

Features

- Universal 85 264Vac and 120 -370Vdc
- Low standby power consumption, high efficiency, active PFC
- Built Oring Diode. 3+1 Parallel redundancy, current sharing
- Operating temperature range
 40°C to +70°C
- Output short circuit, overcurrent, over-voltage overtemperature protection
- EMI performance meets. CISPR32 / EN55032 CLASS B
- Safety EN 62368-1, UL 62368-1 EN/ES/IEC60601-1, IEC60335-1, GB4943.1
- Compact size with a low 1U profile
- Operating Altitude upto 5000m
- Remote sense, ON/OFF function, DC OK function and 5V/2A standby power
- Supports standard communication protocols for management and monitoring of power modules through I2C bus.
- Fan speed automatic adjustable

RS PRO Embedded Switch Mode Power Supplies

RS Stock No.: 2580575 & 2580576 & 2580577 & 2580578 & 2580579

RS Professionally Approved Products bring to you professional quality parts across all product categories. Our product range has been tested by engineers and provides a comparable quality to the leading brands without paying a premium price.

Product Description

AC-DC switching power supply with built-in active PFC function. Provides high efficiency and high reliability solutions for industrial, street lighting and instrumentation applications. These converters offer excellent EMC performance, meeting CISPR32/EN55032 Class B and IEC/EN61000-4. Safety IEC/EN/UL62368, EN/ES/IEC60601, IEC60335, GB4943

Model	AC-DC Enclosed 1500W
Mounting Type	Chassis Mount
MTBF	MIL-HDBK-217F@25°C > 250,000 h
Applications	Industrial control systems, instrumentation, and lighting

RS Stock#	Input Voltage	Output Voltage and Current*	Adj' range (V)	Output Power	Standby (Vo/Io)*	Max. Capacitive Load (μF)	Efficiency (Typ)
2580575	90 to 264V ac 120 to 370V dc	12V/125A	12 – 14.4V	1510W		40000	92%
2580576	90 to 264V ac 120 to 370V dc	15V/100A	15 – 18V	1510W		20000	92%
2580577	90 to 264V ac 120 to 370V dc	24/62.5A	24 – 28.8V	1510W	5V/2A	10000	94%
2580578	90 to 264V ac 120 to 370V dc	27V/56A	27 – 32.4V	1522W		8000	94%
2580579	90 to 264V ac 120 to 370V dc	48V/32A	48 – 56V	1546W		4000	94%

Note: 1. *The total power of the product should not exceed (600W) and the output current cannot exceed the rated output current.

2.*Standby power: provide 5V/1A independent output, it is recommended to use with the main circuit.

Input Specifications

Item	Operating	Conditions	Min	Тур	Max.	Unit
lenut Valtage Denge	AC Input		85	-	264	VAC
Input Voltage Range	DC Input		120	-	370	VDC
Input Voltage Frequency			47	-	63	Hz
Input Current	115VAC		-	-	15.5	
	230VAC		-	-	8	А
Inrush Current	230VAC	Cold Start	-	40	-	
Power Factor	115VAC	At full Load	-	0.99	-	
	230VAC		-	0.95	-	
Contact Leakage Current	240VAC	Earth leakage current		<0.	.5mA	
		Touch current		<0.	.5mA	

