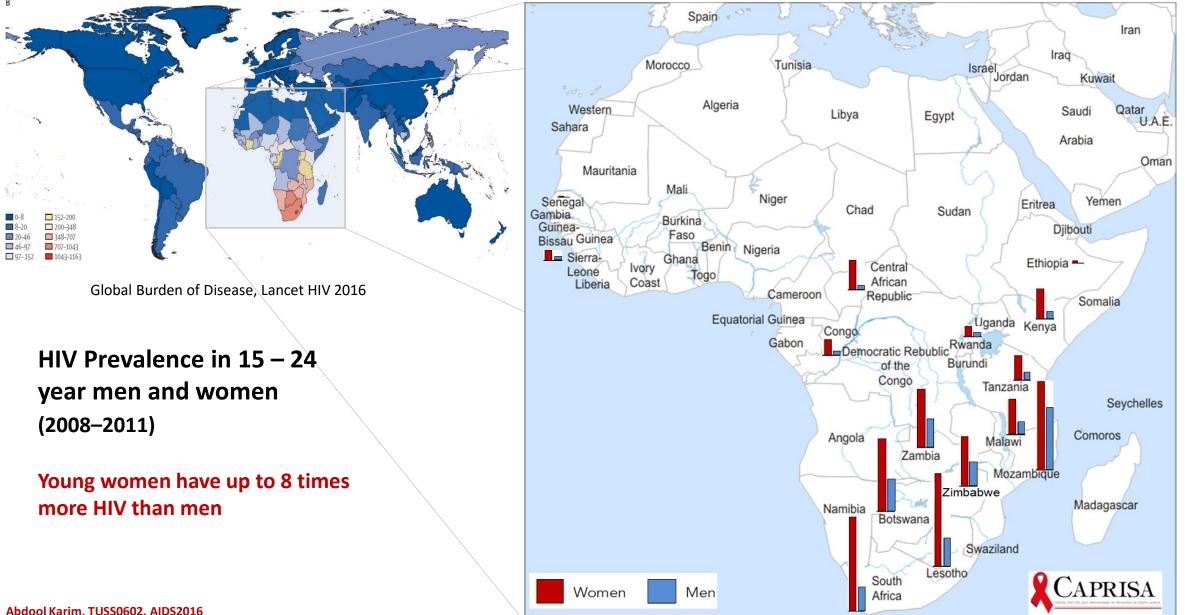
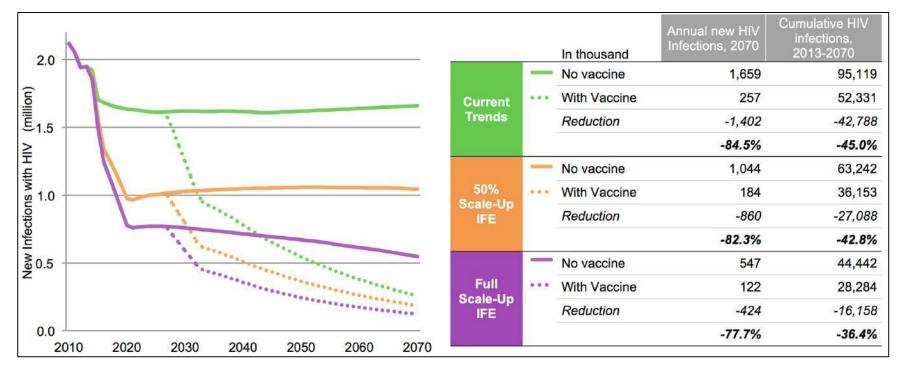
Advanced Clinical Development of HIV Vaccines

