R5

 Every part mattersInstallation \& Operating Instructions ogrammable Multi-function Digital Panel Meter Article codes
Article codes Digital Multi-Function Meter, 96x96, 3Ph, V A F \& P 66-5382 Digital Multi-Function Meter, 96×96, 3Ph, VA A table Digital Multi-Function Meter, 9
tABLE 1:

Measured Parameters	Units of measurement
System Voltage	Volts
System Current	Amps
Frequency	Hz
Voltage L1-N(4wire only)	Volts
Voltage L2-N(4wire only)	Volts
Voltage L3-N(4wire only)	Volts
Voltage L1-L2	Volts
Voltage L2-L3	Volts
Voltage L3-L1	Volts
Current L1	Amps
Current L2	Amps
Current L3	Amps
System Active PowerkW)	kw
Active Power L1	kw
Active Power L2	kW
Active Power L3	kW
System reactive Power(KVAR)	KVAr
Reactive Power L1 (KVAR)	KVAr
Reactive Power L2 (KVAR)	KVAr
Reactive Power L3 KVAr	KVAr
System Apparent Power (KVA)	KVA
Apparent Power L1 (KVA)	KVA
Apparent Power L2 (KVA)	KVA
Apparent Power L3 (KVA)	KVA
System phase angle	Deg
Phase angle L1	Deg
Phase angle L2	Deg
Phase angle L3	Deg
System power factor	
Power factor L1 Power factor L2	-
Power factor L2	-
Power factor L3	
RPM	RPM
Max. Value System Voltage	
Max. Value System Current	A
Min. Value System Voltage	V
Min. Value System Current	A
Run Hours	Hrs
ON Hours No. of Auxiliary Interruptions	Hrs
No. of Auxiliary Interruptions	Counts

1. INTRODUCTION

The RS Pro is a panel mounted $96 \times 96 \mathrm{~mm}$ DIN Quadratic Digital Panel Meter, which
measures important electrical parameters in 3 ph 4 wire $/ 3$ wire $/ 1$ ph Network and measures important electrical parameters in 3 ph 4 wire $/ 3$ wire / 1 ph Network and eolaces the multiple analog yanel meterst. It measures electrical parameters ike AC many more.
The instrument integrates accurate measurement technology (All Voltages \& current
measurements are True RMS upto 15 th Harmonic) with 3 line 4 digits \mathbf{l} litr high bright measurements are True RMS upto 15 th Harmonic) with 3 line 4 digits Ulitra high brigh
LED display with Clearly visible Annunciated units with bright LED from Back side.

239.4 239.7
 239.7

- © ©

He RS Pro can be configured and Programmed on site
for the following : PT Primary, PT Secondary, CT Primary
for the following : PT Primary, PT Secondary, CT Primary
CT Secondary (5A or 1 A) and System Type 3 phase 3W
or 4W or single phase system.
The front pane has four push buttons for
scroll through the availible parameters.
These four keys has function as follow,

1. V: Selects \& Scrolls through Voltage parameters

3 P. Sele
3. P: Select \& Scrolls phase \& system Power parameters
:Active power, apparent power, reactive power, phase angle, power factor, then system Apparent Reactive, Active Power, Phase angle, Power factor and Back to Phase active power.
4. Sys : Select \& Scroll through System parameters:

Voltage-Current-Frequency, Hi values of system voltage and current, min values of
oystem Voltage and current. RPM, run Hour. ON hour and no. of interruptions and back System
Voltage-Current Frequency screen
he RS Pro come with 14 mm display and units annunciated from back side, whic annunciators is overcome with the RS Pro.
 reactive \& Active powers, "Sys" key for System Voltage-Current-Frequency, max. and
min Values of system Voltage and Current. RPM. Run hours, O. Nours, No. of Aux min. Values of s
interruptions.
a. "V" Key:

Screen 2: Phase Apparent pa
(For 3Phase 4 wire only)

d. "Sys" Key: Scroen 1: System Values
(Votage, Curent, Frequency)

2245
0.236
10^{-}
v A P พ
Screen 5 : Run Hours

v A P จ

Screen 7 : No. of interruptions

3. Programming

The following sections comp
individual user requirements
. This will take the User into the Password Entry Screen (Section 3.1) 3.1. Password Protection

Password protection can be enabled to prevent unauthorized access to set-up screens,
by default password protection is not enabled. by default password protection is not enabled.
Password protection is enabled by selecting a four digit number other than 0000 , setting
a password of oooo disables the password protection.

