
 

Climate and Yield Variation 

Metadata and Technical Documentation 

                           

Disclaimer: 
This data does not contain unique data for each grid cell as it is aggregated based on 
administrative unit reporting. 
This data is 

The data may be accurate to country level, admin1 level or admin2 level.

Abstract: 

Ray, D. 2015. Climate variation explains a third of global crop yield variability.  

Many studies have examined the role of mean climate change in agriculture, but an 

understanding of the influence of inter-annual climate variations on crop yields in different 

regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to 

examine how recent climate variability led to variations in maize, rice, wheat and soybean crop 

yields worldwide. While some areas show no significant influence of climate variability, in 

substantial areas of the global breadbaskets, >60% of the yield variability can be explained by 

climate variability. Globally, climate variability accounts for roughly a third (~32 39%) of the 

observed yield variability. Our study uniquely illustrates spatial patterns in the relationship 

between climate variability and crop yield variability, highlighting where variations in 

temperature, precipitation or their interaction explain yield variability. We discuss key drivers for 

the observed variations to target further research and policy interventions geared towards 

buffering future crop production from climate variability. 
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Use Agreement: 
Data may be freely downloaded for research, study, or teaching, but must be cited 
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data for another purpose, please contact us at earthstat.data@gmail.com. 
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Data Products: 

The following data products are included: 
 Total crop yield variability explained due to climate variability: 

(Represented by datasets with explanatorycat in title.) 
o 1: No Effect;  
o 2: 0 to 0.15;  
o 3: 0.15 to 0.30;  
o 4: 0.30 to 0.45;  
o 5: 0.45 to 0.60;  
o 6: 0.60 to 0.75;  
o 7: greater than 0.75 

 

 Categories of temperature and precipitation variations: 
 (Represented by datasets with varcat in title.) 

o 1: Normal T 
o 2: Normal T + extreme T 
o 3: Extreme T 
o 4: Normal P 
o 5: Normal + extreme P 
o 6: Extreme P 
o 7: Complex 

 

  Coefficient of variance of crop yields.  
(Represented by datasets with coeff in title) 

o The ratio of the s.d. of yield over the 30-year period to the average yield 
over the same period.(sample size of ~13,500 political units × 30 years per 
crop). 

 

Formats: 
All data are provided in the following formats: 

 .tif : Geotiff (More information: http://trac.osgeo.org/geotiff/ ) 
 

Resolution: 

 Spatial: Five minute by five minute resolution (~10km x 10km at equator) 
 
Map Projection: 

mailto:earthstat.data@gmail.com
mailto:earthstat.data@gmail.com
http://gli.environment.umn.edu/
http://trac.osgeo.org/geotiff/


 Data presented as five-arc-minute, 4320 x 2160 cell grid 

 Spatial Reference: GCS_WGS_1984 
 Datum: D_WGS_1984 

 Cell size: 0.083333 degrees 
 Layer extent:  

o Top : 90 
o Left: -180 
o Right: 180 
o Bottom: -90 

 
Methods:  
 
From Ray et al. 2012: 

 

Modelling set-up 

Further details regarding the data used are given in Supplementary Methods 1. To determine 

how much of the variability in crop yields was explained by climate variability, we first detrended 

the crop yield and climate variables temperature and precipitation following1 (see the 

example in Supplementary Fig. 7) over the period 1979 2008. Note that we use two forms of 

temperature and precipitation the seasonal or growing season average value and the average 

conditions 12 months before harvest or the annual value to account for antecedent conditions. 

This resulted in four different combinations of detrended climate variables, and as we used both 

the linear and squared forms of seasonal and annual temperature and precipitation there was a 

total of eight forms of climate variables. We used these detrended variables in different 

combinations to linearly regress with the detrended crop yields at each of the 13,500 political 

units. To avoid over-fitting we limited our analysis to a total of 27 combinations of climate 

variables, resulting in 27 regression equations, to capture the relationships between climate 

variability and crop yield variability at each political unit and of the basic form: 

 

where Yc 

each political unit; In equation 1, Tc 

temperature associated with the main growing season64 or the temperature for 1 year before 

 Pc similarly is the precipitation for the main 

function f is limited to linear and quadratic forms of these two detrended meteorological 

parameters, as is common practice in studies correlating climate and agricultural production. 

The terms included in each of the 27 regression equations and their classification are provided 

in the Supplementary Table and further details are given in Supplementary Methods 2. 

http://www.nature.com/ncomms/2015/150122/ncomms6989/full/ncomms6989.html#ref1
http://www.nature.com/ncomms/2015/150122/ncomms6989/full/ncomms6989.html#ref64


Statistical tests 

The generated regression equations at each political unit, for example, ~13,500 sets of 27 

equations per crop, were statistically tested next. We first identified which functional form of 

Yc=f(Tc, Pc) from the set of 27 equations at each political unit fit the data best using the Akaike 

Information Criterion (AIC), which penalizes equations with more terms. However, because the 

model that best fits the data may be no better than a random climate (null model), we 

conducted F tests at the P=0.10 level to determine whether the chosen model was significantly 

better than the null model. In 21 47% of the global crop-harvested areas, we found that the 

chosen model was no better than the null model at the P=0.10 significance level. Thus, in the 

remainder 53 79% of global crop harvested areas yield variability is significantly influenced by 

climate variability over the study period and our reported numbers are averages over these 

areas. 

Using the statistically significant model with the best functional representation, we next 

determined the coefficient of determination (r2) or explanatory power of the complete model, 

and the reduced models containing only temperature and only precipitation terms. The residual 

is the unexplained yield variations. 

The 30-year study period average harvested area and yield information at each subnational 

location was used together with the observed coefficient of determination for computing 

national and global harvested areas weighted averages. Global and country-specific numbers 

are averaged only over those 53 79% of global crop harvested areas where the statistical 

models were significant. 

Model bias and sensitivity 

As a simple assessment of model bias, we performed a bootstrapping exercise to assess the 

influence of including specific combinations of years (80% of the years selected at each 

iteration) in our data on the overall yield predictions (using a test set of 20% of the years) for 

each political unit, which we standardized as the ratio of the average bias from the 99 

repetitions to the average of the crop yields for the study period in each political unit 

(Supplementary Fig. 8). This is analogous to a leave-group-out cross validation approach used 

to examine uncertainty in model selection. Locations of models with more restrictive P cutoff 

values (F-tests) at P=0.01 and P=0.05 are shown in Supplementary Fig. 9. In general, even 

though we used a less-restrictive P-value of 0.1, the models selected generally were significant 

at P=0.05 or less. 

 

 