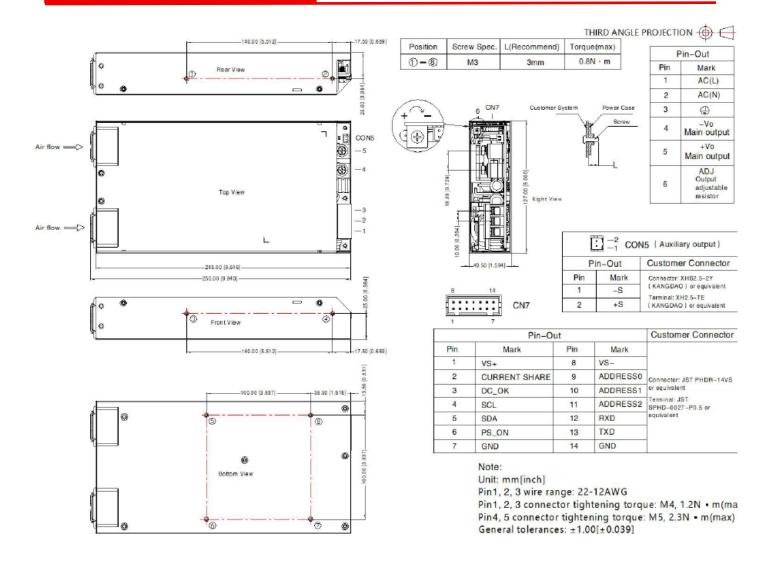
Output Specifications

Item	Operating Cond	itio	าร	Min	Тур	Max.	Unit
Output Voltage	Full Load	12	V/15V/24V/27V/48V	-	±1	-	
Accuracy	Range	5V	Auxiliary	-	±2	-	
Line Regulation	Full Load	12	V/15V/24V/27V/48V	-	±0.5	-	%
		5V	Auxiliary	-	±1	-	70
Load Regulation	0% - 100%	12	V/15V/24V/27V/48V	-	±0.5	-	
	load	5V	Auxiliary		±3		
Output Ripple &	20MHz bandwic	dth	12V/15V/24V/27V	-	150	-	
Noise*	(peak-to-peak		48V	-	200	-	mV
	value)		Auxiliary output 5V	-	100	-	
Minimum Load				-	0	-	
Dynamic minimum load				10	-	-	%
Hold-up Time	230VAC			12	-	-	ms
Short Circuit	After the short-	After the short-circuit disappears,		Hiccup, self-recover			
Protection	the recover time	e < 5	ōs				
Over-current Protection	230VAC			Constan output v recover		it limit, turn off after	5s, self-
	12V			≤16.5V	,		
	15V			≤25.0V	, Outi	out voltage ti	urn off. re-
Over-voltage Protection	24V			≤33.0∨	/ pow	power& PS_ON on for recover	
	27V			≤35.0∨	, PS_0		
	48V	48V		≤60.0∨	,		
Over-temperature	Over-temperatu	ure F	Protection Activation	-		-	70
Protection*	Over-temperature Protection Deactivation		50)	-	-	
Fan	The fan speed is linearly adjusted		termined by the ambie	nt temper	ature a	nd output po	wer and

EMC Specifications

Emissions	CE	CISPR32/EN55032 CLASS B	
	RE	CISPR32/EN55032 CLASS B	
	Harmonic Current	IEC/EN61000-3-2 CLASS A	
	Voltage Flicker	IEC/EN61000-3-3	
Immunity	ESD	IEC/EN 61000-4-2 Contact ±8KV/Air ±15KV	Perf. Criteria B
	RS	IEC/EN 61000-4-3 10V/m	Perf. Criteria A
	EFT	IEC/EN 61000-4-4 ±4KV	Perf. Criteria B
	Surge	IEC/EN 61000-4-5 line to line ±2KV/line to PE ±4KV	Perf. Criteria B
	CS	IEC/EN61000-4-6 10 Vrms	Perf. Criteria A
	DIP (AC input)	IEC/EN61000-4-11 0%, 70%	Perf. Criteria B

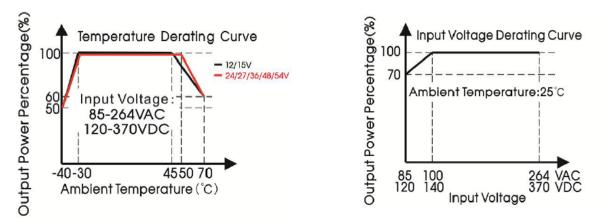
General Specifications


Item		Operating Con	ditions		Min	Тур	Max	Unit				
	Input-Earth	Electric Strong	Strongth Tost for 1min Joakago			-	-					
Isolation	Input-output	- current <10mA	Electric Strength Test for 1min., leakage				-	VAC				
	Output-Earth				1250	-	-					
	Input-Earth	Environment te	•	25±5°C	100	-	-					
Insulation Resistance	Input-output		ity: <95%RH,	non-condensing	100	-	-	MΩ				
	Output-Earth	Testing voltage	e: 500VDC		100	-	-					
Operating 7	Temperature				-40	-	+70	- °C				
Storage Ter	mperature				-40	-	+85					
Storage Hu	midity	Non-condensing			10	-	95	%RH				
		PFC circuit		-	65	-						
Switching Frequency		LLC circuit			-	85	-	KHz				
	Onerating	12V/15V	-40°C to -30°C	5	-	-						
		Operating temperature derating						+45°C to +70°C	1.6			%/°C
Power Dera	ating		24V/27V/	-40°C to -30°C	5	-	-	/0/ C				
rower berg	ating		48V	+50°C to +70°C	2	-	-					
		85VAC- 100VAC 50Hz	85VAC to 1	00VAC	2	-	-	%/VAC				
Safety Standard		Safety IEC/EN EN/ES, 1, GB4	/UL62 /IEC60	368-1,	EC60335-							
Safety Class			CLASS	I								
Isolation	Input - Output				2 × M0)PP						
level	Input - Earth				1 × M0	OPP						
	Output - Earth				1 × M0	OPP						
MTBF		MIL-HDBK-217	F@25°C		>250	,000 h						