Enter Password, prompt for first dig (* Des
decimal soint will be feflast for fix
Press the " "" key to scroll the value of the first digit
from 0 through to 9 , the value will wrap tom 0.

Press the "A" key to advance to next digit.
In the special case where the Password is "0000"
pressing the " A " key when prompted for the first digit pressing the "A" key when prompted for the first digit
will advance to the "Password Confirmed" screen.

Enter Password, first digit entered. prompt for second
digit. (* (enonotes that decimal point will be flashing). Use the "V" key to scroll the valwe of the second dies Use the "V" key to scroll the value of the second digit
from 0 through to 9 , the value will wrap from 9 round to

Press the "A" key to advance to next digit.

Enter Password, second digit entered, prompt for Third
(^Denotes that decimal point will be flashing). Use the "V" key to scroll the value of the third digit from
through to to the value will wrap from 9 round to 0 .
Press the "A" key to advance to next digit.

Enter Password, third digit entered, prompt for Fourth
digit. ${ }^{*}$ Denotes that decimal point will be flashing). Use "the "V" key to scroll the value of the fourt digit from
0 through to 9 , the value will wrap from 9 round to 0 . Press the "A" key to advance to next digi

Enter Password, fourth digit entered, awaiting verificatio
of the passwword. of he password.
Pressing "A" key accepts the value of fourth digit and enters into password confirmation screen.

Password confirmation

Pressing "V" key will advance to the "New / change
Password" entry stage. Password" entry stage.
Pressing the "A" key will advance to the menu
Selection screen. (See section 3.2).

v © $\boldsymbol{\square}$ จ
Password Incorrect
The unit has not accepted the Password entered. Pressing the "V" key will return to the Enter Password
stage. Pressing the "A" key exits the Password menu and
returns operation to the measurement reading mode.

New / Change Password
New $/$ Change Password
$\left({ }^{*}\right.$ indicates that this decimal point will be flashing). Pressing the "V" key will scroll the value of the first Digit
from 0 through to 9 , the value will wrap from 9 round to 0 Pressing the " " " key to advance the operation to the Next
digit and sets the second digit, in this case " 6 "

New / Change Password, first digitit entered, prompting for
second digit. (*' indicates that this decimal point will be flashing).
Pressing the "V" key will scroll the value of second digit
from 0 through to 9 , the value will wrap from 9 round to 0 , Pressing the "A" key to advance the operation to the Nex
digit and sets the second digit, in this case 6 "
$\operatorname{cod} E$
0.0.0.0.

55 -*

New / Change Password, second digit entered, prompting
for third digit. (${ }^{\text {in }}$ indicates that this decimal Point will be for third digitit.
flashing).
Pressing the "V" key will scroll the value of the third digit Pressing the "V" key will scroll the value of the third digit
from 0 through to 9 , the value will wrap from 9 round to 0 . Pressing the " A " "ey to advance the operation to the nex
digit and sets the third digit, in this case " 7 ".

3.2 Set Up Screens

3.2.1. System Type

This screen is used to edit and set the system type.
System type " 3 " for 3 er System type " 3 " for 3 phase 3 wire $\&$ " 4 " for 3 phase 4 wire
$\& 1$ for Single phase system.
Pressing "A" key acceets present value and advances to
the "Potential transformer Primary Value Editi" menu.
the "Potential transfo
(See section 3.2.2)
Pressing "V" Key will enter the System type edit mode.

System Type Edit
This screen appears only if "V" key is pressed in previous
Menu.
Pressing "V" scrolls through the values available. Pressing "A" Key advances to the system type
Confirmation menu.

