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Large language models trained on natural proteins learn powerful representations of protein sequences that are useful for downstream
understanding and prediction tasks. Because they are only exposed to individual protein sequences during pretraining without any additional
contextual information, conventional protein language models suffer from parameter inefficiencies in learning, baked-in phylogenetic biases,
and functional performance issues at larger scales. To address these challenges, we introduce Profluent-E1, a family of retrieval-augmented
protein language models that explicitly condition on homologous sequences. By integrating retrieved evolutionary context through block-
causal multi-sequence attention, E1 captures both general and family-specific constraints without fine-tuning. We train E1 models on four
trillion tokens from the Profluent Protein Atlas and achieve state-of-the-art performance across zero-shot fitness and unsupervised contact-map
prediction benchmarks – surpassing alternative sequence-only models. Performance scales with model size from 150M to 600M parameters,
and E1 can be used flexibly in single-sequence or retrieval-augmented inference mode for fitness prediction, variant ranking, and embeddings
for structural tasks. To encourage open science and further advances in retrieval-augmented protein language models, we release three
models for free research and commercial use at https://github.com/Profluent-AI/E1.
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Introduction1

Proteins are fundamental components of the molecular machinery of life, driving biological processes such2

as molecular transport, enzyme catalysis, immune response, and gene regulation. Their diverse functions3

underpin applications across many industries – from pharmaceuticals to agriculture –enabling gene therapies,4

vaccines, and industrial enzymes. To harness these functions, protein engineers design, modify, or select5

amino acid sequences that fold into proteins with desired activities. However, mapping sequence to function6

remains a major challenge, and many traditional engineering strategies still rely on random mutagenesis7

and high-throughput screening to identify suitable candidates.8

Protein language models (PLMs) offer a data-driven framework for modeling the relationships between9

protein sequence, structure, and function. Trained in a self-supervised manner on large databases of natural10

protein sequences, PLMs learn evolutionary patterns shaped by natural selection over billions of years11

[1]. In particular, single-sequence models like ESM-2/C [2–6] trained with masked language modeling12

objectives produce likelihoods that correlate well with function and internal representations that capture13

sequence–structure and sequence–function relationships. These models have shown strong performance in14

protein engineering tasks such as ranking variants by fitness and predicting structure [3, 7].15

Despite their success, single-sequence PLMs face key limitations. Firstly, all evolutionary context must16

be compressed into model parameters, so protein families that are underrepresented in the pre-training data17

are poorly captured. Fine-tuning can improve performance; however, it is computationally costly, can erase18

more general protein knowledge, and is infeasible for data-limited families [8]. Second, PLMs model the19

data distribution itself, meaning they can reflect biases from phylogeny, genetic drift, or sampling, rather20

than functional constraints [9–11].21

To overcome these limitations, recent approaches have incorporated explicit evolutionary context through22

retrieval augmentation. Retrieval-augmented PLMs (RA-PLMs) enhance standard single-sequence models23

by providing homologous sequences during training and inference. This allows the model to leverage24

evolutionary context directly. Notable examples include the MSA Transformer [12], which uses multiple25

sequence alignments as context, and PoET [13], which employs alignment-free concatenations of homologous26
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Figure 1. E1 Architecture. The E1 model can take in homologous sequences in addition to an input query sequence. The homologous
sequences are prepended to the query sequence to construct a multi-sequence input to the model. E1 alternates between intra-sequence
and block-causal attention, enabling it to build internal representations based on residues within the same protein sequence as well as
residues in preceding homologous sequences within the concatenated multi-sequence input.

sequences. By conditioning on retrieved sequences, RA-PLMs address these challenges:27

• Encoding evolutionary information. Retrieved homologs provide direct evolutionary context,28

enabling RA-PLMs to represent both broad and family-specific patterns without overfitting.29

• Contextualizing family-specific fitness. The model can situate a query sequence within its30

family’s landscape at inference time, avoiding costly family-specific fine-tuning and supporting low-data31

applications.32

• Reducing sampling bias. Conditioning on multiple homologs emphasizes functionally relevant33

coevolutionary signals while diminishing non-selective sampling or phylogenetic noise.34