		-		_
Moo	homiool	Snooi	finat	ione
MBB	hanical	оцни		IUIIS

Case Material	SUS 304
Dimensions	250.0mm x 127.0mm x 40.5mm
Weight	1800g (Typ.)
Cooling Method	Built in Fan

Dimensions & Recommended Layout



Approvals

Safety Standard	Meet IEC/EN/UL62368, EN60335, EN61558, IEC/EN60601, GB4943
Safety Certification	EN62368-1, UL/CUL (62368-1, Ed3) and GB4943-1
Safety Class Class I (PE and must be connected)	

Product Curve

Note: 1. With an AC input voltage between 85 - 100VAC and a DC input between 120 - 140VDC the output power must be derated as per the temperature derating curves;

Functional Specifications

ltem	Operating Conditions		Min.	Typ.	Max.	Unit
All input voltage range,		Power on	PS_ON (and GND (CN shorted	7, Pin7/14)	
Remote Control Switch	all load range	Power off	PS_ON (CN7 Pinó) and GND (CN7 Pin are open			
	All input voltage range,	Power on	2.5		5	v
DC_OK Signal	all load range	Power off			0.5	v
Oring					ect parallel us 3+1 parallel	e,
Current Sharing Accuracy	lo >50%lo1			± 5		%
		Normal output		Gre	en on	
LED Signal*	Main output status indication	Abnormal output, protected	Red on			
•	Power off (AC without input)		Light off			
Remote Sense	Total compensate voltage to Vo+/Vo- respectively	e, Vs+/Vs- (CN7 Pin1/8) shorted		200		mV
SDA, SCL for I ² C			Internal	2.4kΩ pull-u	p resistor to in	ternal 3.3\

Note: "If the product is used in medical equipment, the terminal system should shield the LED signal light to meet the medical certification requirements that operators should not see the indicator light after the product is installed.

Note:

- 1. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75% RH with nominal input voltage and rated output load.
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load.
- 3. The room temperature derating of 5°C/1000m is needed for operating altitude greater than 2000m.
- 4. All index testing methods in this datasheet are based on our company corporate standards.
- 5. In order to improve the efficiency at high input voltage, there will be audible noise generated, but it does not affect product performance and reliability.
- 6. We can provide product customization service, please contact our technicians directly for specific information.
- 7. Products are related to laws and regulations: see "Features" and "EMC".
- 8. The out case needs to be connected to PE of system when the terminal equipment in operating.
- 9. The output voltage can be adjusted by the ADJ, clockwise to decrease.
- 10. Our products shall be classified according to ISO14001 and related environmental laws and regulations and shall be handled by qualified units.
- 11. The power supply is considered a component which will be installed into a terminal equipment. All EMC tests should be confirmed with the final equipment. Please consult our FAE for EMC test operation instructions.
- 12. In the appearance dimension drawing, ±Vo represents the main output, ±S represents the auxiliary output, and the auxiliary output can be selected by the customer, which has no effect on the main output.

Application Notes

Content

1, 1, Overvlew
2. Function Manual
2.1 Input Requirements
2.2 Output Requirements
2.3 Start-up timing
2.4 Fan Speed Control
2.5 Output over-voltage protection(OVP)
2.6 Output over-current protection(OCP)
2.7 Output short circuit protection(SCP)
2.8 Over temperature protection(OTP)
2.9 Output power derating
2.10 Remote control
2.11 DC_OK Signal
2.12 Remote compensation
2.13 Parallel operation
2.13.1 Redundancy
2.13.2 Current sharing
2.14 I2C communication address
3. Installation requirements
3.1 Safety Introduction
3.2 Safety requirements
3.3 Installation method
4. Communication protocol

