	Installation \& Operating Instructions DIGITAL MULTIFUNCTION INSTRUMENT RS Pro 3line - 14 mm DISPLAY
Article codes	
136-5380	Digital Multi-Function Meter 3 Line Disp 3Ph, V A F, with Limit Relay/Switch opti

1. Introduction

The Rs pro 3 Line is a panel mounted $96 \times 96 \mathrm{~mm}$ DIN Quadratic Digital Panel Meter or the measurement of important electrical parameters like AC Voltage, AC Current, The instrument integrates accurate measurement technology (All Voltages \& current
measurements are True RMS upto 1 5th Harmonic) with 3 line 4 digits Ultra high bright measurements are True RMS upto 1 thh Harmonic) with 3 , 4 digits Ultra high brigh
ED display with Clearly visible Annunciated Units with bright LED from Back side.

Rs pro can be configured and Programmed

On site for the following: PT Primary, PT Secondary, CT Primary, CT Secondary (5A or 1 A) and System.
Type 3 phase $3 W$ or $4 W$ or single phase system.
The front panel has four push buttons for user interface to scroll throught the availiable p aramer eters. These four keys has function as follow
Display Selects \& Scrolls through Voltage parameter 2. A: Select phase Current Parameters Display.
3. $\boldsymbol{\Theta}$: Select \& Scrolls through Time parameters: 3. O : Select \& Scroils through time parameters:
On hr, Run Hr \&umber of Aux. Supply inerruptions.
Rotatiou per minute (RPM) Rotation per minute (RPM)
4. Sys: Select \& Scroll through System parameters : Voltage, Current, Frequency, max
nd min Values. Terspo3n
neabs pro 3 line come with 14 mm display and units annunciated from back side, which Annunciators is overcome with Rs pro 3Line.

In normal operation the user is presented with the measurement reading screens. Thes
screens may be scrolled through one at a time by pressing the " A " "eyy" for Currents, "V Key for Voltages, "" "key for RPM, , Run Hour, ON Nour, No. of Aux. interruptions and
"Sys" key torsys.

(For Single Phase only)

Screen 7 : Run Hours

Sreen .No. of interruptions

Screen 2: Volage Line to Line
(For 3P4Wire \& 3 P3 Wire only)

Screen 4 : Line Currents
For 3P3W and 3P4Wire only)

Screen 8 : ON Hours

Screen 10 : System Values

3. Programming The following sections comprise step by
Line for individual user requirements.
To access the set--up screens press and hold the " "C" and " " A " Keys Simultaneously.
This will take the User into the Password Entry Screen (Sectoon 3) 3.1. Password Protection

Password protection can be enabled to preven
by default password protection is not enabled.
by defaul password protection is not enabled.
Password protection is enabled by selecting a four digit number other than 0000 , setting
a password of oooo disables the password protection.

v A ©
Enter Password, prompt for first digit.
(* Denotes that decimal point will be flashing).
Press the "V" key to scroll the value of the first digit
from 0 thro from 0 through to 9 , the value will wrap from 9 round
to 0 . Press the "A key to advance to next digit. to 0 . Press the "A" key to advance to next digit.
In the special case where the Password is "0000" In the special case where the Password is "0000"
pressing the " A " key when prompted for the first digit
will advance to the "Password Confirmed" screen.

Enter Password, first digit entered, prompt for
second digit.
second digit.
(" Denotes th Use the "V" key to scroll the value of the second digit
from 0 through to 9 , the value will wrap from 9 round
to 0

Press the "A" key to advance to next digit.

Enter Password, second digit entered, prompt for
Third digit.

Third digit.
(* Denotes

Denotes that decimal point will be flashing).
Use the "V" key to scroll the value of the second digit
from 0 through to 9 , the value will wrap from 9 round to 0 .

Press the "A" key to advance to next digit.

Enter Password, third digit entered, prompt for
Fourth digit. Fourth digit.
(* Denotite th
(* Denotes that decimal point will be flashing).
Use the "V" key to scroll the value of the second digit
from 0 through to 9 , the value will wrap from 9 round

to 0 .

Press the "A" key to advance to

Enter Password, fourth digit entered, awaiting
verification of the password.

$\operatorname{cod} E$

0.0.0.0.