Empirically, RA methods have proven to be highly effective: multi-sequence attention underlies Al-35

phaFold2’s [14] state-of-the-art structure prediction, and retrieval strategies have shown strong performance36

in PLMs directly [12, 13, 15, 16]. Beyond predictive accuracy, RA models offer practical flexibility – a single37

pretrained model can specialize dynamically for specific families or tasks, capturing deep coevolutionary38

relationships without further training.39

In this work, we introduce Profluent-E1, a new family of retrieval-augmented protein encoder models40

trained with a masked language modeling objective. We leverage Profluent’s large-scale Protein Atlas41

[11] and introduce targeted architectural and training innovations that yield more performant RA-PLMs.42

E1 achieves state-of-the-art performance among models trained exclusively on sequence data. On the43

Protein Gym benchmark for zero-shot fitness prediction, E1 models outperform the ESM family [2, 3] in44

single-sequence mode and surpass other retrieval-based models, including PoET [13] and MSA Pairformer45

[15], when augmented with homologs. E1 also achieves superior performance in unsupervised contact-map46

prediction, again outperforming the ESM family in single-sequence mode and showing substantial additional47

gains with retrieval. We also observe that the performance of our models scales with the number of48

parameters. We release three E1 variants – 150M, 300M, and 600M parameters – freely for research and49

commercial use, enabling immediate application to tasks such as fitness prediction, structure prediction,50

and representation learning.51

Model52

Architecture. E1 is a family of retrieval-augmented protein encoder models trained with bidirectional53

attention and a masked language modeling objective. In contrast to standard protein encoder models like54

ESM-2 [3], these models leverage sequence homologs as part of their inference context to generate better55

representations for a given sequence of interest, allowing for in-context learning. Note that we do not require56

the homologous sequences to be aligned with each other, in contrast to models like MSA Transformer [12]57
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and MSA Pairformer [15]. To test whether the model performance scales with number of parameters, we58

trained three different sizes of E1 models: 150M, 300M, and 600M parameters.59

The model takes as input a sequence of protein sequences (for example, MLFH,MIIVR,MFHK) with each60

individual sequence wrapped in special tokens (<bos>1MLFH2<eos><bos>1MIIVR2<eos><bos>1MFHK2<eos>)61

to mark the start and end of the sequence. Embeddings of these tokens are then passed to the model. Each62

token in the same protein sequence also shares a sequence ID, which is then embedded and supplied to the63

model to distinguish between different protein sequences within a multi-sequence instance. We allow up to64

512 individual sequences within a single multi-sequence instance. E1 model family is implemented using65

a standard Transformer-based architecture [17, 18], augmented with a block causal attention mechanism66

that enables residues in different homologous sequences to attend to one another. For efficiency, this global67

attention is not applied in every layer. Instead, we adopt an alternating attention architecture [19]: global68

block-causal attention is used every three layers, while all other layers use intra-sequence attention, where69

residues attend only to other residues within the same protein sequence.70

We use standard Rotary Position Embedding (RoPE) [20] to encode positional information. For layers71

using intra-sequence attention, each protein sequence restarts position IDs at one, whereas for global-72

attention layers, the position ID corresponds to the absolute position of the token within the full concatenated73

multi-sequence input.74

Training. The E1 family of models was trained using a standard masked language modeling objective [18],75

in which input tokens are randomly selected and replaced with noisy variations. A language modeling head76

(a single hidden layer MLP) is then applied on top of the final-layer token representations to predict the77

probability of the true amino acid at each selected position. During training, we linearly decreased the78

noise fraction (the fraction of tokens replaced in the input) from 25% to 15% for the first 250 billion tokens;79

after that, it remained fixed at 15%. We followed the standard BERT masking policy: 80% of selected80

tokens were replaced with a special mask token, 10% were replaced with a random amino acid, and the81

remaining 10% were left unchanged. All three E1 models were trained for 4 trillion tokens (batch size =82

