

User Manual

236-9299

96mm² Smart Energy Meter for Single and Three Phase Electrical Systems

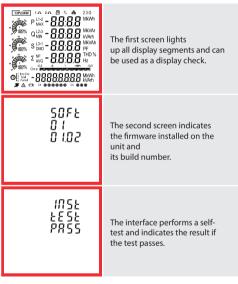
1 Introduction

This document provides operating, maintenance and installation instructions. This unit measures and displays the characteristics of Single Phase Two Wire (1P2W), Three Phase Three Wire (3P3W,) and Three Phase Four Wire (3P4W) networks.

The measuring parameters include Voltage (V), Current (A), Frequency (Hz), Power Factor (PF), Active, Reactive & Apparent Power (kW/kVA/kVAr), Imported, Exported and Total Active Energy (kWh), Imported, Exported and Total Reactive Energy (kVArh).

The unit also measures Maximum Demand Current & Maximum Demand Power, this is measured over preset time periods of up to

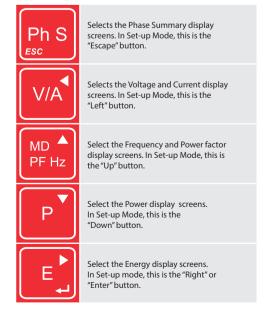
This unit is a 1A or 5A Current Transformer operated and can be configured to work with a wide range of CTs. The unit can also be configured to work with a Voltage Transformer.


Unlike other alternatives, our 96mm² panel meter has built-in Pulsed outputs and RS485 Modbus RTU communications; no separate modules are required to add comms to this device.

Instead of programming the meter through modbus, we have incorporated a password protected set-up menu within the meters software, allowing configuration without having to interrogate

This unit does not require a separate auxiliary supply for power. The self-supplied auxiliary comes from any Phase that is connected to the voltage inputs, meaning should one of the Phases fail, the unit will power itself from another Phase, ensuring the meter continues to measure usage

The 236-9299 meter comes with sealable terminal covers to ensure that the installation is safe and tamper-proof.


2 Start Up Screens

*After a short delay, the screen will display active

3 Measurements

The buttons operate as follows:

3.1 Phase Sequence

Toggle through the VIA screens to check your Phase Sequence connections are aligned:

U (Voltage) seguence I (Current) sequence

3.2 Phase Summary

900% Phase 1 Summary: 2300 2000 Active Power Live to Neutral Voltage Current 000000000 kw

Each press of the Ph S button selects a new parameter:

3P 4W 230.0 230.0 000000000 kW

Total kWh

Phase 2 Summary: Live to Neutral Voltage Current Total kWh

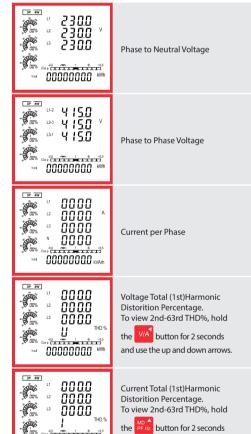
3P 4W 000.0 230.0 000.0 000000000 W

Phase 3 Summary: Live to Neutral Voltage Current Total kWh

000.0 230.0 000.0 **100%** 00000000 kvAm

Phase 1 Summary: Active Power Live to Neutral Voltage Total kVArh

2300 Pin in 000.0 000000000 kvan

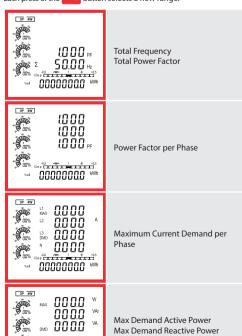

Phase 2 Summary: Active Power Live to Neutral Voltage Current Total kVArh

0.00.0 0000000.0 ××

Phase 3 Summary: **Active Power** Live to Neutral Voltage Current Total kVArh

3.3 Voltage and Current

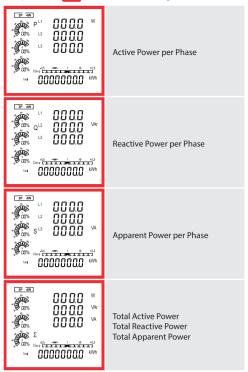
Each press of the V/A button selects a new parameter:


3.4 Frequency and Power Factor and Demand

and use the up and down arrows.

Each press of the PFHz button selects a new range:

00000000

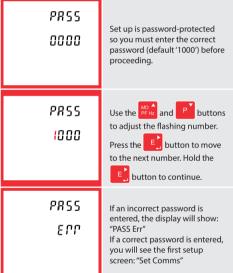

0000000.0 kw

Max Demand Apparent Power

3.5 Power

Each press of the button select a new range:

3.6 Energy Measurements


Each press of the button selects a new range: 0000000.0 kWh **Total Active Energy** 00000000 kvArh **Total Reactive Energy** 0000000.0 kWh Imported Active Energy 000000000 kW **Exported Active Energy**

0000000.0 kVArh 00000000 kvarh

Imported Reactive Energy **Exported Reactive Energy**

4 Set Up

To enter set-up mode, hold the button for 3 seconds, until the password screen appears.