1. Overview

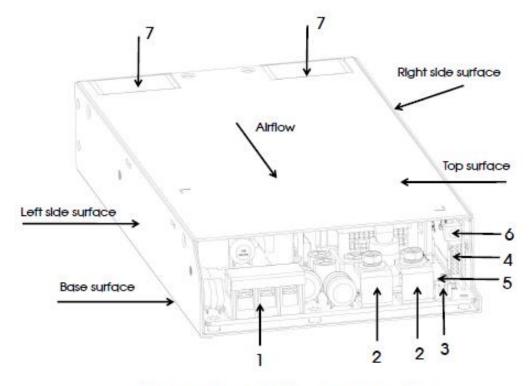
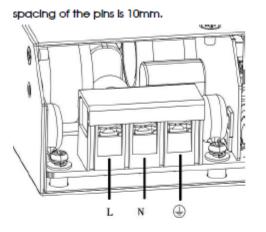


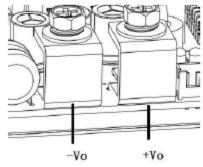
Fig. 1: Appearance Information of LMF1500-20Bxx


Overview description:

- 1. AC/DC Input terminal (J1)
- 2. DC main output terminal (J2, J3)
- 3. Auxillary road output terminal (CN5)
- 4. Signal connection press the terminal (CN7)
- 5. Green and red status display LED lights
- 6. Output voltage regulation resistor
- 7. Fans

1.1 AC/DC input terminal block (J1)

The Input terminal J1, as a standard 3-pin fence welding terminal with upper cover, the center

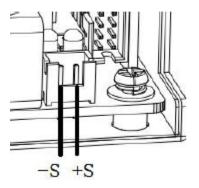


Pin	Features
L	Line (Phase)
Ν	Neutral
Ð	Ground/Earth

Wire size: 12-22AWG Torque: 1.2N-m (max)

1.2 Main DC output terminal (J2, J3)

The output terminal uses two standard screw lock type metal terminals, the pin spacing between each is 18mm.



Pin	Features
+Vo	Main output +
-Vo	Main output -

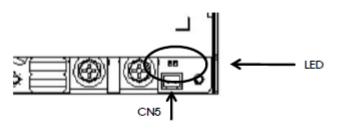
Torque: 2.3N-m

1.3 Auxiliary DC output terminal (CN5)

The auxiliary output terminal with a standard terminal of 2.5mm pitch.

Pin Function	
-s	Auxiliary DC output -
+S	AuxIIIary DC output +

1.4 Signal port (CN7)

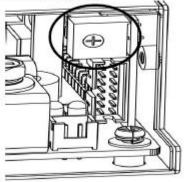

1

7

	Pln	Label	Features
[.],	1	VS+	Remote compensation positive terminal
	2	CURRENT SHARE	Current sharing bus
	3	DC_OK	DC_OK Signal
	4	SCL	I2C communication line
₽•• ,	5	SDA	I2C communication line
	6	PS_ON	Remote control signal
	7	GND	Signal terminal reference ground
	8	VS-	Remote compensation negative terminal
	9	ADDRESS0	ADDRESS code 0
	10	ADDRESS1	ADDRESS code 1
	11	ADDRESS2	ADDRESS code 2
	12	RXD	Serial communication
	13	TXD	Serial communication
	14	GND	Signal terminal reference ground

Note: The reference ground of all pins on the signal terminal is pin7 and pin14.

1.5 Green and red status display LED lights


Two kinds of LED lights indicate difference working states of the power supply:

Green LED	Red LED	Status
ON	OFF	Normal work
OFF	ON	Main or auxiliary road alarm
OFF	OFF	No AC Input

1.6 Output voltage adjustment knob

Turn counterclockwise to increase output voltage

Changeable resistance

RS PRO Article No.	Rated Output Voltage	Adjustable Range Of Output Voltage
2580575	12V	12 - 14.4V
2580576	15V	15-18V
2580577	24V	24 - 28.8V
2580578	27V	27-32.4V
2580579	48V	48-56V

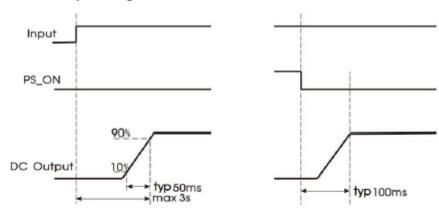
2. Function Manual

2.1 Input requirements

The AC input voltage and DC input voltage must be within the defined voltage range (refer to data-sheet), otherwise the power supply may not work properly or even malfunction. The internal L and N line of the power module have been connected in series with a 250V 25A fuse. For better protection, it is recommended that customers use a circuit breaker not greater than 25A (Non-mandatory requirement).

