
Is Your Machine 
Learning Model 
Bingeing on Junk Data?
The Three I’s Framework for Realistic 

and Relevant Synthetic Data



Contents
Introducing the Three I’s


Evaluating Indistinguishability


Evolving Information Richness


Ensuring Intentionality


The Three I’s Together

4


9


13


22


28



1

Wouldn’t it be nice to be able to just push a button and have all the 

data you want at your fingertips? In theory, that is the promise of 

synthetic data: to solve one of the biggest challenges of using 

Machine Learning (ML), the collecting and labeling of relevant data, 

simply by generating data in a simulated environment and then 

using it to train your ML models. But it is not easy to capture all the 

complexities of the real world, so synthetic data and simulation 

frequently fall short of their promise, leading to poor ML 

performance once released into the wild of the real-world data. The 

accumulation of all the differences between real-world gathered 

data and its synthetic counterpart is known as the Domain Gap, 

which can be large and multi-faceted – making it very difficult to 

identify and address those discrepancies which contribute to poor 

performance. Another way to look at this problem is that training a 

model on poor quality data, i.e., one with a large domain gap and a 

high percentage of irrelevant information, can cause the model to 

pick up “bad habits” that don’t transfer to real data.



If we are to embrace the promise of synthetic data, addressing the 

Domain Gap issue is a crucial step. While there is a range of 

currently favored approaches for closing the Domain Gap, at Duality 

we leverage high quality Digital Twins, and believe this represents a 

thoughtful, systematic and future proof approach to generating high 

quality synthetic data that in turn results in an impactful and 

predictable return on data investment.          


Is Your Machine Learning 
Model Bingeing on Junk Data? 



An Introduction to the Three I’s Framework for 
Quantifying the Realism and Relevance of Digital  
Twin Generated Synthetic Data.
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What are Digital Twins?

Simply put, Digital Twins are highly realistic digital versions of real-

world entities. The primary purpose of a Digital Twin is to accurately 

present the appearance, properties and behaviors of a physical 

object in a virtual setting. To achieve this goal, Digital Twin 

acquisition requires meticulous 3D modeling, high quality real-world 

gathered data that sufficiently describes essential aspects of the 

entity, and state-of-the-art physics engines to integrate it all 

together. To that effect, a Digital Twin can be generated from a 

boundless pool of real-world sources with ever increasing 

complexity: a single flower stem and a field of wildflowers can both 

be represented as different types of Digital Twins. We classify Digital 

Twins into three basic types: environments, systems, and items.

Systems are any entities that perform or exhibit 

behaviors in the environment.

Items are any non-functional objects or products 

that populate the environment and that systems 

can interact with.

Environments are the encompassing 

surroundings in our domain of interest – they can 

be as broad as a forest or the streets of a city, or 

as narrow as a particular spot on a conveyor belt.

Source: Digital Twin Consortium

A digital twin is a virtual representation of real-world entities and 

processes, synchronized at a specified frequency and fidelity. 

https://www.digitaltwinconsortium.org/initiatives/the-definition-of-a-digital-twin.htm


3

Digital Twins for More Precise  

and Efficient Training


We have observed that highly realistic and relevant synthetic data 

can match and augment real world data leading to robust and 

deployable ML models. This implication, that the quality of our 

synthetic data helps predict successful ML model training, leads us 

to pose a question:

How do we quantify the realism and relevance of our  

Digital Twins, even before using that data to train a model?

To this end, we came up with three criteria to guide the creation of 

synthetic data. They are collectively referred to as “The Three I’s”: 

Indistinguishability, Information Richness, and Intentionality.
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Introducing the Three I’s

"] Indistinguishability



The first step towards good synthetic data is minimizing the Domain 

Gap. Therefore, our synthetic data should strive to be 

indistinguishable from a real-world sample. It is not supposed to be 

identical, but it should be impossible to determine if any given 

distribution of data came from our simulated version or from a real-

world example. In other words, an impartial algorithm sorting data as 

either ‘real’ or ‘fake’ should be wrong at least 50% of the time – the 

real-world samples should completely blend in with the synthetic 

ones. The higher our Indistinguishability rating, the more precisely 

our data will capture a specific scenario. We will expand on how we 

evaluate the Indistinguishability of Digital Twins in the next section.

