## Product data sheet

Characteristics

## ATV212HD30N4

variable speed drive ATV212-30kW - 40hp -
480V - 3ph - EMC - IP21


| Main |  |
| :--- | :--- |
| Device short name | ATV212 |
| Product destination | Asynchronous motors |
| Network number of <br> phases | 3 phases |
| Motor power kW | 30 kW |
| Motor power hp | 40 hp |
| Supply voltage limits | $323 \ldots 528 \mathrm{~V}$ |
| Supply frequency | $50 \ldots 60 \mathrm{~Hz}-5 \ldots 5 \%$ |
| Line current | 44.7 A at 480 V |
| Range of product | 56.7 A at 380 V |
| Product or component | Variable speed drive |
| type | Pumps and fans in HVAC |
| Product specific | APOGEE FLN |
| application Modbus <br> Communication port BACnet <br> protocol METASYS N2 <br>  LonWorks <br> [Us] rated supply $380 \ldots 480 \mathrm{~V}-15 \ldots 10 \%$ <br> voltage Class C2 EMC filter integrated <br> EMC filter IP21 <br> IP degree of protection  |  |


| Complementary |  |
| :---: | :---: |
| Apparent power | 44.6 kVA at 380 V |
| Continuous output current | 58.5 A at 380 V 58.5 A at 460 V |
| Maximum transient current | 64.4 A for 60 s |
| Speed drive output frequency | $0.5 \ldots . .200 \mathrm{~Hz}$ |
| Speed range | 1... 10 |
| Speed accuracy | +/- 10 \% of nominal slip 0.2 Tn to Tn |
| Local signalling | 1 LED (red) for DC bus energized |
| Output voltage | <= power supply voltage |
| Isolation | Electrical between power and control |
| Type of cable | Without mounting kit: 1 wire(s)IEC cable at $45^{\circ} \mathrm{C}$, copper $90^{\circ} \mathrm{C} / \mathrm{XLPE} / E P R$ Without mounting kit: 1 wire(s)lIEC cable at $45^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C} / \mathrm{PVC}$ With UL Type 1 kit: 3 wire(s)UL 508 cable at $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C} / \mathrm{PVC}$ |
| Electrical connection | VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES: terminal $2.5 \mathrm{~mm}^{2} /$ AWG 14 L1/R, L2/S, L3/T: terminal $50 \mathrm{~mm}^{2}$ / AWG 1/0 |
| Tightening torque | 0.6 N.M (VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES) 24 N.m, $212 \mathrm{lb} . \mathrm{in}$ (L1/R, L2/S, L3/T) |
| Supply | Internal supply for reference potentiometer ( 1 to 10 kOhm ): $10.5 \mathrm{~V} \mathrm{DC} \mathrm{+/-5} \mathrm{\%}$, <10 A, protection type: overload and short-circuit protection Internal supply: 24 V DC $(21 \ldots 27 \mathrm{~V}),<200 \mathrm{~A}$, protection type: overload and shortcircuit protection |
| Sampling duration | $2 \mathrm{Ms}+/-0.5 \mathrm{~ms}$ F discrete <br> $2 \mathrm{Ms}+/-0.5 \mathrm{~ms}$ R discrete <br> $2 \mathrm{Ms}+/-0.5 \mathrm{~ms}$ RES discrete <br> $3.5 \mathrm{Ms}+/-0.5 \mathrm{~ms}$ VIA analog <br> $22 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIB analog |