220 tokens) using a warmup-stable-decay learning rate schedule [21] and Stable AdamW optimizer [22], on83

clusters of H100/H200 GPUs – for example, E1 600M was trained on a cluster of 64 H100s for 25 days.84

Training Data Construction. To construct multi-sequence instances for training, we adopt the strategy85

introduced by the PoET model [13]. We used sets of homologous sequences derived from the PPA-1 [11]86

and UniRef Version 2411 [23] datasets. Both PPA-1 and UniRef are clustered at multiple sequence identity87

thresholds, including at 50% and 90% identity. For each 50% ID cluster representative, we search it against88

all other 50% ID cluster representatives in the respective datasets using Diamond [24], returning a set89

of possible homologs. To construct a training instance, we first randomly sample one of these homolog90

sets (with probability inversely proportional to the size of the set) and then replace each 50% ID cluster91

representative with a randomly picked sequence from the associated 50% ID sequence cluster (weighted92

inversely by the size of its 90% ID subcluster). Finally, we subset the resulting sequences to ensure that the93

concatenated multi-sequence instance remains within a prescribed length budget.94

We employed a curriculum learning strategy where we gradually increase the total length and number of95

sequences in a multi-sequence instance: from 8192 to 32768 and from 2 to 512 respectively. This enabled96

the model to achieve state of the art performance in both single sequence mode (where no homologous97

sequences are passed during inference) and retrieval-augmented mode. During training, we exclusively98

trained on instances from PPA-1 for the first 1.5 trillion tokens. Thereafter, we mixed in instances from99

UniRef in a 60:40 ratio for the remainder of the training duration.100

Results101

A. E1 models enable state of the art zero-shot substitution effect prediction. Protein language models102

have been shown to be effective zero-shot fitness predictors for local mutational landscapes. In addition,103
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Figure 2. E1 achieves state-of-the-art zero-shot performance compared to other publicly available PLMs in both sequence-only and
retrieval-augmented mode. Scaling model parameters correlates with better performance. Left: Performance on Protein Gym substitution
DMS Assays. Right: Unsupervised contact map prediction on a subset from CAMEO.

prior work [12, 13, 16, 25–27] has shown that addition of evolutionarily related sequences (either unaligned104

or in the form of an MSA) during inference can improve the model’s performance. In this section, we use105

the 217 Deep Mutational Scan substitution assays from the ProteinGym (v1.3) benchmark [28] to evaluate106

the performance of E1 models in both single-sequence and retrieval-augmented modes. We use the masked107

marginal method [7] to compute scores for each variant of the wildtype protein sequence and evaluate108

performance using Spearman correlation and the normalized discounted cumulative gain (NDCG) metric109

against ground truth fitness values. The latter metric measures the ability of the model to rank high fitness110

sequences first and is more practically relevant for protein design tasks.111

Sampling homologs for inference. For evaluation in retrieval-augmented mode, we follow the PoET112

strategy [13] and prepend the masked variants of the wildtype sequence with homologous sequences sampled113

from ColabFold derived MSAs [29] constructed using Uniref100 v2104. Homologs are sampled with weights114

inversely proportional to the number of their neighbors (sequences in the MSA that are at least 80%115

identical to them)and are additionally constrained to satisfy a specified maximum similarity to the wildtype116

sequence.. We ensemble 15 prompts corresponding to 3 different total-token-length budgets and 5 different117

maximum query-similarity thresholds ({6144, 12288, 24576} × {1.0, 0.95, 0.9, 0.7, 0.5}).118

Results. In Table 1, we observe that E1 models outperform all ESM-2 and ESMC family models in119

single-sequence mode at comparable model sizes, indicating that E1 can be used as a drop-in replacement120

for existing single-sequence encoder models without loss of performance. When evaluated with homologs at121

inference time, the E1 models substantially outperform corresponding single-sequence metrics and achieve122

state of the art performance relative to similar publicly available models, i.e., models that only take123

homologous sequences as additional context during inference, like MSA Pairformer and PoET∗. In Table 2,124

we further observe that switching from single-sequence to retrieval-augmented mode yields consistent125

improvements for assays with low and medium MSA depth. On average, the larger E1 models also tend to126

perform better, indicating continued benefits of scaling up retrieval-augmented PLMs.127