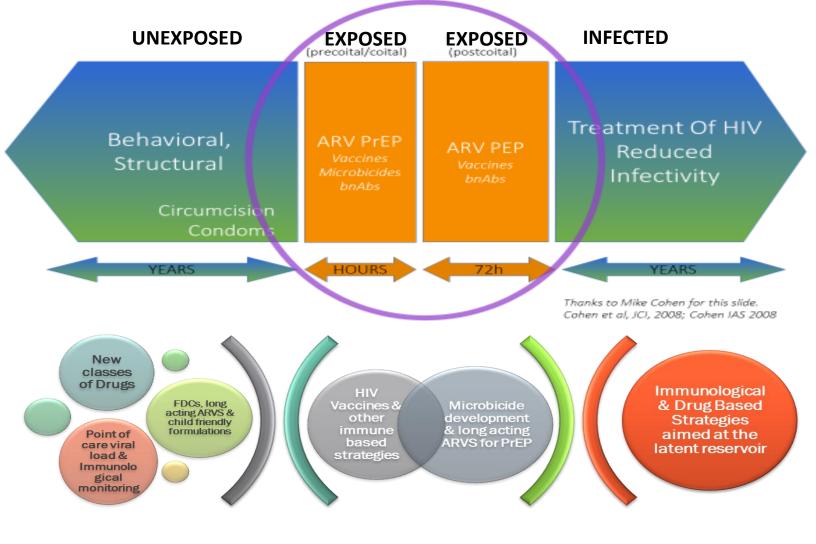
Dr K. T. Mngadi, Site Investigator, HIV Vaccine Trials Network CAPRISA ECRS


Plenary Session: Progress Towards Commonalities in Vaccine Development Against HIV, TB and Malaria Global Vaccines and Immunization Research Forum (GVIRF)

March 20-22, 2018 in Bangkok, Thailand


HIV Prevalence in 15-24 year old Men and Women

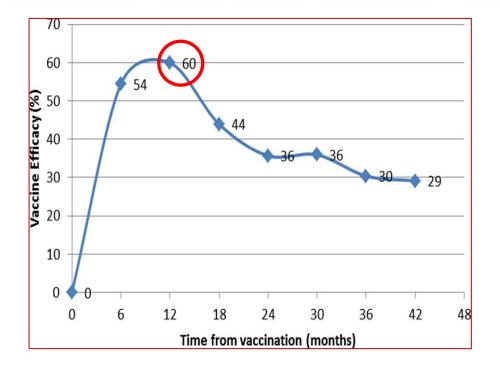
Abdool Karim, TUSS0602, AIDS2016


Potential impact of an HIV vaccine

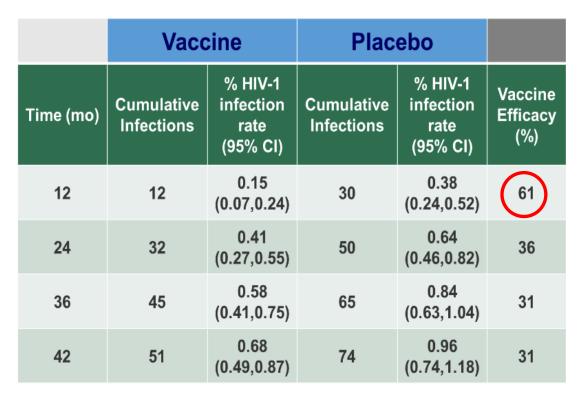
Reduction of new annual HIV infections with & without a vaccine under different prevention scale-up scenarios

- Assumptions: Vaccine introduction in 2027, 50% coverage, 70% efficacy
- IFE = UNAIDS' Investment Framework Enhanced includes scale-up of PrEP, TasP, and other prevention methods

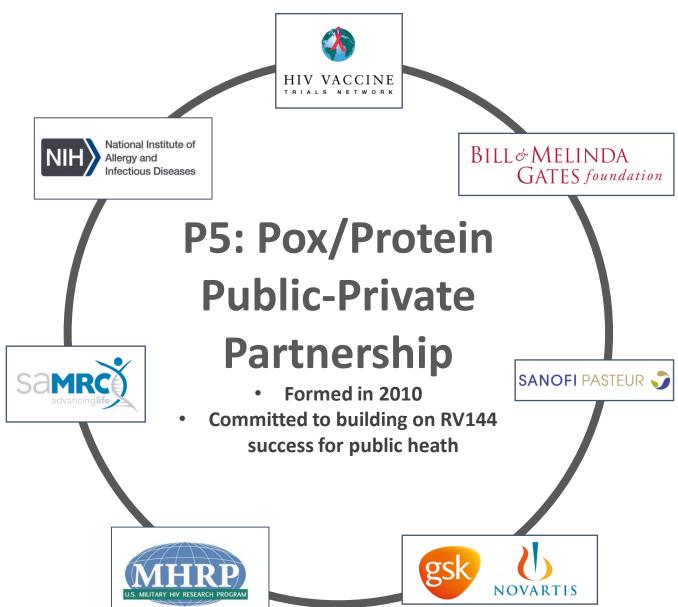
The Gap to fill: The Space for HIV Vaccines


