

Doc. No.: <u>TSL-S-0060201</u>
Revision: <u>A0</u>

Page: 1/9

Product specification

Cylindrical Li-ion battery pack

Customer:

Battery pack model: 6.4V/20Ah

Revision	Revised history		Issue Date
Α0	The new release		2020-9-21
Prepared by	Checked by	Approved by	Customer approval

Doc. No.: <u>TSL-S-0060201</u>

Revision: A0

Page: 2/9

Content

1. S	cope	3
2. C	Composition table for battery pack	3
3. P	erformance index for battery pack	3
4. P	arameters table for protect circuit board	4
5.	Product Picture	5
6.	Performance index and/or specification for cell	5

Doc. No.: TSL-S-0060201

Revision: A0

Page: 3/9

1. Scope

This product specification describes performance indexes for cylindrical Li-Ion battery pack. This product specification applies for cylindrical Li-Ion battery pack that produces by Shenzhen GSL Tech Co., Ltd.

2. Composition table for battery pack

		Composition table		
Battery pack Mode	Combination mode	Cell type	Protection board model	
6.4V/20Ah	2S6P	3.2V 26650 3400mAh	2S PCM	

3. Performance index for battery pack

Item(s)		Specification	Remark
Nominal voltage (V)		6.4	
Nominal Capacity(Ah)		20	
Charging	Charging voltage Max. (V)		
Charging	Continue charging current Max. (A)	≤15	
	End of discharging voltage Min.(V)	4	
Discharging	Continue discharging current Max. (A)	≤15	
Operation temperature	Charging	0°C∼45°C	
(°C) Discharging		-20℃~60℃	
Internal resistance(m Ω)		≤120	AC 1kHZ
Weight (Kg)		≈1.3	
Size (mm)		151x65x94	

Doc. No.: <u>TSL-S-0060201</u>

Revision: A0

Page: 4/9

4. Parameters table for protect circuit board

Item	Symbol	Content	Criterion
	V _{DET1}	Over charge detection voltage	3.65±0.05V
Over charge Protection	tV _{DET1}	Release voltage for over-charging	3.45±0.1V
Over discharge protection	V _{DET2}	Over discharge detection voltage	2.0±0.1V
protession.	tV _{DET2}	Release voltage for over-discharging	2.5±0.1V
0	I _{DP1}	Over current detection current 1	35±5A
Over current protection	tV _{DET3}	Detection delay time	50~250mS
		Bleed StartPoint	
Cell balance		Bleed Current	
		Balance Mode	
Interior resistance	R _{SS}	Main loop electrify resistance	$R_{SS} \leq 20 \text{m} \Omega$
static current	I _{DD}		≤ 50 μ A
Suggest working current	I	Max continuous charge/discharge current	≤15A
Temperature Protection	Т		

Doc. No.: <u>TSL-S-0060201</u> Revision: A0

Page: ____ 5 / 9

5. Product Picture

6. Performance index and/or specification for cell

6.1 Description and model

6.1.1 description: Cylindrical Li-ion battery

6.1.2 model: IFR26650E3.4Ah

6.2 Definition

6.2.1 Rated capacity

Rated capacity:Cap=3400mAh.under $25\pm2\,^{\circ}$ C,It means the capacitay value of being discharged by 5-hours rate to end voltage 2.00V,which is signed Cap ,the unit is mAh.

6.2.2 Standard charge method

Under $25\pm2^{\circ}$ C, it can be charged to 3.65V with constant current of 0.5C, and then, charged continuously with constant voltage of 3.65V until the charged current is 0.05C.

6.2.3 Standard discharge method

Under 25 ± 2 °C, it can be discharged to 2.00V with constant current of 1C.

Doc. No.: TSL-S-0060201

Revision: A0

Page: 6/9

6.3 Nominal Specification

Item		Specification		
Nominal capacity		3400mAh@0.2C		
minimum capacity		3400mAh@0.2C		
nominal voltage		3.2V		
energy density		125Wh/kg		
min. discharging voltage		2.00V		
max. charging voltage		3.65±0.03V		
std. charging current		0.5C ₅ A		
std. discharging current		1.0C ₅ A		
max. charging current		0.5C ₅ A	0.5C₅A	
max. discharging current		3.0C₅A		
max. recommended charge and di	scharge cell	Charge: $0{\sim}45^{\circ}{\mathbb C}$		
surface temperature		Discharge: -20~	~ 60 ℃	
Internal Impedance		≤25mΩ (AC Imp	edance,1kHz)	
weight		≈86g		
Cell dimension		max. height: 65.9mm		
		max. diameter: 26.5mm		
Cell storage and transportation	<1 month	-20∼+35℃;	Initial status of cell 3.6V and 50%	
environment and temperature		<75%RH*	of charge, the capacity lost	
ranges	<3 months	-20∼+30℃;	during shipment < 20%. Capacity	
		<75%RH*	recover rate > 80%	
	<12 months	-20∼+25℃;		
		<75%RH*		

6.4 Electrical Characteristics

	Temperation: 25±2 ℃	
	Charger: CC/CV 0.5C 3.65V; End current: 0.05c	
	Discharger: CC Tect current; End voltage: 2.00V	
Discharge rate capability	$\frac{\text{discharge capability at 0.5C}}{\text{discharge capability at 0.2C}} \ge 95\%$	
	discharge capability at 1.0C discharge capability at 0.2C ≥ 92%	