∗
The metrics for MSA Pairformer are taken from the original paper, while PoET, ESM-2, and ESMC are sourced from the Protein Gym public leaderboard
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Spearman Correlation NDCG@10
Model Name Model Inputs Average Activity Binding Expression Organismal

Fitness
Stability Average

Inference with query sequence only
ESM2-150M Sequence Only 0.387 0.391 0.326 0.402 0.305 0.51 0.729
ESM2-650M Sequence Only 0.414 0.425 0.337 0.415 0.368 0.523 0.747
ESM2-3B Sequence Only 0.406 0.417 0.321 0.403 0.378 0.509 0.755
ESMC-300M Sequence Only 0.406 0.423 0.315 0.408 0.36 0.526 0.746
ESMC-600M Sequence Only 0.405 0.423 0.294 0.42 0.362 0.528 0.746
E1 150M Sequence Only 0.401 0.426 0.325 0.420 0.304 0.532 0.744
E1 300M Sequence Only 0.416 0.438 0.332 0.430 0.346 0.537 0.748
E1 600M Sequence Only 0.420 0.415 0.330 0.441 0.366 0.548 0.749

Inference with Homologous Sequences / MSA in-context
MSA Pairformer Sequence + MSA 0.45 0.49 0.35 0.44 0.46 0.51 —
PoET Sequence + Homologs 0.470 0.494 0.396 0.466 0.475 0.519 0.784
E1 150M Sequence + Homologs 0.473 0.498 0.408 0.468 0.477 0.514 0.785
E1 300M Sequence + Homologs 0.475 0.501 0.410 0.468 0.474 0.523 0.787
E1 600M Sequence + Homologs 0.477 0.501 0.404 0.469 0.478 0.532 0.788

Table 1. Average Spearman correlation and NDCG@10 between model-predicted scores and Protein Gym experimental
fitness values.

Spearman Correlation by Taxon Spearman Correlation by MSA Depth
Model Name Model Inputs Human Other Eukaryote Prokaryote Virus Low Medium High

Inference with query sequence only
ESM2-150M Sequence Only 0.45 0.475 0.398 0.157 0.319 0.359 0.494
ESM2-650M Sequence Only 0.457 0.486 0.458 0.261 0.338 0.409 0.513
ESM2-3B Sequence Only 0.442 0.477 0.458 0.294 0.336 0.423 0.485
ESMC-300M Sequence Only 0.468 0.481 0.441 0.242 0.337 0.399 0.520
ESMC-600M Sequence Only 0.462 0.481 0.459 0.241 0.331 0.407 0.515
E1 150M Sequence Only 0.455 0.515 0.413 0.188 0.342 0.373 0.514
E1 300M Sequence Only 0.466 0.513 0.444 0.238 0.367 0.396 0.524
E1 600M Sequence Only 0.475 0.482 0.472 0.254 0.342 0.419 0.523

Inference with Homologous Sequences / MSA in-context
PoET Sequence + Homologs 0.482 0.541 0.464 0.491 0.478 0.478 0.510
E1 150M Sequence + Homologs 0.482 0.527 0.476 0.494 0.476 0.477 0.515
E1 300M Sequence + Homologs 0.485 0.534 0.478 0.490 0.471 0.480 0.520
E1 600M Sequence + Homologs 0.487 0.537 0.488 0.500 0.478 0.485 0.525

Table 2. Average Spearman correlation between model-predicted scores and Protein Gym experimental fitness values
broken down by Taxon and MSA Depth.