Password confirmed

Pressing """ key will advance to the "New / change
Password" entry sitage
Pressing the " A " key will advance to the me Selection screen. (See section 3.2).

Password Incorrect
The unit has not accepted the Password entered
Pressing the "V" key will return to the Enter Password
stage.
Pressing the "A" Up" key exits the Password menu and returns operation to the measurement reading
mode.

New / Change Password

(*Decimal point indicates that this will be flashing) Pressing the "V" key will scroll the value of the first Digit from 0 through to 9 , the value will wrap from 9

New / Change Password, first digit entered, prompting for second digit.
(*Decimal point indicates that this will be flashing). Pressing the "V" key will scroll the value of second
digit from 0 through to 9 , the value will wrap from 9 round to 0 .

Pressing the "A" key to advance the operation to the
Next digit and sets the first digit, in this case to " 5 "

New / Change Password, second digit entered,
prompting for third digiti. (decimal point indicates th Pressing the "V" key will scroll the value of the third
digit rom 0 through to 9 the value will wran from9 digit from 0 through to 9 , the value will wrap from 9
round to 0 . Pressing the " A " key to advance the operation to the
next ligit and sets the third digiti, in this case to " 6 ".

New / Change Password, third digit entered,
prompting for fourth digit. (\& denotes that decim prompting for fourth digit. ** denotes that decima
point will be flashing).

Pressing the " ${ }^{\text {a }}$ " key will scroll the value of the fourth digit from 0 through to 9 , the value will wrap from 9 round to 0.
Pressing the "A" key to advance the operation to the
"New Password Confirmed" and sets the fourth digit, "New Passwor " do."

New Password confirmed
Pressing the "V" key will return to the New/Change
Password".
Pressing the "A" key will advances to the Set up
screen. (see section 3.2).

This screen is used to edit and set the system type.
System type " 3 " for 3 phase 3 wire $\&^{4}$ " tor 3 phase System type " 3 " for 3 phase 3 wire $\&$ " 4 " for 3 phase
4 wire \& 1 for Single phase system. Pressing " "A" key accepts present value and
advances to the "Potential transformer Primary Val advances to
Editit menu.
Pressing "V" Key will enter the System type edit mode.

System Type Edit

This screen appears only if "V" key is pressed in This screen appea
previous Menu.
Pressing "V" scrolls through the values availiable.
Pressing "A" Key advances to the system type
Confirmation menu.

System Type Confirmation

This screen will only appear following the edit of system type.
pressing the "A" key set the displayed value as
system Type and will advance to "Potential system Type and will advance to "Potential
Transformer Primary Value Edit" menu. (See section
3.2.2)

3.2.2. Potential Transformer Primary Value

The nominal full scale voltage which will be displayed as the Line to Line voltage for all system types. This screen enables the user to display Line to Line and Line to neutral
Voltages inclusive of any PT ratios, the values displayed represent the voltage in kilovolts (Note ' K ' Annunciator).

Pressing the "A" "ey yaceepts the present value and
advances to to " "Curent Transformer Primary value advances to the "Current Transfor
Edit" menu. (See Section 3.2.3)

Pressing the "V" key will enter the "Potentia transformer Primary Value edit mode.
Initially the PT value must be selected pressing the "V" Key will move the decimal point position to the
right side Until it reaches \#\#\#\# after which it will

Pressing the "A" key accepts the present multipier (Decimal Point position) and
advances to the "Potential Transformer Primary Digit Edit" Screen. , Note : PT Values must be set as Line to Line Voltage for Primary as well as

Potential Transformer Primary Digit Edit
Pressing the "V" key will scroll the value of the most
significant digit trom 0 through to 9 unless the Significant digit from 0 through to 9 unless the
presently displayed Potential Transformer Primary presently displayed Potential Transformer Primary
value together with the Current Transformer Primary value eroviousty Set, wourd restlth in a marmerimum
power of greater than 1000 MV per phase in that power of greater than 1000 MVA per phase in
case the digit range will be Restricted.
Pressing the "A" key accepts the present value at the
cursor position and advances the cursor to the enext Lesss significant digit.
 -

Confirmation
This screen will only appear following an edit of the
Potential Transformer Primary Value.
f the set value is to be corrected, pressing the "V" key will return to the "Pootential Transformer Primary value Edit" stage with the digits flashing indicating
hat the Multipier (decimal point position) should be that the Mu
selected.
Pressing the " A " key sets the displayed value and will advance to the Current Transformer Primary Value.
(See section 3.2.3.).

