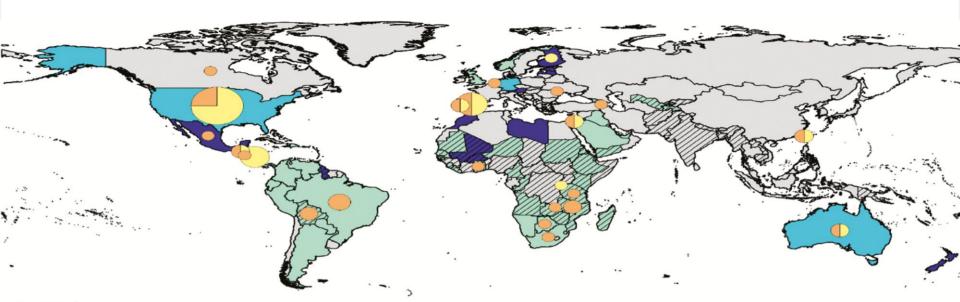

Decline in Child (<5) Diarrheal Deaths in Mexico Following Vaccine Introduction

- Reduction in deaths of >50% sustained across all regions.
- Reduction in deaths of **35%** seen in just the first year.

Gastañaduy et al, Pediatrics, 2013 Richardson et al, NEJM, 2010

Impact on rotavirus and all-cause gastroenteritis hospitalizations in El Salvador

70-80% reduction in rotavirus hospitalizations children < 5 years

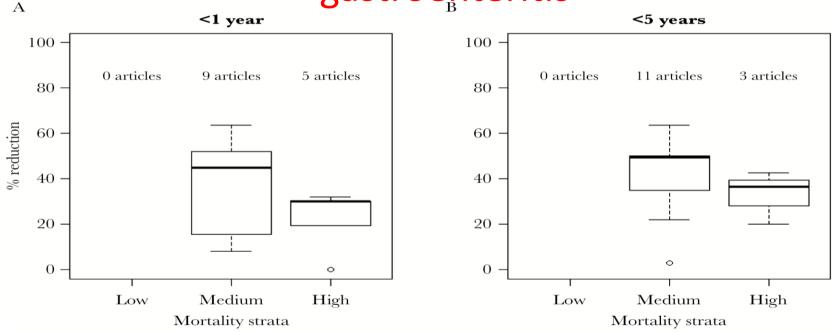


De Palma et al, BMJ, 2010 13

Herd immunity

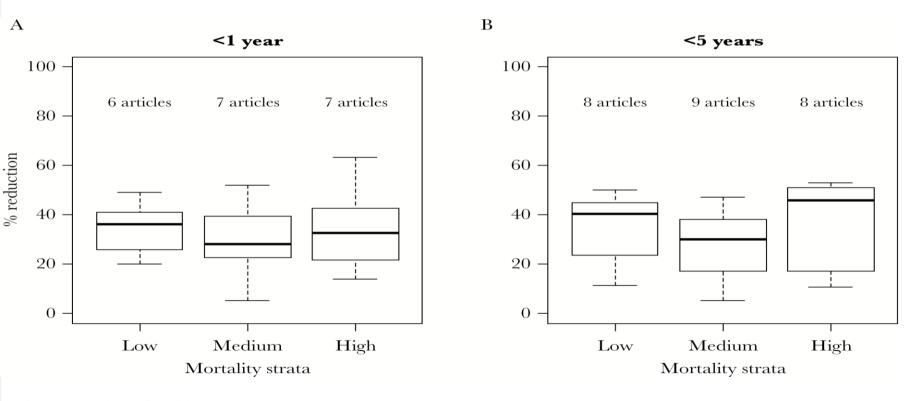
Significant reductions in hospitalization observed for non-vaccinated children in developed and some developing countries

	Rotavirus related hospi	talizations reduced
Country (nationwide)	Children age-eligible for vaccine	Children NOT age-eligible for vaccine
El Salvador	79-86%	41-81%
Austria	76-79%	35%
USA	74-85%	41-80%
Belgium	65-80%	20-64%
Country (regional)		
Sao Paulo, Brazil	56-69%	24%
Queensland, Australia	50-70%	30-70%