B. Unsupervised contact map prediction benefits from homologous sequences during inference. Unsu-128

pervised contact map prediction can be used as an efficient proxy to test whether the model has learned to129

encode information about the 3D structures of proteins during pre-training. In this section, we compare130

the performance of E1 with publicly available models on the long-range contact prediction task for protein131

sequences from CAMEO [30, 31] and CASP15 [32] targets. We use the Categorical Jacobian approach [8]132

to assess the model’s internal knowledge of residue–residue contacts in an architecture-agnostic manner and133

report precision-at-L (the percentage of top-L predicted contacts that are correct). We define a residue pair134

as being in contact if their Cβ-Cβ distance is < 8Å, and we define long-range contact as contact between135

residues separated by at least 24 positions in sequence space.136

We also evaluate whether the model can exploit additional information from homologous sequences during137

inference to improve contact-prediction performance. Homologs are sampled using the same procedure138

described in the previous section, with MSAs generated by ColabFold from the UniRef dataset. In contrast139

to the variant-effect prediction experiments, we do not ensemble over multiple prompts; instead, we fix the140

context length to 8192 and the maximum query similarity to 0.95 and use a single prompt for evaluation.141

Results. We observe from Table 3 that E1 models outperform the ESM family of models at all scales142

when tested in single-sequence mode. Moreover, we see consistent gains in performance when including143

homologous sequences during inference, indicating that the model is able to leverage in-context evolutionary144
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Long-range Precision@L
Model Name Model Inputs CAMEO CASP15

Inference with query sequence only
ESM2-150M Sequence Only 0.348 0.272
ESM2-650M Sequence Only 0.423 0.342
ESM2-3B Sequence Only 0.434 0.339
ESMC-300M Sequence Only 0.425 0.342
E1 150M Sequence Only 0.466 0.387
E1 300M Sequence Only 0.493 0.401
E1 600M Sequence Only 0.512 0.425

Inference with Homologous Sequences / MSA in-context
MSA Pairformer Sequence + MSA 0.489 0.428
E1 150M Sequence + Homologs 0.510 0.406
E1 300M Sequence + Homologs 0.526 0.415
E1 600M Sequence + Homologs 0.541 0.436

Table 3. Unsupervised contact map prediction performance as measured by Precision@L for long range contacts.

CAMEO: 7DCM_A CAMEO: 7T71_A CAMEO: 7DMS_A CAMEO: 7EE3_C

Figure 3. Examples from CAMEO dataset where retrieval augmentation helps E1 identify contact it may have mispredicted when
used in single sequence mode. Here, gray points are ground truth contacts, blue/orange points are correctly predicted contacts in
retrieval-augmented/single-sequence mode, respectively, and red points are false positives.

information to identify putative 3D contacts in a protein. Finally, we provide some illustrative examples145

from the CAMEO dataset in Figure 3 where retrieval augmentation yields markedly improved contact-map146

predictions relative to single-sequence inference.147

Discussion148

We introduced Profluent-E1, a family of retrieval-augmented protein encoder models that can leverage149

unaligned evolutionarily related sequences at inference time to achieve superior performance. E1 achieves150

state-of-the-art performance among publicly available models on variant-effect prediction (Protein Gym)151

and unsupervised contact-map prediction (CAMEO and CASP15), both in single-sequence mode and when152

augmented with homologs. We release three E1 variants – 150M, 300M, and 600M – that are available for153

free for research and commercial use.154

While we have shown the benefits of using retrieval augmentation on predictive performance for the E1155

family, several open questions remain regarding the inner workings of these models. In particular, further156

analysis is needed to disentangle how much E1 is relying on the information encoded in the model weights157

during pre-training versus that derived from homologous sequences provided at inference time. Unlike other158

models like MSA Transformer [12], which may incorporate alignment information through specific attention159

mechanisms such as row and column only attention, E1 models allow any residue in a given protein sequence160

to attend to any residue in preceding sequences within the multi-sequence input. This begs the question of161

whether the model implicitly learns to attend to positions that would have been aligned under a traditional162
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MSA – or whether it exploits additional contextual signals from other regions of the homologous sequences163

beyond what alignment alone would provide.164

Scaling laws seem to exist as we increase the model parameter count for our zero-shot evaluation165