| Response time | FM 2 ms , tolerance $+/-0.5 \mathrm{~ms}$ for analog output(s) FLA, FLC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) FLB, FLC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) RY, RC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) |
| :---: | :---: |
| Accuracy | $+/-0.6 \%$ (VIA) for a temperature variation $60^{\circ} \mathrm{C}$ <br> $+/-0.6 \%$ (VIB) for a temperature variation $60^{\circ} \mathrm{C}$ <br> $+/-1 \%$ (FM) for a temperature variation $60^{\circ} \mathrm{C}$ |
| Linearity error | VIA: +/- $0.15 \%$ of maximum value for input VIB: +/- $0.15 \%$ of maximum value for input FM: +/- 0.2 \% for output |
| Analogue output type | FM switch-configurable voltage $0 . . .10 \mathrm{~V}$ DC, impedance: 7620 Ohm , resolution 10 bits FM switch-configurable current $0 . . .20 \mathrm{~mA}$, impedance: 970 Ohm, resolution 10 bits |
| Discrete output type | Configurable relay logic: (FLA, FLC) NO - 100000 cycles Configurable relay logic: (FLB, FLC) NC - 100000 cycles Configurable relay logic: (RY, RC) NO - 100000 cycles |
| Minimum switching current | 3 mA at 24 V DC for configurable relay logic |
| Maximum switching current | 5 A at 250 V AC on resistive load $-\cos \mathrm{phi}=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$ 5 A at 30 V D on resistive load $-\cos \mathrm{phi}=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$ 2 A at 250 VAC on inductive load $-\cos \mathrm{phi}=0.4-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$ 2 A at 30 V DC on inductive load $-\cos \mathrm{phi}=0.4-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$ |
| Discrete input type | F programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm R programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm RES programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm |
| Discrete input logic | $\begin{aligned} & \text { Positive logic (source) (F, R, RES), <=5 V (state 0), >=11 V (state 1) } \\ & \text { Negative logic (sink) (F, R, RES), }>=16 \mathrm{~V} \text { (state 0), }<=10 \mathrm{~V} \text { (state 1) } \end{aligned}$ |
| Dielectric strength | 3535 V DC between earth and power terminals 5092 V DC between control and power terminals |
| Insulation resistance | >= 1 mOhm 500 V DC for 1 minute |
| Frequency resolution | Display unit: 0.1 Hz <br> Analog input: $0.024 / 50 \mathrm{~Hz}$ |
| Communication service | Read device identification (43) <br> Monitoring inhibitable <br> Time out setting from 0.1 to 100 s <br> Read holding registers (03) 2 words maximum <br> Write single register (06) <br> Write multiple registers (16) 2 words maximum |
| Option card | Communication card for LonWorks |
| Power dissipation in W | 847 W |
| Air flow | $290 \mathrm{~m} 3 / \mathrm{h}$ |
| Functionality | Mid |
| Specific application | HVAC |
| Variable speed drive application selection | Building - HVAC compressor for scroll Building - HVAC fan Building - HVAC pump |
| Motor power range AC-3 | $30 \ldots 50 \mathrm{KW}$ at $380 \ldots 440 \mathrm{~V} 3$ phases $30 \ldots 50 \mathrm{~kW}$ at $480 \ldots 500 \mathrm{~V} 3$ phases |
| Motor starter type | Variable speed drive |
| Discrete output number | 2 |
| Analogue input number | 2 |
| Analogue input type | VIA switch-configurable voltage: $0 . . .10 \mathrm{~V}$ DC 24 V max, impedance: 30000 Ohm, resolution 10 bits <br> VIB configurable voltage: $0 . . .10 \mathrm{~V}$ DC 24 V max, impedance: 30000 Ohm, resolution 10 bits <br> VIB configurable PTC probe: $0 . . .6$ probes, impedance: 1500 Ohm VIA switch-configurable current: $0 \ldots . .20 \mathrm{~mA}$, impedance: 250 Ohm, resolution 10 bits |
| Analogue output number | 1 |
| Physical interface | 2-wire RS 485 |
| Connector type | 1 open style 1 RJ45 |
| Transmission rate | 9600 bps or 19200 bps |
| Transmission frame | RTU |
| Number of addresses | 1... 247 |
| Data format | 8 bits, 1 stop, odd even or no configurable parity |
| Type of polarization | No impedance |


