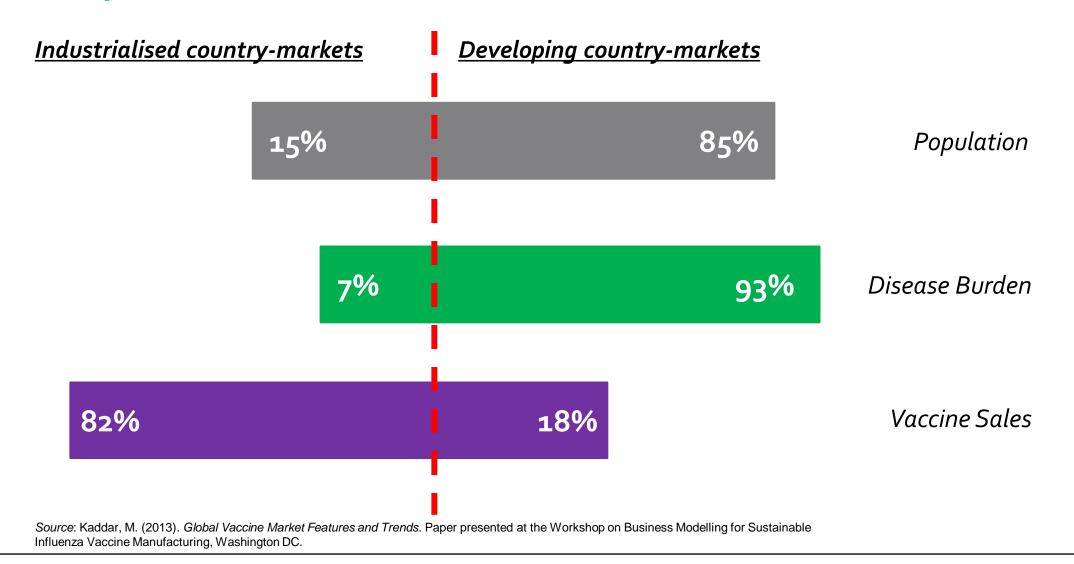
VACCINE PRODUCTION IN DEVELOPING COUNTRIES: AN ECONOMIC EVALUATION

Syarifah Liza Munira


Department of Economics, Faculty of Economics and Business, Universitas Indonesia Iiza.munira @ui.ac.id; Iizamunira @yahoo.com

2018 Global Vaccine and Immunization Research Forum (GVIRF) 20 – 22 March 2018 Bangkok, Thailand

Preview

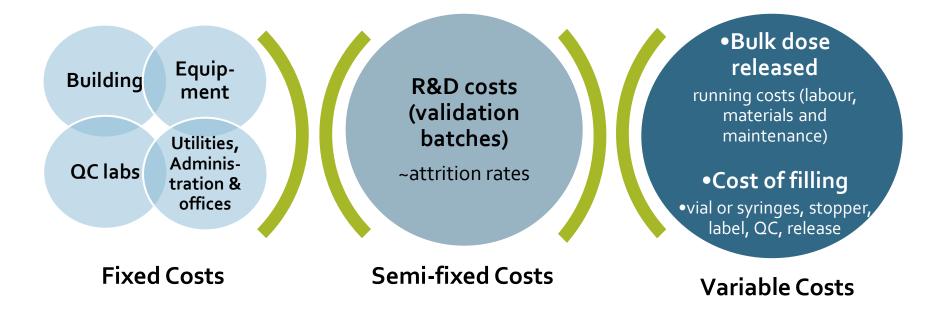
- <u>Context</u>: Local vaccine production in developing countries
- <u>Framework</u>: Economic evaluation of establishing new vaccine facilities in developing countries
- <u>Methodology</u>:
- 1. Cost analysis using questionnaire on existing vaccine manufacturers in developing countries
- 2. Econometric analysis on viability factors influencing market shares and revenue size of developing country manufacturers
- <u>Results and Conclusions</u>:
- 1. Cost structure and cost drivers
- 2. Viability factors influencing market shares and revenue sizes

