Using the FVVA framework to estimate the potential health and economic impacts of novel TB vaccines in low- and middle-income countries

Richard White, Nick Menzies, Rebecca Clark, Allison Portnoy, and many, many others richard.white@lshtm.ac.uk

Background

Tuberculosis (TB) is a serious global health issue:

- Causes significant morbidity and mortality
- Leading cause of death in 2019 from a single infectious agent
- Burden is highest in low- and middle-income countries (LMICs)

Promising vaccine candidates in late stage trials:

- Will be key to reaching elimination goals
- But development expensive and long
- Lack of market incentives to invest

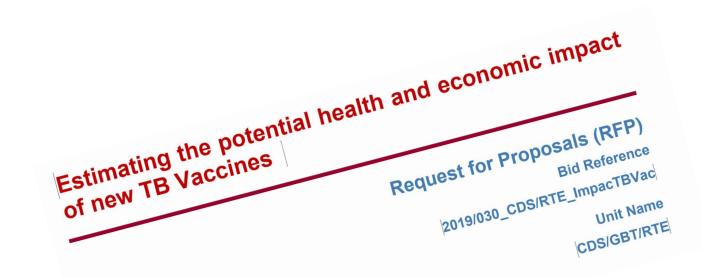
LMICs)	The NEW ENGLAND JOURNAL of MEDICINE
DRIGINAL ARTICLE ORIGINAL ARTICLE DIAGNAL ARTICLE DIAGNAL AND	Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination E. Nemes, H. Geldenhuys, V. Rozot, K.T. Rutkowski, F. Ratangee, N. Bilek, S. Mabwe, L. Makhethe, M. Erasmus, A. Toefy, H. Mulenga, W.A. Hanekom, S.G. Self, LG. Bekker, R. Ryall, * S. Gurunathan, C.A. DiazGranados, P. Andersen, I. Kromann, T. Evans, R.D. Ellis, B. Landry, D.A. Hokey, R. Hopkins, A.M. Ginsberg, T.J. Scriba, and M. Hatherill, for the C-040-404 Study Team ⁺

Objectives: Estimate the potential health impact in LMICs of vaccines meeting the technical specifications of the

WHO Preferred Product Characteristics for New Tuberculosis Vaccines,

using the FVVA framework

Full Value of Vaccines Assessment Framework

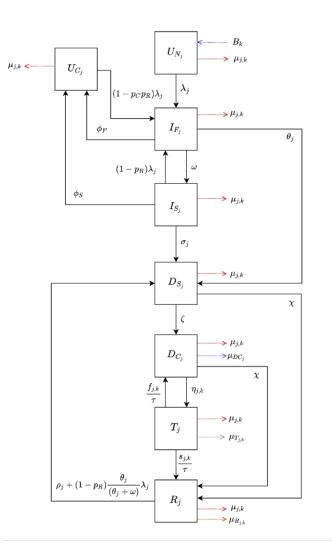

	Health		Non-health (Societal/Economic)	
	Direct	Indirect	Direct	Indirect
Individual	Traditional Direct Risk/Benefit	Full Public Value		е
Population				

 \rightarrow Express the global public health rationale for developing a vaccine

ightarrow Inform decision-making across the duration of vaccine development and uptake

Consultation and operationalized by WHO GTB into request for 9 'buckets' of evidence

- Consultation including technical experts, funders and countries
- 1. Health impact
- 2. Value for money
- 3. Equity and social protection impact
- 4. Economic impact
- 5. Global health security impact
- 6. Market and implementation scenarios
- 7. Vaccine cost
- 8. Alternative strategies
- 9. Implementation feasibility
- WHO put out to tender as open RFA


Health estimation methods

- 135 LMICs based on 2019 World Bank Income group
- Missing data for **20** countries
- Attempted calibration on **115** countries

Project to 2050 assuming no novel vaccine introduction ("*No-New-Vaccine*" baseline), then compared to scenarios with a vaccine implemented

Outcomes:

- Countries grouped by WHO region, World Bank Income Group, and for WHO high TB burden countries
- Calculated cumulative cases/treatments/deaths averted between vaccine introduction and 2050 for scenarios with new TB vaccines compared to the *No-New-Vaccine* baseline

 D_c = Clinical Disease, D_s = Subclinical Disease; I_F = Infection-Fast, I_s = Infection-Slo R = Resolved, T = On-Treatment, U_c = Uninfected-Cleared, U_N = Uninfected-Naive