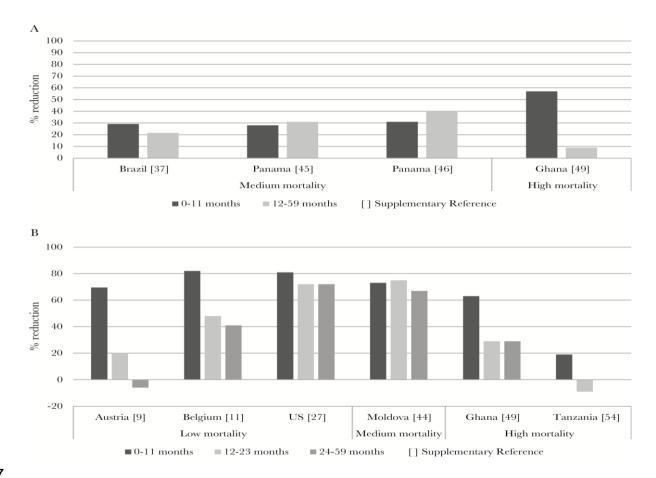


Legend

////, Gavi Eligible Countries*	Number of	VE estimates:
Rotateq Introduced	\bigcap	
Rotari× Introduced	()	16
Rotari× and Rotateq Introduced	\smile	
🦲 % RotaTeq	\bigcirc	5
🦰 % Rotarix	\bigcirc	
	0	1


Jonesteller et al, Clin Infect Dis 2017

Reduction in mortality due to acute gastroenteritis


Burnett et al, J Infect Dis. 2017

Reduction in acute gastroenteritis hospitalizations

Burnett et al, J Infect Dis. 2017

Herd effects? Age specific reduction in disease in the first year after vaccine introduction

Burnett et al, J Infect Dis. 2017

Rotavirus vaccine effectiveness in Malawi

	Rotavirus positive	Test negative c	ontrols	Community cor	ntrols
Children with Vesikari <u>></u> 11	N=90	N=197	Vaccine effectiveness (95% CI)	N=288	Vaccine effectiveness (95% CI)
Median age in months	8 (0-16)	9 (0-17)			
0 doses	13 (14%)	10 (5%)	reference	19 (7%)	reference
2 doses	69 (77%)	195 (89%)	68% (22-87%)	139 (83%)	68% (23-86%)
At least 1 dose	77 (89%)	208 (95%)	69% (25-87%)	269 (91%)	<u>68% (37-83%)</u>

Bar-Zeev et al. Lancet Infect Dis 2015⁹

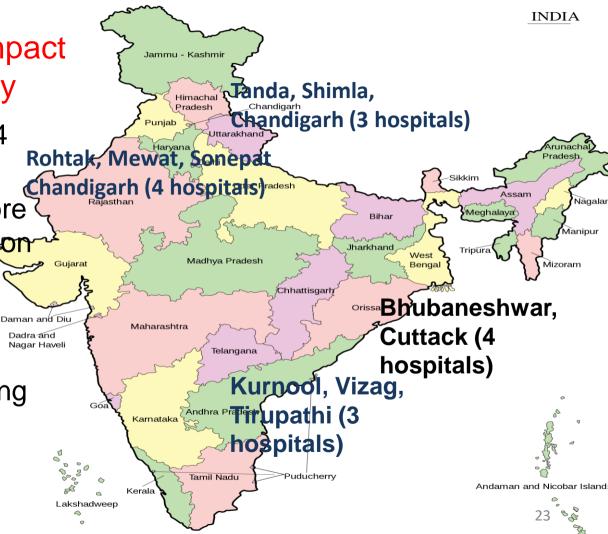
Follow-up of rotavirus vaccine effectiveness in Malawi

Subgroup	Cases/Controls	2-dose vaccine effectiveness % (95% Cl)	P value
All	241/692	58.3 (20.2, 78.2)	0.008
<12 mo	167/467	70.6 (33.6, 87.0)	0.003
12-23 mo	71/201	31.7 (-140.6, 80.6)	0.552
>23 mo	73/225	28.8 (-147.5, 79.5)	0.594
HIV unexposed	191/554	60.5 (13.3, 82.0)	0.021
HIV exposed, uninfected	48/126	42.2 (-106.9, 83.8)	0.400
Well nourished	74/183	78.1 (5.6, 94.9)	0.042
Stunted	53/152	27.8 (-99.5, 73.9)	0.320

