GVIRF, March 2023

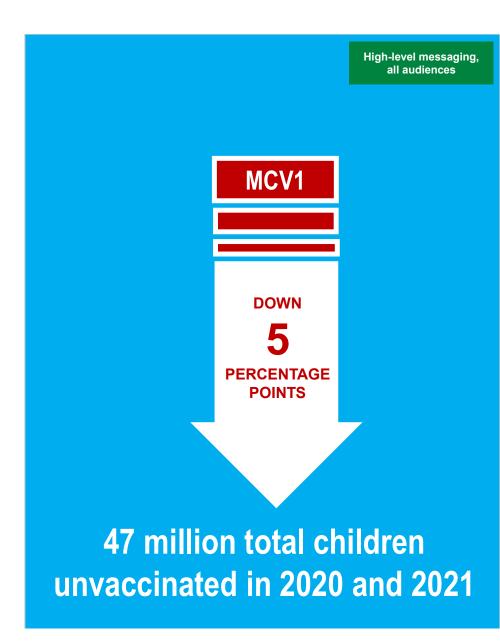
Jean-Pierre Amorij, UNICEF

A PATHWAY TO IMPACT:

Exploring the potential of measles rubella microarray patches to reach zero dose children and improve measles vaccine coverage through an initial Full Value Vaccine Assessment

tor every child

unicef


The Measles-Rubella vaccine averts the highest number of vaccine-preventable deaths in children. It has the highest return on investment in public health.¹

However, **immunization rates have stagnated**. When vaccination coverage for measles or rubella falls below the necessary threshold, **outbreaks** of measles and rubella **occur**.

Challenges towards measles and rubella control and elimination were further exacerbated due to the COVID-19 pandemic, 5.3 million additional children were left unvaccinated against Measles in 2021 compared to 2019 – the highest number in a decade.²

Highlights challenges in achieving and sustaining the required high vaccination coverage

3 |

The traditional needle-and-syringe format presents challenges to achieving MR programmatic goals

High Human Resource Requirements	Incorrect Administration Technique	Poor TSE and Negative Environmental Impact	Increasing Hesitancy	
Difficult preparation requiring trained personnel and time/effort	Reconstitution-related safety issues	Cold chain requirements during outreach; vaccine ineffectiveness /wastage due to heat exposure	Administration of the vaccine is painful which reduces acceptability	
Difficulty in reaching the last mile (hard-to-reach populations and MOVs due to non-MDV reasons	Contamination risks of multi-dose vials	High supply chain and logistics costs	Vaccine hesitancy is a continuing trend	
	Needle-stick injuries	Vaccine wastage or missed opportunities due to multi-dose vials	Restrictions/ difficulty in administering multiple injectable vaccines in one session	
	Difficult to deliver vaccine to the correct injection depth	Negative impact on the environment	Fear of needle and syringe leads to non-compliance	
		Challenges in integrating vaccination (needle and svrinne) with		

other interventions

Measles-Rubella microarray patches (MR-MAPs) are a promising technology for addressing these challenges.³

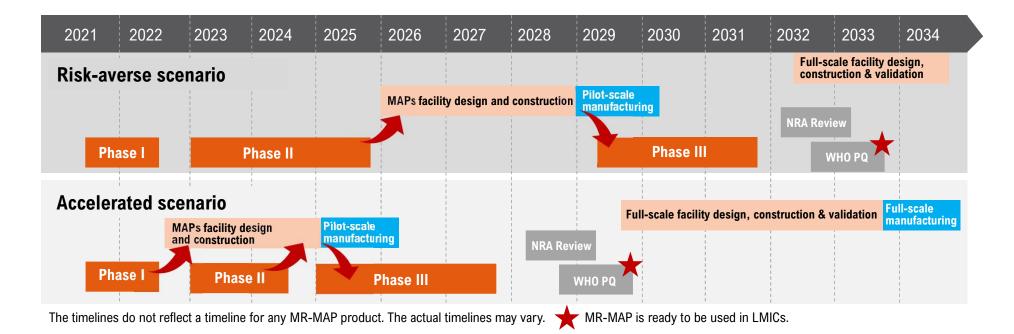
MR-MAPs can be applied to the body like a small bandage and used to painlessly deliver a vaccine via microscopic needles.