| Asynchronous motor control profile | Voltage/Frequency ratio, automatic IR compensation (U/f + automatic Uo) <br> Flux vector control without sensor, standard <br> Voltage/Frequency ratio, 5 points <br> Voltage/Frequency ratio - Energy Saving, quadratic U/f <br> Voltage/frequency ratio, 2 points |
| :---: | :---: |
| Torque accuracy | +/-15 \% |
| Transient overtorque | $120 \%$ of nominal motor torque +/-10\% for 60 s |
| Acceleration and deceleration ramps | Linear adjustable separately from 0.01 to 3200 s Automatic based on the load |
| Motor slip compensation | Not available in voltage/frequency ratio motor control Automatic whatever the load Adjustable |
| Switching frequency | 6... 16 kHz adjustable <br> $8 . . .16 \mathrm{kHz}$ with derating factor |
| Nominal switching frequency | 8 kHz |
| Braking to standstill | By DC injection |
| Network frequency | 47.5 ... 63 Hz |
| Prospective line Isc | 22 kA |
| Protection type | Overheating protection: drive <br> Thermal power stage: drive <br> Short-circuit between motor phases: drive <br> Input phase breaks: drive <br> Overcurrent between output phases and earth: drive <br> Overvoltages on the DC bus: drive <br> Break on the control circuit: drive <br> Against exceeding limit speed: drive <br> Line supply overvoltage and undervoltage: drive <br> Line supply undervoltage: drive <br> Against input phase loss: drive <br> Thermal protection: motor <br> Motor phase break: motor <br> With PTC probes: motor |
| Width | 240 mm |
| Height | 420 mm |
| Depth | 214 mm |
| Net weight | 26.4 kg |
| Environment |  |
| Pollution degree | 3 conforming to IEC 61800-5-1 |
| IP degree of protection | IP20 on upper part without blanking plate on cover conforming to IEC 61800-5-1 IP20 on upper part without blanking plate on cover conforming to IEC 60529 <br> IP21 conforming to IEC 61800-5-1 <br> IP21 conforming to IEC 60529 <br> IP41 on upper part conforming to IEC 61800-5-1 <br> IP41 on upper part conforming to IEC 60529 |
| Vibration resistance | 1.5 mm (f= $3 \ldots 13 \mathrm{~Hz}$ ) conforming to IEC 60068-2-6 1 gn ( $\mathrm{f}=13 . . .200 \mathrm{~Hz}$ ) conforming to EN/IEC 60068-2-8 |
| Shock resistance | 15 gn for 11 ms conforming to IEC 60068-2-27 |
| Environmental characteristic | Classes 3C1 conforming to IEC 60721-3-3 Classes 3 S2 conforming to IEC 60721-3-3 |
| Noise level | 59.9 dB conforming to 86/188/EEC |
| Operating altitude | 1000... 3000 m limited to 2000 m for the Corner Grounded distribution network with current derating $1 \%$ per 100 m <= 1000 m without derating |
| Relative humidity | $5 . .95 \%$ without condensation conforming to IEC 60068-2-3 <br> $5 \ldots . .95 \%$ without dripping water conforming to IEC 60068-2-3 |
| Ambient air temperature for operation | $-10 . . .40^{\circ} \mathrm{C}$ (without derating) <br> $40 \ldots 50^{\circ} \mathrm{C}$ (with derating factor) |
| Operating position | Vertical +/- 10 degree |
| Product certifications | NOM 117[RETURN]C-Tick[RETURN]UL[RETURN]CSA |
| Marking | CE |


| Standards | IEC 61800-3 environments 2 category C1 <br> IEC 61800-3 category C2 <br> IEC 61800-5-1 <br> IEC 61800-3 environments 1 category C1 <br> IEC 61800-3 <br> IEC 61800-3 environments 2 category C2 <br> IEC 61800-5-1 <br> IEC 61800-3 environments 1 category C3 IEC 61800-3 environments 2 category C3 <br> EN 55011 class A group 1 <br> IEC 61800-3 environments 1 category C2 <br> IEC 61800-3 environments 1 category C2 <br> IEC 61800-3 environments 2 category C2 <br> IEC 61800-3 environments 2 category C1 <br> IEC 61800-3 <br> IEC 61800-3 category C2 <br> IEC 61800-3 environments 1 category C3 <br> IEC 61800-3 environments 1 category C1 <br> EN 61800-3 category C3 <br> IEC 61800-3 category C3 <br> UL Type 1 <br> IEC 61800-3 environments 2 category C3 |
| :---: | :---: |
| Assembly style | With heat sink |
| Electromagnetic compatibility | Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 <br> Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11 |
| Regulation loop | Adjustable PI regulator |
| Ambient air temperature for storage | $-25 . . .70^{\circ} \mathrm{C}$ |

Packing Units

| Unit Type of Package 1 | PCE |
| :--- | :--- |
| Number of Units in Package 1 | 1 |
| Package 1 Height | 40 cm |
| Package 1 Width | 40 cm |
| Package 1 Length | 53 cm |
| Package 1 Weight | 21.5 kg |