Gap Between Vaccine Markets

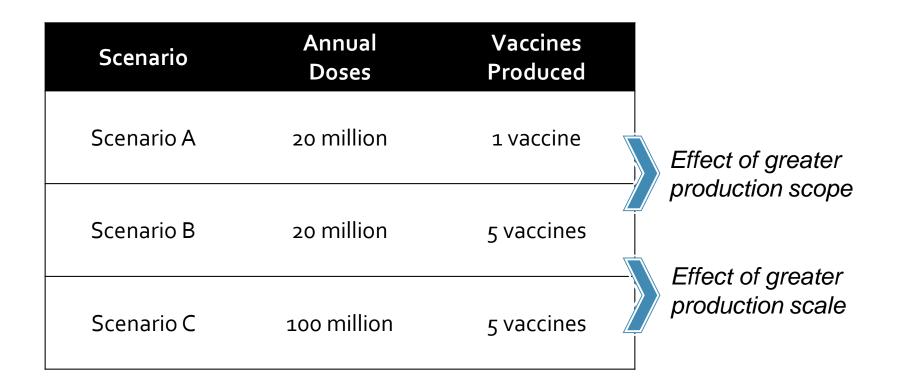
Characteristic of the Vaccine Industry

- High fixed costs
- Small market (2 3% of pharmaceuticals market)
- High price cost margin
- Scrutiny on price and quality
- Different market for different vaccine antigens, no overlap
 High market concentration
- Investment decisions based on economic considerations

Study on costs of establishing new vaccine facilities in emerging markets


Background

- Existing literature are limited
 - Mahoney (1990), Mahoney et al (2012), Mercer study (2002), Mercer study (2006)
- Expressed interest by countries to WHO wishing to establish local vaccine production
- Need for analysis of whether local production is in fact suitable for each country that expresses these interests
- Sensitive data


Methodology

- Questionnaire (8 respondents, 12 observations)
- Self reporting
- Broad estimation
- Hypothetical scenario of scale and scope (production capacity & number of vaccines)

Questions asked: Production costs

Fixed costs: 3 scenarios

Analysis

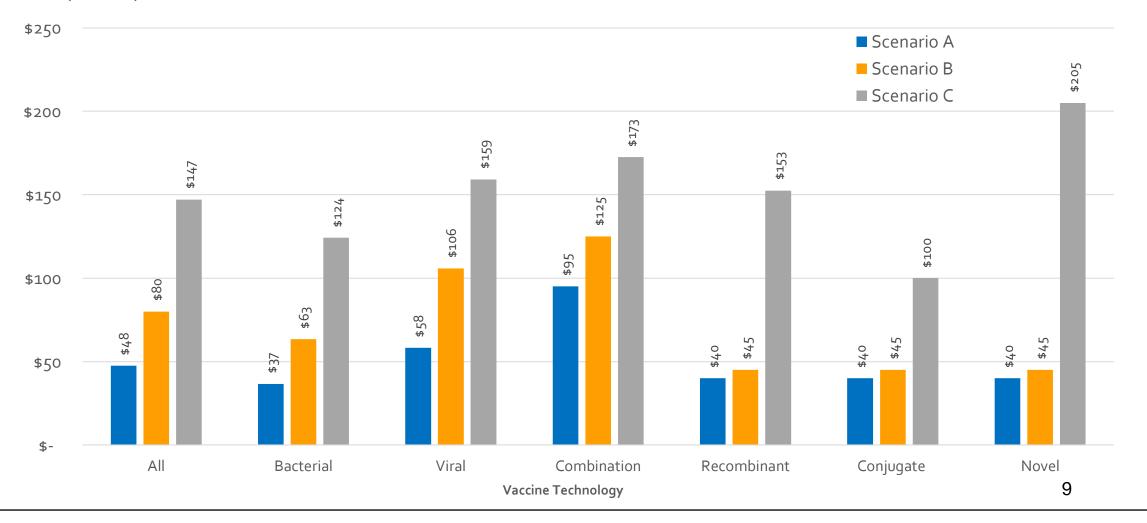
- Observations segregated by:
 - Vaccine technology
 - Bacterial
 - Viral
 - Combination
 - Recombinant
 - Conjugate
 - Novel
 - Vaccine formulation
 - Multi-dose vials (10 dose)
 - Single-dose vials
 - Pre-filled syringes
 - Lyophilized

Assumptions:

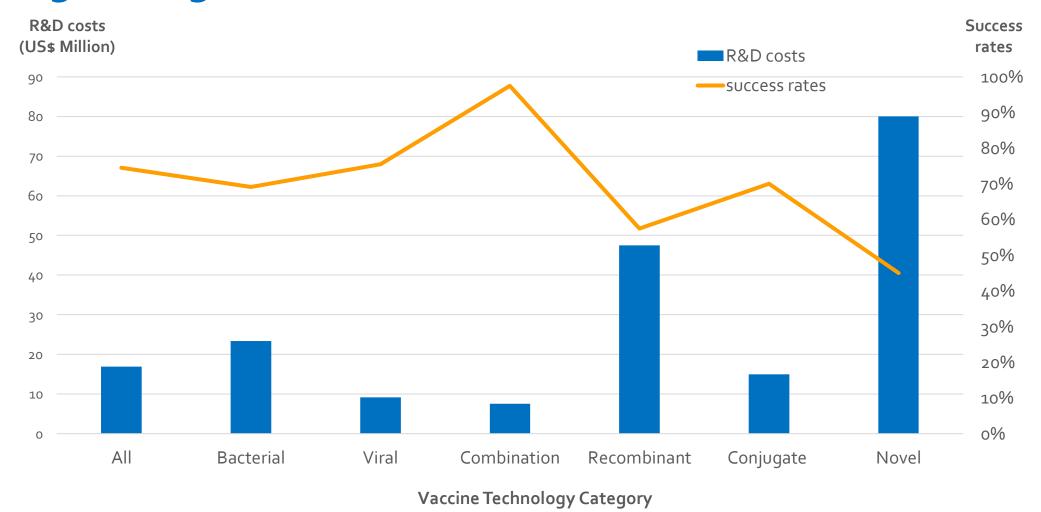
- Attrition rates
- Equipment life-years

$$-C_a = (V - R)_a$$

- C_a : annualized capital cost of equipment
- V : acquisition cost of equipment
- R : estimated residual value