Innovations in the management of HIV that will impact on community viral load and infectiousness: prevention of secondary transmission

Innovations in the Prevention of Sexual Acquisition that will be required when secondary transmission is not averted HIV Cure: the ultimate control of the HIV epidemic will be in the elimination of viremia in those infected


Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand

S Rerks-Ngarm, JH Kim et al. for the MOPH–TAVEG Investigators



Prime:	ALVAC vCP1521
Boost:	ALVAC vCP1521 plus VAXGEN Env protein (B/E)
Schedule:	0,1,3,6 months; 16,000+ volunteers; 1:1 vaccine: placebo; follow-up for 3 years

Vaccine efficacy decreases over time

P5 Partnership(2010)

Overarching Goals:

1. Improve vaccine efficacy and durability

- Alternative adjuvant offers the potential to impact magnitude, quality & durability of response → MF59
- Additional boosting may increase the level and durability of protection
 → additional (12- and 18-mo) boosts
- Alternative prime (e.g. DNA) and/or boost proteins/adjuvant may improve immunogenicity -> being evaluated in separate (parallel) Phase 1 studies

2. Verify correlates of vaccine protection

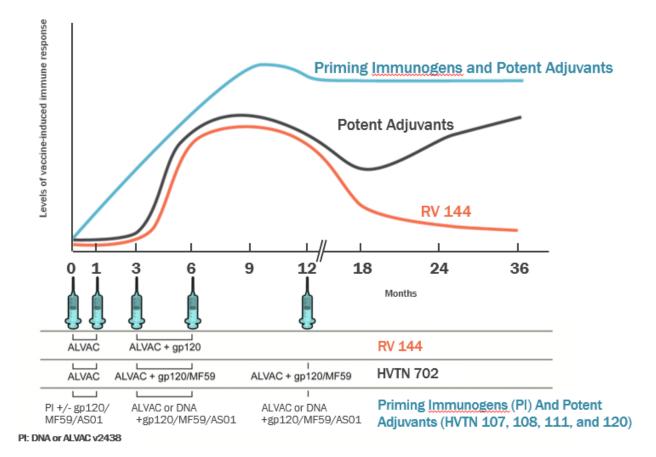
 Immune correlates analysis based on COR in RV144

Phase 1 trials underway

HVTN 107: compare MF59[®] vs. alum **adjuvants.**

HVTN 120: compare MF59 vs. AS01B adjuvants.

HVTN 111: clade C DNA prime + subtype C gp120/MF592 boost.


HVTN 108: DNA-prime and DNA&protein boost, DNA&protein coadministration, protein prime & boost.

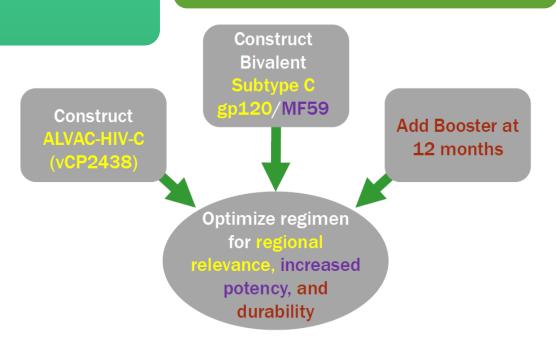
will changing adjuvants change immune response? **Using DNA instead** of a vector?

P5 LEAD Vaccine Products

VACCINE	PRODUCT DESCRIPTION	
ALVAC-HIV	Canarypox viral vector prime	
(vCP2438)	expressing ZM96 gp120 (clade C strain) linked to gp41, and gag	
Sanofi Pasteur	and pro (clade B LAI strain)	
gp120		
proteins +	Bivalent clade C TV1 gp120 Env	
MF59*	and clade C 1086 gp120 Env proteins with MF59 adjuvant	
GSK (previously		
Novartis)		