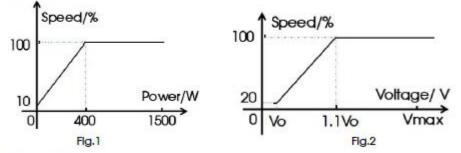
2.2 Output requirements

Main output


At any voltage value, the maximum output current and power must not exceed the rated/specified value. The output current must not exceed the maximum output current value.

Auxiliary output

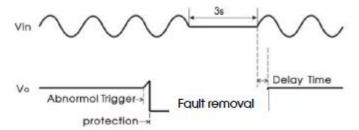
The quxiliary circuit supports a maximum current of 2A.

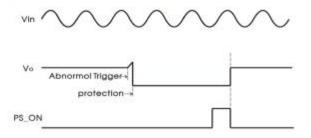

2.3 Start-up timing

ltem	Operating Conditions		Min.	Typ.	Max.	Unit
	Room temperature.	115VAC	12	-	-	
Power-off Hold Time	full load	230VAC	12			ms
Start Delay Time	230VAC, full logd, 25°C			-	3	s

2.4 Fan speed control

Fan speed is determined by output power and output voltage at the same time, refer to the following curve for fan speed change.


Vo: Rated output voltage


2.5 Output over-voltage protection (OVP)

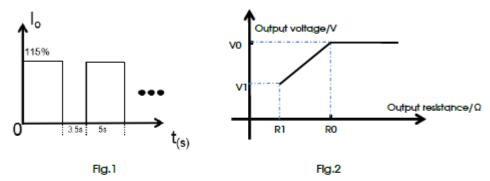
Main output

The over-voltage protection function is to close the main output when the output voltage reaches the protection voltage value. When the main circuit over-voltage protection occurs, the main circuit output voltage of the module will be shut off, and the auxiliary circuit output will not be affected. The main circuit output can be restored after disconnecting the input power for at least 3 seconds.

In addition, it can be quickly restarted by the PS_ON signal:

Auxiliary output

When the auxiliary circuit voltage reaches 6.3VDC (maximum value), the auxiliary output will be in hiccup status, and the main output voltage turn off until the auxiliary output returns to normal after the fault is eliminated.


2.6 Output constant-current protection (OCP)

Main circuit overcurrent

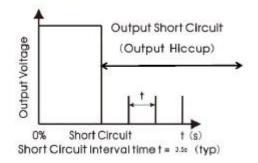
If In CC load mode, when the current exceeds the constant current point, the output enters hiccup

mode; when the over current state is released, the output returns to normal.

If in CR/CV load mode, the relationship among output current, voltage and resistance in shown in the following curve:

When the product enters the constant current state, the output state circulates as shown in Fig.1, working for 5S and protecting for 3.5S, until the constant current state is released.

In that above Fig.2 the slope corresponding to section R1-R2 is the output current corresponding to constant current. Generally, $V_1 \cong 75\% V_0$.

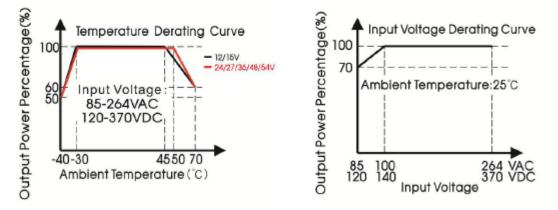

② Auxiliary circuit overcurrent

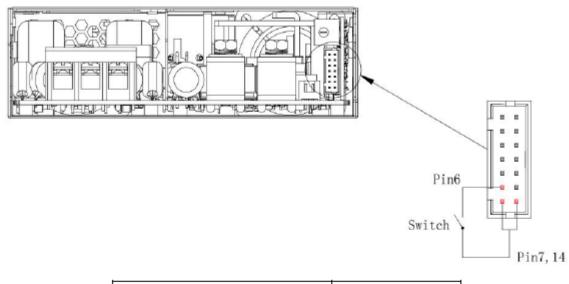
When the auxiliary output current exceeds 120% (typ.) of the rated current, turn off the main output. After the secondary route overflows, the main route automatically recovers output.