3.2.3. Current Transformer Primary Value

he nominal Full Scale Current that will be displayed as the Line currents. This scree Enables the user to display the Line currents inclusive of any transformer ratios, the

displayed	pps.	$t-5$
$\left[t \rho_{r}\right.$	Pressing the "V" key will enter the "Current Transformer Primary Value Edit" mode.	110.
		$5 E t$
0×005	Pressing the "A" key will accept the present value	
	And Advances to the "Potential Transor	v A ® \%

Pressing "V" Key advances the Most Signiticant Digit
To scroll from 1 through 5 . Pressing "A" shifts the Decimal Position to right. When Value of least significant Digit is set, Pressing

of " A " key advances the screen to "PT secondary Set the secondary value as per following ranges for \begin{tabular}{l}
Input Voltage \quad PT Secondary

\hline

\hline $\begin{array}{c}\text { Input Voltage } \\
\text { Range (LL-L) }\end{array}$ \& $\begin{array}{c}\text { PT Secondary } \\
\text { Range to be set ((L-L) }\end{array}$

\hline $10-125 \mathrm{~L}$

\hline $126 \mathrm{~V}-250 \mathrm{~V}$ \& $102 \mathrm{~V}-125 \mathrm{~V}$

\hline

$126 \mathrm{~V}-250 \mathrm{~V}$ \& $126 \mathrm{~V}-250 \mathrm{~V}$

$251 \mathrm{~V}-500 \mathrm{~V}$ \& $251 \mathrm{~V}-500 \mathrm{~V}$

\hline
\end{tabular}

is screen will only appears following an edit of P econdary value
secondary value shown is not correct, pressing the
V" key will return to PT secondary edit stage.
Pressing "A" key sets the displayed value and will Pressing "A" key sets the displayed value and will
advance to CT Secondary Value Edit menu. (See section 3.2.5)
3.2.5. Current Transformer Secondary Value

When the least significant digit had been set pressing the "A" key will advance to the
When the least significant digit had been set, pressing the "A" key will advance to the
"Current Transformer Primary Value Confirmation" stage.
The minimum value allowed is 1 , the value will be forced to 1 if the display contains zero
 -
This screen will only appear following an edit of the Current Transformer Primary Value, when " " $"$ " key is
pressed after Setting value of least significant Digit. Pressing the "V" key will return back to CT primary
edit Menu.
Pressing the " A " key sets the displayed value and Pressing the A key sets the displayed value and
then avance et the epotential Iranstormer
Secondary Value Edit" menu. (See section 3.2.4).
3.2.4. Potential Transformer Secondary Value

$\begin{aligned} & \text { This screen is used to set the secondary value for } \\ & \text { Potential Transformer. Secondary value from } 100 \mathrm{~V}\end{aligned}$
$\begin{aligned} & \text { This screen is } \\ & \text { Potential Tran } \\ & \text { o 500VL-L. }\end{aligned}$
$\begin{aligned} & \text { Pressing } \mathrm{A} \text { " key accepts the present value and the } \\ & \text { advances to Current Transformer Secondary value }\end{aligned}$
$\begin{aligned} & \text { Pressing A key accepts the present value and the } \\ & \text { advances to Current Transformer Secondary value } \\ & \text { edit mode. }\end{aligned}$
$\begin{aligned} & \text { Pressing the "V" key will enter the PT secondary } \\ & \text { value edit mode. }\end{aligned}$
Denotes that Decimal Point will be flashing

Pressing "V" will scroll the parameters in sequence as Follow

1. All : To reset All parameters
2. Hi: To reset Max values,
3. Hr: To reset Run Hrs, On Hrs,
4. Int: To reset No. Of Interruptions,
5. Int: To reset No. Of Interruptions,
6. None : No to reset any of the Parameters,

Select the Correct parameter to Reset and then Press "A". This will enter to Reset
Parameter Confirmation Screen.

r $5 E t$	Confirmation of parameter for RESET
hr	between parameters as above
$5 E t$	Pressing "A" key will Reset the Selected Parameter
v A © จ	Then it will enter to auto scrolling or fixed s

3.2.7 Screen Auto scrolling / Fixed Screen selection

This menu allow to select scrolling or fixed Screen.