Bar-Zeev et al. Clin Infect Dis 2016

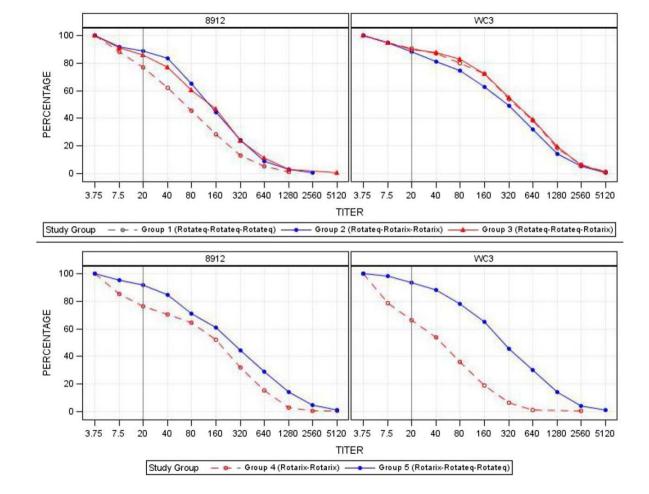
Effectiveness in non-high income Asian countries

Location/design	Duration/vaccin e	Effectiveness	Herd protection	Reference
Thailand, 2 provinces	2 years, Rotarix	IP: 88% (76-94) OP:24% (15-32)	Yes	Tharmaphornpil as et, Vaccine 2017
Bangladesh, Matlab CRT	2 years, Rotarix	Facility: 41% (23 to 55)	No	Zaman et al, PLosMed 2017
	idies from Taiwan, I	srael and Korea tha	it demonstrate effe	ctiveness


comparable to HICs in Europe, Australia and the Americas

Summary of rotavirus vaccine effectiveness studies

- 57 articles from 27 countries
- Among children <5 years of age, the median percentage reduction in
 - AGE hospitalizations 38% overall and 41%, 30%, and 46% in countries with low, medium, and high child mortality, respectively
 - Hospitalizations and emergency department visits due to rotavirus AGE were reduced by a median of 67% overall and 71%, 59%, and 60% in countries with low, medium, and high child mortality, respectively



- Phase 1-14 hospitals in 4 states and 1 UT
- Surveillance started before or with vaccine introduction in April 2016
- Case-control design for vaccine effectiveness
- Intussusception monitoring in 9 hospitals

- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development

Mixed schedules of Rotateq and Rotarix have been evaluated for immunogenicity

Libster et al, Pediatrics 2016

- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development

A correlate of protection is an immune response correlated with protection (from disease or infection)

Antibodies

- Serum
 - Neutralizing
 - Non-neutralizing (e.g. cytotoxic)
 - Functional (e.g. OPA)
 - Avidity
- Mucosal
 - IgA (local)
 - IgG (diffusion from serum)

Cell-mediated

- CD4+
 - B cell help
 - T cell help
 - Help to inflammation (TH17)
 - Lysis
 - Tregs
- CD8+
 - Lysis
 - Avidity

Rotarix and Rotateq immune response by IgA in developed/developing countries

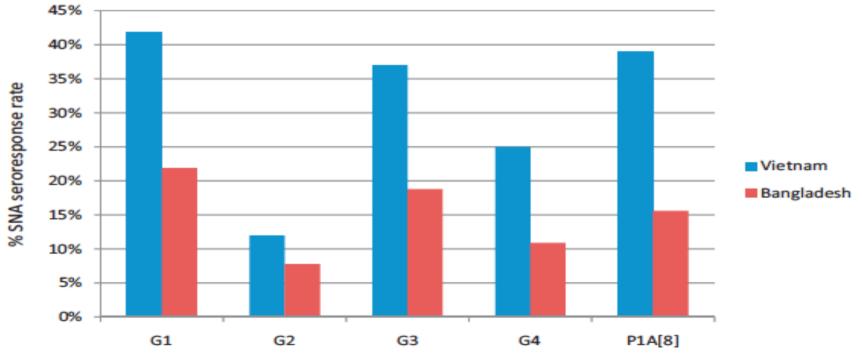
Stratification on <5y mortality	Number of children	IgA seroconversion % with Rotarix	GMT
Low	2287	87 (78, 92)	236 (174, 329)
Medium	1247	74 (61, 84)	101 (66, 157)
High	448	53 (41, 68)	47 (31, 74)

Stratification on <5y mortality	Number of children	IgA seroconversion % with Rotateq	GMT
Low	253	95 (87, 98)	322 (225, 467)
Medium	449	95 (90, 100)	157 (117, 212)
High	358	79 (66, 88)	39 (29, 60)