2.7 Output short circuit protection (SCP)

When the output is short-circuited, the power output in hiccup with interval 3.5s. After the short-circuit is removed, the power module will automatically return to normal, and the auxiliary output will not be affected.

When the qualitary circuit output is short-circuited, the main circuit without output.

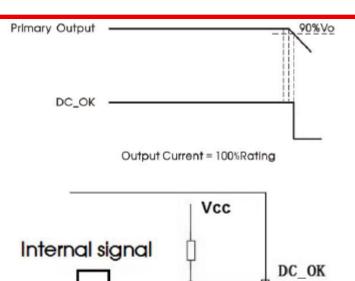



2.9 Output power derating

When the Input voltage is greater than 100VAC (or 140VDC), only need to derate according to the temperature derating curve.

When the Input voltage is lower than 100VAC (or 140VDC), the output power will be derated according to the following input voltage derating curve after temperature derating.

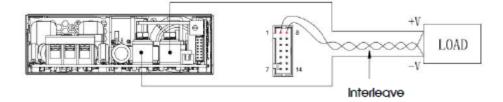
2.10 Remote control



PS_ON (PInó) and GND (PIn7or PIn14)	Output Status
Short-Circuit	Output on
Pin floating	Output off

If the input terminal of the power module has been connected to a power source, the PS_ON signal pin can be used to control the on and off of the main output, and the PS_ON signal does not affect the output voltage of the auxiliary circuit.

Note: The Internal PS_ON Input Impedance of the module is 5.1K.



DC_OK (PIn3) and GND (PIn7 or PIn14)	Output State
2.5 - 5V	Output on
0 - 0.5V	Output off

GND

2.12 Remote compensation

Note: 1. Vs+ and Vs- cannot be shorted or reversed, otherwise the power module will be damaged.

2. Before powering on the product, please confirm whether the control signal connection terminal (CN7) Pinó (PS_ON) and Pin7 (GND) short-circuit jumper cap are connected. If not, the product without output. When the control signal connection terminal (CN7) of the product are external connected as a whole, please ensure that Pinó and Pin7 (or Pin14) are short-circuit connected. Please refer to LMF1500-208

xx Series Power Supply Application Notes: 2.10 Remote control.

3. Pin 1 and pin 8 of the signal terminal CN7 can compensate the voltage drop on the output caple.

 The remote compensation circuit can compensate up to 200mV cable voltage drop. This voltage includes the sum of the cable drop connected to the output positive terminal and the output negative terminal.

5. If you need to use the remote compensation function, the signal pin needs to be connected with the load end with a twisted pair cable.

2.13 Parallel operation

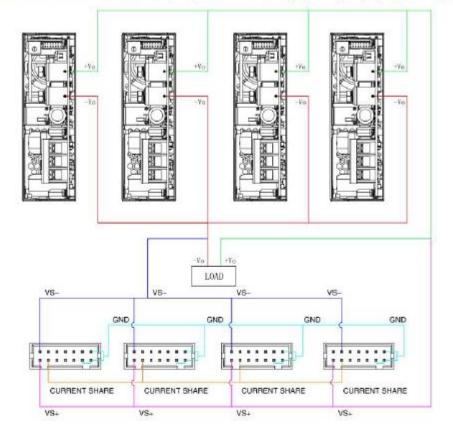
2.13.1 Redundancy

The power module output can be connected in parallel to achieve redundancy, thereby improving system reliability. The maximum power of the redundant system needs to be derated to ensure that the redundant system can still meet the rated load requirements when a power supply module fails. The current common practice is to construct a redundant system by the N+1 method, that is, N+1 power supplies are connected in parallel, to support the maximum load current N*Iomax, where Iomax is the rated output current of each power supply. For example, the rated output current of each power supply is 40A, and 3+1 units are connected in parallel to construct a 3*40A=120A redundant system.

The power module supports 3+1 parallel redundant operation.

The ORing circuit is used inside the power module, and when any one of the power modules in the parallel fails, it will not affect the work of other power modules.