Indistinguishability: In this example, the suitcases aren’t identical 

(synthetic ones are mixed in with the real ones) and we cannot tell 

which is which.
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Information Richness: Generating new versions that we did not see 

in the wild. Here, we have new suitcases covered in infinite varieties 

of stickers and tags in familiar and novel variations.

rU Information Richness



While synthetic data should be indistinguishable according to the metric 

outlined above, it also needs to be novel – to be useful, it needs to be 

generating new information about a specific domain. The data should 

provide, for example, new perspectives, new angles, new features, etc., 

that fill in the gaps of the real data. We don’t want to dilute the data set 

with redundant information, so each data point should be valuable and 

representative of the real-world scenario. If Indistinguishability allows 

for high precision, Information Richness allows us to accurately  

broaden the horizons of what our data can capture.
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Intentionality: Identifying our domain of interest. For this 

hypothetical model we focus on suitcases that feature the Duality 

logo sticker.

je Intentionality



We are seeking to have a fundamental understanding of the data we are 

simulating and what aspects of it are useful in our domain. In generating 

new data, we want to identify key items so that we can create variety in 

the most relevant variables. Through Intentional data, we define our 

domain of operation. In other words – even though we can create 

infinite amounts of variation in our synthetic data, not all variations are 

useful for improving the performance of an ML model. Simply 

introducing Information Richness without consideration for the use 

case, or relevance to the model, often yields results that are either 

negligible, or potentially confounding. Thus, to create a robust ML 

model, we can make a clear decision on its intended domain of 

operation: which conditions are relevant? Are they variable or static? 

What edge cases are significant, and which ones can be ignored? 

Intentionality strives for the holistic understanding of what specific 

Information Richness to introduce and can be viewed as the control 

lever for how far and in what directions we venture from our homebase 

of real-world gathered data, for any given use case. 
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“The Three I’s” are intertwined and interdependent. To help us visualize 

these abstract relationships we may imagine that any domain can be 

represented as a unique three-dimensional shape. Indistinguishability is 

the structural core of this shape, where our real and synthetic samples 

blend together. Information Richness is how much of the domain we fill, 

or all of the ways the shape can evolve away from the core. 

Intentionality is then the guide of this evolution, pruning the irrelevant 

and highlighting the valuable aspects, ultimately defining what the 

shape looks like. As we come to better understand our domain of 

interest, we are better able to dictate exactly what Information Richness 

is introduced, and the shape takes on a clear and defined form.
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As an analogy, we can imagine building a house from a set of general 

blueprints. Much of the original structure would closely line up with 

what the blueprints dictate (Indistinguishability) – it is how we know that 

our house is safe and functional. Information Richness then, is all the 

ways we can evolve the construction: the materials we can choose, the 

rooms we can partition or add on, the appliances we can install, etc., - 

all things not expressly dictated by the blueprints, but guided by their 

foundational layout. Intentionality is how we determine which of those 

choices are right for our specific house: what features are important for 

our location? Or for the climate? Or for the number and type of 

occupants? All these choices evolve the house away from the original 

blueprints, but in ways intentionally consistent with their boundaries 

and our needs. To summarize this idea in the world of synthetic data: 

we build on top of our initial structure by making informed choices that 

intentionally increase Information Richness to guide the direction of our 

ML model.



Considering all of the above, we think it is fair to say that providing 

increasingly Indistinguishable, Information Rich and Intentional synthetic 

data is possible and necessary.
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Evaluating Indistinguishability



As we mentioned at the outset: high quality synthetic data can match 

and even outperform real world data in ML model training. This 

correlates high Indistinguishability with better training results, and 

mandates that we quantitatively evaluate Indistinguishability before we 

subject any model to a particular data diet.



The first step of evaluating a Digital Twin scenario is to evaluate the 

Digital Twin items individually. For example, if we are training an object 

detection model, we will first evaluate the indistinguishability of each 

item/system individually, followed by repeating the process in the 

intended environment. We will walk through the evaluation of an 

individual Item Digital Twin, but the same process is followed for digital 

twin systems and environments as well as Digital Twin system/items in 

their environment. 