Improved thermostability, reducing the need for cold chain storage

Easy to administer

Lightweight and easier to transport

Single-dose presentation, reducing wastage and missed opportunities for vaccination


Relatively painless and more acceptable for patients with a fear of needles

Safer, as they eliminate needlestick injuries reconstitution mistakes

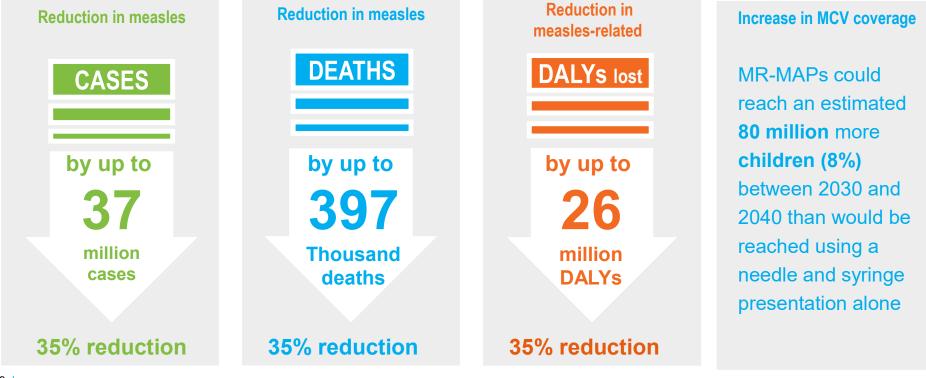
Indicative and Projected Timelines for MAP development⁵

Alternative timelines for MR-MAP development from phase one trial to WHO prequalification and product launch

To understand the <u>potential value of MR-MAPs</u>, UNICEF led an <u>initial</u> full value vaccine assessment (iFVVA)

Methodology

 Desk review Identify barriers faced by MR programme Assess MR-MAP development timelines 	 Assuming better reach of hard-to-reach populations and reducing missed opportunities for vaccination considering Use Cases Cost. impact. and cost 		LONDON RCHOOLØF HYGIENE KTROPICAL MEDICINE	
 Consultations 34 experts across a wide range of topics 	 Cost, impact, and cost effectiveness PATH's Vaccine Technology Impact Assessment (VTIA) model LSHTM Dynamic Measles Immunisation Calculation Engine (DynaMICE) model 	 Expert Advisory Group 19 experts to discuss the methodology and assumptions used, and to endorse the key findings 	© Global Health Visions	


The iFVVA modelled six scenarios to estimate demand* of MR-MAPs (2030-2040), these scenarios were used for the impact modelling

		Presentation(s) modelled		Adoption timing of MR-MAPs		Coverage assumption used	
		N/S	MAPs	Equal weight of all variables	Countries in greatest need	High	Low
1	1 No MR-MAPs with high coverage	~				~	
2	2 No MR-MAPs with low coverage	~					~
3	3 MR-MAPs available with high coverage	~	~	~		~	
4	4 MR-MAPs available with low coverage	~	~	~			~
5	5 MR-MAPs are implemented in countries with greatest need with high coverage	~	~		~	\checkmark	
6	6 MR-MAPs are implemented in countries with greatest need with low coverage	~	~		~		~

*Estimating the future global dose demand for measles-rubella microarray patches Front Public Health, 2023 doi: 10.3389/fpubh.2022.1037157

The iFVVA demonstrates the strong potential of MR-MAPs to reduce measles morbidity and mortality

Results

Cost-effectiveness analysis

Cost2020 USDVaccine
procurementVaccine
deliveryCost-of-illnessUncertainty of
MR-MAP priceVarying by
routine or SIAImage: Cost-of-illnessEffectivenessVarying by
routine or SIAImage: Cost-of-illness

Incremental cost-effectiveness ratio (ICER)