Improvements in future vaccine efficacy trials

*The regulatory file for MF59 is now managed by Seqirus, a CSL company


Strategy for the Phase 2b/3 Program

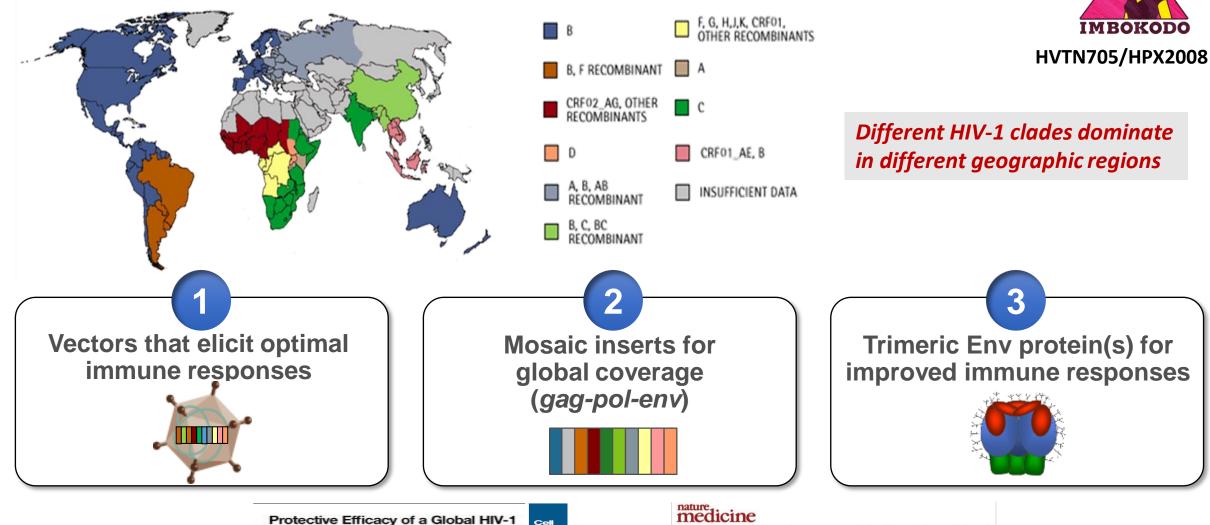
Los eval Vace RSA imn that

Designed to evaluate <u>RV144</u> <u>vaccine regimen in</u> RSA and compare immunogenicity to that in Thailand A standard phase 1 trial of the clade C products to decide whether to proceed to phase 3

A Pivotal Efficacy study assessing efficacy and safety aimed at supporting licensure and discovery of correlates

PRE-SPECIFIED GO/NO-GO CRITERIA FOR HVTN 702: HVTN 100 must meet all these conditions

Variable Measured at Mo 6.5	Rationale	Go Criteria Threshold (LL of 95% Cl)	
Env Ab Response Rate (≥2 of 3)	Adequate Ab take to vaccine Env	≥ 75%	
Env Ab Magnitude (≥2 of 3)	Non-inferior Ab magnitude vs. RV144	GM ratio (new/RV144) ≥50%*	
Env CD4 Response Rate (1 of 1)	Non-inferior CD4 T cell take vs. RV144	Difference within 30%*	
Env V1V2 Response Rate (≥1 of 3)	Adequate to predict achieving Est. VE=50% for 2 years if V1V2 Ab is a predictive immune correlate	≥ 56%	

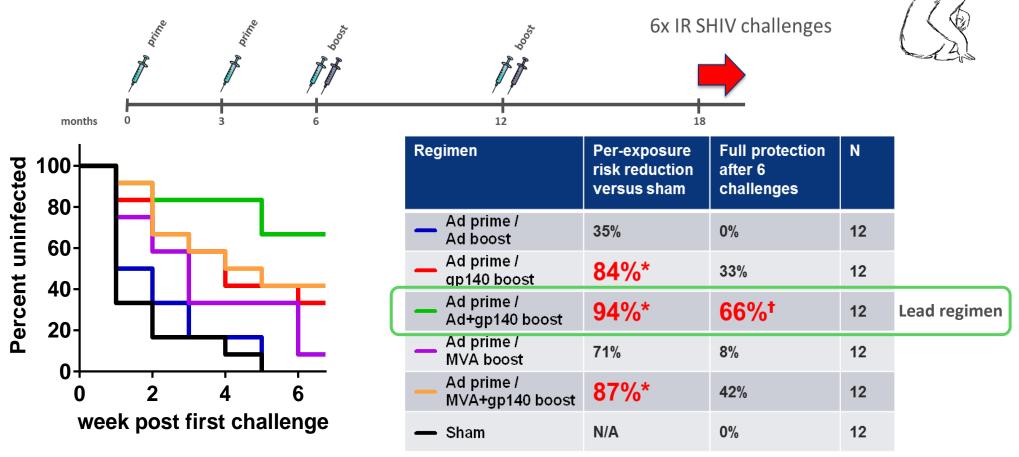

*Non-inferior to RV144 responses based on contemporaneous assessment of clade C vaccinee samples vs. RV144 vaccinee samples by the same lab

