
Prenatal Epigenetics Diets Protect 
Against Environmental Pollution 



Prenatal�epigenetics�diets�play�protective
roles�against�environmental�pollution

Abstract

It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous
and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and
reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social
behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the
offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the
genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life.
From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that
environmental pollutions have already produced significant consequences on human health. Moreover, mounting
evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class
of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape,
epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading
to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal
environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which
could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
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Background
A report by the World Health Organization (WHO) esti-
mated that 1.8 billion children (around 93% of the
world’s children) breathe polluted air every day, leading
to 600,000 children who died from acute lower respira-
tory infections in 2016. Another recent set of data from
WHO shows that in 2012, environmental risk factors,
such as air, water and soil pollution, chemical exposures,
climate change, and ultraviolet radiation caused 12.6
million deaths, which involve more than 100 diseases
and injuries. Accumulating evidence strongly suggests
that environmental pollution is seriously affecting hu-
man health.
Epidemiological studies suggest that early life, especially

prenatal, exposure to environmental factors can induce

persistent metabolic and physiological changes in the fetus
through the altered epigenetic profiles leading to different
susceptibility to various chronic diseases such as obesity,
cardiovascular, diabetes, and even cancer in later life. Epi-
genetics refer to mitotically or meiotically heritable changes
in gene expression without a change in the DNA sequence
[1, 2]. It was first defined by Conrad Waddington in the
1940s as “…the interactions of genes with their environ-
ment which bring the phenotype into being” [3], which pro-
vides a potential mechanism through which the
environmental factors interact with intrinsic factors and
have an impact on gene regulation. Certain chemical modi-
fications to DNA, histone protein and RNA, and
non-coding RNAs form a complex regulatory network that
modulates the chromatin conformation and gene expres-
sion. DNA methylation generally refers to a process by
which methyl groups are added to the 5-carbon of the cyto-
sine ring resulting in 5-methylcytosine (5mC). DNA methy-
lation is almost exclusively found in CpG sites, which are
regions of DNA where a cytosine nucleotide occurs next to
a guanine nucleotide in the liner sequence of bases along



its length, in mammals [4]. Histone modifications are a di-
verse array of post-translational modifications that often
occur on tail domains of histone proteins, including acetyl-
ation, phosphorylation, methylation, ubiquitination, sumoy-
lation, and adenosine diphosphate (ADP)-ribosylation [5].
The epigenome refers to the complete description of all
these potentially heritable changes across the genome [6],
among which DNA methylation and covalent modifications
of histones are the most important epigenetic regulations
that have been well studied.
Mammalian embryos experience two major cycles of

epigenetic reprograming including the periods of germ
cell development and preimplantation, during which the
epigenome is vulnerable to endogenous and exogenous
environmental factors. The perturbation of prenatal epige-
nome reprograming has been shown to influence disease
susceptibility in the offspring. The Fetal Basis of Adult
Disease (FEBAD) hypothesis postulates that prenatal in-
sults such as nutrition or environmental stimulation can
disturb developmental programming leading to a higher
risk of disease in later life [7]. The Developmental Origins
of Health and Disease (DOHaD), another similar concept
that is used to describe developmental plasticity, points to
the critical role of environmental cues during the transfer
from genotype to phenotype [8, 9]. Recently, the focus of
DOHaD has extended from poor in utero nutrition to
non-nutritional factors that may influence organism’s
physiology, thus changing disease susceptibility in adult-
hood. Among these non-nutritional risk factors, early-life
exposure to environmental contaminants attracts consid-
erable attention.
Accumulating studies propose that epigenetics may be

one of the most important molecular mechanisms linking
environmental stimulation, fetal programming, and adult-
hood phenotype. Due to their reversible nature, epigenetic
modifications are becoming an attractive therapeutic target
[2]. An increasing body of evidence shows that maternal di-
ets are associated with persistent metabolic changes in the
offspring and can substantially improve the health of chil-
dren and adults, which is referred to as nutritional pro-
gramming. In this context, nutritional epigenetics emerge
and provide a novel way to prevent developmental perturb-
ation by environmental factors. The epigenetics diet, a term
coined by our lab in 2011, refers to a class of bioactive diet-
ary compounds that can regulate the epigenome [10]. Stud-
ies indicate that the epigenetics diet plays a critical role in
epigenetic regulation such as DNA methylation, histone
modification, and microRNA (miRNA) regulation. Some
bioactive compounds may counteract or attenuate the
damage to the epigenome caused by pollution. As a most
striking example, it has been shown that maternal supple-
mentation with methyl donors can reverse DNA hypome-
thylation induced by bisphenol A, an endocrine-disrupting
chemical of public health concern [11].

The purpose of this review is to provide a summary of
recent research findings on the influence and causes of
early life, especially prenatal exposure, to environmental
contaminants on the epigenome, and the potential mecha-
nisms through which parental epigenetic dietary supple-
mentation prevents environment pollution-induced
adverse effects. Our review will provide implications into
new preventive and therapeutic strategies for coping with
increasingly severe environmental pollution.

Epigenetic stability during gametogenesis and
embryonic development
The mammalian embryo undergoes two large-scale
waves of epigenomic reprogramming (Fig. 1): the first
wave takes place from sperm-egg fusion to preimplanta-
tion; the second wave happens during genesis of germ
cells [12, 13]. Here, we review the DNA methylome,
which is one of the most important components in the
epigenome, reprogramming in mammals, and its suscep-
tibility to the environment.

Epigenomic reprogramming during early embryogenesis
After fertilization, a dramatic demethylation takes place in
the early embryo. The amount of methylation in sperm
(86%, median) and in oocyte (72%, median) rapidly reduce
and reach their minimum level (43%, median) in the inner
cell mass (ICM) of the early blastocyst-stage embryos (32–
64 cells) [14, 15]. In this process, early gamete-specific
methylation patterns inherited from the parents as well as
acquired epigenetic modifications are erased, while methyl-
ated regions in imprinted genes are accurately retained,
which is crucial to pluripotency establishment. For instance,
the imprinted genes H19 [16] and Rasgrf1 [17] in the pater-
nal genome are protected from extensive demethylation
after fertilization [18], under the action of DNA methyl-
transferase 1 (DNMT 1) [19]. Before genome-wide demeth-
ylation, remarkable transformation of the paternal genome
occurs in the egg cytoplasm, where protamine of sperm
chromatin is replaced by acetylated histones, suggesting
that demethylation may be linked to chromatin remodeling
[18]. A recent study found that after the two-cell stage, de-
methylation occurring in the paternal genome is much
faster and thorough than that in the maternal genome, and
this higher maternal genome methylation is maintained
until the post-implantation stage, especially in the
extra-embryonic villus [20, 21]. This finding indicates that
the DNA methylome is asymmetrically distributed in the
maternal and paternal genomes. Conversely, compared to
the paternal genome, the maternal genome may contribute
more DNA methylation memory to the early embryo; thus,
adverse environmental factors such as pollutants, virus and
malnutrition are more likely to change methylation patterns
in the maternal genome during gametogenesis leading to
acute dysplasia and disease susceptibility in later life. It is



noted that demethylation and de novo methylation keep
dynamic equilibrium before global methylation of the early
embryo reaching the lowest level at the blastula stage [20].
After implantation, the first wave of de novo methylation
occurs [1], and DNA methylation patterns are reestablished
by DNMTs in the blastocyst stage. Curiously, however, the
timing of remethylating the paternal epigenome is earlier
than the maternal one, among which H19 is a typical ex-
ample [22]. At about 2–3 weeks of age, the cells in the hu-
man embryo are gradually developing into mature somatic
cells with relatively stable methylation levels [14] (Fig. 1).

Epigenomic reprogramming during gametogenesis
Human primordial germ cells (PGCs) are produced in the
early stage of embryonic development. PGCs are the em-
bryonic progenitors of oocytes and sperm [15], which can
transmit genetic information to offspring and maintain
the continuance of the species. Under normal circum-
stances, DNA methylation markers on genomic DNA of
most tissues and organs in the post-implantation embryo
will remain basically stable, whereas the DNA methylome
in PGCs will experience the second massive elimination
and reconstruction, which is much more thorough than
the first wave in preimplantation embryos [14]. Approxi-
mately 10–11 weeks after gestation, the global DNA
methylation of PGCs are drastically decreased from over
90% in the early post-implantation embryo to only 7.8%

and 6.0% in male and female PGCs, respectively [14].
Although DNA methylation memory in most regions of
PGCs is completely erased, some repetitive sequences still
retain higher levels of residual methylation, especially the
evolutionarily younger sequences and the alpha satellites
[14, 23, 24], suggesting a basis for potential transgenera-
tional epigenetics. After a period of hypomethylation,
remethylating of the male germ cells takes place during
late embryonic development, whereas de novo methyla-
tion in the female germ cells occurs after birth, due to a
protracted developmental process. It has been shown that
global DNA methylation of human sperm cells is higher
than that in oocytes [14]. There are three likely purposes
of reprogramming in germ cells: resetting of imprints,
which mainly occurs in species with imprinting [18]; re-
moval of acquired epigenetic modification influenced by
individual endogenous and exogenous environmental fac-
tors [18, 25, 26]; and reducing mutation rate caused by ac-
tive demethylation [27] and X-chromosome inactivation
[28, 29] (Fig. 1).