Auto Scrolling Edit
Pressing "A" enters confirmation of Fixed Screen.
Pressing of "V" enters to Edit menu

Fixed Screen / Auto Scrolling Edit.
Pressing of "V" Rolls between "Yes" and "No". Pressing "A" enters Auto scrolling / fixed screen
Select confirmation.

Ruto

 - © © 『

 Pressing "V" enter back to edit menu. Pressing "A"confirs the selection and enters Number of poles
selection selection menu.
3.2.8 No. of Poles Selection

This screen enables to Set No. of poles on a Generator of which RPM is to be mear and to which the instrument is connected to measure its output parameter Selection of No. of poles of the Generator

Pressing "V" enters into no. of pole edit menu
Pressing "A" key will set the displayed number as
No. of poles. Then it will come out of set Up menu. No. of poles. he poles edit

Pressing＂V＂scrolls the number from 02 to 40 in step of 2 ．After 40 it wraps to the number again 02 ． Pressing＂A＂enters into No．of poles Confirmation

No．of poles Confirmation
Pressing＂V＂enters back to No．of poles edit Menu． Pressing＂A＂sets the number on screen， 4
Case，as number of poles of generator ase，as number of poles of generato！ Then it will come out of set Up menu，and enter into
hormal operation mode．

3．2．9 Relay Limit Parameter selection（Optional）
This screen enables user to select Parameter for limit monitoring via a Relay

Selection of Parameter
Pressing＂A＂key selects the displayed parameter for Pressing＂V＂key enters Trip parameter edit screen．

Pressing＂V＂key scrolls the parameters one by one Pressing＂V＂key scrols the parameters one
as per table 2 ．
Selecting 00 （None）disables relay function． Pressing＂A＂selects the parameter and enters the Trip parameter confirmation screen．
In this case displayed number 10 will select VL1－L2
For relay monitoring as per table 2

$\begin{gathered} \text { Parameter } \\ \text { No. } \end{gathered}$	Measured Parameters	3P4W	3P	1P2W	Trip point Set range	$\begin{aligned} & 100 \% \\ & \text { Value } \end{aligned}$
00	None	\checkmark	x	\checkmark		
01	Voltage L1	\checkmark	x	\checkmark	10－120\％	Vnom（L－M）
02	Voltage L2	\checkmark	\times	x	10－120\％	Vnom（L－N）
03	Voltage L3	\checkmark	x	x	10－120\％	Vnom（L－N）
04	Current L1	\checkmark	\checkmark	\checkmark	10－120\％	Inom
05	Current L2	\checkmark	\checkmark	\times	10－120\％	Inom
06	Current L3	\checkmark	\checkmark	x	10－120\％	Inom
07	Frequency	\checkmark	\checkmark	\checkmark	10－100\％	$66 \mathrm{~Hz}^{(1)}$
10	Voltage VL1－L2	\checkmark	\checkmark	x	10－120\％	$\mathrm{Vn}(\mathrm{L}-\mathrm{L})$
11	Voltage VL2－L3	\checkmark	\checkmark	\times	10－120\％	$\mathrm{Vn}(\mathrm{L}-\mathrm{L})$
12	Voltage VL3－L1	\checkmark	\checkmark	x	10－120\％	$\mathrm{Vn}(\mathrm{L}-\mathrm{L})$
13	System Voltage	\checkmark	\checkmark		10－120\％	Vnom

[^0]Trip parameter confirmation screen．
This screen will appear only after parameter edit． Pressing＂V＂will re－enter the parameter selection menu

Pressing＂A＂wir set the parameter for relay trip and
then it will enter the trip point selection menu．
$\frac{1 t P r}{1 \tau}$
v A © จ จ

Trip point selection
This screen will not appear if parameter None（00）is Selected in previous menu
Pressing＂V＂key will enter trip point edit screen．
Pressing＂A＂key will set displayed value as trip poin
and exit set up

Trip point edit
denotes that the decimal point will be flashing．
The 100 s digit will scroll between 0 and 1,10 s digit will scroll from 1 to 9 if 100 s digitit is set to 0 ． If 100 s
to 2.