Vaccine profile methods

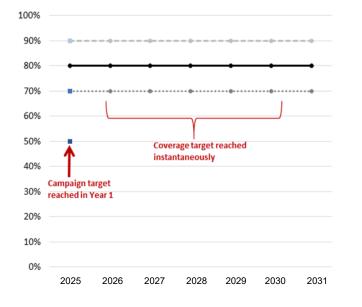
Informed by WHO Preferred Product Characteristics for New Tuberculosis Vaccines

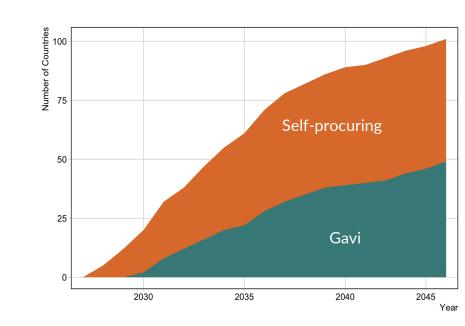
Vaccine Age Group	Infection status at time of vaccination required for vaccine efficacy	Prevents	Vaccine Efficacy	Duration of Protection
Adolescent / Adult	Pre and Post Infection with <i>Mtb</i>	Disease	50% 75%	10 years Lifelong
Infant	Pre Infection with <i>Mtb</i>	Disease	80%	10 years Lifelong

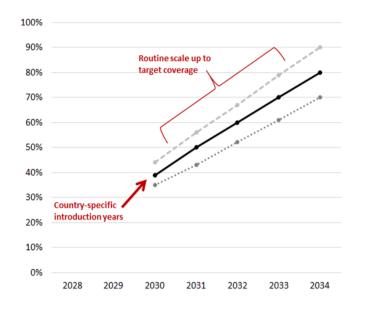
Vaccine delivery methods

<u>Accelerated</u> Scale-up

- <u>All</u> countries introduce in 2025
- Instant scale-up to coverage
- Infant vaccine: Routine neonatal
- Adolescent/adult vaccine: routine 9year-olds; 1 campaign ages 10+

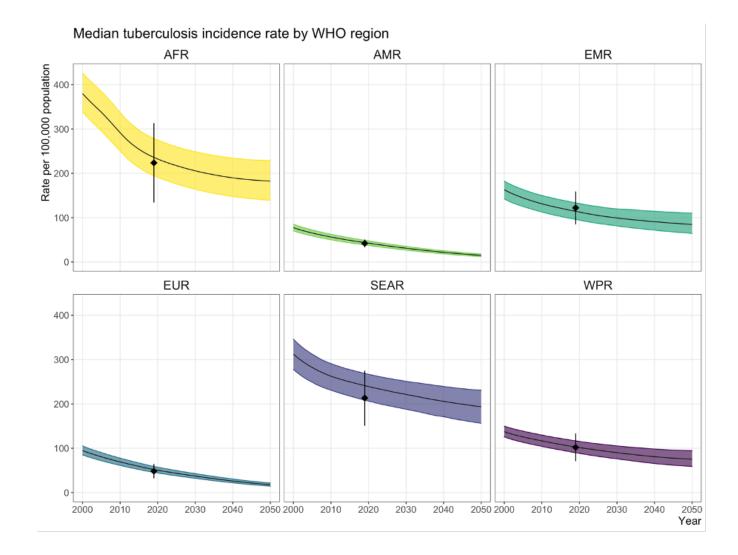

<u>Basecase</u>


- Country-specific intro years
- Scale-up to coverage over 5 years
- Infant vaccine: Routine neonatal
- Adolescent/adult vaccine: routine 9-yearolds; 1 campaign ages 10+


Vaccine coverage at 5 years (low / medium / high) Neonatal: 75% / 85% / 95% 9-year-olds: 70% / 80% / 90% 10+: 50% / 70% / 90%

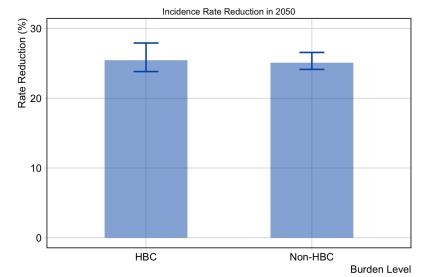
<u>Routine Only</u>

- Country-specific intro years
- Scale-up to coverage over 5 years
- Adolescent/adult vaccine: routine 9-yearolds