Epigenomic reprogramming during later-life development
Fetal adaptation, an emerging concept in recent years,
interprets the role of epigenetic regulation later in devel-
opment, which is separated from early embryogenesis
and implantation. In this context, subtle epigenetic mod-
ifications allow the fetal genotype to respond to a broad

Fig. 1 Schematic of DNA methylation dynamic and epigenetic stability during gametogenesis and embryogenesis in humans. DNA methylome
reprogramming in germ cells: primordial germ cells (PGCs) in the human become demethylated early in development; from gonadal differentiation to
gametogenesis, DNA methylation of spermatocyte and oocyte cells rises gradually until fertilization, at which point sperm reaches a higher methylation
level than the oocyte. DNA methylome reprogramming during embryonic development: after fertilization, within the first week, the methylation level of
the zygote decreases to the lowest level at the early blastocyst period, during which DNA methylation of the paternal genome reaches a lower level;
subsequently, de novo methylation occurs in somatic cell lineages, until they develop into mature somatic cells with stable methylation levels. Epigenetic
stability during development: epigenetic stability is proportional to DNA methylation levels. The blue line represents the paternal genome. The red line
indicates maternal genome. The gray dashed line denotes mature somatic cells. From red to green, signifies from vulnerable to robust of the epigenome.
PGCs, primordial germ cells. Adapted and used with permission from Guo et al. [14], Hemberger and Pedersen [46] and Zhu et al. [20]



variety of developmental environmental factors. Al-
though early gestation is the most susceptible period for
the fetus, it should be noted that environmental stimula-
tion in late embryonic development, infancy, and early
childhood can also have long-term health implications in
later life [9, 30]. Studies have shown that a high-fat diet
(HFD) supplemented in adulthood induced large-scale
methylation alteration in skeletal muscles [31]. Folic acid
supplementation during the peri-pubertal period has
been shown to induce hypermethylation of the PPARα
gene and a decrease in DNMT activity [32, 33]. In
addition, post-weaning mice supplemented with methyl
donors-deficient diet showed a permanent loss of IGF2
imprinting, dysregulation of mRNA expression, and hy-
pomethylation of the proto-oncogenes such as c-Myc
and c-Ras [34]. All these studies suggest that plasticity of
the human epigenome may also persist into adulthood
[31] and epigenetic mechanisms are involved in life-long
adaptation [35].

The roles of DNA methylation in gene expression and
cellular identity
As one of the most important of the epigenetic modifica-
tions, DNA methylation can play a key role in local con-
trol of gene expression. CpG islands (CGIs) are short
interspersed DNA sequences with a high frequency of
CpG sites that are predominantly non-methylated [36]. A
CGI is generally defined as a region with at least 200 bp
and a CG percentage greater than 50%. The multiple
methylated CpG sites in CGIs of promoters and distal
regulatory regions may destabilize nucleosomes and re-
cruit proteins, resulting in chromatin structure remodel-
ing and transcriptional inhibition [37]. Methylated CpG
sites can be recognized by different sets of
methyl-CpG-binding proteins (MBPs), which then trans-
late the DNA methylation signal into transcriptional re-
pression states through attracting epigenetic modifiers to
manage site-specific chromatin organization [38]. On the
other hand, the methylation of CpG sites can block the
binding of certain transcription factors, such as E2F1,
c-Myc, CTCT, and CREB, obstructing transcription initi-
ation [39]. DNA methylation can also reposition nucleo-
somes leading to remodeling transcription complexes and
interrupting gene transcription. In addition, increasing
evidence has indicated that gene expression may be simul-
taneously regulated by the methylation levels in the pro-
moter region and the gene body [40, 41].
DNA methylation is also crucial and essential for the

establishment and maintenance of cellular identity. Glo-
bal hypomethylation is required for the pluripotency of
embryonic stem cells (ESCs) [42]. During cell differenti-
ation, ESCs gradually lose their plasticity and narrow
their identity into differentiated cell types. In this
process, there is a global gain of DNA methylation in

pluripotency, developmental, and gamete-specific genes,
along with the loss of DNA methylation in
lineage-specific regulatory regions as well as gene
enhancer regions, to define cell identities with different
methylomic profiles [39]. As different tissues and organs
have different methylomes, exposure to environmental
factors may lead to altered DNA methylation patterns
and adverse health outcomes in a tissue-specific manner
[43–45].

Epigenetic stability and environmental factors
Epigenetic stability is proportional to the amount of
DNA methylation and histone modification in the static
model [46]. Global hypomethylation of genomic DNA
can lead to genomic instability and structural abnormal-
ities in chromosomes, which is also a common pheno-
type of cancer and aging [47, 48]. Conversely, global
hypermethylation, especially in the placenta, has been
linked with developmental defects such as gestational
diabetes and Down’s syndrome [49, 50]. Together, these
show that the balance of DNA methylation is crucial for
human genetic stability and individual health. In the dy-
namic model, epigenetic modification is reversible, thus
making the epigenome persistently vulnerable. The pro-
portion of stem cells contributes to epigenetic vulner-
ability of the organism, indicating that the gradual
decline of overall epigenome stability with development
may arise from, at least in part, the decrease of stem cell
proportion in tissues and organs [46].
The epigenome, especially DNA methylation patterns

in mammals including humans, is overall established in
gametogenesis and early embryogenesis. The plasticity of
the epigenome also contributes to the generation of cells
with a broad developmental potential [18]. In this re-
gard, epigenetic reprogramming in germ cells and the
preimplantation embryo is particularly important for
early embryonic and placental development [51]. This
leads to a speculation that perturbations of the epige-
nome in early developmental stages contribute to abnor-
mal fetal and placental development [52]. The epigenetic
dysregulation triggered by environmental cues during
these sensitive periods of individual development can
persist across the life course leading to altered disease
susceptibility and even phenotypic changes later in life
[13, 14].
Studies have confirmed the developmental plasticity by

which a specific genotype can give rise to a range of phe-
notypes in response to persistent environmental condi-
tions during development [53–55]. DOHaD phenomenon
also describes the relationship between early environmen-
tal cues and later-life risk of abnormal metabolism and
other diseases, where epigenetic mechanisms could be the
bridge connecting these factors [56–58]. The timing of an
intervention is the key to epigenetic alteration in response



to environmental pollutants such as endocrine-disrupting
chemicals and heavy metal or bioactive food components.
For instance, our recent studies showed that prenatal phy-
tochemicals may affect epigenetic patterns more pro-
foundly than the same exposure in postnatal or adulthood
[59]. Likewise, the time windows of the intervention are
particularly important for the efficacy of epigenetic
perturbation to prevent individual abnormal development
[60].

Prenatal environmental pollution and epigenetic
dysregulation
The concept of developmental programming emphasizes
that during sensitive windows of vulnerability, environ-
mental intervention may result in functional dysregulation
of gene expression and disease pathogenesis in later life
[61]. Early-life development, in particular during embryo-
genesis, has been shown to play an important role in the
initiation and development of many chronic metabolic
diseases as well as cancers, and epigenetic mechanisms
have been suggested to be involved in these processes
[35]. The general epigenome, including DNA methylation
and histone modifications, is established in the early em-
bryo and the germ cells and has been thought to maintain
a very stable modification status throughout the life
course. An expanding body of evidence has confirmed
that environmental stimuli such as climatic factors and
environmental toxicants, occurring especially during pre-
natal and early postnatal life, may alter epigenetic pro-
gramming leading to altered disease susceptibility or
irreversible phenotypic changes in the offspring [62].
Among these risk factors, prenatal exposure to environ-
mental contaminants attracts more attention and has been
repeatedly found to be associated with aberrant epigenetic
modification of regulatory sequences in susceptible genes
[63, 64]. Here, we review several prenatal environmental
pollutants in different categories and their potential im-
pacts on embryonic and postnatal development through
epigenetic regulation.

Ambient air pollution
Ambient air pollution includes particulate matter (PM) of
various sizes and composition, as well as gaseous pollut-
ants [65]. Early-life exposure to air pollution, especially
during gestation, is a major health threat to pregnant
women [66] and the developing fetus as well as the chil-
dren. Air pollution has been shown to associate with vari-
ous allergic complications both in short-term and
long-term influence [67–69] as it can cross the placenta
[15, 70, 71]. Although the specific molecular mechanisms
underlying the effect of air pollution are not fully under-
stood, epigenetic modifications are believed to be one of
the key contributors that may link air pollution exposure
to a range of adverse health outcomes [15, 72].

Particulate matter
Studies have shown PM with a diameter smaller than
500 nm can pass the placental barrier and particles even
can reach the fetal bloodstream when their diameters
are smaller than 240 nm [71]. Janssen et al. found that
exposure to particles with aerodynamics diameter
smaller than 2.5 μm (PM2.5), with 5 μg/m3, resulted in a
decrease (2.2%) of global DNA methylation in placenta
tissue [73]. It should be noted that altered placental glo-
bal DNA methylation [73, 74] and gene-specific (LINE1
and HSD11B2) methylation [75] were observed only
when exposed to PM2.5 during early pregnancy, which
includes the period from fertilization up to implantation
and is most sensitive to environmental stress. Studies
have also reported that prenatal exposure to PM was
associated a decrease in placental mitochondrial DNA
(mtDNA) contents [76] and DNA hypomethylation of
the mitochondrial genome [77]. PM2.5 exposure has
been shown to be linked with a decrease (0.2–2.7%, P <
0.05) of DNA methylation in the promoter region of the
leptin gene, which is an important hormone during ges-
tation and plays a key role in energy metabolism [78], as
well as hypermethylation of the PARP promoter [79]. In
addition, maternal exposure to particles also targets
miRNAs. A decrease in expression of miR-21, miR-146a,
and miR-222 was found to associate with PM2.5 expos-
ure during the second trimester of pregnancy, whereas
an increase in expression of miR-20a and miR-21 was
observed during the first trimester [80] (Table 1).

