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E1l: Retrieval-Augmented Protein Encoder Models

Sarthak Jain''f, Joel Beazer', Jeffrey A. Ruffolo', Aadyot Bhatnagar®, and Ali Madani®'f

Profluent Bio, Emeryville, CA, USA

Large language models trained on natural proteins learn powerful representations of protein sequences that are useful for downstream
understanding and prediction tasks. Because they are only exposed to individual protein sequences during pretraining without any additional
contextual information, conventional protein language models suffer from parameter inefficiencies in learning, baked-in phylogenetic biases,
and functional performance issues at larger scales. To address these challenges, we introduce Profluent-E1, a family of retrieval-augmented
protein language models that explicitly condition on homologous sequences. By integrating retrieved evolutionary context through block-
causal multi-sequence attention, E1 captures both general and family-specific constraints without fine-tuning. We train E1 models on four
trillion tokens from the Profluent Protein Atlas and achieve state-of-the-art performance across zero-shot fitness and unsupervised contact-map
prediction benchmarks — surpassing alternative sequence-only models. Performance scales with model size from 150M to 600M parameters,
and E1 can be used flexibly in single-sequence or retrieval-augmented inference mode for fitness prediction, variant ranking, and embeddings
for structural tasks. To encourage open science and further advances in retrieval-augmented protein language models, we release three
models for free research and commercial use at https://github.com/Profluent-Al/E1.
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Introduction

Proteins are fundamental components of the molecular machinery of life, driving biological processes such
as molecular transport, enzyme catalysis, immune response, and gene regulation. Their diverse functions
underpin applications across many industries — from pharmaceuticals to agriculture —enabling gene therapies,
vaccines, and industrial enzymes. To harness these functions, protein engineers design, modify, or select
amino acid sequences that fold into proteins with desired activities. However, mapping sequence to function
remains a major challenge, and many traditional engineering strategies still rely on random mutagenesis
and high-throughput screening to identify suitable candidates.

Protein language models (PLMSs) offer a data-driven framework for modeling the relationships between
protein sequence, structure, and function. Trained in a self-supervised manner on large databases of natural
protein sequences, PLMs learn evolutionary patterns shaped by natural selection over billions of years
[1]. In particular, single-sequence models like ESM-2/C [2—6] trained with masked language modeling
objectives produce likelihoods that correlate well with function and internal representations that capture
sequence—structure and sequence—function relationships. These models have shown strong performance in
protein engineering tasks such as ranking variants by fitness and predicting structure [3, 7.

Despite their success, single-sequence PLMs face key limitations. Firstly, all evolutionary context must
be compressed into model parameters, so protein families that are underrepresented in the pre-training data
are poorly captured. Fine-tuning can improve performance; however, it is computationally costly, can erase
more general protein knowledge, and is infeasible for data-limited families [8]. Second, PLMs model the
data distribution itself, meaning they can reflect biases from phylogeny, genetic drift, or sampling, rather
than functional constraints [9-11].

To overcome these limitations, recent approaches have incorporated explicit evolutionary context through
retrieval augmentation. Retrieval-augmented PLMs (RA-PLMs) enhance standard single-sequence models
by providing homologous sequences during training and inference. This allows the model to leverage
evolutionary context directly. Notable examples include the MSA Transformer [12], which uses multiple
sequence alignments as context, and PoET [13], which employs alignment-free concatenations of homologous
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Figure 1. E1 Architecture. The E1 model can take in homologous sequences in addition to an input query sequence. The homologous
sequences are prepended to the query sequence to construct a multi-sequence input to the model. E1 alternates between intra-sequence
and block-causal attention, enabling it to build internal representations based on residues within the same protein sequence as well as
residues in preceding homologous sequences within the concatenated multi-sequence input.

sequences. By conditioning on retrieved sequences, RA-PLMs address these challenges:

¢ Encoding evolutionary information. Retrieved homologs provide direct evolutionary context,
enabling RA-PLMs to represent both broad and family-specific patterns without overfitting.

¢ Contextualizing family-specific fitness. The model can situate a query sequence within its
family’s landscape at inference time, avoiding costly family-specific fine-tuning and supporting low-data
applications.