Phase 2b/3 study SCHEMA: HVTN 702

Crown		Primary vaccine regimen				Booster	Booster
Group	N	Month 0	Month 1	Month 3	Month 6	Month 12	Month 18
1	2700	ALVAC-HIV (vCP2438)	ALVAC-HIV (vCP2438)	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59	ALVAC-HIV (vCP2438)+ Bivalent Subtype C gp120/MF59	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59
2	2700	Placebo	Placebo	Placebo + Placebo	Placebo + Placebo	Placebo + Placebo	Placebo + Placebo
Total	5400						

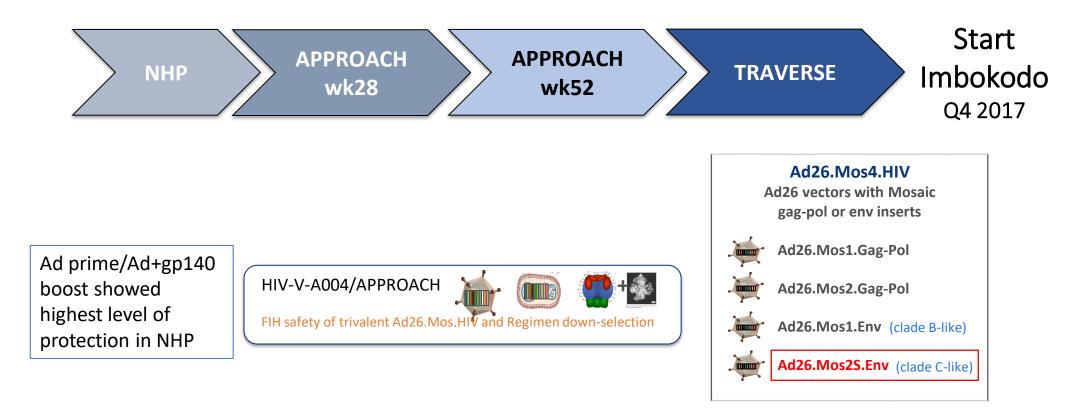
 18 month boost predicted to generate a higher average immune response and 14 – 18% higher predicted VE (based on V1V2 response)

Vaccine Aiming at Protection Against all Clades of HIV-1


Mosaic Vaccine against Heterologous SHIV Challenges in Rhesus Monkeys

Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys

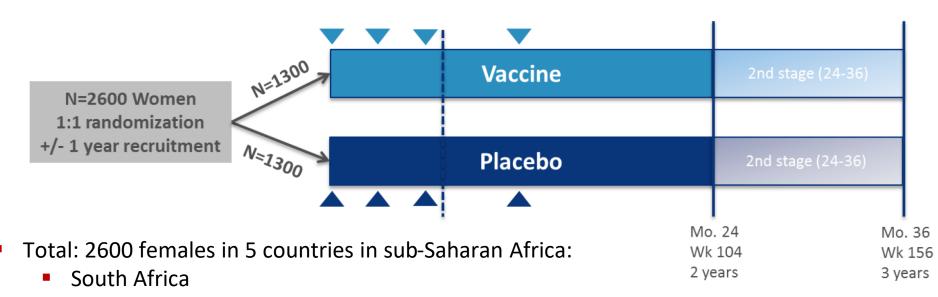
Dan H Barouch et al., 2010


The Ad26/Ad26+gp140 HIV Vaccine Regimen Provides Substantial Protection in Non-Human Primates

- The vaccine candidates are very effective in preventing HIV infection in NHP models
 - Protection was confirmed in several studies

*Statistically significant vs Sham in a Cox proportional hazard model and Log-rank test; *Statistically significant vs Sham in a 2-sided Fisher's exact test