Smoking
Maternal tobacco smoke is a personalized form of air pol-
lution for the mother herself and fetus [73]. Although
smoking is controllable, more than half of female smokers
continue to smoke after pregnancy [81]. In utero exposure
to smoking is associated with alterations of DNA methyla-
tion patterns [82–85], and such changes may persist
throughout the entire life course [85–88], leading to im-
paired fetal development [83, 89], preterm delivery [90,
91] and other chronic diseases including respiratory ill-
ness, cardiovascular disorders, and certain childhood can-
cers in the offspring’s later life [92–94]. The methylation
targets of maternal smoking during pregnancy could be
genome-wide [85, 95–101] and specific such as
runt-related transcription factor 3 (RUNX3), aryl hydro-
carbon receptor repressor (AHRR), and cytochrome P450
1A1 (CYP1A1) in placental tissue [44, 102, 103]; AHRR,
growth factor independent 1 (GFI1), insulin-like growth
factor 2 (IGF2), PR domain containing 8 (PRDM8 ), discs
large homolog-associated protein 2 (DLGAP2), thymic
stromal lymphopoietin (TSLP), CYP1A1 in newborn um-
bilical cord blood samples [44, 85, 104–106]; and Myosin
1 G (MYO1G), cortactin-associated protein-like 2
(CNTNAP2), and FRMD4A, a human epidermal stem cell



marker, in children’s blood [107]; MYO1G, CNTNAP2,
and brain-derived neurotrophic factor (BDNF) in adoles-
cent’s peripheral blood cells [88, 108]; and repetitive elem-
ent satellite 2 (Sat2) in adult peripheral blood

granulocytes [96], as well as AHRR, in neonatal buccal epi-
thelium [44]. Maternal tobacco smoking has been also
linked to dysregulated expression of miRNAs. Maccani et
al. [109] demonstrated that smoking during pregnancy

Table 1 Summary of human studies reporting associations between prenatal exposure to air pollution and epigenetic alterations
Pollution Exposure

stage
Epigenetic change Ref.

Particulate matter Prenatal Altered DNA methylation at CpG sites [65]

First trimester Positive correlation with placental global DNA methylation [74]

Second
trimester

Lower placental leptin promoter methylation [78]

Early pregnancy Associated with placental DNA methylation of LINE1 and HSD11B2 [75]

Prenatal Decreased expression of miR-21, miR-146a and miR-222; increased
expression of miR-20a and miR-21

[80]

Gestation Increased mtDNA methylation levels and decreased LINE-1 methylation levels [77]

Prenatal Decrease in global DNA methylation for whole pregnancy [73]

Prenatal Increased DNA methylation in LINE1, OGG1, APEX and PARP1 [79]

Smoking Prenatal Nearly 3000 CpGs corresponding to genes differentially methylated in offspring [85]

Maternal Altered DNA methylation levels at CpG sites of GFI1, AHRR and PRNP gene in male
and female, differentially

[110]

In utero Impact key biological pathways through epigenetic modification [84]

Maternal Differential methylation of MYO1G, CNTNAP2 and FRMD4A genes in children blood [107]

In utero Global DNA hypomethylation; 31 CpG sites associated to 25 genes [99]

Prenatal Altered methylation at 15 CpG sites [100]

Prenatal Differential methylation at five CpGs in MYO1G and CNTNAP2; persist in exposed offspring
for many years

[88]

In utero Increased CpG methylation in FRMD4A and Cllorf52; reproducible epigenetic changes persist into
childhood

[87]

In utero Altered methylation at 185 CpGs of 110 gene regions in infants [101]

In utero Hypomethylation of AHRR in the cord blood mononuclear cells, buccal epithelium and placenta tissue [44]

In utero Altered methylation at TSLP promoter [106]

Maternal Altered methylation patterns of a few loci within the RUNX3 gene [102]

In utero Increased IGF2 DMR [105]

In utero Altered LINE-1 and AluYb8 methylation levels [83]

Maternal Differential DNA methylation at epigenome-wide for 26 CpGs mapped to 10 genes [104]

Maternal Differential epigenome-wide placental DNA methylation [82]

Gestation Decreased methylation of Sat2 [96]

Maternal Increased DNA methylation in the BNDF-6 exon [108]

Gestation Downregulation of miR-16, miR-21 and miR-146a in placenta [109]

In utero Global DNA methylation inversely correlates with cotinine levels in cord blood [95]

In utero Decreased methylation at CYPIAI promoter in the placenta [103]

Prenatal Lower methylation of AluYb8 ; differential methylation of LINE1; increased methylation
of AXL and PTPRO

[98]

Polycyclic aromatic
hydrocarbons

Prenatal Inverse relationship with LINE1 DNA methylation in cord blood [119]

Prenatal Decreased global methylation in umbilical cord white blood cells [118]

Prenatal Altered methylation in 5′-CpG islands of ACSL3 [120]

NO2 Prenatal Related alteration of ADORA2B methylation [65]

Prenatal Differential offspring DNA methylation in antioxidant and mitochondria-related genes [122]



downregulated the placental expression of miR-16,
miR-21, and miR-146a that may influence fetal program-
ming. Interestingly, the impact of prenatal cigarette smoke
on DNA methylation may be gender-specific. It was
shown that the male fetus is more susceptible to maternal
smoking than the female [110], and the alteration of DNA
methylation in the differentially methylated region (DMR)
of the IGF2 gene was more notable among newborn boys
than girls [105], whereas Bouwland-Both reported an ad-
verse result [111]. Moreover, a study has shown that ma-
ternal smoking showed a much stronger impact on
offspring methylation intensity than paternal smoking [15]
(Table 1).

Polycyclic aromatic hydrocarbons
Polycyclic aromatic hydrocarbons (PAHs) are aromatic
hydrocarbons with two or more fused benzene rings
[112]. They are mainly formed during incomplete com-
bustion of fossil fuel, domestic wood, and other organic
materials that are widely distributed in the air [113].
PAHs are persistent organic pollutants (POPs) that have
detrimental biological effects such as genotoxicity and
carcinogenicity [112, 114]. Some PAHs resemble steroid
hormones and are lipid soluble, thereby resulting in ac-
cumulation in adipose tissue. These PAHs can even
transfer across the placental barrier and the fetal
blood-brain barrier. There is increasing evidence that
prenatal exposure to PAHs results in multiple adverse
effects on embryonic development [115–117]. In utero
exposure to higher levels of PAHs has been associated
with decreased genomic DNA methylation in American
and Chinese cohorts [118, 119]. Prenatal exposure to
traffic-related PAHs was also shown to be linked with
hypermethylation of the acyl-CoA synthetase long-chain
family member 3 (ACSL3) gene, which impacts asthma
pathogenesis in umbilical cord blood of newborns [120]
(Table 1).

Other air pollution
Pregnant women living near major roads may be easily
affected by traffic-related air pollution and have been re-
ported to show decreased DNA methylation in the long
interspersed nuclear element 1 (LINE-1) gene in placenta
tissue [121]. Aberrant DNA methylation patterns have
been found in mitochondria-related and antioxidant
defense-related genes of neonates who were prenatally
exposed to NO2 [122]. In utero exposure to diesel ex-
haust has been associated with altered methylation of
genes that are implicated in cardiovascular-related dis-
eases and substance metabolism [123] (Table 1).

Endocrine-disrupting chemicals
Endocrine-disrupting chemicals (EDCs) are a class of
chemical compounds widespread in the environment

[124]. EDCs are exogeneous synthetic or natural chemi-
cals including phthalates (plastic-softening chemicals),
polychlorinated biphenyls, pesticides, and dioxin class
compounds, which exhibit hormone-like activity and can
disrupt endocrine function by modifying, blocking, or
mimicking the actions of endogenous hormones [15, 125–
127]. There is increasing evidence that has suggested that
prenatal exposure to certain EDCs can cause long-term
health outcomes including cardiovascular disease, dia-
betes, infertility, and cancer [128–130]. Because the devel-
oping organism is extremely sensitive to hormone
analogue [127]. These effects are also correlated with dis-
ruption in epigenetic programming [11, 131–133].

Bisphenol A
Bisphenol A (BPA) is an EDC of specific concern be-
cause of its high production and ubiquitous use in the
manufacture of polycarbonate plastics in modern society
[134]. The data have shown that BPA can be detected in
95% of human urine samples suggesting its widespread
use or exposure [135]. Like particulate matter, BPA can
also transfer across the placenta and accumulate in the
fetus [136]. In utero exposure to BPA is associated with
altered reproductive function, metabolic disorders and
hormone-associated tumors such as breast and prostate
cancer [137]. A study on mice showed that abnormal
methylation patterns resulting from prenatally BPA
exposure were established before germ layer differenti-
ation in the embryonic stem cells [11], which may par-
tially explain substantially adverse outcomes of BPA
exposure [138–141]. Moreover, compelling evidence has
been presented that offspring phenotype was also chan-
ged by stably altering the epigenome in a prenatally
BPA-exposed mouse model [11]. Interestingly, altered
miRNA expression was observed in in utero
BPA-exposed sheep [142]. Gene-specific analysis of
DNA methylation in humans found that altered methy-
lation patterns of the placenta and the fetal liver and
kidney were associated with prenatal exposure to BPA
[114, 143, 144]. The genes catechol-O-methyltransferase
(COMT) and sulfotransferase 2A1 (SULT2A1) are
responsible for encoding two xenobiotic-metabolizing
enzymes, and increased methylation at the promoters of
these two genes has been revealed in BPA-exposed
human fetal liver [145]. It is worth noting that perinatal
exposure to environmentally relevant doses of BPA has
also shown a transgenerational inheritance of male infer-
tility through epigenome dysregulation in the male germ
line [146–148] (Table 2).