Offer Sustainability

| Sustainable offer status | Green Premium product |
| :--- | :--- |
| REACh Regulation | Pro-active compliance (Product out of EU RoHS legal scope) |
| EU RoHS Directive | Yes |
| Mercury free | REACh Declaration |
| RoHS exemption information | The product must be disposed on European Union markets following specific |
| Environmental Disclosure | waste collection and never end up in rubbish bins |
| Circularity Profile | Then Endion |
| WEEE |  |

Contractual warranty
Warranty 18 months

## Product data sheet

## ATV212HD30N4

## Dimensions Drawings



Dimensions in mm

| ATV212H | a | b | c | G | H | K | $\varnothing$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D22M3X <br> D22N4, D30N4 | 240 | 420 | 214 | 206 | 403 | 10 | 6 |
| D37N4, D45N4 | 240 | 550 | 244 | 206 | 529 | 10 | 6 |

Dimensions in in.

| ATV212H | a | b | c | G | H | K | Ø |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D22M3X <br> D22N4, D30N4 | 9.45 | 16.54 | 8.43 | 8.11 | 15.87 | 0.39 | 0.24 |
| D37N4, D45N4 | 9.45 | 21.65 | 9.60 | 8.11 | 20.83 | 0.39 | 0.24 |

EMC mounting plate (supplied with drive)


Dimensions in mm

| ATV212H | b 1 | c 1 |
| :--- | :--- | :--- |
| D22M3X <br> D22N4, D30N4 | 122 | 120 |
| D37N4, D45N4 | 113 | 127 |

Dimensions in in.

| ATV212H | b1 | c1 |
| :--- | :--- | :--- |
| D22M3X <br> D22N4, D30N4 | 4.80 | 4.72 |
| D37N4, D45N4 | 4.45 | 5.00 |

## Clearance

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.
Install the unit vertically:

- Do not place it close to heating elements.
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from bottom to the top of the unit.


Mounting Types
Type A mounting
$\frac{\mathrm{mm}}{\mathrm{in} .}$


Type B mounting


Type C mounting
mm


By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP21. The protective blanking cover may vary according to the drive model, see opposite.

## Specific Recommendations for Mounting in an Enclosure

To help ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Check that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (refer to the product characteristics).

- Use special filters with UL Type 12/IP54 protection.
- Remove the blanking cover from the top of the drive.

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions, such as dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc. This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

## 3-Phase Power Supply



A1: ATV 212 drive
KM1: Contactor
Q1: Circuit breaker
Q2: GV2 L rated at twice the nominal primary current of T1
Q3: GB2CB05
S1, XB4 B or XB5 A pushbuttons
S2:
T1: 100 VA transformer 220 V secondary
(1) Fault relay contacts for remote signalling of the drive status
(2) Connection of the common for the logic inputs depends on the positioning of the switch (Source, PLC, Sink)
(3) Reference potentiometer SZ1RV1202

NOTE: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Switches (Factory Settings)
Voltage/current selection for analog I/O (VIA and VIB)


Voltage/current selection for analog I/O (FM)


Selection of logic type

(1) negative logic
(2) positive logic

Logic Inputs According to the Position of the Logic Type Switch
"Source" position

"Sink" position


2-wire control


F: Forward
R: Preset speed
(2) ATV 212 control terminals

3 -wire control


F: Forward
R: Stop
RES: Reverse
(2) ATV 212 control terminals

PTC probe

(2) ATV 212 control terminals
(3) Motor

Analog Inputs
Voltage analog inputs

| External +10 V |  |
| :---: | :---: |
| (2) 8 | (2) 8 |
| (2) ATV 212 control terminals | (2) ATV 212 control terminals |
| (4) Speed reference potentiometer 2.2 to $10 \mathrm{k} \Omega$ |  |

(4) Speed reference potentiometer 2.2 to $10 \mathrm{k} \Omega$

Analog input configured for current: 0-20 mA, 4-20 mA, X-Y mA

(2) ATV 212 control terminals
(5) Source 0-20 mA, 4-20 mA, X-Y mA

Analog input VIA configured as positive logic input ("Source" position)

(2) ATV 212 control terminals

Analog input VIA configured as negative logic input ("Sink" position)

(2) ATV 212 control terminals

## ATV212HD30N4

## Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type (A, B or C). For intermediate temperatures ( $45^{\circ} \mathrm{C}$ for example), interpolate between 2 curves.


X Switching frequency