tasks. However, we only extended this study to 600M parameters. Also, within the broader context of166

protein representation learning, we studied only sequence-based models to focus on the effects of retrieval167

augmentation. It has been shown that utilizing structural information in pretraining can lead to more168

efficient learning and more performant models in some contexts [16, 26, 33, 34]. Finally, it remains to be169

seen whether prompting the E1 models with sequences that have specific properties can implicitly guide the170

model towards particular areas of the fitness landscape (for example, enzymes that work at specific pH171

levels or in specific organisms) and thereby optimize for desired functional attributes. We hope that by172

making these models publicly available under a permissive license, the research community will be able to173

provide answers to these and other questions, helping to develop more capable RA-PLMs in the future.174

Overall, the Profluent-E1 family of models demonstrates the continued value of research in improving175

protein language models and provides a new foundational tool for AI-driven protein design that advances176

both predictive performance and practical utility for a large class of protein design workflows.177
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Author contributions181

Data: Sarthak Jain, Joel Beazer182

Pre-training: Sarthak Jain, Aadyot Bhatnagar183

Evaluations: Sarthak Jain, Jeffrey A. Ruffolo184

Overall Scientific Direction: Sarthak Jain, Ali Madani185

Competing interests186

All authors are current or former employees, contractors, or executives of Profluent Bio, Inc., and may hold187

shares in Profluent Bio, Inc.188

References189

1. Jeffrey A Ruffolo and Ali Madani. Designing proteins with language models. Nature Biotechnology, 42(2):200–202, 2024.190
2. ESM Team. Esm cambrian: Revealing the mysteries of proteins with unsupervised learning, 2024. URL https://evolutionaryscale.ai/blog/esm-cambrian.191
3. Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level protein192

structure with a language model. Science, 379(6637):1123–1130, 2023.193
4. Ahmed Elnaggar, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed Elkerdawy, Charlotte Rochereau, and Burkhard Rost. Ankh: Optimized protein language model unlocks194

general-purpose modelling. bioRxiv, pages 2023–01, 2023.195
5. Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. Proteinbert: a universal deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102–2110, 2022.196
6. Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Prottrans: Toward understanding197

the language of life through self-supervised learning. IEEE transactions on pattern analysis and machine intelligence, 44(10):7112–7127, 2021.198
7. Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language models enable zero-shot prediction of the effects of mutations on protein function. Advances in Neural199

Information Processing Systems, 34:29287–29303, 2021.200
8. Zhidian Zhang, Hannah K Wayment-Steele, Garyk Brixi, Haobo Wang, Dorothee Kern, and Sergey Ovchinnikov. Protein language models learn evolutionary statistics of interacting sequence motifs.201

Proceedings of the National Academy of Sciences, 121(45):e2406285121, 2024.202
9. Cade Gordon, Amy X Lu, and Pieter Abbeel. Protein language model fitness is a matter of preference. bioRxiv, pages 2024–10, 2024.203

10. Frances Ding and Jacob Steinhardt. Protein language models are biased by unequal sequence sampling across the tree of life. In ICLR 2024 Workshop on Generative and Experimental Perspectives204
for Biomolecular Design, 2024.205

11. Aadyot Bhatnagar, Sarthak Jain, Joel Beazer, Samuel C Curran, Alexander M Hoffnagle, Kyle S Ching, Michael Martyn, Stephen Nayfach, Jeffrey A Ruffolo, and Ali Madani. Scaling unlocks broader206
generation and deeper functional understanding of proteins. bioRxiv, pages 2025–04, 2025.207

12. Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu, and Alexander Rives. Msa transformer. In International conference on machine learning, pages208
8844–8856. PMLR, 2021.209