¢« Reducing sampling bias. Conditioning on multiple homologs emphasizes functionally relevant
coevolutionary signals while diminishing non-selective sampling or phylogenetic noise.

Empirically, RA methods have proven to be highly effective: multi-sequence attention underlies Al-
phaFold2’s [14] state-of-the-art structure prediction, and retrieval strategies have shown strong performance
in PLMs directly [12, 13, 15, 16]. Beyond predictive accuracy, RA models offer practical flexibility — a single
pretrained model can specialize dynamically for specific families or tasks, capturing deep coevolutionary
relationships without further training.

In this work, we introduce Profluent-E1, a new family of retrieval-augmented protein encoder models
trained with a masked language modeling objective. We leverage Profluent’s large-scale Protein Atlas
[11] and introduce targeted architectural and training innovations that yield more performant RA-PLMs.
E1l achieves state-of-the-art performance among models trained exclusively on sequence data. On the
Protein Gym benchmark for zero-shot fitness prediction, E1 models outperform the ESM family [2, 3] in
single-sequence mode and surpass other retrieval-based models, including PoET [13] and MSA Pairformer
[15], when augmented with homologs. E1 also achieves superior performance in unsupervised contact-map
prediction, again outperforming the ESM family in single-sequence mode and showing substantial additional
gains with retrieval. We also observe that the performance of our models scales with the number of
parameters. We release three E1 variants — 150M, 300M, and 600M parameters — freely for research and
commercial use, enabling immediate application to tasks such as fitness prediction, structure prediction,
and representation learning.

Model

Architecture.E1 is a family of retrieval-augmented protein encoder models trained with bidirectional
attention and a masked language modeling objective. In contrast to standard protein encoder models like
ESM-2 [3], these models leverage sequence homologs as part of their inference context to generate better
representations for a given sequence of interest, allowing for in-context learning. Note that we do not require
the homologous sequences to be aligned with each other, in contrast to models like MSA Transformer [12]
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and MSA Pairformer [15]. To test whether the model performance scales with number of parameters, we
trained three different sizes of E1 models: 150M, 300M, and 600M parameters.

The model takes as input a sequence of protein sequences (for example, MLFH,MIIVR,MFHK) with each
individual sequence wrapped in special tokens (<bos>1MLFH2<eos><bos>1MIIVR2<eos><bos>1MFHK2<eos>)
to mark the start and end of the sequence. Embeddings of these tokens are then passed to the model. Each
token in the same protein sequence also shares a sequence ID, which is then embedded and supplied to the
model to distinguish between different protein sequences within a multi-sequence instance. We allow up to
512 individual sequences within a single multi-sequence instance. E1 model family is implemented using
a standard Transformer-based architecture [17, 18], augmented with a block causal attention mechanism
that enables residues in different homologous sequences to attend to one another. For efficiency, this global
attention is not applied in every layer. Instead, we adopt an alternating attention architecture [19]: global
block-causal attention is used every three layers, while all other layers use intra-sequence attention, where
residues attend only to other residues within the same protein sequence.

We use standard Rotary Position Embedding (RoPE) [20] to encode positional information. For layers
using intra-sequence attention, each protein sequence restarts position IDs at one, whereas for global-
attention layers, the position ID corresponds to the absolute position of the token within the full concatenated
multi-sequence input.

Training. The E1 family of models was trained using a standard masked language modeling objective [18§],
in which input tokens are randomly selected and replaced with noisy variations. A language modeling head
(a single hidden layer MLP) is then applied on top of the final-layer token representations to predict the
probability of the true amino acid at each selected position. During training, we linearly decreased the
noise fraction (the fraction of tokens replaced in the input) from 25% to 15% for the first 250 billion tokens;
after that, it remained fixed at 15%. We followed the standard BERT masking policy: 80% of selected
tokens were replaced with a special mask token, 10% were replaced with a random amino acid, and the
remaining 10% were left unchanged. All three E1 models were trained for 4 trillion tokens (batch size =
220 tokens) using a warmup-stable-decay learning rate schedule [21] and Stable AdamW optimizer [22], on
clusters of H100/H200 GPUs — for example, E1 600M was trained on a cluster of 64 H100s for 25 days.

