Product data sheet
 Characteristics

ATV320U07M2C

variable speed drive, Altivar Machine ATV320, $0.75 \mathrm{~kW}, 200$ to $240 \mathrm{~V}, 1$ phase, compact

Main	
Range of product	Altivar Machine ATV320
Product or component type	Variable speed drive
Product specific application	Complex machines
Variant	Standard version
Format of the drive	Compact
Mounting mode	Wall mount
Communication port protocol	Modbus serial Option cardCommunication module, CANopen Communication module, EtherCAT Communication module, Profibus DP V1 Communication module, PROFINET Communication module, Ethernet Powerlink Communication module, EtherNet/IP
Communication module, DeviceNet	
voltage	$200 \ldots 240$ V - 15...10 \%
Nominal output current	4.8 A
Motor power kW	0.75 kW for heavy duty
EMC filter	Class C2 EMC filter integrated
IP degree of protection	IP20

Maximum switching current	Relay output R1A, R1B, R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 250 V AC Relay output R1A, R1B, R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 30 V DC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi $=0.4$ and L/R $=7 \mathrm{~ms}$: 2 A at 250 V AC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi $=0.4$ and L/R $=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 30 V DC Relay output R2A, R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 250 V AC Relay output R2A, R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 30 V DC
Minimum switching current	Relay output R1A, R1B, R1C, R2A, R2C: 5 mA at 24 V DC
Method of access	Slave CANopen
4 quadrant operation possible	True
Asynchronous motor control profile	Voltage/Frequency ratio, 5 points Flux vector control without sensor, standard Voltage/Frequency ratio - Energy Saving, quadratic U/f Flux vector control without sensor - Energy Saving Voltage/frequency ratio, 2 points
Synchronous motor control profile	Vector control without sensor
Transient overtorque	170... 200 \% of nominal motor torque
Maximum output frequency	0.599 kHz
Acceleration and deceleration ramps	Linear U S CUS Ramp switching Acceleration/Deceleration ramp adaptation Acceleration/deceleration automatic stop with DC injection
Motor slip compensation	Automatic whatever the load Adjustable 0... 300 \% Not available in voltage/frequency ratio (2 or 5 points)
Switching frequency	2... 16 kHz adjustable $4 . . .16 \mathrm{kHz}$ with derating factor
Nominal switching frequency	4 kHz
Braking to standstill	By DC injection
Brake chopper integrated	True
Line current	4 A at 200 V (heavy duty) 8.4 A at 240 V (heavy duty)
Maximum input current	0.416666666666667 A
Maximum output voltage	240 V
Apparent power	2.0 kVA at 240 V (heavy duty)
Network frequency	$50 . .60 \mathrm{~Hz}$
Relative symmetric network frequency tolerance	5 \%
Prospective line Isc	1 kA
Base load current at high overload	33.0 A
Power dissipation in W	Self-cooled: 45.0 W at 200 V , switching frequency 4 kHz
With safety function Safely Limited Speed (SLS)	True
With safety function Safe brake management (SBC/ SBT)	False
With safety function Safe Operating Stop (SOS)	False
With safety function Safe Position (SP)	False
With safety function Safe programmable logic	False
With safety function Safe Speed Monitor (SSM)	False
With safety function Safe Stop 1 (SS1)	True
With sft fct Safe Stop 2 (SS2)	False
With safety function Safe torque off (STO)	True
With safety function Safely Limited Position (SLP)	False
With safety function Safe Direction (SDI)	False
Protection type	Input phase breaks: drive Overcurrent between output phases and earth: drive Overheating protection: drive Short-circuit between motor phases: drive Thermal protection: drive
Width	72.0 mm
Height	143.0 mm