Calibration results

- **105** countries successfully calibrated
- Account for 93% of global TB cases and 94% of deaths in 2019
- 10 countries that we were unable to calibrate were further explored by Scarponi et al

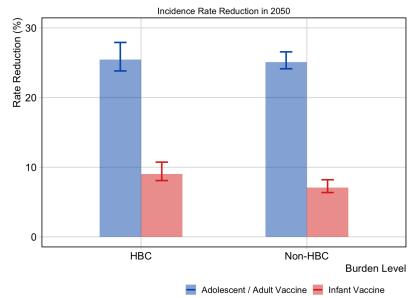


An adolescent/adult TB vaccine may reduce incidence rates in 2050 by 25%

Adol/Adult, 50% efficacy, Basecase delivery, 10y protect, med coverage

In line with previous LMIC modelling (Knight 2014)

- Important health impact
 - \rightarrow **~25%** reduction in cases in 2050



Vaccination adolescent/adults may lead to greater/more rapid incidence rate reductions in 2050, than vaccinating infants

vs Infant, 80% efficacy, Basecase delivery, 10y protect, med coverage

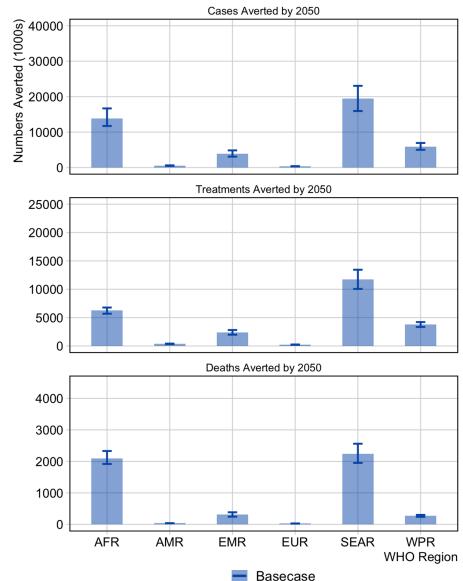
Greater impact from an adolescent / adult vaccine vs. infant vaccine before 2050

 $\rightarrow\,$ Targeting the age group with the largest burden

An adolescent/adult vaccine may avert ~44m cases, ~25m treatments, and ~5m deaths by 2050

Adol/Adult, 50% efficacy, Basecase delivery, 10y protect, med coverage

Cumulative cases averted between vaccine introduction and 2050


- Potential to avert ~44 million cases
 - Particularly in AFR and SEAR

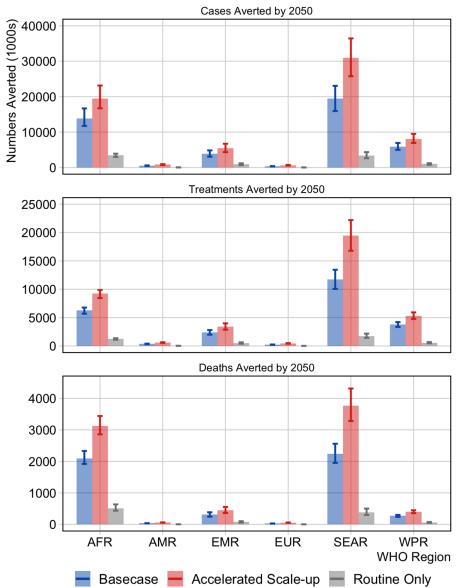
Cumulative treatments averted between vaccine introduction and 2050

- Potential to avert ~25 million treatments by 2050
 - Valuable contribution to averting antimicrobial resistance

Cumulative deaths averted between vaccine introduction and 2050

- Potential to avert ~5 million deaths by 2050

Introducing at rate ~COVID vx may avert ~50-60% more cases/deaths, than introducing at rate ~PCV vx


Adol/Adult, 50% efficacy, varying delivery, 10y protect, med coverage

Cases, treatments, and deaths averted by delivery:

We assumed more 'realistic' introduction & scale up scenarios than previous modelling

In the *Basecase* scenario, ~44 million cases, ~25 million treatments, and ~5 million deaths were averted.