Summary of the studies informing decision to proceed with Imbokodo


Study 13-19	APPROACH	APPROACH	TRAVERSE
	Post 3 rd vacc	Post 4 th vacc	Post 2 nd and 3 rd vacc (subset)

Go/No Go criteria towards PoC based on Ad26 prime / Ad26+HD gp140 boost

- In order to move to a PoC efficacy study, the **ELISA** and **ELISPOT** criteria have to be met
- The ADCP criteria, Magnitudes and Env boost would be considered supportive

Criteria	Endpoint	Target	APPROACH Results		TRAVERSE	
		(LL of 95% CI)	Post 3 rd	Post 4 th	Results post 3 rd	
Humoral	IgG binding responses on clade C Env	<u>></u> 90% (<u>></u> 77%)	100% (93%)	100% (92%)	100% (90%)	
пипога	ADCP responses to Clade C Env	<u>></u> 56% (<u>></u> 40%)	72% (57%)	80% (65%)	97% (85%)	
Cellular	Elispot responses to at least one ENV peptide pool	<u>></u> 50% (<u>></u> 35%)	77% (62%)	83% (68%)	97% (85%)	
Env boost	IgG to clade C Env of Ad/Ad+Env over Ad/Ad	<u>></u> 1.5 fold	5.5 fold (3.5)	6.9 fold (4.5)	NA	
Magnitude	>2.15 log10 cPTE Env ELISPOT OR >3.8 log10 Clade C gp140 ELISA	<u>post 3rd :</u> <u>post 4th</u> ≥60% ≥75%	94%	93%	100%	1
	Subjects should be above BOTH response thresholds	<u>post 3rd</u> : <u>post 4th</u> ≥40% ≥60%	64%	80%	94%	✓

HVTN705/HPX2008 Study Design and Stages

- Mozambique
- Malawi
- Zimbabwe
- Zambia
- Anticipated enrollment: approximately 17 months, 24-36 months of follow-up
- Primary Objective
- To evaluate vaccine efficacy (Months 7-24)
- To evaluate the safety and tolerability of this vaccine regimen

Science and the Community

Key Recommendations: WHO Consultation Feb 2018

- Regimens are complex and difficult to scale up, but never pre-judge community responses to new interventions – sustain community support
- Consider new models for HIV vaccine protocol design if a partially effective vaccine is licensed
- Decreased funding for prevention research conflicts with regulatory requests for cluster randomised implementation trials prior to licensure – sustainable funding models and harmonisation of regulatory approaches are ideal

While we are making encouraging progress in preventing new HIV infections, the development of a safe and effective HIV vaccine would be the ultimate game-changer.

- NIAID Director Anthony S. Fauci, M.D.

National Institute of Allergy and Infectious Diseases

#HIVVaccineAwarenessDay

Acknowledgements

Thank you to all the protocol team members site investigators, clinic coordinators, Community Engagement and Recruitment teams, pharmacists, lab support staff and PARTICIPANTS

HVTN 705/HPX2008			
Gray, Glenda	Chair		
Mngadi, Kathy	Co-chair		
Buchbinder, Susan	Co-chair		
Tomaka, Frank	Co-chair		
Lavreys, Ludo	Protocol Team Leader and Study Responsible		
	Physician		
Mann, Philipp	Protocol Team Leader and Core Medical Monitor		
Swann, Edith	DAIDS Medical Officer		
Hutter, Julia	DAIDS Medical Officer		
Frahm, Nicole	Laboratory Lead		
Hural, John	Laboratory Lead		
McElrath, M. Juliana	Laboratory Lead		
Euler, Zelda	Laboratory Lead		
Juraska, Michal	Statistician		
Luedtke, Alex	Statistician		
Nijs, Steven	Statistician		

National Institute of Allergy and nfectious Diseases

HVTN 702	
Glenda Gray	Chair
Linda-Gail Bekker	Co-chair
Fatima Laher	Co-chair
Mookho Malahleha	Co-chair
Nicole Grunenberg	Protocol Team Leader & Core Medical Monitor
Mary Allen	DAIDS Medical Officer
John Hural	Laboratory Lead
Yunda Huang	Statistician
Holly Janes	Statistician
Zoe Moodie	Statistician

National Institute of Allergy and Infectious Diseases