Vinclozolin
Vinclozolin is a systemic fungicide commonly used on
fruit and vegetable planting and in the wine industry
[149]. Researchers used vinclozolin as an EDC model to



investigate epigenetic transgenerational inheritance
of disease because of its anti-androgenic activity
leading to spermatogenic defects, breast and pros-
tate diseases, and even abnormal immune function
at a high frequency (up to 90%) [1, 150–152]. Al-
though female rat exposure to vinclozolin during
gestation resulted in infertility in male offspring, the
different timings of exposure may have different
outcomes. Exposure during embryonic day (E) 8 to
E 14, which is the period of germ line epigenetic
programming, can reduce the spermatogenic cap-
acity of male rats in four subsequent generations
[131, 153], whereas vinclozolin exposure in later

gestation (E 15–E 20) had no effect on fertility of
adult males [154, 155]. Thus, exposure of male rats
to vinclozolin in the early stage of embryogenesis
can cause increased rates of infertility in adulthood
and such effects can pass through four generations.
Investigation of the molecular mechanisms of the
aforementioned transgenerational phenomenon re-
vealed that developmental exposure to vinclozolin
substantially impacts reprogramming of the male
germ line and induces aberrant methylation patterns
which can be stably transmitted through multiple
generations [156]. Differential DNA methylation
identification in the F3 generation sperm epigenome

Table 2 Summary of studies reporting associations between prenatal exposure to EDCs and epigenetic alterations
Chemical Model Exposure stage Epigenetic change Ref.

Bisphenol A Mouse In utero Increased EZH gene expression in the mammary gland [138]

Human and
mouse

Perinatal Differential DNA methylation in repetitive DNA [141]

Human In utero Altered genome-wide DNA methylation in fetal liver [144]

Human 1st to 2nd trimester Increased site-specific methylation at COMT and SULT2A1 promoters
in fetal liver

[145]

Mouse Preconception to
weaning

Hypomethylation and increased expression of the Avy gene in agouti
mouse model

[11]

Mouse In utero Decreased methylation in Hoxa10 gene promoter [139]

Rat Perinatal Modified hepatic DNA methylation [140]

Sheep Prenatal Altered microRNA expression [142]

Mouse In utero Both hyper- and hypomethylation at the promoter-associated CGIs [132]

Human In utero Positively associated with global methylation for the placenta [143]

Vinclozolin Mouse In utero Decreased methylation in H19 and Gtl2; increased methylation in Peg1,
Snrpn, and Peg3

[151]

Rat In utero Altered epigenetic modification in the male germ line [150]

Rat In utero Altered methylation in sperm promoter epigenome of F3 generation [152]

Mouse In utero Epigenetic transgenerational inheritance of modifications in the mouse
sperm epigenome

[124]

POPs Dioxin Mouse In utero Increased methylation in Igf2r gene in muscle and liver [175]

Mouse Preimplantation Altered methylation status of imprinted genes H19 and Igf2 [176]

Diethylstilbestrol Mouse In utero Increased EZH gene expression in the mammary gland [138]

Mouse In utero Hypermethylation and long-term altered expression of the Hoxa10 gene [177]

Mouse Neonatal Hypomethylation in Exon-4 of c-fos [178]

Methoxychlor Mouse In utero Altered methylation in H19 and Gtl2 and increased methylation in Peg1,
Snrpn, and Peg3

[151]

Rat In utero Hypermethylation in the ERβ promoter regions [179]

PBDEs Human Prenatal DNA hypomethylation of Alu and LINE-1 in fetal blood [168]

Human Maternal Hypomethylation of TNF-α in core blood [169]

Human In utero Hypomethylation of IGF2 and NR3C1 in placenta [170,
171]

PFOAs Human Prenatal Hypomethylation in sperm cells [173,
174]

Human Prenatal Global and IGF2 hypomethylation in cord blood [95,
172]



could be used as epigenetic biomarkers for transge-
nerational influence assessments [124] (Table 2).

Persistent organic pollutants
Persistent organic pollutants (POPs) are a class of
man-made organic (carbon-based) chemicals that re-
main for long periods of time after their introduction
into the environment [157]. These chemicals include
dichloro-diphenyl-trichloroethane (DDT), dichloro-
diphenyl-dichloroethylene (DDE), polychlorinated biphe-
nyls (PCBs), and 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), as well as perfluorooctanoic acid (PFOA), poly-
brominated diphenyl ethers (PBDEs), and dioxins [114,
157]. Certain POPs have been shown to have
endocrine-disrupting effects such as estrogenic and
anti-progestins of DDT, anti-estrogenic of dioxins and
PCBs, anti-androgenic of DDT, and anti-thyroid of PCBs
and dioxins (https://www.who.int/ceh/capacity/POPs.
pdf ). Accumulating evidence indicates that prenatal
POPs exposures result in adverse mental and physical
development [158–161], visual recognition memory
abnormity [162], neurodevelopmental delay [163], repro-
ductive problems [164, 165], obesity [166], and immune
diseases [167] in the later life of offspring. Moreover,
such adverse health effects from prenatal exposure to
POPs are associated with epigenetic dysregulation, for
instance, DNA hypomethylation of repeat elements (Alu
(Arthrobacter luteus) and LINE-1) in fetal blood with ex-
posure to DDT, DDE, and PBDEs [168]; hypomethyla-
tion of tumor necrosis factor alpha (TNF-α), IGF2, and
nuclear receptor subfamily 3 group C member 1
(NR3C1) in core blood and placenta with exposure to
PBDEs [169–171]; global and IGF2 hypomethylation in
sperm cells and cord blood samples with exposure to
PFOA [95, 172–174]; altered DNA methylation in the
H19 , IGF2, and IGF2r genes with exposure to dioxin
[175, 176]; hypermethylation of the Hoxa10 gene, hypo-
methylation in the Exon-4 of c-fos gene, and increased
EZH gene expression with exposure to diethylstilbestrol
[138, 177, 178]; and increased methylation in the Peg1,
Snrpn, Peg3, and ERβ genes with exposure to methoxy-
chlor [151, 179]. In addition, certain POPs have been
shown to promote epigenetic transgenerational inherit-
ance of disease susceptibility [148, 180] (Table 2).

Heavy metals
Heavy metals refer to metals with a density that exceeds
a certain value (5 g/cm3) and have been used by humans
in various areas for thousands of years [181]. Heavy
metals including arsenic, cadmium, lead, and mercury
are another common type of pollutant widely distributed
in modern environments, such as various industrial,
agricultural, medical, and domestic fields. The consump-
tion of contaminated water or food is a common source

of chronic, but low-level arsenic and cadmium exposure
[182, 183]. Pesticide manufacturing is another common
source of arsenic exposure [184], and smokers tend to
have higher cadmium exposure [185]. Lead is often
found in lead-contaminated house dust, residential soil,
lead-based paints, glazed food containers, and drinking
water [186, 187]. Contaminated seafood is considered
the main source of mercury intake [188]. In utero expos-
ure to heavy metals is detrimental for the fetus and
mainly causes neurological disorders and cancers in the
offspring [189]. Mounting evidence has revealed that
such adverse outcomes are implicated with perturbation
in the epigenome, which is susceptible to external stimu-
lation during embryonic development [190] (Table 3).

Arsenic
Prenatal arsenic exposure has been shown to be associ-
ated with placenta and cord blood DNA methylation
alteration in neonates [191–197], possibly in sex- [193,
194, 198] and time-specific [194] manners. For exam-
ples, the levels of DNA methylation were shown to
increase in male infants but to decrease in female infants
born to arsenic-exposed mothers [193, 198]. Arsenic ex-
posure in late gestation showed a much weaker correl-
ation with newborns cord blood DNA methylation than
that in early pregnancy [194]. Furthermore, the effects of
prenatal arsenic exposure on DNA methylation are not
fully consistent in different studies. Some data supported
negative correlation between arsenic exposure and
methylation [194, 199], while certain studies demon-
strated the role of arsenic in hypermethylation [199–
201]. Collectively, these studies suggest that prenatal ex-
posure to arsenic is believed to alter epigenetic modifica-
tion and may dysregulate arsenic-related disease
development Table 3.

Cadmium
Cadmium has a long half-life, lasting for decades, and
can accumulate in the bones and then release during
pregnancy. These features of cadmium magnify its tox-
icity to pregnant women and fetuses leading to numer-
ous health problems such as reproductive disorders,
kidney dysfunction, and certain cancers [202]. It was
shown that early pregnancy exposure to cadmium leads
to altered DNA methylation at multiple DMRs in
offspring in sex- and possibly race/ethnic-specific man-
ners [203]. Methylome-wide association study (MWAS)
also demonstrated that prenatal, including periconcep-
tional, and in utero exposure to cadmium resulted in in-
creased methylation of organ development and
mineralization-related genes in female offsprings, hyper-
methylation of cell death-linked genes in male offspring
[204], and altered methylation patterns in leukocytes
[205] and the placenta [206], as well as hypomethylation



of LINE-1, which is hypermethylated in normal tissues
[207] and peripheral blood. Another epigenome-wide as-
sociation study of two US birth cohorts showed that pre-
natal cadmium exposure was associated with
differentially methylated CpG sites, which were involved
in inflammatory signaling and cell growth as well as
birth weight [208]. Additionally, prericonceptional ex-
posure to cadmium was found inversely associated with
DNMT expression [207] (Table 3).

Lead
Lead is a common pollutant with no safe level of expos-
ure and no beneficial biological role [209]. Likewise, lead
accumulates in bone and has a half-life of about three
decades [210]. Lead can elevate levels of homocysteine,
disrupt the methionine-homocysteine cycle [211, 212],
and reprogram the expression of epigenetic
modification-related enzymes [213]. Together, these pro-
cesses, exposure to lead, especially prenatally, may cause
aberrant DNA methylation [214–216] and histome mod-
ifications such as histone acetylation [217] in organisms.
Such alterations in the epigenome are likely preserved at
first [218, 219], and then triggered by internal and/or ex-
ternal stimulation in later life resulting in clinical abnor-
malities such as obesity, cardiometabolic disease, and
even Alzheimer’s disease (AD) [220–223]. Children who
were prenatally exposed to lead displayed hypomethyla-
tion of Alu and LINE-1 sequences [224], as well as al-
tered methylation patterns in imprinted genes [222,
223]. Moreover, a study on animals showed that lead ex-
posure can also alter the expression of miRNAs which

target certain proteins participating in the pathologic
process of disease [225], while no effect was found when
exposure occurred in later life. Importantly, maternal
lead exposure may leave a methylome fingerprint on her
grandchildren, suggesting its potential multigenerational
epigenetic inheritance [226]. Moreover, pronounced
sex-specific profiles to prenatal lead exposure were also
found with respect to DNA methylation alterations [222,
227, 228] (Table 3).