An increased scale-up speed (*Accelerated Scale-up*) could prevent ~21 million additional cases, ~14 million additional treatments, and ~3 million additional deaths (~50-60% more)

Routine only delivery may avert ~80-90% fewer cases/deaths, than the routine & campaign

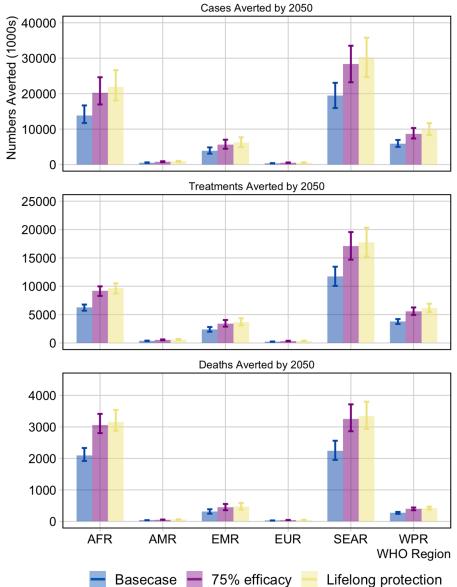
Adol/Adult, 50% efficacy, varying delivery, 10y protect, med coverage

Cases, treatments, and deaths averted by delivery:

We assumed more 'realistic' introduction & scale up scenarios than previous modelling

In the *Basecase* scenario, ~44 million cases, ~25 million treatments, and ~5 million deaths were averted.

- An increased scale-up speed (*Accelerated Scale-up*) could prevent
 ~21 million additional cases, ~14 million additional treatments, and
 ~3 million additional deaths (~50-60% more)
- By only offering this new TB vaccine routinely to adolescents (*Routine* Only), ~35 million fewer cases, ~22 million fewer treatments, and ~4 million fewer deaths would be averted (~80-90% fewer)

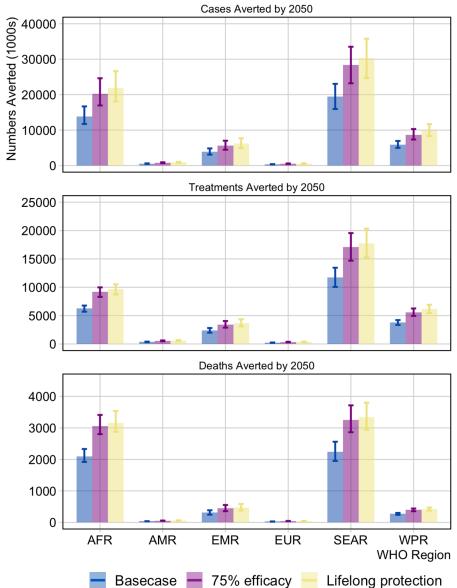

A 75% efficacy vaccine may avert ~50% more cases/deaths, than a 50% efficacy vaccine

Adol/Adult, 50% / 75% efficacy, Basecase, 10y protect vs LL, med coverage

Cases, treatments, and deaths averted by Basecase delivery with 50% vs 75% efficacy and 10 years vs lifelong protection

In the *Basecase* scenario, **~44** million cases, **~25** million treatments, and **~5** million deaths were averted.

A vaccine with 75% efficacy could prevent ~20 million additional cases, ~14 million additional treatments, and ~2 million additional deaths (~50% more)


A lifelong protection vaccine may avert ~50% more cases/deaths, than a 10-year protection vaccine

Adol/Adult, 50% / 75% efficacy, Basecase, 10y protect vs LL, med coverage

Cases, treatments, and deaths averted by Basecase delivery with 50% vs 75% efficacy and 10 years vs lifelong protection

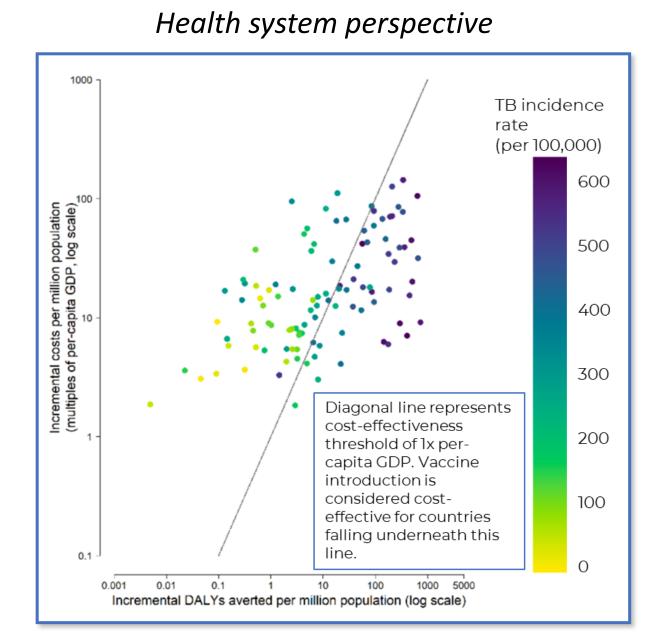
In the *Basecase* scenario, ~44 million cases, ~25 million treatments, and ~5 million deaths were averted.