Patel et al, JID, 2013

Vaccine efficacy based on IgA of 90

Location	u5MR	Vac.	IgA Titer (95% CL)	Vaccine Efficacy over 2 y (95% CL)
lgA titer > 90				
US and Europe	Low	RV5	338 (266-429)	98 (88–100)
Singapore, Taiwan, Hong Kong	Low	RV1	239 (183-310)	97 (88–100)
Japan	Low	RV1	217 (110-122)	92 (62-99)
Europe	Low	RV1	197 (175–222)	90 (85–94)
Vietnam	Med.	RV5	159 (107-235)	64 (8-91)
Latin America	Med.	RV1	103 (86-122)	80 (71–87)
South Africa (3-dose)	High	RV1	94 (56–157)	85 (35–98)
POOLED ^a			192 (140-228)	85 (80-90)
IgA titer <90				
Malawi (3-dose)	High	RV1	63 (36-109)	42 (9-64)
South Africa (2-dose)	High	RV1	59 (38–94)	32 (71 to 75)
Malawi (2-dose)	High	RV1	52 (26-102)	34 (- to 58)
Kenya	High	RV5	31 (18–51)	64 (- to 89)
Bangladesh	High	RV5	29 (19–46)	43 (10-64)
Ghana	High	RV5	24 (16-37)	56 (28-73)
POOLED ^a			41 (25–70)	44 (30–55)


Serum neutralizing antibodies with Rotateq in Asia

Serum neutralizing antibody to	Vaccinee %	Placebo %	Vaccinee GMT	Placebo GMT
G1	32.1	2.3	99.5	19.9
G2	9.9	0.8	23.0	12.5
G3	28.2	3.0	30.8	10.1
G4	18.3	0	51.4	15.1
P8	27.5	5.3	78.9	18.0

Serum IgA responses were seen in 87.8% of vaccinees and 18.2% of controls

Zaman et al, Lancet, 2010 30

Neutralizing antibodies by country >3 fold 14 days after 3rd dose

Human rotavirus serotypes contained in PRV

Summary of results of IgA and SNA in infection and vaccination

No clear evidence that either is a correlate of protection

But the data have not been available for individual level analysis

 Other efforts-antibodies to NSP4, VP7, VP5*, VP8*

- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs India and Africa
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development

Factors that lower virus titre

Transplacental maternal antibodies Breast milk antibodies Stomach acid/proteases Co-administration of other vaccines

Factors that affect antibody response Nutrition (Environmental enteropathy/microbiota) Micronutrient deficiency Early and constant exposure to other gut pathogens Other infections

Microbiota in Ghana showed differences in responders and nonresponders

- Nested, case-control study comparing prevaccination, fecal microbiome compositions between 6-week old, matched 39 RVV responders and 39 nonresponders in rural Ghana and normal Dutch children
- Fecal microbiome analysis using the Human Intestinal Tract Chip showed significant difference between RVV responders and nonresponders (FDR, 0.12)
- RVV response correlated with an increased abundance of *Streptococcus bovis* and a decreased abundance of the Bacteroidetes phylum

	Correlation		
Genus-like groups	with IgA	p.adj	
Prevotella oralis et rel.	-0.435	0.007	
Prevotella melaninogenica et rel.	-0.425	0.007	
Bacteroides splachnicus et rel.	-0.398	0.011	
Bacteroides ovatus et rel.	-0.394	0.011	
Bacteroides stercoris et rel.	-0.387	0.011	
Oscillospira guillermondii et rel.	-0.378	0.012	
Prevotella ruminicola et rel.	-0.371	0.013	
Bacteroides uniformis et rel.	-0.369	0.013	
Bilophila et rel.	-0.365	0.013	
Allistipes et rel.	-0.360	0.014	
Methylobacterium	-0.344	0.022	
Leminorella	-0.335	0.027	
Tannerella et rel.	-0.332	0.028	
Bacteroides fragilis et rel.	-0.327	0.028	
Uncultured Clostridiales I	-0.327	0.028	
Bacteroides intestinalis et rel.	-0.325	0.028	
Aeromonas	-0.324	0.028	
Peptostreptococcus micros et rel.	-0.317	0.032	
Megasphaera elsdenii et rel.	-0.316	0.032	
Uncultured Mollicutes	-0.311	0.032	
Brachyspira	-0.310	0.032	
Ruminococcus obeum et rel.	-0.310	0.032	
Clostridium symbiosum et rel.	-0.309	0.032	
Bacteroides plebeius et rel.	-0.308	0.032	
Dialister	-0.302	0.036	
Prevotella tannerae et rel.	-0.300	0.036	
Asteroleplasma et rel.	-0.297	0.037	
Mitsuokella multiacida et rel.	-0.296	0.037	
Campylobacter	-0.296	0.037	
Lactobacillus catenaformis et rel.	-0.295	0.037	
Helicobacter	-0.292	0.039	
Clostridium orbiscindens et rel.	-0.288	0.040	
Coprobacillus catenaformis et rel.	-0.287	0.040	
Desulfovibrio et rel.	-0.286	0.040	
Uncultured Selenomonadaceae	-0.284	0.040	
Phascolarctobacterium faecium et rei	-0.284	0.040	
Gemella	-0.283	0.040	
Outgrouping clostridium cluster XIVa	-0.282	0.041	
Uncultured Bacteroidetes	-0.277	0.045	
Bacteroides vulgatus et rel.	-0.275	0.046	
Megamonas hypermegale et rel.	-0.274	0.046	
Eubacterium ventriosum et rel.	-0.270	0.049	
Bryantella formatexigens et rel.	0.291	0.039	
Streptococcus bovis et rel.	0.385	0.011	3