Thus，the
Table 2）．
Select the desired trip point as displayed percentage of Set range of the parameter Ater setting LSD，pressing＂A＂key enters trip point confirmation screen．

Trip point Confirmation
Pressing＂V＂re－enters the trip point edit screen．
Pressing＂A＂selects the set trip point and exits the set up menu entering measurement mode．
Note：Fixed hysterseis 5% of trip point：

4．Run Hours

To reset run hour count manually，see section Reset（3．2．6），

5．ON Hours

On－H
 0000
 00.38

v A © ๒
This screen shows the total no．of hours the Auxiliay supply is ON ．Even if the Auxiliary supply is
interrued cod count of interruped，count of ON hour will be maintaine internal memory \＆displayed in the format
＂Hours．min＂．For example，if displayed count Hours．min．For example，if ispolayed count is
014678.23 ，then it indicates 14678 hours and 23
minutes． minutes．

After 999999．59．
again from zero．
To reset ON hour count manually，see section Reset（3．2．6）．

6．Number of inerruptions

This screen displays the total no．Of times the auxiliary supply was inerrupted．Even if the auxiliary
Supply is interuped，the count will be maintained In internal memory

To reset No．of interruptions count manually，see section Reset（3．2．6）．

7．Installation

Mounting of Rs pro is featured with easy＂Clip－in＂mounting．Push the meter in panel
slot（size $92 \times 92 \mathrm{~mm}$ ）it will lick fit into panel with the four integral retention d dips sides of meter． If required Additional support is provided with swivel screws（optional）as shown in for

The front of the enclosure conforms to IP50．Additional protection to the panel may be
obtained by the use of an ootional panel gasket．The terminals at the rear of the produc obtained by the use of an optional panel gasket．The terminals at the rear of the produc
should be protected from liquids．

The Rs pro 3 Line should be mounted in a reasonably stable ambient temperature and where the operating temperature is wind the ranget 10.50° ．Vivaration should be kep to a minimum and the product should not be mounted where it will be subjected to
excessive direct sunlight．

Caution

1．In the interest of safety and functionality this pro
qualified engineer，abiding by any local regulations．
2．Voltages dangerous to human life are present at some of the terminal connections of this unitit Ensure that all supplies are de－energised before connections of this unit．Ensure that all supppite
attempting any connection or disconnection．
3．These products do not have internal fuses

7．1 EMC Installation Requirement

This product has been designed to meet the certification of the EU directives when －nstalied to a good code of practice for EMC in industrial envirionments，e．g． Screened output and low signal input leads or have provision for fiting RF suppression components，such as ferrite absorbers，line filters etc．，in the event that RF fields cause
problems．

Note：It it good practicic to instal sensitive electronic instruments that are performing critical functions．
in EMC enclossures that protect against electrical interference which could cause a a isturbance in

Avoid routing leads alongside cables and products that are，or could be，a source of interference．
To protect the product against permanent damage，surge transients must be limited to
2 kV pk．It is gro 2KV pk．It is good EMC practice to suppress dififerential surges to 2 kV at the source．The
unit has been designed to auto sutitealy unit has been designed to automatically l eocover in the event of a a inh leve of transients．
In extreme circumstances it may be necessary to temporariy disconnect the auxiliary supply for a period of greater than 5 seconds to restore correct operation．
The Current inputs of these products are designed for connection in to systems via Current Transformers only，where one side is grounded．

ESD precautions must be taken at all times when handling this product．

7．2 Case Dimension and Panel Cut Out

With optional Limit switch．

Panel Cutout

7．3 Wiring

Input connections are made directly to screw－type terminals with indirect wire pressure． regulations．Terminal for both Current and Voltage inputs will accept upto 4 mm （12AWG） solid or 2.5 mm （12AWG）standard cable

7．4 Auxiliary Supply

Rs pro 3 Line should ideally be powered from a dedicated supply，however
it may be powered firmm the signal source，provided the source remains within the limits
of the chosen auxiliary voltage range． 7．5 Fusing

It is recommended that all voltage lines are fitted with 1 amp HRC fuse．
7．6 Earth／Ground Connections
local regulations．