- A vaccine with 75% efficacy could prevent ~20 million additional cases, ~14 million additional treatments, and ~2 million additional deaths (~50% more)
- A lifelong duration of protection vaccine could prevent ~26 million additional cases, ~13 million additional treatments, and ~2.5 million additional deaths (~50% more)

Approach for economic evaluation

• Estimated a range of economic outcomes relevant to different decision-makers or for different goals

Cost-effectiveness (health system perspective)	Budget impact	Health equity & financial risk protection
Cost-effectiveness (societal perspective)	Return on investment (Net Monetary Benefit)	Macroeconomic impact

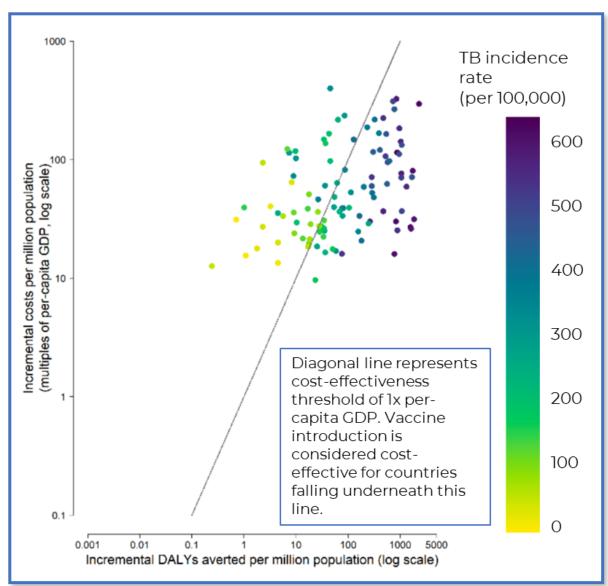

• Same countries, time period, introduction scenarios, and vaccine profiles (infant 80% efficacy, adult 50% efficacy) as health impact analyses

Cost-effectiveness analysis methods

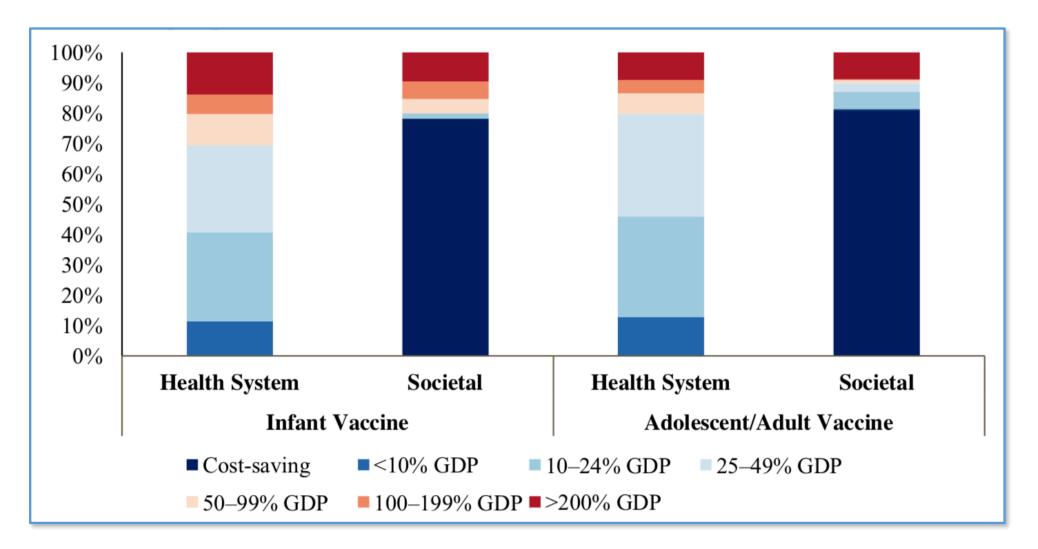
- Health outcome: Disability-adjusted life years (DALYs) averted
- Costs (health system perspective): Costs of vaccine program, costs of TB and HIV services indirectly affected by vaccine introduction
- Costs (societal perspective): As above, plus patient out-of-pocket costs, productivity losses
- Outcomes assessed over 2028–2050, discounted at 3%
- Incremental cost-effectiveness ratios (ICERs) compared to cost-effectiveness thresholds defined as multiples of per-capita GDP for each country