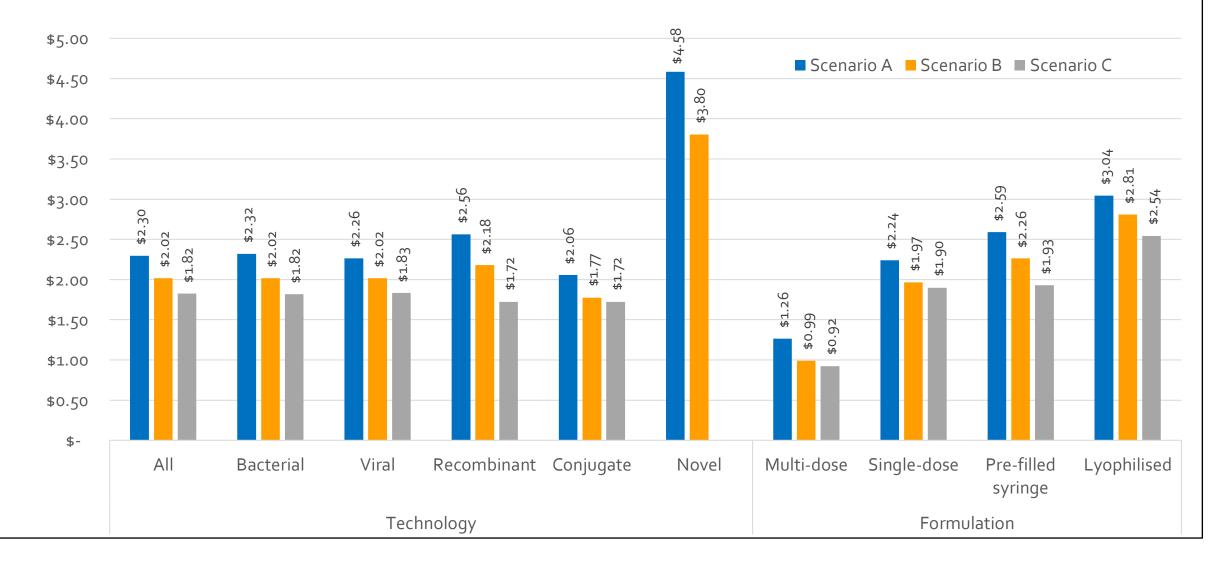

a : annualization factor =
$$\frac{r(1+r)^n}{(1+r)^n-1}$$

	Building	Equipment	Validation
interest rate (r)	10%	5%	5%
years (n)	25	10	10

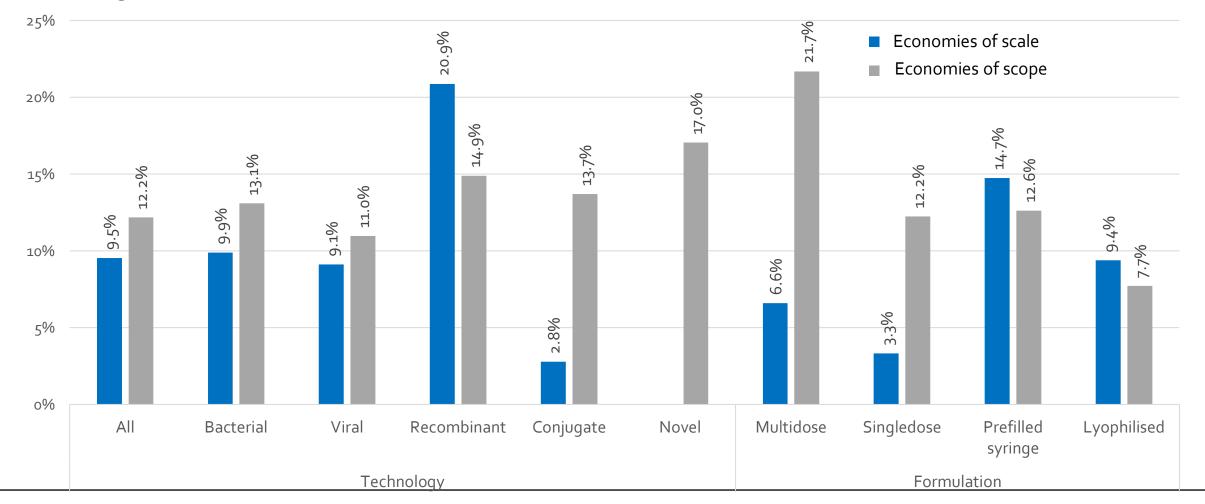

Assumptions adopted from: Mercer Management Consulting (2002); Mercer Management Consulting (2006), Mahoney (1990) and Mahoney et al. (2012) and Levin (1983)

Step fixed-costs: importance of demand forecasting

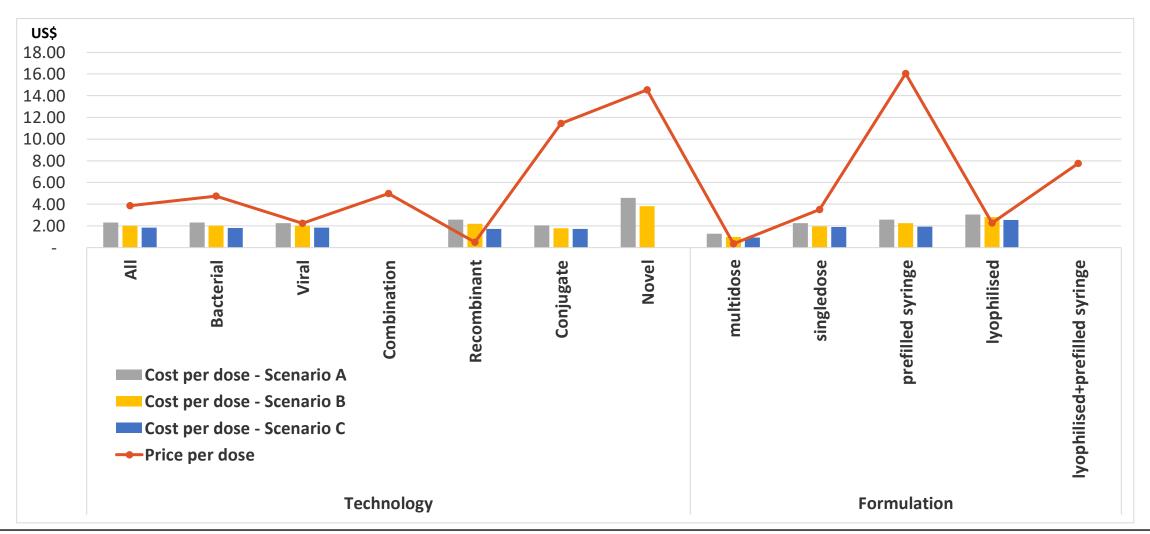
US\$ (Millions)