10. Specification	
System	
3 Phase 3 Wire / 4 Wire or Single Phase programmable at site	
Inputs	
Nominal Input Voltage (Three and four wire)	500 V L-L (290 V LN,)
System Primary Values	$100 \mathrm{VL-L}$ to 692 kVLL L, programmable at site
System Secondary Values	$100 \mathrm{VL-L}$ to $500 \mathrm{VL-L}$, programmable at site
Max continuous input voltage	120\% of Rated Value
Max short duration input voltage	$2 \times$ Rated Value (1s application repeated 10 times at 10 s intervals)
Nominal input voltage burden	0.3 VA approx. per phase
Nominal Input Current	$1 \mathrm{~A} / 5 \mathrm{AAC}$
Max continuous input current	120\% of Rated Value
Nominal input current burden	< 0.2 VA approx. per phase
Max short duration current input	$20 \times$ Rated Value (1s application repeated
System CT primary values	Std. Values 1 to 9999A (1 or 5 Amp secondary)
System Secondary Values	$1 \mathrm{~A} / 5 \mathrm{~A}$, programmable at site
Operating Measuring Ranges	
Voltage with external Aux.	10...120 \% of Rated Value
Voltage with Self Aux.	25... 120% of Rated Value
Current	10...120\% of Rated Value
Frequency	$45 . .65 \mathrm{~Hz}$
Auxiliary	
External Auxiliary Supply	40 V to 300V AC/DC (+ - 5%)
Self Powered	Input Voltage Range 70 V to 250 V L-N (Self Powered meter is available only in 3 Phase 4 W and Single phase network)
Frequency Range	45 to 65 Hz
VA Burden	3 VA Approx.
Accuracy	
Voltage	+1.0\% of range ($20 . . .100 \%$ of Rated Value)
Current	+1.0\% of range ($10 . . .100 \%$ of Rated Value)
Frequency	0.15% of mid frequency
Reference conditions for Accuracy	
Reference temperature	$23^{\circ} \mathrm{C}+2^{\circ} \mathrm{C}$
Input frequency	50 or $60 \mathrm{~Hz}+2 \%$
Input waveform	Sinusoidal (distorion factor 0.005)
Auxiliary supply voltage	Rated Value $+1 \%$
Auxiliary supply frequency	Rated Value $+1 \%$
Relay	
Settable parameters	as per table 2
Trip Point setting	10%... 120% of set Range of parameter (except frequency which is 10%... 100%)
Hysteresis	5% of trip point
Contact type	single pole $\mathrm{NO}+\mathrm{NC}$, volt free contacts
Contact rating	250V, 5A
Nominal range of use of influence quantities for measurands	
Voltage	$10 . .120 \%$ of Rated Value
Current	Rated Value + 10%
Input frequency	10.. 120 \% of Rated Value

Temperature Auxiliary supply voltage
Auxiliary supply frequency Auxiliary supply riequency
Temperature Coeficient (For Rated value range of use $0 . . .50^{\circ} \mathrm{C}$)
Error change duu
Error change due to variation
of an influence quantity
Display
LED Display
LED Annunciation of units
Update rate
Update rate Controls
User Interfac User Interfac Standards
EMC Immunity

$$
\begin{aligned}
& \text { Safety } \\
& \text { IP for water \& dust }
\end{aligned}
$$ Isolation Dielation

Diectric voltage withstands
test between test between circuits and
accessible surfaces accessible surfaces Environmental conditions
Operating temperature Operating temperature
Storage temperature Storage temperature
Relative humidity Relative humidi
Warm up time
Shock Shock
Vibration Vibration
Enclosure front Enclosure front
Enclosure back Enclosure Style
Material
Terminals Terminals
Depth Weight

Ordering Code

Article No : 136-5380

RS Pro 3 Line display Volts, Amp Frequency and Hours Run, $96 \times 96 \mathrm{~mm} 3$ Phase $3 / 4 \mathrm{~W}$ programmable onsite,
AC VAF meter, 14 mm display,
Input. $100-500 \mathrm{LLL}$,
Input. 1 or 5 Amps
Input. 1 or 5 Amps AC,
Supply voltage. $40-300 \mathrm{VACIDC}$ auxiliary (Programmable CT/PT primary and secondary Supply voltage. 40-300v ACIDC aux
values with Limit Switch/Relay O/P)

 Company be liad
the procucus.

FOR MORE INFORMATION VISIT THIS SITE
http://www.rs-components.com/index.html

[^0]: Nomina value is to be considereed with set CT／PT Primary values．