Doc. No.: <u>TSL-S-0060201</u>

Revision: A0

Page: 7/9

	$\frac{\text{discharge capability at 3.0C}}{\text{discharge capability at 0.2C}} \geq 90\%$
Cycle life	Temperation:25±2°C Charger: CC/CV 0.5C 3.65V; End current: 0.05c; Rest time: 0.5 h Discharger: CC 1C; End voltage: 2.00V; Rest time: 0.5 h discharge capability of 2001th cycle Original discharge capacity ≥ 80%
temperature discharge performance	Charger: CC/CV 0.5C 3.65V; End current 0.05c Discharger: CC 0.2C; End voltage: 2.00V \[\frac{\text{discharge capability at -10°C}}{\text{discharge capability at 25°C}} \geq 70\% \[\frac{\text{discharge capability at 0°C}}{\text{discharge capability at 25°C}} \geq 80\% \[\frac{\text{discharge capability at 60°C}}{\text{discharge capability at 25°C}} \geq 95\% \]
Storage performance	A cell is charge in accordance with 3.2, and stored in an ambient temperature of $25\pm2^{\circ}$ C for 28d, then discharged to cut-off voltage at a constant current of 0.2C. $\frac{\text{residual capacity}}{\text{Original discharge capacity}} \geq 90\%$

6.5 Environmental characteristics

Item	Test Method	Criterion
Vibration	A cell is charge in accordance with 3.2, then installed onto the vibration desk with clamps, Equipment parameters of frequency and amplitude are as follow(the frequency is to be varied at the rate of 1 oct/min between 10 and 55 herts, and repet vibration for 30 min. The cell is to be tested in three mutually perpendicular directions); Frequency: 10Hz~30Hz amplitude:0.38mm Frequency: 30Hz~55Hz amplitude:0.19mm	 NO scratch, no leckage, no fire, no explosion, no vent; The voltage is not less than 3.0V.
Temperature Test	A cell is charge in accordance with 3.2, then heated the cell to be in a oven. Then the temperature of the oven is to be raised to the temperature of $65\pm3^{\circ}C$ and remain for 4 h at that temperature,then the temperature of the oven is to be dropped to the temperature of $20\pm3^{\circ}C$ and remain for 4 h at that temperature, then the	No leakage, no fire, no explosion, no vent

Doc. No.: <u>TSL-S-0060201</u> Revision: <u>A0</u>

Page: 8/9

temperature of the oven is to be dropped to the	
temperature of - $20\pm3^{\circ}\mathrm{C}\mathrm{and}$ remain for 4 h at that	
temperature, repeat this for another 9 cycles,after that	
put the cell in room temperature for at least 24 hrs, then	
chack cell's appearance.	

6.6 Safety Characteristics

Item	Test Method	Criterion
Short Circuit	A cell is to be short-circuited by connecting the positive and negative terminals of the battery with an external load of less than 50 m Ω until the surface temperature decrease 10 degree from the highest point.	No fire, no explosion
Over charge	A cell is discharged to cut-off voltage at CC of 0.2C.then it is to be subjected to CC/CV power by connecting its positive & negative terminal, then set the current as 10A,the voltage as 10V,after that, Charge the cell up to 10V at CC of 10A, until that last 7h at the voltage of 10V.	No fire, no explosion
Forced-Discharge	A cell is discharged to voltage 0V at a constant current of 1C.	No fire, no explosion
Heating	A cell is to be heated in a circulating air oven. The temperature of the oven is to be raised at a rate of 5° C $\pm 2^{\circ}$ C per minute to a temperature of 130° C $\pm 2^{\circ}$ C and remain for 30min at that temperature before the test is d i s c o n t i n u e d .	No fire, no explosion
Drop	A cell is charged in accordance to standard charge method and stored for 1~4h, then dropped from a height of 1000mm to a wooden board(18-20mm thick) which is placed on the concrete ground. Cells shall be dropped from top, bottom and diameter side. Each side drop 3 and repeat two times.	No leakage, no smoking, no fire, no explosion
Remarks	All above safety tests will be conducted at 25℃±5℃ differently. Use proper ventilation with protective equipme	·

6.7 Warning and cautions in handling the lithium-ion cell

TO prevent the possibility of the cell from leaking, heating, explosion, please observe the following precautions:

Warning!

- 6.7.1 Don't immerse the cell in water.
- 6.7.2 Don't use and leave the cell near a heat source such as fire or heater.
- 6.7.3 When charging, use a cell charge specifically for that purpose.
- 6.7.4 Don't reverse the positive and negative terminals.
- 6.7.5 Don't connect the cell to an electrical outlet directly.
- 6.7.6 Don't discard the cell in fire or heater.

Doc. No.: <u>TSL-S-0060201</u>

Revision: A0

Page: 9 / 9

- 6.7.7 Don't connect the positive and negative terminal directly with metal objects.
- 6.7.8 Don't transport and store the cell together with metal objects such as necklaces, hairpins.
- 6.7.9 Don't strike, throw or trample the cell.
- 6.7.10 Don't pierce the cell with a nail or other sharp object.

Caution!

- 6.7.11 Don't use or leave the cell at very high temperature conditions (for example, strong direct or a vehicle in extremely hot conditions).
- 6.7.12 If the cell leaks and the electrolyte get into your eyes, don't wipe eyes, instead, thoroughly rinse the eyes with clean running water for at least 15 minutes, and immediately seek medical attention. Otherwise, eyes injury an result.
- 6.7.13 If the cell gives off an odor, generates heat, becomes discolored or deformed, or in any way appear abnormal during usage, recharging or storage, immediately remove it from the device or cell charger and stop using it.
- 6.7.14 In case the terminals get dirty, clean the terminals with a dry cloth before use.
- 6.7.15 If the cell beyond the useful-life, please fully discharge, sticks the cell with insulating tape, then put the cell to the specialized recycle bin.