As shown in Fig. 4, we use images from the Digital Twin we made and 

the real-world object to evaluate their Indistinguishability. Our friends at 

Voxel51 have developed an open-source software tool called FiftyOne 

that supports visualization and analysis of data sets in machine 

learning. 

Fig. 4 Example of Real Images and Digital Twins.

https://voxel51.com/
https://voxel51.com/
https://fiftyone.ai
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We leverage FiftyOne to facilitate the calculation and visualization of the 

Indistinguishability Score (we present an example below, but encourage 

anyone to try FiftyOne and our repo on their own data). In order to 

represent the visual aspects of the image as quantitative features that 

can be analyzed, the images are sent through a pre-trained 

convolutional neural network. From here, FiftyOne’s implementation  

of dimensionality reduction is used to visualize the data.

In Fig. 5, each data point represents a unique real (blue) or synthetic 

(red) image. Here, we are presented with equal amounts of real and 

synthetic data. If the data are indeed Indistinguishable, then the 

likelihood that the closest sample next to a random synthetic image is 

real should be 50%. In other words, the synthetic data images are 

perfectly mixed in with their real-world counterparts, and the 

distribution of synthetic data Indistinguishably matches the distribution 

of real-world data. Please note that ideally the real world data should 

not change between Fig. 5 a), b) but since dimensionality reduction is 

an iterative process it needs to be done on synthetic and real data at 

the same time. This is why, although the real data in 5 a), b) is the same, 

the different synthetic data causes a different low-dimensional 

representation [T-SNE] [UMAP]. This technique is not limited to any 

specific dimensionality reduction and can benefit from other types of 

dimensionality reduction. 


 

Fig. 5a Distinguishable synthetic data 	Fig. 5b Indistinguishable synthetic data
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https://umap-learn.readthedocs.io/en/latest/
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In the cases when the data are not completely Indistinguishable, we can 

follow the same logic by generating a ‘data overlap value’. This value 

quantifies how much of the synthetic data is actually overlapping with 

the real data and represents it as a succinct Indistinguishability Score. In 

this scenario the probability of a synthetic sample having its nearest 

neighbor be a real-world sample will be less than 50%. Once we have 

this probability, we can calculate how much this distribution deviates 

from fully Indistinguishable to get the Indistinguishability Score.



This same approach can also be extended to cases when there is more 

synthetic than real data — which just happens to be all the time! If we 

have 70% synthetic data and 30% real data, and the data are 

Indistinguishable, then the likelihood that the closest sample located 

next to a random synthetic image is real should be 30%. Again, this 

probability is then converted to a Indistinguishability Score that now 

accounts for large imbalances in amounts of real and synthetic data and 

for data that are less-than-Indistinguishable to give us a good estimate 

of the realism of our synthetic data.


 


In Fig. 5a and 5b, there are an equal number of synthetic and real 

images, which means that synthetic data should be nearest to a real 

data point 50% of the time. In Fig. 5a, this is observed 0% of the time, 

while it is observed 40% of the time in Fig. 5b. With these observed 

probabilities, we estimate that the data overlap is 0% and 80% for Fig. 

5a and 5b, respectively. Check out our repo to test these methods on 

sample data or try it out on your own data.

Fig. 6 Indistinguishability score (data overlap) vs mean Average Precision 

(mAP) for object detection. Note how a higher Indistinguishability Score 

predicts better model performance.
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Fig. 6 demonstrates the relationship between the Indistinguishability 

Score of a Digital Twin and the performance of models trained on that 

Digital Twin. In our testing, we have observed that there is a clear 

positive correlation between Indistinguishability Score and the 

performance of object detection models. What’s more, we can also see 

that a Digital Twin does not need to be perfectly Indistinguishable in 

order to yield significant benefits to an ML model. In fact, a score 

greater than 0.8 does not necessarily produce an improvement. The 

reason for this is that Indistinguishability is not the only important factor 

- many factors impact model performance using synthetic data, and top 

among these is a direct tension of Indistinguishability with Information 

Richness.