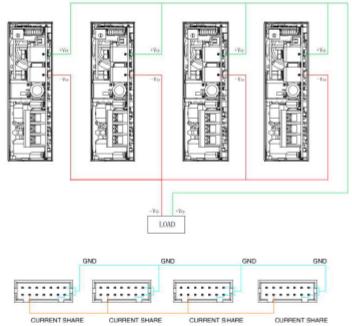
When used in parallel, the maximum load current cannot exceed the maximum output current of a single power supply module, otherwise the whole parallel power supply module will not start normally.



2.13.2 Current sharing

Method 1: Current sharing bus and remote compensation lines are both connected.

For load line loss < 200mV, and the output voltage difference of each single module < 50mV, this type


of connection is recommended to obtain a better line-end output voltage and current sharing effect.

Method 2: Only the current sharing bus is connected, and the remote compensation is not connected.

For the load line loss > 200mV, or the output voltage difference of each single module cannot or does not need to be accurately adjusted to < 50mV, this type of connection is recommended to obtain a better current sharing effect of the parallel machine. In the same way, when the load loss is unknown or the current sharing fails to meet the specifications under the first connection method, it is recommended to replace it with this connected method. The wiring method of the current sharing function is shown in the figure below:

Note: 1. When using in parallel, the number of parallel modules cannot exceed 4.

2. Before powering on the product, please confirm whether the control signal connection terminal (CN7) Pinó (PS_ON) and Pin7 (GND) short-circuit jumper cap are connected. If not, the product without output. When the control signal connection terminal (CN7) of the product are external connected as a whole, please ensure that Pinó and Pin7 (or Pin14) are short-circuit connected. Please refer to LMF1500-20Bxx Series Power Supply Application Notes: 2.10 Remote control.

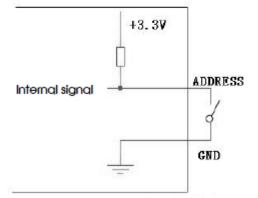
When power modules work in parallel, there is an internal active current sharing circuit to ensure that the current between each module is balanced.

The active current sharing circuit adopts the automatic master-slave current sharing method. Each power module has a current sharing bus signal (CURRENT SHARE BUS). When working in parallel, the current sharing bus of all power modules must be connected together. The current-sharing bus signal is located at pin 2 of CN7.

The output voltage of each power module will affect the current sharing accuracy. The output voltage of the power module is the rated voltage ±50mV. In practical applications. If the output voltage value needs to be adjusted, the output voltage of all parallel power supply modules needs to be adjusted to the same voltage. The recommended voltage range: target voltage value ±50mV

After the output load of each power module is greater than 50% of the rated load, the current sharing accuracy should be ±5%. The current sharing calculation formula is:

Current sharing accuracy =
$$\frac{Io \max - Io \min}{Io \max} *100\%$$


lomax: the maximum output current value in parallel power supply modules. Iomin: the minimum output current value in parallel power supply modules.

2.14 I2C communication address

In the parallel system. If you need to identify the power module information, you need to set the I2C communication address for each parallel power module, and exchange data with the host computer through I2C. The setting of the communication address is determined by plns 9, 10 and 11 of the signal terminal CN7. When these three plns are short-circuited with pln 7 or 14 of CN7. It will be low level (L. voltage range: 0 - 1.31V). When disconnected, it is high level (H. voltage range: 1.99V - 3.3V). The specific address number is shown in the table below:

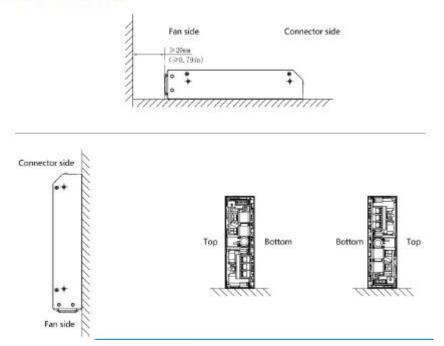
ADDRESS 2	ADDRESS 2 ADDRESS 1		Address number
L	L	L	0
L	L	н	1
L	н	L	2
L	Н	н	3
н	L	L	4
н	L	Н	5
н	н	L	6
н	н	н	7

The internal pull-up resistance value of the power module is $10k\Omega$, and the external impedance can

be matched according to the actual application to meet the high and low voltage range.