Other heavy metals
In utero exposure to manganese has been associated
with differential methylation in the placenta [229]. DNA
methylation changes, which were linked with altered im-
mune profiles or adverse infant neurobehavioral out-
comes, were found in the placenta as well as umbilical
cord blood in newborns whose mothers had experienced
mercury exposure during pregnancy [190, 230, 231]
(Table 3).

The characteristics of prenatal exposure-related
epigenetic dysregulation
The portal function of the placenta
Exposure-related alterations in fetal development result in
potential changes in metabolism and development [232].
As a transient organ, the placenta serves as a gatekeeper
between the fetal and maternal circulation throughout
pregnancy, ensuring survival of the fetus [61, 73]. It not
only plays crucial roles in mediating the transfer of oxy-
gen, nutrient substance, and hormones from mother to
fetus [233], but also can produce growth factors and

Table 3 Summary of studies reporting associations between prenatal exposure to heavy metal and epigenetic alterations
Heavy metal Exposure stage Epigenetic change Ref.

Arsenic In utero Altered DNA methylation status of specific genes in the placenta [191]

Prenatal Altered DNA methylation in artery and placenta [199]

Prenatal Altered DNA methylation in newborn cord blood [192, 193, 196, 197]

Early pregnancy Decreased DNA methylation in cord blood [194]

Cadmium Prenatal Differentially methylated CpG sites [208]

Early pregnancy Altered DNA methylation at multiple DMRs in offspring with sex and possibly
race/ethnic-specific effects

[203]

Maternal Decreased DNA methylation levels in placental PCDHAC1 promoter [206]

Prenatal Altered DNA methylation differently in girls and boys [204]

Maternal Altered DNA methylation levels in the leukocyte of newborns and their mothers [205]

Mercury Prenatal Increased DNA methylation in umbilical cord blood of infants [190]

In utero Hypomethylation of EMID2 gene in placental samples [230]

Prenatal Related to DNA methylation at the TCEANC2 region in cord blood samples [231]

Lead Prenatal Hypermethylation at the MEC3 DMR regulatory region [223]

In utero Sex-specific trends between Pb and DNA methylation [222, 227, 228]

Prenatal Hypomethylation of genomic DNA and Alu and LINE-1 genes in cord blood [224]

Manganese Prenatal Altered placental DNA methylation [229]



hormones and mediate fetal immune tolerance [61]. Ad-
verse environmental factors during embryonic develop-
ment may disrupt all placental functions of transportation,
metabolism, protection, and endocrine, and such effects
can be encoded in the placental methylome [234, 235],
which will provide a unique footprint of exposures [65].
Hence, the placenta exhibits considerable plasticity, espe-
cially a distinctive DNA methylome [232, 236, 237]. How-
ever, if placental capacity to adapt is exceeded, fetal
growth and development may be compromised directly
[61]. Moreover, certain environmental toxicants can cross
the placenta causing distorted fetal reprogramming and
disease pathogenesis in later life [238].

Transgenerational inheritance
Transgenerational inheritance is often used rather broadly
to describe non-DNA sequence-based inheritance that
can be transmitted from one generation of an organism to
the next [239, 240]. The F3 generation (the offspring of
the F2 generation) is the first generation that exhibits
transgenerational inheritance as both the F1 (the offspring
of the parent generation) embryo and the F2 (the offspring
of the F1 generation) germline involve direct exposure
when an F0 (the parent generation) gestating female is ex-
posed to an environmental factor [241–244]. Of great
concern is that prenatal environmental exposure-induced
epigenetic modifications may pass across subsequent gen-
erations through the germ line, leading to predisposition
to diseases or disorders in the offspring [1, 30, 245].
Guerrero-Bosagna et al. proposed plausible molecular
mechanisms/conditions for environment-induced epigen-
etic transgenerational inheritance including stepwise pro-
cesses: first, exposure during gametogenesis; second,
epigenetic insults in PGCs; third, imprinting-like pro-
gramming in the germ line, especially in the male germ
line, escaping reprogramming during early embryonic de-
velopment; fourth, altered epigenome in the germ line
transmitted to subsequent generations in cells and tissues;
and finally, increased susceptibility to related diseases in
postnatal life [124]. Epimutations mainly on DNA methy-
lation resulting from F0 generation gestating female ex-
posure to EDCs have previously demonstrated
transgenerational inheritance through the male germ line
[242, 246, 247]. It should be pointed out that sperm epi-
mutations can magnify with increasing passages [242].

Time/age-specific susceptibilities
The distinct time windows, i.e., preconception, early ges-
tation, infancy, and old age, are characterized by
age-specific disease susceptibility [248]. As the epige-
nome is undergoing dynamic change and is vulnerable,
the periods of early fetal development and the gamete
formation are thought to be most susceptible to environ-
mental stimulations. Human pregnancy has three

trimesters: trimester 1, from 1 to 13 weeks; trimester 2,
from 14 to 26 weeks; and trimester 3, from 27 weeks to
delivery. Thus, the first trimester from fertilization to
implantation undergoing epigenetic reprogramming that
is highly sensitive to environmental stimuli is considered
the most important developmental stage and can decide
later-life disease susceptibility in the offspring.

Sex-specific response/profile
Dynamic processes of epigenetic reprogramming in male
and female genomes exhibit dramatic differences [14, 20]
and this includes changes to the epigenome in their em-
bryonic stem cells [249]. As aforementioned, male fetus
has been observed a higher susceptibility to maternal
smoking than the female [110]. Developmental exposure
to vinclozolin [156] and BPA [146–148] has been shown a
transgenerational inheritance of aberrant methylation pat-
terns through the male germ line. Moreover, early preg-
nancy exposure to cadmium [203, 204] and lead [222, 227,
228] resulted in altered DNA methylation in offspring in a
sex-specific manner.

The potential mechanisms of prenatal exposure-related
epigenetic dysregulation
Oxidative stress
Taking PM as an example, inhaled particles may first trans-
locate from the maternal lung into the bloodstream, then
pass through the placental barrier and induce oxidative
stress [122, 250, 251]. DNA damage induced by oxidative
stress has been associated with differential methylation in
several candidate genes in response to prenatal exposures
[120, 252]. DNA damage may block the binding of DNMTs,
whose dysfunction is lethal to developing embryos [253], to
the DNA template thereby causing hypomethylation [254].
Well-documented evidence demonstrates that DNA hypo-
methylation can induce genomic and chromosomal in-
stability [255–257], and has been linked with abnormal
embryonic development [258] such as spina bifida [259]
and low birth weight [260] of newborns (Fig. 2).

Transcription factor occupancy
For gene-specific DNA methylation patterns, the tran-
scription factor occupancy theory proposes that the
blocking approach to DNA methylation machinery may
occur due to the presence of transcription factors on
gene regulatory region, or vice versa [261, 262]. In a
similar manner, if environmental chemicals trigger the
presence or absence of transcription factors on a gene
regulatory region, this may result in site-specific methy-
lation patterns [114] (Fig. 2).

The perturbation of related enzymes
For genome-wide patterns of methylation, it has been
shown that environmental cues may change the function



of DNMT or/and ten-eleven translocation (TET) en-
zyme families as well as the availability of S-adenosyl-
methionine (SAM) to DNA [114] leading to genomic
hypomethylation or hypermethylation (Fig. 2).
Obviously, epigenetic modifications are potentially re-

versible, and a deeper understanding of the characteris-
tics and mechanisms implicated in adverse outcomes of
prenatal environmental stimulations will likely promote
exploration of new effective therapeutic methods target-
ing anomalous epigenetic markers. Until the present,
some histone deacetylase (HDAC) inhibitors and DNMT
inhibitors, which are approved by FDA, have been used
in epigenetic pharmacological therapies, providing clin-
ical benefits through inhibiting HDACs or DNMTs [15].
Nevertheless, recent studies elucidate that certain bio-
active compounds in “epigenetics diets” may act as
DNMT inhibitors, HDAC inhibitors, or/and miRNA reg-
ulators that influence the epigenetic profile and play a
potential protective role against environmental
pollution.

Epigenetics diets and their roles on epigenetic
regulation
Early-life dietary nutrition can profoundly affect devel-
opmental fate through the altered epigenome [35]. Fe-
male larvae can develop into queen bees or sterile
worker bees in the presence or absence of royal jelly,
which is the most typical example of nutrition epigenet-
ics [263]. However, the proportion of larvae developing
into queen bees would increase with the knockdown of
DNMT3, suggesting the bridge role, at least in part,
through DNA methylation between early-life royal jelly

consumption and adult phenotype [264]. Early-life sup-
plementation of certain foods can also have detrimental
effects on the developing fetus. Results from a
meta-analysis showed that prenatal alcohol exposure
may disturb protein synthesis, mRNA splicing, and chro-
matin regulation in rodent embryos [265]. Of great
interest is that a number of bioactive dietary compo-
nents act to modify the epigenome through consump-
tion of so called “epigenetics diets” [30]. Here, we detail
epigenetic diets and their roles in epigenome modifica-
tion (Table 4).

Polyphenols
Polyphenols are widely distributed secondary metabolites
from plant origin, especially fruits and vegetables [266].
Accumulating literature indicates that these phytochemi-
cals have antioxidant, anti-inflammatory, and other benefi-
cial effects on human health [267]. Many polyphenols
have shown properties in regulation of epigenetics, such
as DNMT inhibition by resveratrol in grapes [268], HDAC
inhibition by sulforaphane in broccoli [269], histone ace-
tyltransferase (HAT) inhibition by (−)-epigallocatechin-3--
gallate (EGCG) in green tea [270] as well as miRNA
regulation by genistein in soybean [271].