While the specifics of Digital Twin acquisition is beyond the scope of 

this paper, it is important to remember that Indistinguishability is always 

rooted in the measuring and analyzing of a real-world sample, and is an 

approximation of the relationship with the actual real world. 

Furthermore, even if we have access to complete real-world data, it 

does not mean that it is the distribution that we want. For example, we 

may want to oversample edge cases that are not common in the real 

world but are very important for good training, therefore real world data 

may not be the end goal. This is why all Three I’s are essential for 

optimal synthetic data.


 


In the following section we address these points, and dive deeper into 

Information Richness and its tension with Indistinguishability. We break 

down how we conceptualize Information Richness, postulate its 

usefulness, and explore how it fits in with today’s dominant methods of 

creating data diets for any ML model.
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The reason why the Indistinguishability Score alone is not sufficient to 

evaluate the quality of our data is that we are not only trying to replicate 

real-world data, but generate new information beyond what is gained 

from a few real-world samples. If our data is Indistinguishable, but 

provides no new information for the model, then the data is simply 

redundant – and what would be the point of generating it in the first 

place? A model needs to encounter a vast multitude of novel and 

diverse iterations of the data to prepare it for the unpredictable 

conditions it will encounter in the real world. Thus, variety in large scale 

data sets is the platonic ideal of good synthetic data. At Duality, we 

believe that our approach to this synthetic creation of variety (i.e., 

Information Richness) adds true value to our more Indistinguishable 

Digital Twins.

Evolving Information Richness



As noted previously, Indistinguishability is only one part of the 

methodology that leads to good training outcomes. In this section we 

explore the second key component: Information Richness.

What is Information Richness?

Simply put, Information Richness is a measure of novelty or uniqueness 

within a synthetic data set. In general, data does not need to be useful 

or realistic to be Information Rich; it just needs to be highly varied. For 

our purposes, we conceptualize it as the expansion of the data 

distribution from a real-world sample to fill-in and expand a simulated 

domain. If appropriately applied, it allows us to accurately broaden the 

horizons of what our data can capture and better simulate our domain 

of interest.



Recalling the Snickers candy bar example from the previous post: we 

generated images that were as Indistinguishable as possible from the 

real-world gathered images. This could have also been done by 

duplicating the real dataset, but this would not increase the Information 

Richness. To make a set more Information Rich, we must generate 

additional images that vary from the original real-world samples. 
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To name a few options, we can create images from different angles, 

change the lighting conditions, or even deform the Digital Twin itself. 

When we generate images that are visually close to our real-world 

sample we are filling in the gaps of our domain, as these are images that 

we could have likely observed by collecting more real-world data (Ex. 1). 

This is not unlike how a cartoon animator fills in all the in-between 

poses of a character between two keyframes. Alternatively, when we 

generate images farther afield from our real-world sample, ones that 

present conditions not commonly observed (Ex. 2), we are expanding 

our domain and creating all sorts of edge cases (realistic as well as 

extremely unrealistic). Both of these scenarios increase Information 

Richness, but the latter also decreases the Indistinguishability Score of 

the images,  and we expand on this in the next section.

Two schemes for generating  

Information Richness:

Ex. 1: Filling in the gaps of the real-world sample. 

Ex. 2: Highlighting and oversampling edge cases.
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Not All Information Richness Is Created Equal



The current dominant approach for creating large, information-rich 

synthetic data sets for ML training is called Domain Randomization (DR). 

With DR, a set of parameters is randomly altered to create a much larger set 

of novel synthetic data. Randomness is the operative concept here as DR 

theoretically produces such a wide swath of cases that it blanketly fills the 

blind spots we might have in our Domain Gap. In practice, this means that 

the immense data sets produced contain everything from data that is 

similar to the domain of interest to data so far removed from reality that the 

ML model would never actually encounter it. In between those two 

extremes, the model is theoretically exposed to a sufficient amount of 

relevant data that generally captures most real-world scenarios. 