System Type Confirmation
This screen will only appear following the edit of system type.
Pressing the "A" key set the displayed value as system
Type and will advance to "Potential Transformer Primary Type and will advance to "Potential Transformer Primary
Value Edit" menu. (See section 3.2.2)
v A \boldsymbol{P} 『

3.2.2. Potential Transformer Primary Value

The nominal full scale voltage which will be set \& displayed as the Line to Line voltage
for all system types. This screen enables the user to display Line to Line and Line to for all system types. This screen enables the user to display Line to Line and Line to
neutral Voltages inclusive of any PT ratios, the values displayed represent the voltage in neutral Voltages inclusive of any
kilovolts (Note 'K'Annunciator).

Pressing the "A" key accepts the present value and
advances to the " "urrent Transformer Primary value Edi"
menu. (See Section 3.2 .3)
Pressing the "V" key will enter the "Potential transforme
Primary Value edit mode. Primary Value edit mode.
Initially the multipier must be selected. pressing the "V"
Key will move the decimal point position to the right side Key will move the decimal point position to the right side
Until it reaches \#\#\#, \#fter which it will return to $\#$.\#\#\# Pressing the "A" " key accepts the present multiplier
(Decimal Point position) and advances to the "Potential (Decimal Point position) and advances to the "Potential
Transformer Primary Digit Edit" Screen.

Transformer Primary Digit Edit Pressing the "V" key will scroll the value of the most
 displayed Potential Transformer Primary value together
with the Current Transformer Primary value previously Set with the Current Transtormer Primary value previously Set.
would result tin a maximum power of geaeter hhan 1000
MVA per hase in that case the digit range will be
Restricted.

Pressing the "A" key accepts the present value at the cursor position and advances the cursort to the next Les
significant digit.

$-\rho \in \rho_{r}$ -11.00 $-5 E t$

SEt
Potential Transformer Primary Value Confirmatio This screen will only appear following an edit of the
Potential Transformer Primary Value. If the set value is to be corrected, pressing the "V" key wiil return
stage
Pressing the "A" key sets the displayed value and will
advance to the advance to the Current Transtormer Primary Value
Selection (See section 3 .
3.2.3. Current Transformer Primary Value

The nominal Full Scale Current that will be displayed as the Line currents. This screen enables the user to display the nominal Line currents inclusive of any transformer ratio
the values displayed represent the Current in Amps.

LtPr
 0.005

v A $\boldsymbol{\square}$
Pressing the "V" key will enter the "Current Transformer
Primary Value Edit" mode. Pressing the "A" key will acceppt the present value And
Advances to the "Potential Transformer Secondary Value edit screen (See section 3.2.4)

Current Transformer Ratio Edit
Pressing " "V" key will advance the Most Significant Digit
from 0 through to 9 , unless the Current Transformer Primary Value together with the Potential Transformer Primary Value results in a maximum power of greater than
1000 MVA in which case the digit range will be restricted Example: If primary value of PT is set as 692.8 kVLLL (max
value) then primary value of Current is restricted to 1736 A . Pressing the "A" key will advance to the next least
significant digit. (" Denotes that decimal point will be
ffiashing).
The "Maximum Power" restriction of 1000 MVA refers to 120% of nominal current
and 120% of nominal voltage, i.e, 694.4 NVA nominal power per phase. When the least significant digiti is set, pressing the "A" key will advance to the "Current
Transformer Primary Value Confirmation" stage. Transtormer Primary Value Confirmation" stage.
The minimum value allowed is 1 , the value will be forced to 1 if the display contains zero

Curn Transormer Primary Value Confirmation.
This screen will only appear following an edit of the
Current Transformer Primary Value when $A \mathrm{~A}$ " "e is Current Transtormer Primary Value, when "A" key is
pressed atter Setting the value of least significant Digit. Pressing the "V" key will return back to CT primary edit Menu Pressing the "A" key sets the displayed value and then
advance to the "Potential Transformer Secondary Value
Edit" menu. (See section 3.2.4)

3.2.4. Potential Transformer Secondary Value

v (1) P *

This screen is used to set the secondary value for Potential Transtormer. Secondary value is set from 100 V -
L Pressing $A^{"}$ key accepts the present value and then
advances to Current Transformer Secondary value edit menu (section 3.2 .5).
Pressing the "v" key will enter the PT secondary value edin
mode. ${ }^{*}$ Denotes that Decimal Point will be flashing.

v © $\boldsymbol{\square}$ ึ

Potential Transformer secondary value Edr Pressing "V" Key advances the Most Significant Digit To
scroll from 1 through 5 . Pressing " A " shifts the Decimal Position to right.
When Value of least significant Digitit s set, Pressing of " 4 key advances the scre
Confirmation" Screen.