Training Data Construction. To construct multi-sequence instances for training, we adopt the strategy
introduced by the PoET model [13]. We used sets of homologous sequences derived from the PPA-1 [11]
and UniRef Version 2411 [23] datasets. Both PPA-1 and UniRef are clustered at multiple sequence identity
thresholds, including at 50% and 90% identity. For each 50% ID cluster representative, we search it against
all other 50% ID cluster representatives in the respective datasets using Diamond [24], returning a set
of possible homologs. To construct a training instance, we first randomly sample one of these homolog
sets (with probability inversely proportional to the size of the set) and then replace each 50% ID cluster
representative with a randomly picked sequence from the associated 50% ID sequence cluster (weighted
inversely by the size of its 90% ID subcluster). Finally, we subset the resulting sequences to ensure that the
concatenated multi-sequence instance remains within a prescribed length budget.

We employed a curriculum learning strategy where we gradually increase the total length and number of
sequences in a multi-sequence instance: from 8192 to 32768 and from 2 to 512 respectively. This enabled
the model to achieve state of the art performance in both single sequence mode (where no homologous
sequences are passed during inference) and retrieval-augmented mode. During training, we exclusively
trained on instances from PPA-1 for the first 1.5 trillion tokens. Thereafter, we mixed in instances from
UniRef in a 60:40 ratio for the remainder of the training duration.

Results

A. E1 models enable state of the art zero-shot substitution effect prediction. Protein language models
have been shown to be effective zero-shot fitness predictors for local mutational landscapes. In addition,
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Figure 2. E1 achieves state-of-the-art zero-shot performance compared to other publicly available PLMs in both sequence-only and
retrieval-augmented mode. Scaling model parameters correlates with better performance. Left: Performance on Protein Gym substitution
DMS Assays. Right: Unsupervised contact map prediction on a subset from CAMEO.

prior work [12, 13, 16, 25-27] has shown that addition of evolutionarily related sequences (either unaligned
or in the form of an MSA) during inference can improve the model’s performance. In this section, we use
the 217 Deep Mutational Scan substitution assays from the ProteinGym (v1.3) benchmark [28] to evaluate
the performance of E1 models in both single-sequence and retrieval-augmented modes. We use the masked
marginal method [7] to compute scores for each variant of the wildtype protein sequence and evaluate
performance using Spearman correlation and the normalized discounted cumulative gain (NDCG) metric
against ground truth fitness values. The latter metric measures the ability of the model to rank high fitness
sequences first and is more practically relevant for protein design tasks.

Sampling homologs for inference. For evaluation in retrieval-augmented mode, we follow the PoET
strategy [13] and prepend the masked variants of the wildtype sequence with homologous sequences sampled
from ColabFold derived MSAs [29] constructed using Uniref100 v2104. Homologs are sampled with weights
inversely proportional to the number of their neighbors (sequences in the MSA that are at least 80%
identical to them)and are additionally constrained to satisfy a specified maximum similarity to the wildtype
sequence.. We ensemble 15 prompts corresponding to 3 different total-token-length budgets and 5 different
maximum query-similarity thresholds ({6144, 12288, 24576} x {1.0, 0.95, 0.9, 0.7, 0.5}).

Results. In Table 1, we observe that E1 models outperform all ESM-2 and ESMC family models in
single-sequence mode at comparable model sizes, indicating that E1 can be used as a drop-in replacement
for existing single-sequence encoder models without loss of performance. When evaluated with homologs at
inference time, the E1 models substantially outperform corresponding single-sequence metrics and achieve
state of the art performance relative to similar publicly available models, i.e., models that only take
homologous sequences as additional context during inference, like MSA Pairformer and PoET*. In Table 2,
we further observe that switching from single-sequence to retrieval-augmented mode yields consistent
improvements for assays with low and medium MSA depth. On average, the larger E1 models also tend to
perform better, indicating continued benefits of scaling up retrieval-augmented PLMs.