However, since these data are randomly generated, without regard for 

Indistinguishability or Intentionality, their Indistinguishability Scores tend to 

be quite low. Images of Snickers candy bars placed on the moon with 

astronauts (a hypothetical example of potential DR generated data) 

certainly increase the Information Richness of a data set, but they also 

decrease the Indistinguishability Score as they don’t reflect the reality that 

our model will encounter in the real world. This crossing of the boundary 

between edge cases and impossibility contributes to inefficient training and 

is a simplified example of the natural tension that exists between 

Indistinguishability and Information Richness (Fig.1).
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Since Indistinguishability is always rooted in the measuring and 

analyzing of a real-world sample, the Indistinguishability Score of novel 

synthetic data is always tied to that sample and will decrease as soon 

as new data starts to drift away from the core distribution of the 

aforementioned sample. In other words, Information Richness that 

expands the domain is also more speculative. But this expansion of the 

domain is essential for capturing all the varieties of cases relevant to 

successful ML model training.

Fig. 1 The natural tradeoff of between Information 

Richness and Indistinguishability

Does this mean that increasing Information Richness away from 

the core distribution creates less realistic synthetic data? 

Not necessarily.

Information Richness 

is about the dilation 
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This tradeoff between Indistinguishability and Information Richness is 

not universal nor zero-sum. Real-world data, if it were possible to be 

gathered in mass, would always be highly Indistinguishable and highly 

Information Rich. Thus, we can postulate that many synthetically 

created samples should have real-world counterparts; they just weren’t 

the ones that we observed. Moreover, edge cases are by definition not 

common in the real world, but are crucial for successful training. An 

ideal training dataset over-represents these pivotal edge cases while in 

the process sacrificing some Indistinguishability. This is where it is 

important to highlight that for training efficacy, emphasis on 

Indistinguishability has limits. So while we will always have to balance 

Indistinguishability and Information Richness in useful synthetic data, 

they are by no means operatively opposite of one another.

When we evaluate Indistinguishability, we use data clusters in which 

individual points represent ‘real’ and ‘synthetic’ images. The alignment of 

‘synthetic’ to ‘real’ clusters is a key indicator of Indistinguishability: the 

higher the overlap between the clusters, the more Indistinguishable the 

synthetic data is from the real-world data. With Information Richness, 

we look at the area these clusters cover. The more expansive the 

‘synthetic’ data cluster is, the more Information Rich the data set is. 

More simply put: Information Richness can be measured by the area of 

the cluster.



To illustrate, we can revisit the Snickers bar example from the previous 

section. Just as with calculating the Indistinguishability Score, we start 

by applying a Convolutional Neural Network followed by dimensionality 

reduction. Here, we are again leveraging FiftyOne, an open-source 

software tool developed by our friends at Voxel51. This provides us with 

a 2-d representation of each image, as shown in Fig. 2.

Evaluating Information Richness

https://fiftyone.ai
https://voxel51.com/
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Fig. 2 Not only does the dataset on the right have higher 

Indistinguishability but it also has higher Information Richness.

But as we stated above, for Information Richness evaluation, we are not 

interested in points but in areas. To calculate the area of the cluster, we 

must first assign an area to each point. To do this, we apply random noise 

to approximate variability in the images (Ex. 3). This is done once per 

image and the difference between the randomized image and the original 

image is then used to create a scatter plot as shown in Fig. 3. This scatter 

plot is made up of all the images and each point represents an image pair 

consisting of the original and randomized image. We then use this scatter 

plot to calculate an area radius by finding the median distance from zero 

of the points; in Fig. 3, the median distance from zero is 0.51.

Ex.3 Images of Snickers bar Digital Twins with random noise applied 

to approximate variability.
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Once we have this radius, we can expand each of our original points 

into circles that approximate the area coverage of each image. Fig. 4 

visually demonstrates how these points from Fig. 2 are now converted 

into areas. The aggregation of all the areas of individual circles creates 

a total area for the point cluster and we can then calculate the overlap 

between real and synthetic data as well as how much unique area 

synthetic data is providing. In Fig. 4, we can see that the synthetic data 

is providing greater Information Richness than the real data sample 

while still exhibiting a similar distribution, meaning that we have gained 

new information while still keeping a high Indistinguishability Score.

Fig. 4 Information Richness of synthetic and real data.