PT Secondary value confirmation
This screen will only appears following an edit of PT
secondary value
secondary value
If secondary value shown is to be corrected, pressing "V
key will return back to PT secondary edit stage.
Pressing "A" key sets the displayed val
Pressing "A" key sets the displayed value and will advance
to CT Secondary Value menu. (See section 3.2 .5)
3.2.5. Current Transformer Secondary Value

This screen is used to set Current Transformer Secondary The po
Value.
Pressing "A" key Accepts present Value and advances to
RESET menu (section 3.2.6).
RESET menu (section 3.2.6).
Pressing "V" key will enter the CT Secondary Edit menu.

v P จ
3.2.6. Resets

The following screens allow user to reset the run hrs, ON hrs, No. of Interruptions Min
and Max. Values of Voltage and Currentindividually and all together

Pressing the "V" key will enter the Reset edit mode.
Pressing the "A" key will Reset None and enter to Screen
Auto or fixed selection menu.

Edit the Reset of Parameters

Pressi
Follow

1. All : To reset All parameters

2. Hr: To reset Run Hrse, On Hrs
3. $\mathrm{In}:$ To reset No. OIt Ineruptions
4. None: Not to reset any of the
5. Int: To reset No. Of Interruptions
6. None : Not to reset any of the Parameters.

Select the desired parameter to Reset and then Press "A"
v A P 5
Confirmation of parameter for RESET
Pressing "V" will enter reset edit menu back and scroll
between parameters as above. between parameters as above.
Pressing "A" key will Reset the Selected Parameter. In this case hour parameters will get reset. Then it will enter
auto scroling or fixed screen selection parameter.
3.2.7 Screen Auto scrolling / Fixed Screen selection
This menu allows user to select scrolling of parameters of fixed parameters Screen.

Auto Scrolling Edit
Pressing "A" selects the present selection and enters no.
of poles selection menu (section 3.2 .8 .
Pressing of "V" enters to Edit menu

3.2.8 No. of Poles Selection

This screen enables to Set No. of poles of a Generator of which RPM is to be measure This screen enables to Set No. of poles of a Generator of which RPM
and to which the instrument is connected to monitor its parameters.

Selection of No. of poles of the Generator
Pressing "V" enters into no. of poles edit menu
Pressing "A" key will set the displayed number as No. of
poles and enter into Relay linit parameter selection menu poles and enter
(section 3.2.9).

POLE

04

v A P 刃

POLE 04

v A P

No. of poles edit
Pressing "V" scrolls the number from 02 to 40 in step of 2 .
After 40 it scrolls the number again to 02 .
Pressing "A" enters into No. of poles Confirmation Screen.

No. of poles Confirmation
Pressing "V" enters back to No. of poles edit Menu. Pressing "A" sets the number on screen, 4 in this Case, as
number of poles of generator. Then it will enter into Relay number of poles of generator. Then it will enter into Relay
limit parameter selection menu, and enter (section 3.2.9).
3.2.10 Relay Limit Parameter selection (Optional)

8.2 Case Dimension and Panel Cut Out

8.4 Auxiliary Supply

RS Pro should ideally be powered from a dedicated supply, however powered from the signal source, provided
auxiliary voltage range.

8.5 Fusing

It is recommended that all voltage lines are fitted with 1 amp HRC fuse

8.6 Earth/Ground Connections

For safety reasons, CT secondary connections should be grounded in accordance with 9 Connection Diagram

10. Optional Pluggable Module

Optional Limit Switch pluggable module.