*The metrics for MSA Pairformer are taken from the original paper, while POET, ESM-2, and ESMC are sourced from the Protein Gym public leaderboard
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Spearman Correlation NDCG@10
Model Name Model Inputs Average | Activity | Binding | Expression | Organismal | Stability | Average
Fitness
Inference with query sequence only

ESM2-150M Sequence Only 0.387 0.391 0.326 0.402 0.305 0.51 0.729
ESM2-650M Sequence Only 0.414 0.425 0.337 0.415 0.368 0.523 0.747
ESM2-3B Sequence Only 0.406 0.417 0.321 0.403 0.378 0.509 0.755
ESMC-300M Sequence Only 0.406 0.423 0.315 0.408 0.36 0.526 0.746
ESMC-600M Sequence Only 0.405 0.423 0.294 0.42 0.362 0.528 0.746

E1 150M Sequence Only 0.401 0.426 0.325 0.420 0.304 0.532 0.744
E1 300M Sequence Only 0.416 0.438 0.332 0.430 0.346 0.537 0.748

E1 600M Sequence Only 0.420 0.415 0.330 0.441 0.366 0.548 0.749

Inference with Homologous Sequences / MSA in-context

MSA Pairformer | Sequence + MSA 0.45 0.49 0.35 0.44 0.46 0.51 —

PoET Sequence + Homologs | 0.470 0.494 0.396 0.466 0.475 0.519 0.784

E1 150M Sequence + Homologs | 0.473 0.498 0.408 0.468 0.477 0.514 0.785
E1 300M Sequence + Homologs | 0.475 0.501 0.410 0.468 0.474 0.523 0.787
E1 600M Sequence + Homologs | 0.477 0.501 0.404 0.469 0.478 0.532 0.788

Table 1. Average Spearman correlation and NDCG@10 between model-predicted scores and Protein Gym experimental
fitness values.

Spearman Correlation by Taxon Spearman Correlation by MSA Depth
Model Name | Model Inputs Human | Other Eukaryote | Prokaryote | Virus Low Medium High
Inference with query sequence only
ESM2-150M Sequence Only 0.45 0.475 0.398 0.157 | 0.319 0.359 0.494
ESM2-650M Sequence Only 0.457 0.486 0.458 0.261 | 0.338 0.409 0.513
ESM2-3B Sequence Only 0.442 0.477 0.458 0.294 | 0.336 0.423 0.485
ESMC-300M | Sequence Only 0.468 0.481 0.441 0.242 | 0.337 0.399 0.520
ESMC-600M | Sequence Only 0.462 0.481 0.459 0.241 | 0.331 0.407 0.515
E1 150M Sequence Only 0.455 0.515 0.413 0.188 | 0.342 0.373 0.514
E1 300M Sequence Only 0.466 0.513 0.444 0.238 | 0.367 0.396 0.524
E1 600M Sequence Only 0.475 0.482 0.472 0.254 | 0.342 0.419 0.523
Inference with Homologous Sequences / MSA in-context
PoET Sequence + Homologs 0.482 0.541 0.464 0.491 0.478 0.478 0.510
E1 150M Sequence + Homologs 0.482 0.527 0.476 0.494 | 0.476 0.477 0.515
E1 300M Sequence + Homologs 0.485 0.534 0.478 0.490 | 0.471 0.480 0.520
E1 600M Sequence + Homologs 0.487 0.537 0.488 0.500 | 0.478 0.485 0.525

Table 2. Average Spearman correlation between model-predicted scores and Protein Gym experimental fitness values
broken down by Taxon and MSA Depth.

B. Unsupervised contact map prediction benefits from homologous sequences during inference. Unsu-
pervised contact map prediction can be used as an efficient proxy to test whether the model has learned to
encode information about the 3D structures of proteins during pre-training. In this section, we compare
the performance of E1 with publicly available models on the long-range contact prediction task for protein
sequences from CAMEO [30, 31] and CASP15 [32] targets. We use the Categorical Jacobian approach [§]
to assess the model’s internal knowledge of residue-residue contacts in an architecture-agnostic manner and
report precision-at-L (the percentage of top-L predicted contacts that are correct). We define a residue pair
as being in contact if their C8-C/3 distance is < 8A, and we define long-range contact as contact between
residues separated by at least 24 positions in sequence space.