Fig. 3 Scatter plot of randomized real and synthetic images minus nonrandomized 

images. Center represents the location of nonrandomized images. 
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Conversely, Fig. 5 illustrates the effect of using completely random data 

addition to generate novel synthetic data. Here, the Information 

Richness is high, but is completely untethered from Indistinguishability, 

providing novel but less relevant data, and highlighting the importance 

that the “Three I’s” have together.


 

Fig. 5 Information Richness created using completely random variation.

Theoretically, Information Richness can increase until the performance 

of an ML model is 100% perfect. And while this is always the goal, there 

is a tradeoff on the relevant Information Richness that can be obtained 

from any specific real-world sample and the cost of collecting such 

data. As we add relevant data points to a large set, the uniqueness of 

each additional point eventually begins to decrease. But as we noted in 

the previous post on Indistinguishability, a Digital Twin does not need to 

be 100% Indistinguishable to be highly useful. Similarly, Information 

Richness does not need to increase indefinitely. 

Effect of Real-World Samples on  

Information Richness
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So, how do we know when a synthetic sample is sufficiently Information 

Rich? We can judge this by running a sum of the uniqueness of all 

individual points – the sum will keep appreciably increasing if the new 

points are adding new, novel information. Once additional points are no 

longer adding new information, the sum starts to hit a plateau and we 

know that adding more points is no longer increasing the Information 

Richness of our set (Fig. 6). This is likewise reflected in our area-based 

evaluation method: adding points that do not provide novel information 

will only add points that cover an area that has already been covered, 

and the total area of our cluster will not change. 

As with other aspects of synthetic data, this limitation stems from the 

inherent tethering of synthetic data to the real-world sample it is based 

on and the methodology by which it was collected. Different 

methodologies can yield samples that are less or more advantageous 

for generating greater Information Richness, and this consideration 

plays an important part in the last of the “Three I’s”: Intentionality. 

Fig. 6 Information Richness vs dataset size. The larger the dataset, the 

less likely it is that additional new data will be novel.
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Ultimately, all Information Richness, especially when produced by 

Domain Randomization, has value. But we believe that through a 

more selective and intentional use of Domain Randomization, we’ll 

be able to create truly useful Information Richness that streamlines 

training and increases performance of ML models. It is this 

Intentionality and how we use it to shape our data sets as well as 

how we balance Information Richness and Indistinguishability that 

we will cover in the next section.

So far we have discussed what it means to generate Information 

Rich synthetic data based on highly Indistinguishable samples 

generated from a Digital Twin. We have shown that we can 

determine how Indistinguishable our synthetic data is from the 

original sample and that we can quantify novelty compared to the 

real-world collected data. But while Indistinguishable and 

Information Rich data is a good baseline — the true value of our 

synthetic data is determined by its relevance, and ensuring this 

relevance requires a careful shepherding framework which we refer 

to as Intentionality.



At its core, Intentionality stems from the ever-present awareness 

that any ML model trained on our data must function in the nuance 

and chaos of the real world and not just in the customizable 

conditions of a simulation. And while possibilities of how to evolve 

Information Richness are practically boundless, they can also be 

operationally overwhelming. Unfortunately, a one-size-fits-all 

approach often results in all being fit rather poorly. Intentionality, 

simply put, is the tailoring of our synthetic data to the specific real-

world problem itself.

Intentionality in Domain Randomization

Ensuring Intentionality
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We begin with a deep dive into a use case. To learn all about a 

domain, we rely on experts and studies in the field, the customer’s 

expertise, as well as our own research. As we build our 

understanding, we begin to define our domain, and key criteria start 

to emerge. This leads to examining which conditions are pertinent 

and if they are variable or static. Which contexts and environments 

are to be expected, and which are irrelevant. What edge cases are 

significant, and which ones can be ignored. This process is frequently 

iterative and persists until we sufficiently delineate the features vital 

to our data set.

How Does Intentionality Work In Practice?

Intentionality is how we define our Domain of Operation after 

thoroughly understanding the Domain of Interest. With a careful 

consideration of the realities in which an ML model will be expected 

to reliably perform, Intentionality is how we choose what variations in 

our data to keep, to emphasize, or to prune. A Digital Twin can be 

used to generate very different Intentional data sets depending on 

what features may or may not be relevant to the specific ML model 

being trained. Intentionality strives for the holistic understanding of 

what specific Information Richness to introduce and can be viewed as 

the control mechanism for shaping novel synthetic data away from 

the distribution of the real-world sample and towards one more 

advantageous to robust training.