EGCG
Catechins are the most abundant polyphenolic com-
pounds in green tea, among which EGCG accounts for
more than 50% of the active compounds [272, 273].
Apart from its known roles in DNA methylation [274–
276], EGCG also acts as a histone modifier and miRNA
modulator. Compared with other green tea polyphenols,

Fig. 2 Diagram of the potential mechanisms of contaminant-induced epigenetic dysregulation. Environmental contaminants can be absorbed
into the maternal blood through breathing, ingestion, drinking, or contact. Subsequently, certain environmental toxicants can pass the placental
barrier and accumulate in the fetal bloodstream, causing epigenetic dysregulation through three potential ways: DNA oxidative damage may
block the binding of DNA methyltransferase (DNMT) to the DNA template; activation of transcription factors (TFs) can inhibit DNMTs from accessing
the DNA, resulting in gene-specific hypomethylation; interfering activity of DNMT or/and ten-eleven translocation (TET) enzyme families, leading to
genomic methylation dysregulation. Adapted and used with permission from Martin et al. [114] and Luyten et al. [232]. Abbreviations: DNMT, DNA
methyltransferase; TSS, transcription start site; TF, transcription factor; TET, ten-eleven translocation



EGCG exhibits the most potent HAT inhibitor proper-
ties targeting various HAT enzymes including p300,
CBP, Tip60, and PCAF [270]. Our study demonstrated
that combined with SFN, EGCG can remodel chromatin
structure by histone modification as well as change
methylation patterns in the ERα promoter, thereby re-
activating ERα expression and then re-sensitizing
anti-hormone (tamoxifen) treatment in ER-negative
breast cancer [276]. In another study, EGCG has shown
to affect Polycomb-group (PcG) proteins which can
compact chromatin and silence cancer-related genes
through regulating histone methylation and acetylation
[277]. Additionally, EGCG has also been found to modu-
late miRNA expression in human nasopharyngeal car-
cinoma CNE2 cells [278], osteoarthritis chondrocytes
[279], osteosarcoma cells [280], and spontaneously
hypertensive rat [281] (Table 4).

Resveratrol
Resveratrol (RSV) is a natural polyphenolic compound
and is often found in peanuts, berries, and grape species,
especially in the skin of red grapes [282]. RSV exhibits
antioxidant, anti-inflammatory, antiangiogenic, and anti-
cancer properties through epigenetic regulations via its
abilities of DNMT [268, 283–286] and HDAC inhibition
[283, 285, 287–289]. Sirtuin 1(SIRT1) is a NAD
+-dependent histone deacetylase which deacetylates pro-
teins that contribute to oxidative stress, aging, obesity,
and tumors [290]. Importantly, SIRT1 is also involved in
the regulation of DNMT1 activity [291]. A body of in-
vestigations indicates that RSV is associated with SIRT1
activation in various metabolic pathways [292–298].
Moreover, new studies suggest that RSV acts as a
miRNA regulator in thrombus resolution [299], type 2
diabetes (T2D) treatment [300], clinical pancreatic
ductal adenocarcinoma (PDAC) prevention [301], osteo-
arthritis therapy [302], and anti-inflammation [303]
(Table 4).

Genistein
Genistein (GE) is a phytoestrogen and the major isofla-
vone primarily present in soy [304]. GE has been shown
to exhibit health beneficial properties including inhib-
ition of obesity, insulin resistance, and metabolic dis-
eases, preventing inflammation and multiple cancers
[305]. As aforementioned, polyphenols such as GE also
exhibit striking effects on DNA methylation [285, 306–
309] and histone modification [285, 306, 309, 310]. It
was shown that some tumor suppressor-related genes,
such as p16 , p21, RARβ, CCND2, GSTP1, MGMT, and
BTG3, were reactivated by GE-mediated promoter hypo-
methylation or/and histone hyperacetylation [311–316].
In our preliminary study, GE was also found to repress
human telomerase reverse transcriptase (hTERT), which

is the catalytic subunit of human telomerase, by
locus-specific hypomethylation as well as chromatin
structure remodeling of the hTERT promoter in breast
cancer models [317]. Furthermore, GE may act as a
miRNA modulator in breast, prostate, colorectal, and
renal cancer prevention [271, 318–321] (Table 4).

Other polyphenols
Other polyphenols are also implicated in various health
beneficial effects in human and animals through, at least
in part, their properties in DNA inhibition, HDAC in-
hibition, HAT activation, and miRNA modulation such
as kaempferol [322–324] and phloretin [325] in apple;
apigenin [326, 327] and luteolin [327–330] in celery;
hesperidin [331] and quercetin [332–334] in citrus; caf-
feic acid [335, 336] and chlorogenic acid [335] in coffee;
allyl mercaptan [337] and diallyl disulfide [338–340] in
garlic; anthocyanin [325, 341, 342], piceatannol [333,
343, 344], and procyanidin [283, 342, 345–348] in grape;
theophylline [349, 350] in green tea; biochanin A [350],
daidzein [351], and equol [352] in soy; and curcumin in
turmeric [353–357] (Table 4).

Vitamins
Vitamin C
Vitamin C (L-ascorbic acid) is known for its essential
role in collagen crosslinking [358]; thus, its severe defi-
ciency may cause scurvy [359]. Recent investigations
have revealed functions of vitamin C in epigenetic regu-
lations. Ascorbate, the form of vitamin C existing under
physiological pH conditions, is found to be involved in
active DNA demethylation [360–366] and histone
demethylation [360, 367–369] as well as epigenome
reprogramming [358] in a cofactor manner. TET dioxy-
genase, catalyzing the oxidation of 5mC into
5-carboxylcytosine (5caC) that are ultimately replaced by
unmodified cytosine, has three cofactors, among which
ascorbate is recently discovered and verified. The
Jumonji C (JmjC)-domain-containing histone demethy-
lases (JHDMs) including JHDM1A, 1B, and 3A also need
ascorbate as a cofactor for histone demethylation [369–
371]. Furthermore, a recent study revealed a specific role
for vitamin C in H3K9me2 demethylation in mouse em-
bryonic stem cells [368] (Table 4).

Vitamin D
The discovery of the calcitriol receptor, commonly
known as the vitamin D receptor (VDR), gradually un-
covers the roles of vitamin D in regulating transcrip-
tional responses and underlying epigenetic mechanisms
[372]. VDR is a member of transcription factors. The ac-
tive form of vitamin D can bind to calcitriol [373], while
VDR mainly binds at loci of open chromatin. Upon
treating human leukemia cell lines, THP-1, with



Table 4 Epigenetic diets and their properties in epigenetic regulation
Classification Food example Component Epigenetic effect Ref.

Polyphenol

Apple

Kaempferol HDAC inhibition [323, 324]

SIRT3 activation [322]

Phloretin DNMT inhibition [325]

Celery

Apigenin DNMT inhibition [326, 327]

HDAC inhibition [326]

HMT inhibition [327]

Luteolin DNMT inhibition [327, 328, 330]

HDAC inhibition [329, 330]

HMT inhibition [327]

SIRT activation [329]

Citrus

Hesperidin DNMT inhibition [331]

Quercetin DNMT inhibition [275, 326, 332]

HAT inhibition [334]

SITR1 activation [333, 344]

Coffee

Caffeic acid HDAC inhibition [335, 336]

Chlorogenic acid HDAC inhibition [335]

Garlic

Allyl mercaptan HDAC inhibition [337]

Diallyl disulfide HDAC inhibition [338–340]

Grape

Anthocyanin DNMT inhibition [325, 341]

miRNAs modulation [342]

Piceatannol SIRT1 activation [333, 343, 344]

Procyanidin DNMT inhibition [283, 479]

HDAC inhibition [283, 480]

SIRT1 modulation [346, 347]

miRNA modulation [342, 345, 348]

Resveratrol DNMT inhibition [268, 283–286]

HDAC inhibition [283, 285, 287–289]

miRNAs modulation [284, 299–303]

SIRT1 activation [292–296]

Decreased MeCP2 [285]

Green tea

Catechin (EGCG) DNMT inhibition [274, 275, 285, 481]

HAT inhibition [270, 482]

HDAC inhibition [276, 285, 481, 483]



Table 4 Epigenetic diets and their properties in epigenetic regulation (Continued)

Classification Food example Component Epigenetic effect Ref.

Decreased MeCP2 [285]

miRNAs modulation [278, 279, 281]

Theophylline HDAC activation [349, 350]

Soy

Biochanin A DNMT inhibition [350]

Daidzein DNMT inhibition [351]

Equol Demethylation of BRCAs [352]

Genistein DNMT inhibition [285, 306–309]

Decreased MeCP2 [285]

HDAC inhibition [285, 306, 309]

HAT activation [311, 313]

miRNAs modulation [271, 318–321]

Turmeric

Curcumin DNMT inhibition [285, 353, 484, 485]

Decreased MeCP2 [285]

HAT inhibition [354]

HDAC inhibition [285, 355, 356]

miRNAs modulation [357, 486–489]

Vitamin

Kiwi fruit

Folate One-carbon metabolism [386, 490, 491]

HMT regulation [491]

Epigenome regulation [492]

miRNAs modulation [405, 493–495]

Vitamin C DNA demethylation [360–366]

Histone demethylation [367–370]

Epigenome regulation [358]

Fish

Vitamin D DNA methylation [375–379, 468, 469, 496]

Histone modification [372, 374, 380, 381]

Epigenome regulation [372, 470]

miRNAs modulation [497–499]

Egg

Choline DNA methylation [393–398, 401–404]

Histone methylation [405]

miRNAs modulation [405–407]

Other

Broccoli

Isothiocyanate HDAC inhibition [419–422]

Sulforaphane HDAC inhibition [269, 276, 409–412]

DNMT inhibition [276, 414, 415]

miRNAs modulation [414, 416–418]

Withaferin A DNMT inhibition [285, 411]



1,25-dihydroxyvitamin D3 (1,25-D3), a VDR ligand, chro-
matin accessibility substantially increased [374]. Primary
roles of vitamin D on epigenetic regulation are associ-
ated with DNA demethylation and histone acetylation.
There is evidence showing that vitamin D treatment is
negatively correlated with promoter methylation status
of the adenomatous polyposis (APC) gene, a tumor sup-
pressor gene in colorectal cancer [375], as well as
dickkopf-related protein 1 (DKK1) [376], E-cadherin
[377], PDZ-LIM domain-containing protein 2 (PDLIM2)
[378] and p21 [379]. In in vitro experiments, 1,25-D3
treatments have been shown to regulate gene expression
through histone acetylation and methylation, such as
H3K27ac [374], H3K9 di-methylation [380], and H3K9ac
[381], as well as affecting the expression of a series of
JHNMs [372]. Recent studies have revealed vitamin D
anticancer properties through miRNA modulation
(reviewed in [382]) (Table 4).