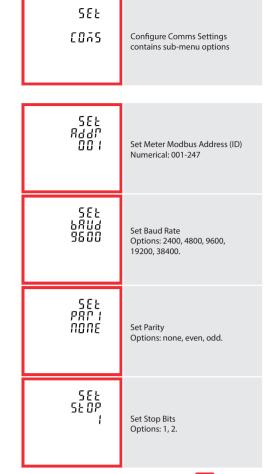
To exit setting-up mode, press the PhS button and you will return to

4.1 Set-up Entry Methods

Some menu items, such as password and CT, require a fourdigit number entry while others, such as supply system, require selection from a number of options.

4.1.1 Menu Option Selection

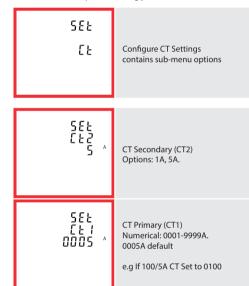
- 1. Use the PFHz and P buttons to scroll through the different options of the set up menu.
- 2. Hold the button to confirm your selection.
- 3. If an item flashes, then it can be adjusted by using the PF Hz and P buttons.
- 5. Once you have adjusted the option appropriately, you will need to save the change by holding the button. The word "Good" should appear briefly, then the menu option will stop
- 6. On completion of all setting-up, press the PhS button and you


4.1.2 Number Entry Procedure

When Setting up the unit, some screens require the entering of a number. In particular, on entry to the setting up section, a password must be entered. Digits are set individually, from left to right. The procedure is as follows:

- 1. The current digit to be set flashes and then can be adjusted using the PFHz and P buttons.
- 2. To move to the next digit, press the Line button.
- 3. Save the change by holding the button. The word "Good" should appear briefly, then the menu option will stop flashing.

4.2 Communication


There is a RS485 port that can be used for communication using Modbus RTU protocol. For Modbus RTU, parameters are programmed through the set-up menu.

On completion of the entry procedure, press the PhS button and you will return to a parameter screen

4.3 Current Transformer (CT)

This unit is CT Operated, the primary (CT1) and secondary (CT2) of the current transformer need to be programmed correctly for the meter to scale the inputs accordingly.

Please note as this is a MID approved device, you will only have one opportunity to set CT Primary/Secondary.

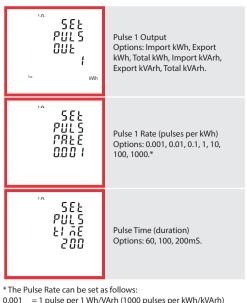
4.4 Voltage Transformer (PT)

This unit can be used with voltage (potential) transformers, the primary (PT1) and secondary (PT2) of the voltage transformer need to be programmed correctly for the meter to scale the inputs accordingly.

58t Pt	Configure PT Settings contains sub-menu options
r - u 540 265 ^ 267	PT Secondary (PT2) Numerical: 230V L-N.
5EE PE 1 v 00 v	PT Primary (PT1) Numerical: 00110-99999V. 00230V default

Please note as this is a MID approved device, you will only have one opportunity to set PT Primary/Secondary.

4.5 Pulse Settings


The SMART X96 has two pulsed outputs.

Pulse 1 is configurable; you can set the pulse rate and duration, as well as the parameter to pulse for.

Pulse 2 is factory set and cannot be modified.

SEŁ PULS

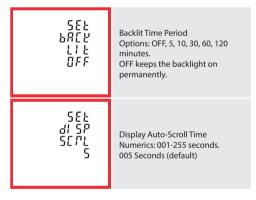
Configure Pulse 1 contains sub-menu options

= 1 pulse per 1 Wh/VArh (1000 pulses per kWh/kVArh) = 1 pulse per 10 Wh/VArh (100 pulses per kWh/kVArh)

- = 1 pulse per 100 Wh/VArh (10 pulses per kWh/kVArh) = 1 pulse per 1 kWh/kVArh
- = 1 pulse per 10 kWh/kVArh
- = 1 pulse per 100 kWh/kVArh 100
- = 1 pulse per 1000 kWh/kVArh

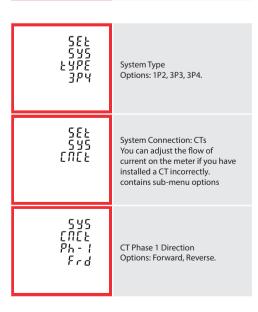
4.6 Maximum Demand

This sets the period of time (in minutes) in which the Current and Power readings are recorded for maximum demand measurements.