We mentioned in the previous post that Information Richness that 

expands the domain is also inherently more speculative. Intentionality 

functions as a fulcrum to balance this speculation against 

Indistinguishability; keeping our variations as realistic as possible, 

while allowing for useful aberrations (such as higher representation of 

edge cases than in the real-world sample) to persist.



Intentionality is the primary guiding principle of how we think about 

the relevance of synthetic data generation, and it shapes every step 

of our process.

How Do We Define Intentionality?
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Fig. 1 Even though both businesses carry chocolate, the supply line 

context of the grocery store is more complex, and requires a more 

diverse data set for successful training.

Types of ML tasks similarly drive fundamental choices about the scope 

of any data set. For example, a Classification scenario will have different 

synthetic data needs than an Object Detection scenario. Any form of 

Classification model seeks to identify the presence of an already 

familiar object in a novel image. This means that the training and testing 

data should be photorealistic and generally averse to variations that 

stray from these criteria (indicating a more narrow domain of interest). 

Alternatively, a Detection scenario requires recognizing unknown and 

novel objects in unpredictable conditions and, thus, features a broader 

domain of interest (Fig. 2).

For an example of the variety of conditions, consider an ML model that 

may be used to sort inventory in a retail supply chain. While this 

appears to be a well defined task, significantly different data could be 

needed if the supply chain is for a large department store versus a 

highly specialized boutique. The department store incorporates a 

greater variety of objects, with higher number of permutations, in more 

complex and variable contexts all while being more likely to experience 

more frequent inventory fluctuations and turnovers. The patterns of 

item stocking, the types of changes and varieties of human error may 

also be different between these two environments, necessitating a 

further emphasis on different types of edge cases. An Intentional data 

set should integrate these nuances to the best of our ability, avoiding 

the confounding issues often caused by less-relevant information.
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This broader domain of interest in part arises from the high 

unpredictability of the task, but it also incorporates the higher utility of 

non-photorealistic images for a Detection Model (data simulating input 

from various kinds of sensors, random variations, etc.). These are just 

two simplified examples of possible ML models and they will likely 

change with time. What is truly essential for good Intentional data is the 

process of integrating the understanding of any given task into the 

optimal data set created for that scenario. 



Concurrently with understanding our domain of interest, we build a 

Digital Twin using a large set of real-world images. Once data generated 

from this Digital Twin passes the Indistinguishability test, we are ready 

to Intentionally detach from the real-world sample using all the 

considerations we enumerated above. In generating this Information 

Richness, we may find some parallels to Domain Randomization (DR), 

where we are also looking for randomized variety. However, unlike 

standard DR, we are looking to create a bounded variety in very specific 

variables. This is where we draw on our study of the use case to 

identify points of high variation that may not be captured in the real-

world sample. This may be as common as moving away from specific 

lights or camera lenses, to less predictable features such as variable 

backgrounds or objects.



What emerges is a large synthetic data set, Intentionally tailored to the 

scenario and the specific functions occurring in that scenario. This 

means that the training of this model will maximize exposure to error 

causing phenomena, and minimize instances that have no bearing on, or 

are irrelevant to, its performance.

Fig. 2 A Classification scenario presents a more narrow domain 

(left) than that of an Object Detection scenario (right)
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A (Suit) Case Study



Let’s revisit our suitcase illustrations from the previous sections.  

For simplicity, we can imagine two scenarios:



Scenario (A) where we need to detect defects on newly manufactured 

suitcases and Scenario (B) where we need to sort customers’ own 

suitcases for shipping or transportation.

Fig. 3 The narrow scope of the defect detection task is reflected in the 

smaller, more specific Domain of Operation necessary for this task. A good 

understanding of possible defects lessens the reliance on randomized data.

In the manufacturing defect detection scenario, we already know what 

our perfect suitcases should look like, and we can learn common 

patterns of manufacturing errors from the customer. We also know that 

we have a relatively predictable production line environment, and a 

comparatively low amount of variability in the non-defective products. 