13. Timothy Truong Jr and Tristan Bepler. Poet: A generative model of protein families as sequences-of-sequences. Advances in Neural Information Processing Systems, 36:77379–77415, 2023.210
14. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate211

protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.212
15. Yo Akiyama, Zhidian Zhang, Milot Mirdita, Martin Steinegger, and Sergey Ovchinnikov. Scaling down protein language modeling with msa pairformer. bioRxiv, pages 2025–08, 2025.213
16. Timothy Fei Truong Jr and Tristan Bepler. Understanding protein function with a multimodal retrieval-augmented foundation model. arXiv preprint arXiv:2508.04724, 2025.214
17. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information215

processing systems, pages 5998–6008, 2017.216
18. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In North American Chapter of the Association for217

Computational Linguistics, 2019. URL https://api.semanticscholar.org/CorpusID:52967399.218

Jain et al. November 13, 2025 | 7

https://github.com/Profluent-AI/E1
https://github.com/Profluent-AI/E1/blob/main/NOTICE
https://evolutionaryscale.ai/blog/esm-cambrian
https://api.semanticscholar.org/CorpusID:52967399


19. Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, better, faster, longer:219
A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics220
(Volume 1: Long Papers), pages 2526–2547, 2025.221

20. Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.222
21. Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models with223

scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.224
22. Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt. Stable and low-precision training for large-scale vision-language models. Advances in Neural225

Information Processing Systems, 36:10271–10298, 2023.226
23. Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt Consortium. Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity227

searches. Bioinformatics, 31(6):926–932, 2015.228
24. Benjamin Buchfink, Klaus Reuter, and Hajk-Georg Drost. Sensitive protein alignments at tree-of-life scale using diamond. Nature methods, 18(4):366–368, 2021.229
25. Yang Tan, Ruilin Wang, Banghao Wu, Liang Hong, and Bingxin Zhou. Retrieval-enhanced mutation mastery: Augmenting zero-shot prediction of protein language model. arXiv preprint230

arXiv:2410.21127, 2024.231
26. Ning Sun, Shuxian Zou, Tianhua Tao, Sazan Mahbub, Dian Li, Yonghao Zhuang, Hongyi Wang, Xingyi Cheng, Le Song, and Eric P Xing. Mixture of experts enable efficient and effective protein232

understanding and design. bioRxiv, pages 2024–11, 2024.233
27. Zuobai Zhang, Pascal Notin, Yining Huang, Aurelie C Lozano, Vijil Chenthamarakshan, Debora Marks, Payel Das, and Jian Tang. Multi-scale representation learning for protein fitness prediction.234

Advances in Neural Information Processing Systems, 37:101456–101473, 2024.235
28. Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks236

for protein fitness prediction and design. Advances in Neural Information Processing Systems, 36:64331–64379, 2023.237
29. Milot Mirdita, Konstantin Schütze, Yoshitaka Moriwaki, Lim Heo, Sergey Ovchinnikov, and Martin Steinegger. Colabfold: making protein folding accessible to all. Nature methods, 19(6):679–682, 2022.238
30. Jürgen Haas, Alessandro Barbato, Dario Behringer, Gabriel Studer, Steven Roth, Martino Bertoni, Khaled Mostaguir, Rafal Gumienny, and Torsten Schwede. Continuous automated model evaluation239

(cameo) complementing the critical assessment of structure prediction in casp12. Proteins: Structure, Function, and Bioinformatics, 86:387–398, 2018.240
31. Xavier Robin, Juergen Haas, Rafal Gumienny, Anna Smolinski, Gerardo Tauriello, and Torsten Schwede. Continuous automated model evaluation (cameo)—perspectives on the future of fully241

automated evaluation of structure prediction methods. Proteins: Structure, Function, and Bioinformatics, 89(12):1977–1986, 2021.242
32. Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical assessment of methods of protein structure prediction (casp)—round xv. Proteins: Structure, Function,243

and Bioinformatics, 91(12):1539–1549, 2023. . URL https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.26617.244
33. Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of245

evolution with a language model. Science, 387(6736):850–858, 2025.246
34. Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein language modeling with structure-aware vocabulary. BioRxiv, pages 2023–10, 2023.247

8 | Jain et al.

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.26617

	E1 models enable state of the art zero-shot substitution effect prediction
	Unsupervised contact map prediction benefits from homologous sequences during inference