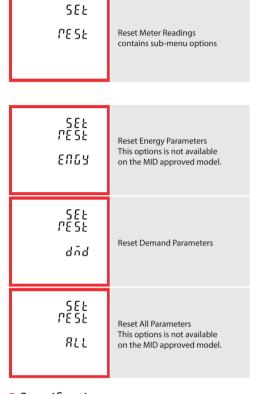


* The Demand Method can be configued as follows: Sliding = $0\sim60$ minutes, $1\sim61$ minutes, $2\sim62$ minutes etc Fixed = $0\sim60$ minutes, $60\sim120$ minutes, $120\sim180$ minutes etc

4.7 Time Settings


The time options of the meter are stored in this menu option.

4.8 System Settings


nis menu option allows the parameters to be set to 0.			
SEŁ			
545	Set Meter Readings contains sub-menu options		
1.7			

545 CUCF br-5 Frd	CT Phase 2 Direction Options: Forward, Reverse.
545 ENCE Ph-3 Frd	CT Phase 3 Direction Options: Forward, Reverse.
1000 7019 6822 285	Set Password Numeric: 0001-9999. 1000 (default)
5E E 8U E D 81 SP 5C P L	Enable Auto Display Scroll Options: ON, OFF.

4.9 Reset Settings

This menu option allows the parameters to be reset to 0.

5 Specifications

5.1 Measured Parameters

The unit can monitor and display the following parameters of a Single Phase Two Wire (1P2W), Three Phase Three Wire (3P3W) or Three Phase Four Wire (3P4W) system

5.1.1 Voltage and Current

- Phase to Neutral Voltages 100 to 276V AC (not for 3P3W supplies).
- Phase to Phase Voltages 174 to 480V AC (3 Phase supplies
- only). \bullet Percentage total Voltage Harmonic Distortion (U THD%) for
- each Phase to N (not for 3P3W supplies) Percentage Voltage THD% between Phases
- (3 Phase supplies only).
- Percentage total Current Harmonic Distortion (ITHD%) for each Phase

5.1.2 Power factor and Frequency and Max. Demand

• Frequency in Hz (45~66Hz)

- Instantaneous power: • Power 0 to 999MW
- Reactive power 0 to 999MVAr
- Volt-amps 0 to 999MVA
- · Maximum demanded power since last Demand reset Power factor
- Maximum neutral demand current, since the last Demand reset (for 3 Phase supplies only)

5.1.3 Energy Measurements

 Imported/Exported Active Energy 	0 to 9999999.9 kWh
• Imported/Exported Reactive Energy	0 to 9999999.9 kVAr
Total Active Energy	0 to 9999999.9 kWh
• Total Reactive Energy	0 to 9999999.9 kVAr

5.2 Measured Inputs

Voltage inputs through 4-way fixed connector with 2.5mm² stranded wire capacity. Single Phase Two Wire (1P2W), Three Phase Three Wire (3P3W) or Three Phase Four Wire (3P4W) unbalanced. Line frequency measured from L1 Voltage or L3 Voltage. Three Current inputs (six physical terminals) with 2.5mm² stranded wire capacity for connection of external CTs. Nominal rated input Current 5A or 1A AC RMS.

5 3 Accuracy

J.J Accuracy	
• Voltage (L-N / L-L)	0.5% of range maximum
• Current	0.5% of nominal
 Frequency 	0.2% of mid-frequency
Power Factor	1% of unity (0.01)
Active Power (W)	±1% of range maximum
• Reactive Power (VAr)	±1% of range maximum
Apparent Power (VA)	±1% of range maximum
Active Energy (Wh)	Class 1 IEC 62053-21 or Class 0.5 IEC 62053-22
 Reactive Energy (VArh) 	Class 2 IEC 62053-23
Total Harmonic Distortion	1% up to 63rd Harmonic

5.4 Auxiliary Supply

This unit does not require a separate auxiliary supply; the unit draws the necessary power from the voltage input connections. If a three phase supply is connected, and the phase that is powering the unit fails, it will change the phase supply to avoid shutting down.

5.5 Interfaces for External Monitoring

Three interfaces are provided:

- \bullet RS485 communication channel that can be programmed for Modbus RTU protocol
- Relay output indicating real-time measured energy. (configurable)
- Pulse output 3200imp/kWh (not configurable)

The Modbus configuration (baud rate etc.) and the pulse relay output assignments (kW/kVArh, import/export etc.) are configured through the set-up screens.

5.5.1 Pulsed Outputs

The pulsed outputs are "passive type" and comply with Class A IEC 62053-31. The pulse output can be set to generate pulses to represent kWh or kVArh.