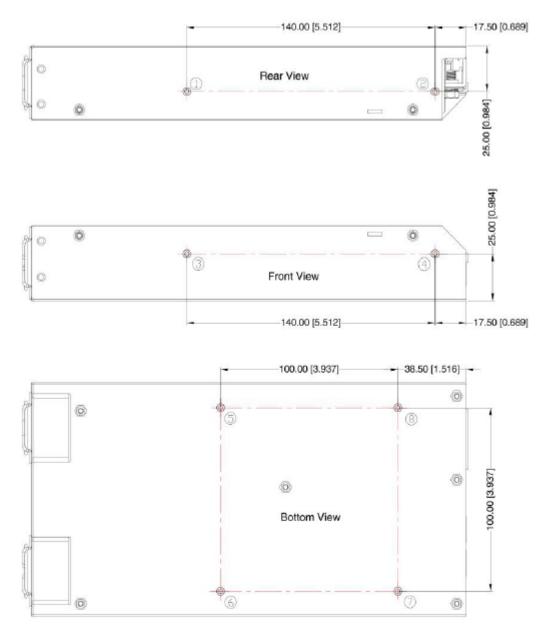
3. Installation requirements

3.1 Safety introduction


Warning: Risk of electric shock

During high voltage operating

- The power supply module is disconnected from the input DC or the AC power and placed for at least one minute before starting to operate it.
- When Installing the Input wire to the power module, please connect the ground terminal first, and then connect the L line and the N line.
- When removing the input wire, please remove the L wire and the N wire first, and then remove the ground wire.
- When disassembling, make sure that no objects fall into the power module.
- Pay attention to high temperature.
- After the power module is working in a high temperature environment, walt for its shell to cool down before operating.
- This product needs to be installed by professionals and needs to be used with other equipment.


3.3 Installation method

Standard mounting orientation:

Position of mounting holes:

Note: The fan panel cannot be blocked by other objects, and a distance of at least 20mm must be maintained, otherwise it will affect the heat dissipation and performance of the power module.

4. Communication protocol

The LMF1500-20Bxx series power modules support standard communication protocols and manage

Command Code	Command Name	Access Type	Data Bytes	Data Format	Description
0x9A	PMB_MFR_MODEL	Block Redd	32	ASCII	Product model
0x8B	PMB_READ_VOUT	Read Word	2	Direct	Main circuit output voltage (10mV)
0x8C	PMB_READ_IOUT	Read Word	2	Direct	Main output current (10mV)
0x96	PMB_READ_POUT	Read Word	2	Direct	Main output power (10mV)
0xC4	PMB_MFR_AUX_VOUT	Read Word	2	Direct	Auxillary output Voltage (10mV)
0xC5	PMB_MFR_AUX_IOUT	Read Word	2	Direct	Auxiliary output current (10mV)
0xC7	PMB_MFR_FAULT_BIT	Read Word	2	Bit Field	Fault status word

and monitor the power modules through I2C bus.

	Describe Of Fault Status Through PMB_MFR_FAULT_BIT		
Bit Segment	Description		
BIT: O	0: Fan 1 normal 1: Fan 1 fault		
BIT: 1	0: Fan 2 normal 1: Fan 2 fault		
BIT: 2	0: Auxiliary output normal 1: Auxiliary output abnormal		
BIT: 3	0: No over-voltage in main circuit 1: Over-voltage in main circuit		
BIT: 4	0: No under-voltage in main circuit 1: Under-voltage in main circuit		
BIT: 5	0: No level 1 over-current in main circuit 1: Level 1 over-current in main circuit		
BIT: 6	0: No level 2 over-current in main circuit 1: level 2 over-current in main circuit		
BIT: 7	0: No level 1 over-logd in main circuit 1: Level 1 over-logd in main circuit		
BIT: 8	0: No level 2 over-load in main circuit 1: Level 2 over-load in main circuit		
BIT: 9	0: No level 3 over-load in main circuit 1: Level 3 over-load in main circuit		
BIT: 10	0: Normal temperature 1: Over-temperature and over-load		
BIT: 11	0: No short circuit in main circuit 1: Short circuit in main circuit		

BIT: 11	0: No short circuit in main circuit 1: Short circuit in main circuit
BIT: 12 0: No hardware over-voltage in main circuit 1: Main circuit hardware over-voltage fault	
BIT: 13	0: No hardware under-voltage in main circuit 1: Main circuit hardware under-voltage fault
BIT: 14	0: Pre-charge normal 1: Pre-charge fault
BIT: 15	0: PFC soft start normal 1: PFC soft start fault