Infant TB vaccines costeffective in 45% of countries (89% highburden countries)

 Higher country incidence rate associated with higher impact per capita, more favorable CE



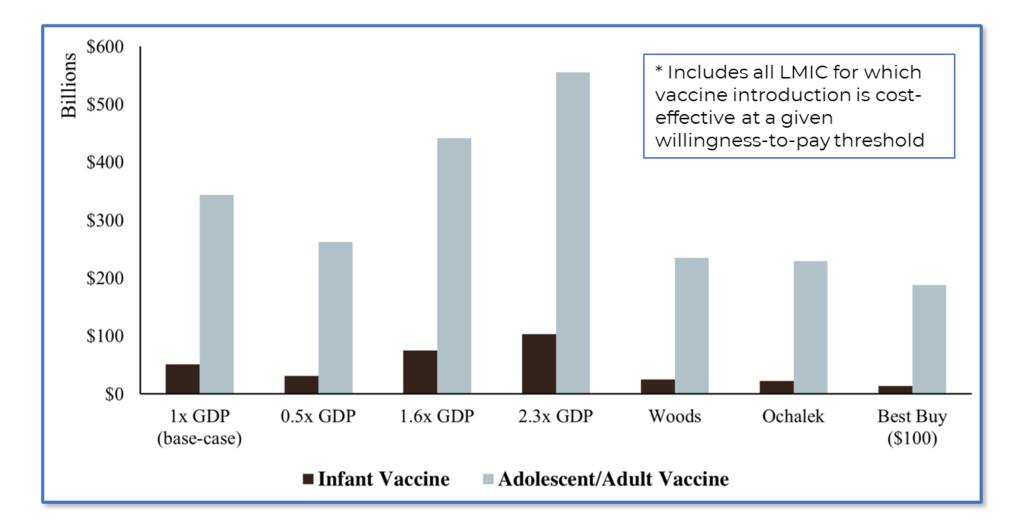
Portnoy A, Clark RA, Quaife M et al. The cost and cost-effectiveness of novel tuberculosis vaccines in low- and middle-income countries: A modeling study. *PLOS Med*, 2023; doi: https://doi.org/10.1371/journal.pmed.1004155.


Adult TB vaccines costeffective in 61% of countries (100% highburden countries)

- Higher country incidence rate associated with higher impact per capita, more favorable CE
- Same story for adult vaccine, with higher average costs and impact

Health system perspective

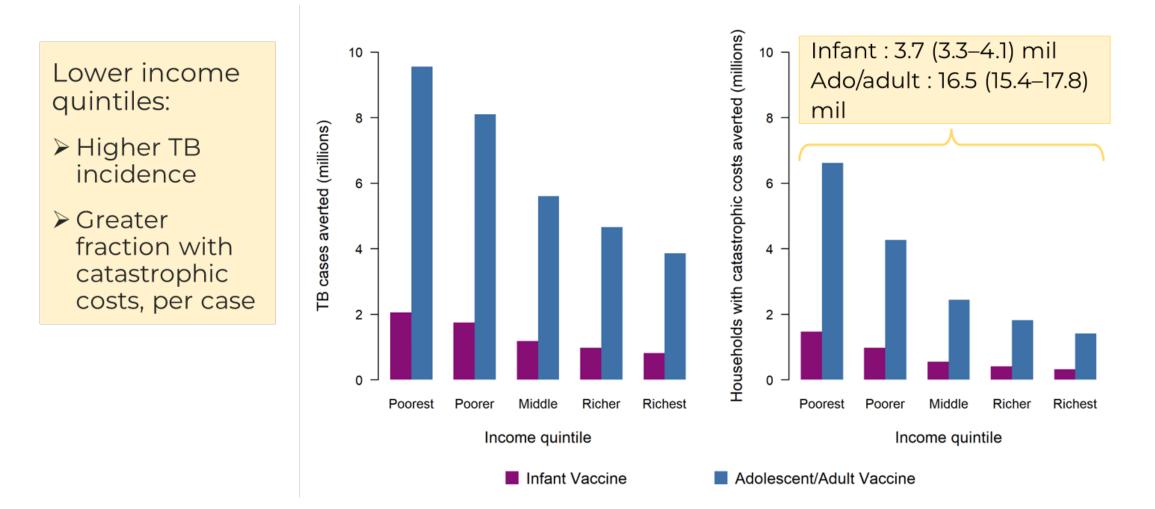
TB vaccines may be cost-saving (*societal perspective*)