12. Limit Switch

Limit switch can be used to monitor the measured parameter (Ref. Table 2) in relation with to a set lim The lilit switch can be configured for Hi ialro \& Relay Energized Relay with user
selectable Trip point, Hysteresis, Energizing Delay \& Deenergizing delay Trip point: Trip point can be set in the range as specified in table 2 of nominal value for Trip point: Trip point can be set in the range as specified in table 2 of nominal value for
Hi-Alarm. Hysteresis: Hysteresis can be set in the range of 10% to 50% of set trip point. If Hoalarm Energized or Hi-alarm De-energized is selected then relay will get De-energized or
Energized respectively, if set parameter value is less than Hysteresis
Energizing Delay: The energizing delay can be set in the range from 1 to 10 sec. De-Energizing Delay: The De-energizing delay can be set in the range from 1 to 10 sec.

Kxam ple of Limit Switch configuration.

Parameter No: 4 (Current 1)
Nip Point $=50 \%$
Nysteresis $=50 \%$ of trip point
Energising Delay: 2s
Ae-energising Delay: 2 s

[^0]Auxiliary Supply
Auxiliary Supply
Auxiliary Supply
DC Auxiliary Supply rated value (Self Powered meter is
only
innuti 3 Phases 4W and 1 phasen entwo
Fret
is drom L1 phase)

VA Burden
DC Burden
DC Burden
Operating Measuring Ranges
Operating Measuring Ranges
Voltage with external Aux. Voltage with external Aux
Voltage with Self Aux.
Corlage
Crent
Frequency
Reference conditions for Accura
Reference temperature
Reference tempe
Input requency
Input waveform
Input waveform
Auxiliary supply voltage
Auxiliary suply fequen
Auxiliary supply frequency
Power factor
Power factor
Accurac
Voltage
Voltage
Current
Frecuency
Active power
Active power
Reactive power
Reactive power
Apparent Power
Power factor
Power factor
Phase angle
Relay
Settable parameters
Trip Point setting Hypsteresis Relay energizing delay
Relay de-energizing delay Contact type
Contact rating
Influence of variat
Temperature Coefificient $\begin{array}{ll}\begin{array}{l}\text { Temperature coeficient } \\ \text { (For Rateev value range of use } \\ 0 . .55^{\circ} \mathrm{C}\end{array} & \begin{array}{l}0.05 \% / \mathrm{C} \text { for Current }(10.120 \% \text { of Rated Value) } \\ 00.025 \% / \mathrm{C} \text { for Voltage (} 10 . .120 \% \text { of Rated Value) }\end{array} \\ \end{array}$ Error change due to variation of an $2 *$ Error allowed for the reference
influence quantity
Display
LED
Annunciation of units
Update rate
Controls
User Interface
Standards
EMC Immunity
EMC Emmision
Safety
IP for water \& dust
Safety
Pollution de
Pollution degree
Installation category
Isolation
Isolation
Dielectric voltage withstands
test between circuits and Environmental conditions
Operating temperature
$\begin{array}{ll}\text { Operating temperature } & 0 \text { to } 50^{\circ} \mathrm{C} \\ \text { Storage temperature } & 250^{\circ}\end{array}$ Warm up time
Shock

Enclosure front
Enclosure front with seal (optional)
4V to 300V AC/DC (+1- 5% $12 \mathrm{~V}-48 \mathrm{~V}$ DC
availagle Range from 80% to 100% of

45 to 65 Hz
3 VA Approx
10 ... 120% of Rated Value
$80 . . .120 \%$ of Rated Value
$10 . . .120 \%$ of Rated Value
$45 . .65 \mathrm{~Hz}$
${ }^{23^{\circ}} \mathrm{C}+2^{\circ} \mathrm{C}$
Sinusoidal (distortion factor 0.005)
Sinusoidal
Rated Value $+1 \%$
Rated Value $+1 \%$
Rated Value $+1 \%$
$\cos \phi=1$ tor active power
$\sin \delta=1$ for reactive power
$+1.0 \%$ of range ($20 \ldots 100 \%$ of Nominal Value)
$+1.0 \%$ of range ($10 . .100 \%$ of Nominal Value)
$+0.5 \%$ of mid frequency 0.5% of mid frequency
$+1.0 \%$ of range ($10 . . .100 \%$ of Nominal Value)
$+1.0 \%$ of range ($10 . . .100 \%$ of Nominal Valu) $+1.0 \%$ of range ($10 \ldots 10 . .100 \%$ of Nominal Nalue) Value)
$+2.0 \%$ of unity (50 $+2.0 \%$ of ungity ($50 \ldots 100 \%$ of Nominal Value)
$+2.0 \%$ of range $(50 \ldots 100 \%$ of Nominal Value)