R&D costs and failure rates significantly lower than originating vaccines

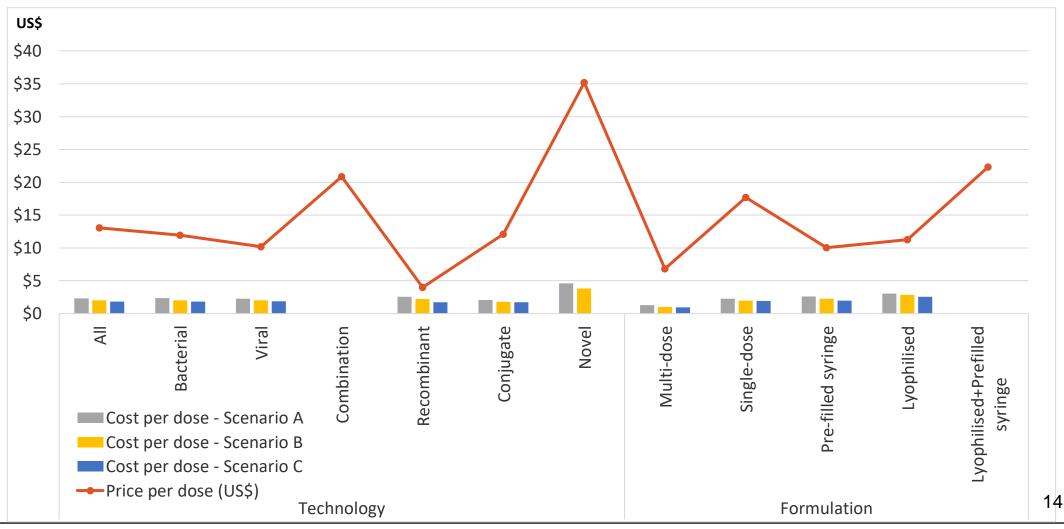

Average vaccine cost-per-dose*: \$2.05 (range: \$0.92 - \$4.40)

*based on 3 specific production scenarios



Findings Existence of economies of scale & economies of scope in developing country vaccine production

Cost savings (%)


Producer surplus in <u>developing</u> country markets*: bacterial and conjugate | pre-filled syringes

*based on 3 hypothetical scenarios & existing market price

Results

Producer surplus in <u>industrialized</u> country markets*: need to match epidemiological demand & regulatory requirements

*based on 3 hypothetical scenarios & existing market price

Cost drivers of vaccine production in developing countries

- High fixed costs offset by:
 - Large volumes and multi-vaccine facilities
 - Technology types and formulation presentations
- Mainly driven by fixed costs, but at production scales over 20 million doses, becomes driven by its variable costs (an advance on the current literature)
- Developing country vaccine manufacturers face mostly non-premium markets, yet compensated by:
 - large size of the population
 - high need for vaccines due to disease burden profiles
 - low domestic competition
- Challenges to sustain viability when exporting vaccines or producing new technology vaccines

Econometrics analysis: Multilevel regression (3-level HLM) on panel data (2012 – 2014)

GMP/consistency of production

Access to new technologies

Viable Production

Viability characteristics

Economies of scale

- 1. Market share, global market
- 2. Revenue size, domestic market = f
- 3. Market share, export market

- Historical performance to meet demand and scale up production
- Credibility of quality
- Management structure
- Legal status, adequate autonomy
- National income per capita
- Market expansion strategy

Data source (2012 – 2014)

- World Health Organisation:
 - 'Source of Vaccines' database as reported in WHO/UNICEF's Joint Reporting Form (annual)
 - Administrative coverage database
 - Vaccine schedule database
 - Vaccine product, price and procurement (V₃P) database
- World Bank:
 - World Development Indicators database
- Vaccine Information Management System (VIMS) database, John Hopkins Bloomberg School of Public Health
- Vaccine manufacturers' and relevant governments' websites

Descriptive Analysis

- Data size: approx. 4.55 billion doses, \$ 5.74 billion
- 311 observations based on 40 vaccines types produced by 34 manufacturers in 16 countries
- 118 combinations over 3 years (2012 2014)
- Inclusion: vaccine doses procured from developing country manufacturers
- Exclusion: vaccine procurement reported as multiple sources