The Pulse Rate can be set as follows: 0.001 = 1 pulse per 1 Wh/VArh (1000 pulses per kWh/kVArh)

= 1 pulse per 10 Wh/VArh (100 pulses per kWh/kVArh) = 1 pulse per 100 Wh/VArh (10 pulses per kWh/kVArh) 0.1

= 1 pulse per 1 kWh/kVArh

= 1 pulse per 10 kWh/kVArh = 1 pulse per 100 kWh/kVArh

= 1 pulse per 1000 kWh/kVArh

The Pulse width can we set as 200/100/60 mS.

5.5.2 RS485 Output for Modbus RTU

For Modbus RTU, the following RS485 communication parameters can be configured from the set-up menu:

Baud rate 2400, 4800, 9600, 19200, 38400

Parity none (default) / even / odd Stop bits 1 or 2

RS485 network address three digit number, 001 to 247

Response Time < 100mS

5.6 Reference Conditions of Influence Quantities

Influence Quantities are variables that affect measurement errors to a minor degree. Accuracy is verified under nominal value (within the specified tolerance) of these conditions.

• Ambient temperature 23°C ±1°C Input waveform 50 or 60Hz ±2% Sinusoidal (distortion · Input waveform factor < 0.005) Auxiliary supply voltage Nominal ±1% Nominal ±1% · Auxiliary supply frequency

Sinusoidal (distortion Auxiliary supply waveform (if AC) factor < 0.05)

Terrestrial flux

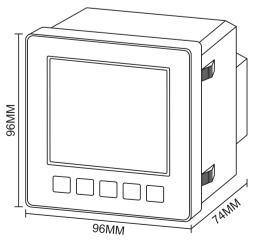
5.7 Environment

· Magnetic field of external origin

 Operating temperature 	-25°C to +55°C*
 Storage temperature 	-40°C to +70°C*
Relative humidity	0 to 95%, non-condensing
 Altitude 	<2000m
• Warm up time	1 minute
 Vibration 	10Hz to 50Hz, IEC

*Maximum operating and storage temperatures are in the context of typical daily and seasonal variation.

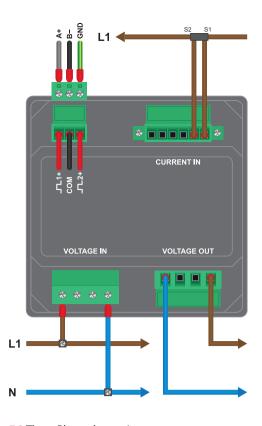
5.8 Mechanics

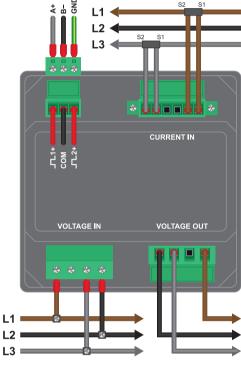

Pollution Degree

• Dimensions	96mm x 96mm x 74mm (W x H x D)
• Mounting	92mm² Panel Cutout
Sealing	IP52 indoor
	Self-extinguishing
 Material 	UL 94 V-0

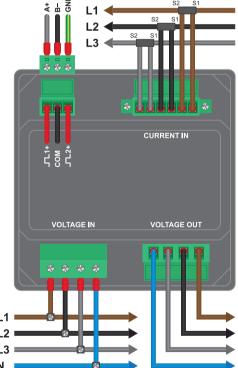
5.9 Declaration of Conformity

Poly Phase multifunction electrical energy meter "236-9299", corresponds to the production model described in the EC-type examination certificate and to the requirements or the Directive 2004/22/EC EC type examination certificate number 0120/SGS0586. Identification number of the NB 0120.


6 Dimensions


The panel meter fits in a 92mm x 92mm cutout

7 Installation


7.1 Single Phase two wires

7.2 Three Phase three wires

7.3 Three Phase four wires

Meaning of Symbols

Measuring Instruments Directive (MID 2014/32/EU).

FOR MORE INFORMATION VISIT THIS SITE http://www.rs-components.com/index.html

UK - Birchington Rd, Corby NN17 9RS EU - Mainzer Landstraße 180. 60327 Frankfurt/Main

The Information contained in these installation instructions is for use only by installers trained to make electrical power installations and is intended to describe the correct method of installation for this product. However, Company has no control over the field conditions which influence product installation.

It is the user's responsibility to determine the suitability of the installation method in the user's field conditions. Company only obligations are those in Company standard Conditions of Sale for this product and in on case will Company be liable for any other incidental, indirect or consequential damages arising from the use or misuse of the products.

FOR MORE INFORMATION VISIT THIS SITE http://www.rs-components.com/index.html