as per table 2

as per table 2
an sert table 2
10% to 50% of trip point, settable
1 to 0 Osec, settable
1 to 1 osec, settable
single pole NO $+N \mathrm{NC}$, volt free contacts
$250 \mathrm{~V}, 5 \mathrm{~A}$
2^{*} Error allowed for the reference
3 line 4 digits, Display height: 14 mm
right LED s from Back side of screen Approx. 1 seconds

4 Keys
IEC $61326-1: 2005$
IEC $61326-1: 2005$
IEC
IEC 61010-1-2001, permanently connected use

III
3.3 kV RMS 50 Hz for 1 minute Between all electrical circuits
... 90 \% RH (Non condensing)
3 minute (minimum)
15 g in 3 planes
15 g in 3 planes
10 .. $55 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ amplitude

IP 50
IP 65

IP 20
$96 m m \times 96 m$ DIN 43718
${ }_{55}^{92 \cdot 0.8 \mathrm{~mm}} \times{ }^{92^{2 \cdot 0.8}} \mathrm{~mm}$

Article codes
RS Pro 3 Line display Volts, Amp Frequency and Power, $96 x 96 \mathrm{~mm}$, 3 Phase $3 / 4 \mathrm{~W}$ AC VAF + Power meter, 14 mm display,
AC VAF + Power m
Inut. 1 or 5 Amps AC ,
Supply Voltage. $40-300 \mathrm{~V}$ AC/DC auxiliary (Programmable CT/PT primary and secondary
values)
Article No: $136-5382$ Velts, Amp Frequency and Power, $96 \times 96 \mathrm{~mm}, 3$ Phase $3 / 4 \mathrm{~W}$
programmable onsite,
AC VAF + Power meter, 14 mm display.
AC VAF + Power
Input. $100-500 \mathrm{VLL}$,
Input. 1 or 5 Amps AC,
Supply Voltage. $40-300 \mathrm{~V}$ AC/DC auxiliary (Programmable CT/PT primary and secondary
values with Limit Switch/Relay O/P)
14. Connection for Optional Relay Output / RS 485
(rear view of RS Pro) :
$\circ \circ$

 Company has no control verer the fied donditions whicic infuence product instalation.

FOR MORE INFORMATION VISIT THIS SITE http://www.rs-components.com/index.html

[^0]: ## 13. Specifications

 System
 3 Phase 3
 Inputs
 Innuts
 Nominal Input Voltage
 System System PT Primary Values Max continuous input voltage Nominal input voltage burde Nominal Input Current Max continuous input current
 Nominal input current burden Nominal input current burde
 System CT primary values System Secondary Values Overload withstand Voltage input

 Current input
 accessible surfaces

 Shock
 Vibration
 Vibation
 Enclosure
 Enclosure front
 Enclosure back
 Dimensions
 Bezel Size
 Panel cut out
 Panel cut out
 Overall Depth
 $2 \times$ Rated Value

 $20 \times$ Rated Value (1s application repeated
 5 times at 5 min. intervals)
 times at 5 min. intervals)
 500 VL.L (290VL.N) AC RMS
 $100 \mathrm{~V}_{\text {L. }}$ to 692 kV L., programmable at site $100 \mathrm{~V}_{\mathrm{L} . \mathrm{L}}$ to 500 V L.L, programmable at site
 0.3VA approx. per Phase (for ext. Aux. Meter) 5AAC RMs
 5AAC RMS
 120% of Rated Value
 <td. Values 1 to per phas (1 or 5 Amp secondary)
 tod. Values 1 to 9999 A (1 or 5 Amp secondary)

 帾