Folate
Folate or folic acid, also known as pteroylglutamic acid,
is a water-soluble B-complex vitamin and usually exists
in green vegetables and animal liver. Biologically, folate
together with vitamin B12 (VB12) plays a crucial role in
the one-carbon metabolism and embryonic develop-
ment. In this context, low dietary intakes of folate are
associated with various clinical symptoms, especially
neurological and developmental disorders [383]. As a
methyl donor, folate takes part in the methionine cycle
and ultimately offers methyl for DNA and protein
methylation, thereby changing chromatin structure and
modulating gene expression [384]. Although DNA hypo-
methylation resulting from poor folate status is linked
with inappropriate expression of cancer-related genes
[385], it should be pointed that folate depletion can
cause both hypo- and hypermethylation of DNA [386].

Furthermore, folic acid supplementation has been shown
to reduce the risk of cancer [387, 388] through regula-
tion of DNA methylation patterns [389, 390] (Table 4).

Choline
Like folate, choline is one of the precursors that can be
converted to SAM, the universal methyl donor for nu-
merous methylation processes including the methylation
of cytosine in DNA, lysine in histones, and adenine in
RNA as well as other molecules [391, 392]. Feeding
pregnant methylation-indicator-mice a diet high in cho-
line and other methyl donors resulted in offspring born
with a brown coat and kinks in their tails through alter-
ing methylation status of Avy [393, 394] and Axin (Fu)
[395] genes, respectively. Several other examples have
also demonstrated that dietary supplementation with
choline changed methylation levels of CpG sites in the
genes IGF2, Srebf2, Agpat3, Esr1, Fasn, and Cdkn3 [396–
398]. On the other hand, upon treatment of pregnant
rats with choline-deficient diets, IGF2 was hypermethy-
lated through upregulating DNMT1 expression [399]. In
humans, the maternal supply of choline is essential for
fetal and infant development, especially for brain devel-
opment. Thus, extra choline is needed for pregnant and
breast-fed women. Additionally, choline has a role in re-
ducing human tumor progression. As evidence of this,
Sun et al. found that low choline intake increases overall
risk for lung cancer (30%), nasopharyngeal cancer (58%),
and breast cancer (60%), whereas cancer incidence re-
duces by 11% after choline (100mg/day) supplementa-
tion [400]. Studies have been well documented that
choline can inhibit cancer development via modifying
epigenetic markers. Choline-deficient diets result in hy-
pomethylation of oncogene (e.g., c-myc) [401], but also
hypermethylation of several tumor suppressor genes
(e.g., p16 , p53, and Cx26 ) [402–404]. Moreover, dietary

Table 4 Epigenetic diets and their properties in epigenetic regulation (Continued)

Classification Food example Component Epigenetic effect Ref.

India winter 
cherry

HDAC inhibition [269, 285, 411]

HMT inhibition [269]

HAT activation [269]

miRNAs modulation [500]

Konjac powder

Se DNA methylation [436, 437, 439–444]

Histone modification [436, 438]

DNMT inhibition [436]

HDAC inhibition [438]



choline concentration also affects histone methylation
[405] and miRNA expression [405–407] (Table 4).

Other epigenetics diets
Isothiocyanates
Isothiocyanates (ITCs) are generated by the enzymic hy-
drolysis of glucosinolates in plants. Sulforaphane (SFN)
is an isothiocyanate that is present naturally in crucifer-
ous vegetables such as broccoli, kale, cabbage, radish,
and mustard [30, 408]. Increasing interest has focused
on SFN-mediated chemoprevention due to its proven
potent activity in HDAC inhibition [269, 409–412],
which may lead to increased histone acetylation
genome-wide as well as at specific-gene levels as histone
acetylation is unequivocally linked with increased pro-
pensity for gene transcription [413]. Moreover, SFN has
been shown to have properties in DNMT inhibition
[276, 414, 415] and miRNA modulation [414, 416–418].
Except SFN, other ITCs [419–422] have also been shown
various health beneficial effects in human and animals
through their properties in epigenetic modification
(Table 4).

Withaferin A
Withaferin A (WA), the first described withanolide, is a nat-
ural steroid lactone derived from Withania somnifera and
has been attracting increasing interest because of its multi-
functional properties including anti-inflammatory [423, 424],
antimetastatic [425], anti-angiogenesis [426], and especially
antitumor activity [427–429]. Importantly, WA exerts strong
anticancer activity in mammary tumors at pharmacologically
achievable concentrations [430]. In a recent study conducted
by vel Szic et al., both triple-negative MDA-MB-231 and es-
trogen receptor-positive MCF-7 cells showed global DNA
hypermethylation once treated with WA, and DNA methyla-
tion levels in MDA-MB-231 were lower than MCF-7 cells.
Meanwhile, methylation perturbation-related specific genes
were bidirectional (both hyper- and hypomethylated) and
were contrary between these two cell lines. The authors also
found that the observed hypermethylation has been linked
with decreased H3K4me3 at the PLAU gene promoter [431].
In an earlier in vitro study, however, cells treated with 8 and
10 μM WA exerted DNMT inhibition activity [285]. In
addition, WA has been associated with a decreased chroma-
tin accessibility at the IL-6 gene promoter region [432]. Two
studies from our lab also illustrated WA acted as DNMT
and HDAC inhibitors in breast cancer cells, and such activ-
ities were strengthened once combined with SFN [269, 411]
(Table 4).

Selenium
Selenium (Se) is an essential trace element usually found
in cereals, nuts, and vegetables [433], and has different

forms including selenocysteine, sodium selenite, and so-
dium selenide [434]. Se has been received considerable
attention for its beneficial effects toward human health
such as immunity enhancement and anticarcinogenic ac-
tion. Adequate selenium intake during pregnancy can
also promote successful and healthy pregnancies
through protecting against oxidative stress [435]. Never-
theless, mounting investigations have linked its priorities
in regulation of epigenetic mechanisms, especially DNA
methylation. Treated prostate cancer cells with Se have
been shown to reactivate the expression of GSTP1 by
upregulating partial promoter DNA methylation levels
and H3K9ac, while inhibiting HDAC activity as well as
H3K9 methylation [436]. In addition, Se deficiency re-
sulted in genomic DNA hypomethylation and promoter
hypermethylation of p16 and p53 [437]. Furthermore,
Miranda et al. found that sodium selenite and methylse-
leninic acid both can inhibit DNMT1 expression in
breast cancer cells. In addition, decreased H3K9me3 and
H4K16ac were observed in methylseleninic acid and so-
dium selenite treated groups, respectively [438]. In
mouse and rat studies, diet supplemented with Se re-
sulted in increased DNA methylation in colon tissue
[439, 440] and decreased global DNA methylation in
liver [441, 442] and in heart [443], as well as increased
methylation in the exon-specific locus of Tp53 [442] and
promoter regions of two inflammatory-related genes
(TLR2 and ICAM1) [444] (Table 4).
A growing body of evidence shows that dietary nutri-

tious and non-nutritious components of vegetables,
fruits, nuts, and beverages can regulate epigenetic pro-
cesses (e.g., covalent modification of DNA, protein and
RNA, miRNA modulation, chromatin remodeling) in-
volved in critical life processes of human health such as
immune improvement, apoptosis inhibition, and cancer
prevention (Table 4). Their potential protective roles
against environmental pollution have been attracting in-
creasing attention.

The potential protective roles of prenatal
epigenetics diets against environmental
pollutants
It is now clear that prenatal exposure to environmental
pollutions induces adverse outcomes of embryonic and
postnatal development through epigenetic dysregulation.
In a similar manner, parental nutritional exposure may
also induce long-term epigenetic perturbation in the off-
spring, determining the health of descendants through-
out lifetime [30, 445, 446]. The former often occurs in a
passive situation and leads to severe health issues in
humans, whereas nutritional intervention is controllable
and often beneficial. Increasing numbers of studies have
shown potential properties of dietary compounds in epi-
genetic pharmacological therapies and chemoprevention.



As a typical example, studies carried out by Dolinoy et
al. demonstrated that a maternal methyl diet and phyto-
estrogen supplementation counteracted coat color
change and hypomethylation in offspring induced by in
utero and neonatal exposure to BPA [11], suggesting
that maternal nutritional supplementation could be a
potential preventive approach to attenuate or negate epi-
genome dysregulation resulting from environment
stimulation. Here, we review the potential possibilities of
prenatal nutrition against environmental exposure via
epigenetic regulation.