Multilevel regression analysis: Vaccine viability factors on market shares

Independent Variable	Market global i	•	Revenue siz mar	-	Market export	•
	coefficient	p-value	coefficient	p-value	coefficient	p-value
Constant	-13.51		-12.32		-7.83	
Surviving Infants (log)	-1.00	0.021*	0.95	0.000**	-0.38	0.654
Number of vaccines products	0.10	0.026*	0.18	0.531	0.10	0.022*
Consistent production supply	0.90	0.001**	1.61	0.000**	1.48	0.001**
Vaccine technology	0.79	0.000**	0.74	0.000**	0.34	0.083
Sufficient supply against demand	0.70	0.010*	0.33	0.335	0.80	0.028*
NRA	0.83	0.125	0.18	0.761	3.12	0.003*
Vaccine PQ status	0.98	0.000**	-0.21	0.561	1.15	0.002*
Ownership status	1.01	0.011*	1.26	0.004*	1.45	0.041*
Number of MOH, last 5 years	0.06	0.588	0.06	0.411	-0.07	0.823
National income per capita	0.48	0.046*	1.17	0.000**	0.53	0.272
Proportion of export sales	-1.00	0.000**				

*: p-value < 0.05; **: p-value < 0.001; bold number: significant

Source: Analysis based on Munira, S.L (2017) "Viability vaccine of local vaccine production..", ANU

Once up and running – developing country vaccine production viability factors

Market shares:

Domestic markets	Export markets
Production scale	Production scale and scope
Sustainable and reliable production	 Sustainable and reliable production
Autonomous management structure	Autonomous management structure
National income level	 Fully functioning NRA
Vaccine technology type	Prequalified vaccines

Key messages

- Production scale and scope are essential in achieving and sustaining viability
- Step costs in vaccine production production set up and planning is critical
- Sustainable and reliable production essential in maintaining market share
- Establishing strong domestic presence important prior to expanding into export markets
- Formulation types are cost drivers yet not a determining factor on price

Acknowledgements

- Martin Friede and Jan Hendriks (World Health Organization)
- Jim Butler, Archie Clements, Yijuan Chen (ANU)
- Ines Atmosukarto (Lipotek) and Louise Carter (Novartis)
- Allison Sudradjat Awards (Australia Awards/DFAT)

Thank you

Econometrics analysis: Mixed-model regression on panel data (2005 – 2015)

= f

Vaccine Prices

Developing Country Manufacturers

- Traditional vaccines
- Modern vaccines

Procurement factors

- Volume
- Procurement Mechanism
- Contract
- Formulation
- Formulation size
- Vaccine technology
- Income level (Procurer)
- Income level (Manufacturer)
- Competition

Data source (2005 – 2015)

- World Health Organisation:
 - Vaccine product, price and procurement (V₃P) database
 - Prequalified (PQ) vaccines' list
- World Bank: country classification

	Developing country manufacturers	
Doses	0.51 billion	
Revenue	\$ o.4 billion	
Observations	392	
Vaccine types	25	
Manufacturers	20	
Producing countries	8	
Procuring countries	43	

Note: based on V₃P participating countries reporting to WHO

Multilevel regression analysis : Procurement factors on vaccine prices – Developing country manufacturers

Independent Variable	Price/dose (log)		
	coefficient	p-value	
Constant	-0.70		
Volume (log)	-0.05	0.007*	
UN Procurement	-0.84	0.000**	
Contract	-0.10	0.384	
Formulation type	-0.01	0.912	
Formulation size	-0.06	0.000**	
Vaccine Technology	0.91	0.003*	
Income Level (Procurer)	0.17	0.025*	
Income Level (Producer)	0.49	0.000**	
No. of substitutes (PQ)	0.00	0.857	

*: p-value < 0.05; **: p-value <0.001; bold number: significant

Source: Analysis based on Munira, S.L (2017) "Viability vaccine of local vaccine production.", ANU

Procurement factors on developing country vaccines pricing behaviour

All vaccines	Traditional vaccines	Modern vaccines
 Volume UN Procurement Formulation size Income level (Procuring & Producing country) 	 UN procurement, Formulation size, Income level (Producer) 	 Volume UN Procurement Formulation size

- Vaccine pricing behavior compared to other manufacturers:
 - Formulation type not a determining factor on price
 - Traditional vaccines are saturated, hence volume does not influence prices