Return on investment

Net Monetary Benefit (NMB) = health benefits * CE threshold – costs

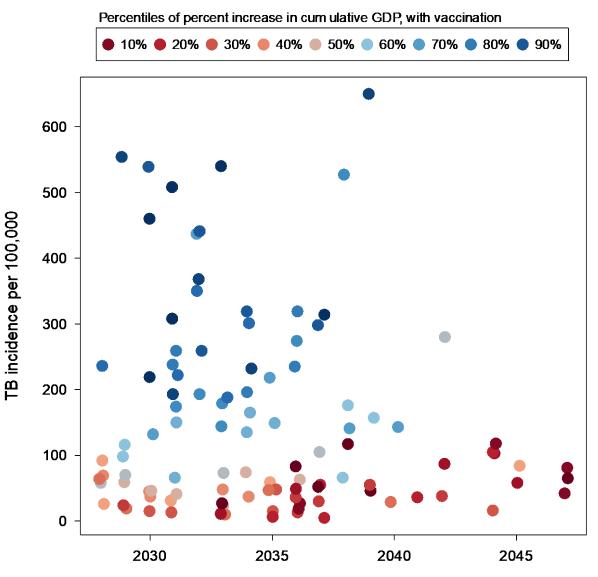
- Health benefits = DALYs averted
- CE threshold = multiples of per-capita GDP, assessed range of values
- Costs assessed from societal perspective


\$7 in health and economic benefits, for every \$1 invested in adolescent/adult TB vaccines

Health equity and financial risk protection methods

- Stratified outcomes across 5 income quintiles within each modeled country, based on current distribution of TB burden
- For each country and quintile, costs incurred by patients estimated by extrapolating from national TB patient cost survey data (N=20 surveys)
- Catastrophic costs of TB defined as patient costs per TB episode
 > 20% of household annual income

TB vaccines may advance health equity, with ~56% of benefits in poorest 40% of the population


Portnoy A, Clark RA, Weerasuriya CK et al. The potential impact of novel tuberculosis vaccines on health equity and financial protection in low- and middle-income countries. *medRxiv*, 2022; doi: https://doi.org/10.1101/2022.10.29.22281678

Macroeconomic impact methods

- Health and cost outcomes used to parameterize published macroeconomic model (EPIC model) to estimate impact of TB vaccination on country GDP
- Timeline extended to 2080 to capture long-term effects

Adult TB vaccines may increase GDP by \$1.6 trillion by 2080

- Macroeconomic impact strongly related to current TB incidence level
- Earlier vaccine introduction, lower current GDP per capita also related to greater % impact

Vaccine introduction year

Outputs

Policy Brief

An investment case for new tuberculosis vaccines

World Health Organization

Health Impact

countries: a modelling study

Rebecca C Harris, Nicolas A Menzies, Richard G White

Summary

Cost and cost effectiveness

PLOS MEDICINE

RESEARCH ARTICLE

The cost and cost-effectiveness of novel tuberculosis vaccines in low- and middleincome countries: A modeling study

Allison Portnoyo¹*, Rebecca A. Clarko^{2,3,4}, Matthew Quaife^{2,3,4}, Chathika K. Weerasuriyao^{2,3,4}, Christinah Mukandavire^{3,3,4}, Roel Bakker^{2,3,4,5}, Arminder K. Deol^{2,3,4,6}, Shelly Malhotra^{7,8}, Nebiat Gebreselassie⁹, Matteo Zignol⁹, So Yoon Sim¹⁰, Raymond C. W. Hutubessy¹⁰, Inés Garcia Baena⁹, Nobuyuki Nishikiorio⁹, Mark Jite^{3,4,11}, Richard G. White^{2,3,4,4}, Nicolas A. Menzies^{11,12}

Equity and financial protection

The impact of alternative delivery strategies for novel tuberculosis vaccines in low-income and middle-income

Rebecca A Clark, Christinah Mukandavire, Allison Portnoy, Chathika K Weerasuriya, Arminder Deol, Danny Scarponi, Andrew Iskauskas,

tuberculosis vaccines in low-income and middle-income countries (LMICs) in several delivery scenarios.