3% of annual discount rate for both cost and effectiveness

Health opportunity costs

Treshold for cost-effectiveness

Ochalek et al. (2018) BMJ Global Health

Introducing MR-MAPs has different cost effectiveness considering country types

		Scenario 3	Scenario 4	Scenario 5	Scenario 6	Threshold	
		High coverage growth	Low coverage growth	High coverage growth	Low coverage growth		
		MR-MAPs available in 2030	MR-MAPs available in 2030	Accelerated intro in countries with greatest need in 2030	Accelerated intro in countries with greatest need in 2030	Health opportunity cost	
		ICER	ICER	ICER	ICER	ICER	
High income countries (n=12)	Low MR-MAP price	(106,711)	(118,106)	(92,222)	(110,808)		
	High MR-MAP price	(102,109)	(116,597)	(85,219)	(108,987)	55,871 (5,845-180,794)	
Upper middle income countries (n = 16)	Low MR-MAP price	(1,766)	(648)	(2,192)	(1,026)		
	High MR-MAP price	(581)	(92)	(825)	(270)	5,311 (581–14,152)	
Lower middle income countries (n = 33)	Low MR-MAP price	349	40	435	52		
	High MR-MAP price	961	133	1,189	176	339 (116–7,043)	
Low income countries (n=20)	Low MR-MAP price	319	10	395	12		
	High MR-MAP price	1,323	71	1,557	78	137 (72–432)	
Total	Low MR-MAP price	22	(47)	149	(17)		
Total	High MR-MAP price	779	44	1,043	95		

- Introducing MR-MAPs in HIC and UMIC will create significant savings due to the reduction of measles treatment costs rather than reduction of DALYs
- Introducing MR-MAPs in LMIC and LICs will increase total cost, but assuming a stagnation in MR vaccination coverage, it will be a cost-effective intervention regardless of the low or high price estimate

11 Values in red indicate cost effectiveness for the income group when compared against health opportunity costs

With the either the low or high estimates for MR-MAP prices and <u>stagnant growth in</u> <u>coverage</u>, introducing MR-MAPs would be a cost-effective strategy in most countries, based on relative comparisons of health opportunity costs.

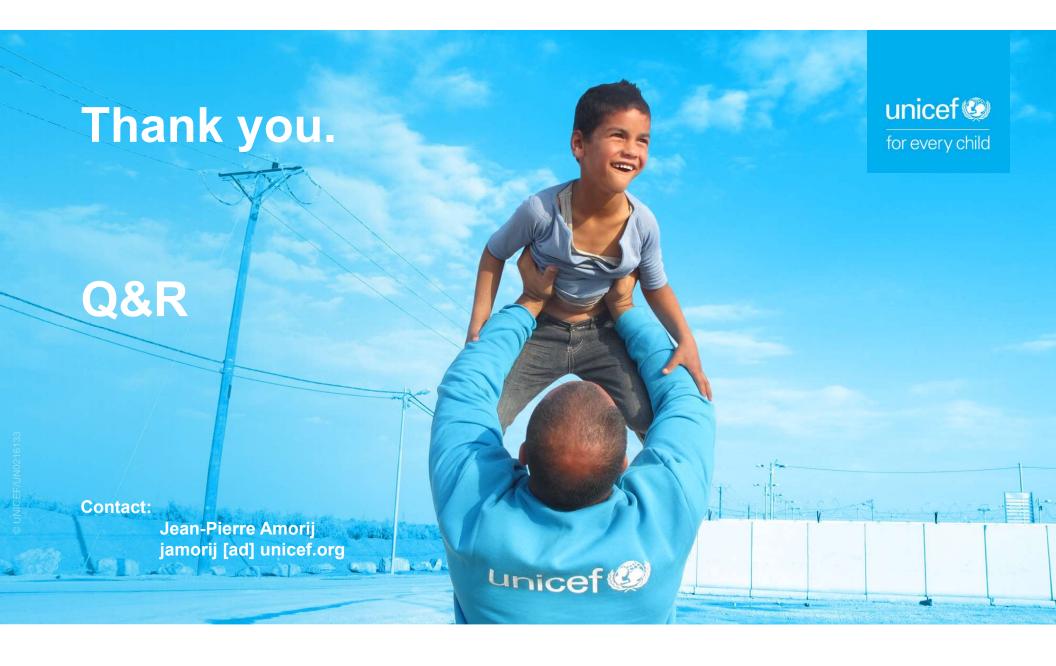
Introducing MR-MAPs has different cost effectiveness considering country types

Main dependents for CEA (aside from modelled coverage gains and estimated MR-MAPs price) are:

- Country archetypes and their costs of treatment (health opportunity costs) of measles cases
- Threshold criteria for cost effectiveness

CEA has not factored in;

- Broader economic gains for preventing disease of introducing MR-MAPs
- Potential savings from earlier Measles elimination
- Valuation of increased equity (e.g. in the country specific threshold criteria)


Microarray patches could be an important tool for achieving greater <u>equity</u> in vaccine delivery.

Reaching zero-dose children requires innovative approaches and solutions.

MR-MAPs might be one tool that can successfully reach children in rural areas and other hard-to-reach locations as well as those who are underserved by the primary healthcare system.

14 | Key Messages: MR-MAPs Initial Full Value Vaccine Assessment