Microbiota in Pakistan

- 10 responders and 10 non-responders
- **RV1** response correlated with a higher relative abundance of bacteria belonging to *Clostridium* cluster XI and Proteobacteria, including bacteria related to Serratia and Escherichia coli.

Harris et al, Gut Microbe 2017

Heat tree of differences between Pakistani infants grouped by response

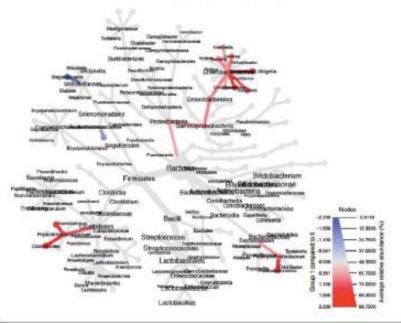
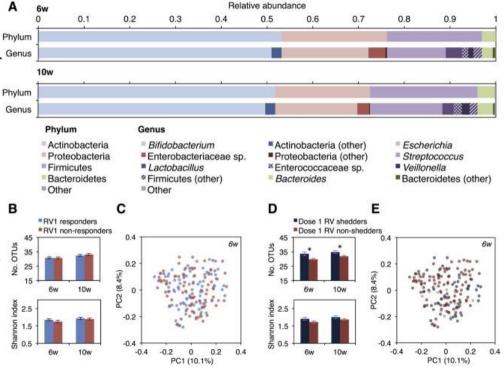



Figure 2. Phylogenetic Heat Tree illustrates the differences in relative bacterial abundance between Pakistani non-responders and responder infants. Colored blue are bacteria where a lower abundance associates with RVV response and colored red are bacterial groups where a higher abundance correlates with RW response.

But not seen in India

- No significant differences in microbiota diversity or stability or taxon relative abundance according to seroconversior status
- Infants who shed rotavirus after the 6week RV1 dose had more OTUs before vaccination (P=0.007) but this explained a small proportion of the variance
- Random Forest models based on OTU abundance data did not accurately predict rotavirus seroconversion but showed modest predictive accuracy for shedding after dose 1 (mean accuracy 60.3% and 60.8% based on OTUs measured at 6 and 10 weeks, respectively; baseline accuracy, 50.0%; P = .038 and .040)

Parker et al, Vaccine 2018

- Introduction
- Licensed vaccines and how they work
- Impact of vaccines in LMICs India and Africa
- Interchangeability of currently licensed vaccines
- Correlates of protection
- Determinants of response
 - EED and the role of the microbiota
- Non-living vaccine candidates in development

New non-replicating vaccines

- Triple- and double- layered virus-like particles (VLPs)-Baylor and others
- Inactivated rotavirus particles-CDC (with SII)
- Recombinant subunit proteins
 - PATH using VP8 subunit expressed in *E. coli* as a chimeric protein vaccine in which the VP8 is fused to the tetanus toxin P2 epitope
 - Phase 1 trial in adults and toddlers demonstrated to be safe and well tolerated and elicited significant neutralizing antibody responses
 - Phase 1/2 trial of a trivalent P2-VP8 (P[4], P[6], and P[8]) subunit vaccine is completed at three sites in South Africa

Summary

- Rotavirus vaccines are in use in about half the countries in the world
- Where they are introduced, impact is measurable
- The vaccines are interchangeable based on immunogenicity and this is likely to translate to efficacy
- A correlate of protection is as yet not defined, but new vaccine studies offer opportunities for exploration
- The gut environment influences response to oral rotavirus vaccines
- Once we know what to do we might be able to design interventions to improve oral vaccine performance
- Or we might have new non-living vaccines that have better performance in all settings
- Plenty done, and plenty to do!