Roel Bakker, Matthew Quaife, Shelly Malhotra, Nebiat Gebreselassie, Matteo Zignol, Raymond CW Hutubessy, Birgitte Giersing, Mark Jit,

Background Tuberculosis is a leading infectious cause of death worldwide. Novel vaccines will be required to reach

global targets and reverse setbacks resulting from the COVID-19 pandemic. We estimated the impact of nove

medRxiv preprint doi: https://doi.org/10.1101/2022.10.29.22281678; this version posted October 29, 2022. The copyright holder for this prej (which was not certified by peer review) is the author/funder, who has granted medRxiv al locense to display the preprint in perpetuity It is made available under a CC-BY 4.0 International license.

Macroeconomic growth

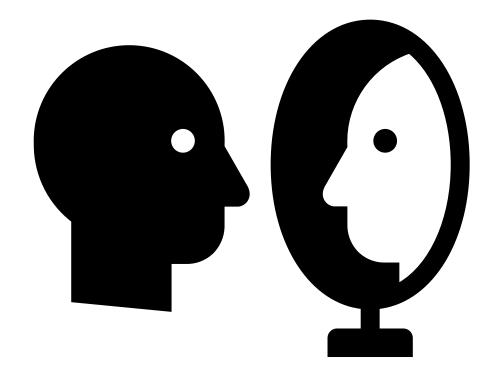
medKxiv preprint doi: https://doi.org/10.1101/2022.11.23.22282690; this version posted November 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetu

It is made available under a CC-BY 4.0 International license .

The potential impact of novel tuberculosis vaccine introduction on economic growth in lowand middle-income countries

Authors

Allison Portnoy^{1,*}, Jean-Louis Arcand^{2,3}, Rebecca A. Clark⁴⁻⁶, Chathika K. Weerasuriya⁴⁻⁶, Christinah Mukandavire⁴⁻⁶, Roel Bakker⁴⁻⁷, Edith Patouillard⁸, Nebiat Gebreselassie⁹, Matteo Zignol⁹, Mark Jit^{5,6,10}, Richard G. White⁴⁻⁶, Nicolas A. Menzies^{1,11}


The potential impact of novel tuberculosis vaccines on health equity and financial protection in low- and middle-income countries

Authors

Allison Portnoy, ScD¹, Rebecca A. Clark, MSc²⁻⁴, Chathika K. Weerasuriya, PhD²⁻⁴, Christinah Mukandavire, PhD²⁻⁴, Matthew Quaife, PhD²⁻⁴, Roel Bakker, PhD²⁻⁵, Inés Garcia Baena, MSc⁶, Nebiat Gebreselassie, PhD⁶, Matteo Zignol, MD⁶, Mark Jit, PhD^{3,4,7}, Richard G. White, PhD²⁻⁴, Nicolas A. Menzies, PhD^{1,8}

Reflections

- Very useful guiding framework
- 'Pushed' to think how we might create evidence in these
- Used to support case for TB Vaccine Accelerator launch at Davos
- Likely utility for GAVI VIS this year
- Being used by multiple advocates in run up to UNHLM later in year
- Looking forward to feedback on utility and what other evidence might be useful

Acknowledgments

Rebecca Clark Allison Portnoy Matthew Quaife Chathika Weerasuriya Christinah Mukandavire Roel Bakker Danny Scarponi Andrew Iskauskas Arminder Deol Shelly Malhotra **Rebecca Harris** Nebiat Gebreselassie

Matteo Zignol So Yoon Sim Raymond Hutubessy Inés Garcia Baena Nobuyuki Nishikiori Jean-Louis Arcand Mark Jit Richard White Nicolas Menzies Birgitte Giersing Edith Patouillard

Thanks to funding provided by the World Health Organization (WHO)

Using the FVVA framework to estimate the potential health and economic impacts of novel TB vaccines in low- and middle-income countries

Richard White, Nick Menzies, Rebecca Clark, Allison Portnoy, and many, many others richard.white@lshtm.ac.uk