Depth	138.0 mm
Product weight	1.1 kg
Environment	
Operating position	Vertical +/- 10 degree
Product certifications	CE ATEX NOM GOST EAC RCM KC
Marking	CE ATEX UL CSA EAC RCM
Standards	EN/IEC 61800-5-1
Electromagnetic compatibility	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
Environmental class (during operation)	Class 3C3 according to IEC 60721-3-3 Class 3S2 according to IEC 60721-3-3
Maximum acceleration under shock impact (during operation)	$150 \mathrm{~m} / \mathrm{s}^{2}$ at 11 ms
Maximum acceleration under vibrational stress (during operation)	$10 \mathrm{~m} / \mathrm{s}^{2}$ at $13 . . .200 \mathrm{~Hz}$
Maximum deflection under vibratory load (during operation)	1.5 mm at $2 . . .13 \mathrm{~Hz}$
Permitted relative humidity (during operation)	Class 3K5 according to EN 60721-3
Overvoltage category	III
Regulation loop	Adjustable PID regulator
Speed accuracy	+/- 10 \% of nominal slip 0.2 Tn to Tn
Pollution degree	2
Ambient air transport temperature	$-25 . .70^{\circ} \mathrm{C}$
Ambient air temperature for operation	$-10 \ldots . .50^{\circ} \mathrm{C}$ without derating $50 \ldots 60^{\circ} \mathrm{C}$ with derating factor
Ambient air temperature for storage	$-25 . .70^{\circ} \mathrm{C}$

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Height	11.500 cm
Package 1 Width	18.800 cm
Package 1 Length	19.000 cm
Package 1 Weight	1.330 kg
Unit Type of Package 2	P06
Number of Units in Package 2	45
Package 2 Height	75.000 cm
Package 2 Width	60.000 cm
Package 2 Length	80.000 cm
Package 2 Weight	72.940 kg

Offer Sustainability

Sustainable offer status	Green Premium product
REACh Regulation	圂REACh Declaration
EU RoHS Directive	Pro－active compliance（Product out of EU RoHS legal scope）屈EU RoHS Declaration
Mercury free	Yes
China RoHS Regulation	EChina RoHS Declaration
RoHS exemption information	WYes
Environmental Disclosure	Product Environmental Profile
Circularity Profile	圂End Of Life Information
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
California proposition 65	WARNING：This product can expose you to chemicals including：Lead and lead compounds，which is known to the State of California to cause cancer and birth defects or other reproductive harm．For more information go to www．P65Warnings．ca．gov
Upgradeability	Upgraded components available

Right View, Front View and Front View with EMC Plate

Mounting Type A: Individual with Ventilation Cover

Only Possible at Ambient Temperature Less or Equal to $50^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$

Mounting Type B: Side by Side, Ventilation Cover Removed

Mounting Type C: Individual, Ventilation Cover Removed

For Operation at Ambient Temperature Above $50{ }^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$

Connection Diagrams

Diagram with Line Contactor

Connection diagrams conforming to standards ISO13849 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

(1) Line choke (if used)
(2) Fault relay contacts, for remote signaling of drive status

Diagram with Switch Disconnect
Connection diagrams conforming to standards EN $954-1$ category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

(1) Line choke (if used)
(2) Fault relay contacts, for remote signaling of drive status

(2)

(4)
(1) Analog output
(2) Analog inputs
(3) Reference potentiometer (10 kOhm maxi)
(4) Digital inputs

Digital Inputs Wiring

The logic input switch (SW1) is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs. Switch SW1 set to "Source" position and use of the output power supply for the DIs.

Switch SW1 set to "Source" position and use of an external power supply for the Dls.

Switch SW1 set to "Sink Int" position and use of the output power supply for the DIs.

Switch SW1 set to "Sink Ext" position and use of an external power supply for the Dls.

ATV320•••••B

Product data sheet
Performance Curves

Derating curve for the nominal drive current (In) as a function of temperature and switching frequency (SF).

$40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C
$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C
$-60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Mounting type B and C
In : Nominal Drive Current
SF: Switching Frequency