With good quality real-world images, we can be confident of generating 

highly Indistinguishable data. As we evolve this data to be more 

Information Rich, a domain with such a defined scope, allows us to set 

up “guarantees”, or statistical rules for how often various events are 

expected to occur in our data. In this case, the guarantees would 

include the defects as we expect to find them in the wild, as well as an 

over representation of those defects that can be hard to spot.

Defect Detection
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As we focus on the oversampling and higher variation of images that 

show defects in the suitcases, as well as images that can be falsely 

identified as defective (due to artifacts of lighting, lens aberrations, etc.) 

— what emerges is a relatively small domain of interest, and the 

distribution of these images should not deviate too greatly from the 

real-world sample. 

In the shipping-sorting scenario, we will run into a much greater variety 

of situations that are not likely to be captured in a real-world sample. In 

fact, the variety of suitcase sizes, forms, colors, and states of wear is so 

great that we do not even know what the domain really looks like. Unlike 

the previous scenario, there are no guarantees that we could assign 

here since the scope of possibility tells us that we do not even know 

what we do not know about this domain. To help us bridge this Domain 

Gap, we need a significantly more Information Rich data set, one that 

will drift increasingly further from the real-world sample. We need to 

include a bounded but large variety of randomized images, along with 

non-photorealistic results to help hone any identification schemas. 

Fig. 4 In the shipping-sorting scenario an ML model needs to identify 

suitcases (and reject non-suitcases - as shown by the flagged box) as well 

as their various properties. This presents a much larger, harder to define 

domain, requiring a significantly more varied and randomized data set.

Shipping-sorting
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We will also need to include shipping labels with an emphasis on their 

variations. If this sorter is expected to run in different facilities, we will 

need greater variety in our backgrounds and lighting conditions. As we 

enumerate all these options, it quickly becomes evident how this data 

set will evolve in a significantly different direction than the defect 

detection data set, encompassing a much greater domain.



Even though both of these hypothetical scenarios deal with suitcases 

on a conveyor belt, Intentionality guides us to create two very different 

synthetic data sets. One is narrow and targeted, concerned with only 

relevant aberrations on a suitcase, while the other is broad and varied, 

aimed at fundamentally describing what a suitcase is. There is a vast 

gap between these scenarios and their synthetic data needs, and 

Intentionality helps us design the most efficient option for each one.




The Three I’s Together



As we move into the future, the ubiquity of ML models is becoming an 

undeniable reality. And while we will increasingly use and experience 

these models in the real world, the comprehensive training they require 

can only happen in a synthetic one. The quality of these synthetic 

worlds, and the data they yield will always predict how reliably well we 

can train our present and future models.



Indistinguishable. Information Rich. Intentional. These three benchmark 

descriptors are the essential criteria by which we quantify the realism 

and relevance of our Digital Twin generated data.



High Indistinguishability roots our data in the reality of a concrete and 

observed scenario, while Information Richness allows us to mindfully 

broaden the horizons of our data beyond what was strictly observed. 

The linchpin of it all is Intentionality, directing the evolution of our data, 

shaping it to reflect the realities and requirements of any specific 

scenario – concretely defining our Domain of Operation.
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“The Three I’s” together comprise a deeply interwoven methodology that 

helps us balance all the aspects of evolving, complex data sets — keeping 

them as realistic as possible, while optimizing them for each novel situation, 

and ultimately, decreasing the Domain Gap. This approach also helps make 

novel synthetic data future-proof since data that follows “The Three I’s” 

framework is not tied to any specific ML model, but is tailored to the use 

case and domain it represents. As long as this data is of a high quality, any 

future ML model can benefit from it. And since we are sourcing our data 

from an evergreen and ever-growing library of Digital Twins, the possibilities 

of and scope of what we can capture will only increase.  


 


The data diets of our ML models matter progressively more, and we need a 

reliable framework for assessing the quality of synthetic data that in turn 

will yield impactful and predictable return on data investment. We believe 

that “The Three I’s” framework is a valuable recipe for combating junk data, 

ensuring relevant training for future ML models, and bringing us significantly 

closer to unlocking the true potential of synthetic data. 
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