Maternal diets vs. EDCs
As noted above, BPA is a typical, ubiquitous endocrine-active
compound. SAM functions as a universal methyl donor for
methylation processes in DNA, protein, and RNA. B vita-
mins including folic acid, VB6, and VB12, as well as amino
acids, such as choline, methionine, and betaine, are classified
as methyl donor nutrients as they all either directly or indir-
ectly act as precursors of SAM. In Dolinoy’s study [11], they
first exposed female mice to 50mg/kg BPA diet 2 weeks be-
fore mating with Avy/a males and throughout gestation and
lactation. A changed coat color was found to be associated
with decreased methylation of nine CpG sites of the Agouti
gene. Strikingly, BPA-induced DNA hypomethylation in the
offspring was negated after female mice were supplemented
with methyl donors in their diet (4.3mg of folic acid/kg diet,
0.53mg of vitamin B12/kg diet, 5 g of betaine/kg diet, 7.97 g
of choline chloride/kg diet). Although it is not clear which
nutrients specifically played a more critical role in this mixed
methyl diet, elevated methylation may reverse hypomethyla-
tion on the epigenome caused by EDC, indicating paternal
methyl donor supplementation could be a potential nutrition
intervention against prenatal EDC exposure. Importantly,
shifted coat color distribution brought by a maternal methyl
donor diet through hypermethylating-related genes in Avy

offspring was shown to be inherited through multiple gener-
ations [447], suggesting nutrient-reversed BPA-induced epi-
genome alterations can be transmitted transgenerationally
through epigenetic inheritance via germline transmission
[146–148]. In addition, dietary vitamin B supplementation
appears to attenuate the adverse effects caused by pesticides
in paint [448].
Maternal dietary exposure to genistein, which is a

plant phytoestrogen primarily present in soy, also has
been shown to shift offspring coat color by upregulating
genomic methylation [449]. In Dolinoy’s study, upon
treating virgin a/a female mice with 50 mg/kg diet of
BPA and 250 mg/kg diet of genistein, BPA-induced hy-
pomethylation in the Agouti gene of offspring was neu-
tralized [11]. As polycarbonate plastics, like BPA, are
ubiquitously used in the human population, and soybean
products are widely consumed, the ability of genistein to
prevent negative environmental toxicant effects via

prenatally nutritional intervention has a promising
prospect.

Maternal diets vs. smoking
DNA methylation markers could be potential indicators of
paternal smoking as methylation alteration of a series of
genes has been shown to link to cigarette use. Among these
genes, hypomethylation of AHRR, particularly at cg05575921
loci, was often found [104, 450–452]. In a recent study on
African-American cohorts, smoking-induced DNA demeth-
ylation at AHRR was moderated by increased methylation of
methylene tetrahydrofolate reductase (MTHFR), which is a
key regulator in methyl metabolism [453]. Consistently,
Zhang et al. found that sufficient maternal folate level could
partly mitigate the adverse effect of maternal smoking on the
epigenome of newborns, as well as on child health [110].
Moreover, Richmond and Joubert contrasted the effects of
maternal smoking and one-carbon micronutrient exposures
on the DNA methylome in the offspring and found that
these two categories of exposure have potential opposite im-
pact on the offspring epigenome and act independently
[454].

Maternal diets vs. metabolic syndrome
Metabolic syndrome (MetS) is a progressive phenotype
that is characterized by a series of metabolic disorders
such as obesity, hypertension, dyslipidemia, and insulin
resistance [30, 455]. As reviewed above, maternal expos-
ure to environmental pollutants has been shown to re-
sult in MetS with similar epigenome dysregulation in
offspring. It was shown that maternal dietary methyl do-
nors may regulate MetS through epigenetic mechanisms.
Wolff et al. revealed that methyl donors supplementa-
tion in pregnant Avy/a mice prevented MetS phenotypes
in offspring by DNA hypermethylation [393]. In
addition, a methyl diet (folate, VB12, betaine, and cho-
line) has been shown to prevent obesity in the same
mouse strain [456] through DNA hypermethylation.
Similar studies in humans also demonstrated that pre-
natal folic acid supplementation can reduce MetS inci-
dence in children in rural Nepal [457], while
disproportionality of folate and VB12 during gestation
leads to insulin resistance and obesity in the offspring
[458].
Maternal soybean supplementation also induced

locus-specific DNA hypermethylation in Avy intracister-
nal A particle (IAP) retrotransposon of heterozygous vi-
able yellow agouti (Avy/a) offspring, shifting their coat
color toward pseudoagouti, meanwhile decreasing obes-
ity incidence in adulthood [449].

Diets vs. ambient fine particles
Exposure to PM may induce systemic inflammation and
oxidative stress through epigenome dysregulation. In a



recent striking study, investigators demonstrated that
B-vitamin supplementation (2.5mg/d folate, 50mg/d VB6
and 1mg/d VB12) nearly completely prevented reduced
mitochondrial DNA content and decreased DNA methyla-
tion through protecting against PM2.5-induced DNA hypo-
methylation. Meanwhile, these methyl group-supplying
nutrients might minimize DNA hypermethylation by inter-
acting with essential enzymes including DNMTs and
MTHFR [72]. These findings point out that B vitamins
might avert the loss of DNA methylation induced by air
pollution, although this study was conducted as a short time
(2 h) exposure with high PM2.5 concentration (250 μg/m3)
in adults. As Lucock et al. mentioned, a study from Zhong
et at. draws attention to the role of B-vitamin in exposomal
factors, yet it is still premature to draw a conclusion [459].
Interestingly, Zhong et al. also reported such a vitamin B
diet can mitigate the effects of PM2.5 exposure on cardiac
autonomic dysfunction and inflammation [460].

Diets vs. heavy mental
Dietary folic acid supplementation has been shown to pre-
vent, at least in part, the adverse effects caused by environ-
mental contaminant including chromium [461] and arsenic
[462, 463]. Wang et al. conducted a study within workers
from a chromate production plant and found that global
DNA hypomethylation and DNA damages in blood were as-
sociated with decreased serum folate, suggesting folic acid
supplementation may maintain genome stability and block
cancer development in chromate sufferers [461]. Moreover,
adequate folate has been shown to modify DNA methylation
in peripheral blood leukocytes (PBL) [462] and Alu repeti-
tive elements [463] of arsenic-exposed adults, suggesting a
potential protective role of one-carbon metabolism nutrients
in arsenic toxicity.
Except one-carbon metabolism nutrients and phytochemi-

cals mentioned above, prenatal vitamin C [464–467], vitamin
D [468–471], and certain polyphenols [59, 472–474] supple-
mentation have been shown to maintain organismic normal
growth and development, reduce susceptibility to disease,
and prolong tumor latency through epigenetic regulation. All
these epigenetic agents could be potentially used to counter-
act environmental toxicant-induced epigenome abnormity. It
should be recognized that the investigations of prenatal nu-
trition intervention targeting environmental insults are still
in the exploratory stage and more studies are needed.

Potential considerations of prenatal nutritional
intervention against environmental contaminants
Windows of intervention
Early life, including germ cell differentiation and preim-
plantation of the embryo in the first trimester of
humans, and infancy, is susceptible for external environ-
mental stimulation to disrupt epigenome reprogram-
ming. If exposed early, more serious consequences may

occur compared with late gestation or adulthood expo-
sures. Similarly, there are optimal windows of nutritional
intervention to resist environmental insults. In-depth
understanding of the relationship between dynamic
change of the epigenome, environmental disturbance,
epigenetics diet properties and disease susceptibly may
lead to considerable progress in the epigenetic chemo-
prevention and pharmacological therapies [35].

Global influence of epigenetics agents
As abovementioned, epigenetics diets usually exhibit glo-
bal epigenetic modification such as DNMT inhibition
and HDAC inhibition. Although numerous findings indi-
cate that early-life nutrition supplementation reduces
adverse effects of exposure to epigenetically toxic agents,
some concerns are raised because of their potential, un-
predictable targets in multiple genes by large-scale epi-
genetic perturbation, which are still unclear. There is
promise that more targeted strategies will be developed
and epigenetic therapies would be a powerful choice in
clinical practice in the future [15].

Multiple contaminants exposure
It is noteworthy that humans are often exposed to nu-
merous environmental factors instead of a single con-
taminant. As detailed previously, most of the
investigations only examined epigenome dysregulation
caused by a single source of pollution. In developing nu-
tritional strategies, therefore, the assessment of multiple
contaminants, such as category, dosage, and duration,
should be taken into consideration [114].

Nutritional balance and combination
Nutritional balance is a noteworthy factor for early-life
nutritional intervention. Otherwise, it is likely to have
the opposite effect. As evidence of this, low maternal
VB12 and high folate levels have been shown to increase
obesity incidence and insulin resistance in offspring
[458]. In addition, DeVita and Vincent reported that the
combinatorial strategies have better therapeutic effect on
cancers than treatment individually [475]. The most ex-
plored epigenetics drug combinatorial strategies are
DNMT inhibitors and HDAC inhibitors [476, 477]. In
line with this, we have been making progress by studying
the interactions between dietary epigenetic-modifying
compounds and combinatorial strategies in cancer re-
search [268, 269, 276, 283, 409, 411, 478]. Given similar
epigenome dysregulation caused by environmental toxi-
cant exposure, combination addition of epigenetics diets
could be a more promising approach to resist environ-
mental disruption.



Conclusion
Increasing� evidence� has� indicated� that� prenatal� dietary
intervention� may� partially� counteract� adverse� outcomes
caused� by� exposures� to� environmental� contaminants
through� averting� epigenome� dysregulation.� Diseases,
exposures,�and�specific�genes-targeted�approaches�are�ur-
gently�required�for�nutritional�or�pharmacologic�interven-
tions,� since� the� epigenetic� processes� implicated� in� fetal
adaptation�to�negative�environmental�stimulation�still�lack
a� comprehensive� understanding.� Moreover,� time-,� sex-,
and�genetic�background-specific;�dose-dependent;and�glo-
bal�response� to�parental�nutrition� intervention,�as�well�as
a� balanced� nutrition� regime� against�multiple� pollutants,
should�be�further�investigated.
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