We also evaluate whether the model can exploit additional information from homologous sequences during
inference to improve contact-prediction performance. Homologs are sampled using the same procedure
described in the previous section, with MSAs generated by ColabFold from the UniRef dataset. In contrast
to the variant-effect prediction experiments, we do not ensemble over multiple prompts; instead, we fix the
context length to 8192 and the maximum query similarity to 0.95 and use a single prompt for evaluation.

Results. We observe from Table 3 that E1 models outperform the ESM family of models at all scales
when tested in single-sequence mode. Moreover, we see consistent gains in performance when including
homologous sequences during inference, indicating that the model is able to leverage in-context evolutionary
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Long-range Precision@L

Model Name Model Inputs CAMEO CASP15
Inference with query sequence only
ESM2-150M Sequence Only 0.348 0.272
ESM2-650M Sequence Only 0.423 0.342
ESM2-3B Sequence Only 0.434 0.339
ESMC-300M Sequence Only 0.425 0.342
E1 150M Sequence Only 0.466 0.387
E1 300M Sequence Only 0.493 0.401
E1 600M Sequence Only 0.512 0.425
Inference with Homologous Sequences / MSA in-context
MSA Pairformer | Sequence + MSA 0.489 0.428
E1 150M Sequence + Homologs 0.510 0.406
E1 300M Sequence + Homologs 0.526 0.415
E1 600M Sequence + Homologs 0.541 0.436

Table 3. Unsupervised contact map prediction performance as measured by Precision@L for long range contacts.
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Figure 3. Examples from CAMEO dataset where retrieval augmentation helps E1 identify contact it may have mispredicted when
used in single sequence mode. Here, gray points are ground truth contacts, blue/orange points are correctly predicted contacts in
retrieval-augmented/single-sequence mode, respectively, and red points are false positives.

information to identify putative 3D contacts in a protein. Finally, we provide some illustrative examples
from the CAMEQ dataset in Figure 3 where retrieval augmentation yields markedly improved contact-map
predictions relative to single-sequence inference.

Discussion

We introduced Profluent-E1, a family of retrieval-augmented protein encoder models that can leverage
unaligned evolutionarily related sequences at inference time to achieve superior performance. E1 achieves
state-of-the-art performance among publicly available models on variant-effect prediction (Protein Gym)
and unsupervised contact-map prediction (CAMEO and CASP15), both in single-sequence mode and when
augmented with homologs. We release three E1 variants — 150M, 300M, and 600M — that are available for
free for research and commercial use.

While we have shown the benefits of using retrieval augmentation on predictive performance for the E1
family, several open questions remain regarding the inner workings of these models. In particular, further
analysis is needed to disentangle how much E1 is relying on the information encoded in the model weights
during pre-training versus that derived from homologous sequences provided at inference time. Unlike other
models like MSA Transformer [12], which may incorporate alignment information through specific attention
mechanisms such as row and column only attention, E1 models allow any residue in a given protein sequence
to attend to any residue in preceding sequences within the multi-sequence input. This begs the question of
whether the model implicitly learns to attend to positions that would have been aligned under a traditional
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MSA — or whether it exploits additional contextual signals from other regions of the homologous sequences
beyond what alignment alone would provide.

Scaling laws seem to exist as we increase the model parameter count for our zero-shot evaluation
tasks. However, we only extended this study to 600M parameters. Also, within the broader context of
protein representation learning, we studied only sequence-based models to focus on the effects of retrieval
augmentation. It has been shown that utilizing structural information in pretraining can lead to more
efficient learning and more performant models in some contexts [16, 26, 33, 34]. Finally, it remains to be
seen whether prompting the E1 models with sequences that have specific properties can implicitly guide the
model towards particular areas of the fitness landscape (for example, enzymes that work at specific pH
levels or in specific organisms) and thereby optimize for desired functional attributes. We hope that by
making these models publicly available under a permissive license, the research community will be able to
provide answers to these and other questions, helping to develop more capable RA-PLMs in the future.

Overall, the Profluent-E1 family of models demonstrates the continued value of research in improving
protein language models and provides a new foundational tool for Al-driven protein design that advances
both predictive performance and practical utility for a large class of protein design workflows.

Code availability

We make inference code and model weights available at https:/github.com/Profluent-Al/E1 under a permissive
license. See license details here: https://github.com/Profluent-Al/E1/blob/main/NOTICE
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