Product data sheet
 ATV340D45N4E
 Characteristics
 Variable speed drive, Altivar Machine ATV340, 45 kW Heavy Duty, 400 V, 3 phases, Ethernet

Relay output type	Relay outputs R1A Relay outputs R1C electrical durability 100000 cycles Relay outputs R2A Relay outputs R2C electrical durability 100000 cycles
Maximum switching current	Relay output R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 250 V AC Relay output R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 30 V DC Relay output R1C on inductive load, cos phi $=0.4$ and $L / R=7 \mathrm{~ms}$: 2 A at 250 V AC Relay output R1C on inductive load, cos phi $=0.4$ and $L / R=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 30 V DC Relay output R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 250 V AC Relay output R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 30 V DC Relay output R2C on inductive load, cos phi $=0.4$ and $L / R=7 \mathrm{~ms}$: 2 A at 250 V AC Relay output R2C on inductive load, cos phi $=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 30 V DC
Minimum switching current	Relay output R1B: 5 mA at 24 V DC Relay output R2C: 5 mA at 24 V DC
Physical interface	2-wire RS 485
Connector type	3 RJ45
Method of access	Slave Modbus RTU Slave Modbus TCP
Transmission rate	4.8 kbit/s 9.6 kbit/s 19.2 kbit/s 38.4 kbit/s
Transmission frame	RTU
Number of addresses	1... 247
Data format	8 bits, configurable odd, even or no parity
Type of polarization	No impedance
4 quadrant operation possible	True
Asynchronous motor control profile	Constant torque standard Optimized torque mode Variable torque standard
Synchronous motor control profile	Reluctance motor Permanent magnet motor
Pollution degree	2 conforming to EN/IEC 61800-5-1
Maximum output frequency	0.599 kHz
Acceleration and deceleration ramps	S, U or customized Linear adjustable separately from 0.01... 9999 s
Motor slip compensation	Not available in permanent magnet motor law Can be suppressed Adjustable Automatic whatever the load
Switching frequency	$1 . .8 \mathrm{kHz}$ adjustable $2.5 . . .8 \mathrm{kHz}$ with derating factor
Nominal switching frequency	2.5 kHz
Braking to standstill	By DC injection
Brake chopper integrated	True
Line current	97.2 A at 380 V (normal duty) 84.2 A at 480 V (normal duty) 81.4 A at 380 V (heavy duty) 71.8 A at 480 V (heavy duty)
Line current	97.2 A at 380 V with internal line choke (normal duty) 84.2 A at 480 V with internal line choke (normal duty) 81.4 A at 380 V with internal line choke (heavy duty) 71.8 A at 480 V with internal line choke (heavy duty) $81.4 \text { A }$ $71.8 \mathrm{~A}$
Maximum input current	97.2 A
Maximum output voltage	480 V
Apparent power	70 KVA at 480 V (normal duty) 59.7 kVA at 480 V (heavy duty)
Maximum transient current	127.2 A during 60 s (normal duty) 132 A during 60 s (heavy duty) 127.2 A during 2 s (normal duty) 132 A during 2 s (heavy duty)

Electrical connection	Screw terminal, clamping capacity: $0.75 \ldots 1.5 \mathrm{~mm}^{2}$ for control Screw terminal, clamping capacity: $70 \ldots .120 \mathrm{~mm}^{2}$ for line side Screw terminal, clamping capacity: $70 \ldots 120 \mathrm{~mm}^{2}$ for DC bus Screw terminal, clamping capacity: $70 \ldots 120 \mathrm{~mm}^{2}$ for motor
Prospective line Isc	50 kA
Base load current at high overload	88.0 A
Base load current at low overload	106.0 A
Power dissipation in W	Natural convection: 105 W at 380 V , switching frequency 4 kHz (heavy duty) Forced convection: 943 W at 380 V , switching frequency 4 kHz (heavy duty) Natural convection: 115 W at 380 V , switching frequency 4 kHz (normal duty) Forced convection: 917 W at 380 V , switching frequency 4 kHz (normal duty)
Electrical connection	Control: screw terminal 0.75... $1.5 \mathrm{~mm}^{2} /$ AWG 18...AWG 16 Line side: screw terminal $70 . . .120 \mathrm{~mm}^{2} /$ AWG $1 / 0 . . .250 \mathrm{kcmil}$ DC bus: screw terminal $70 . . .120 \mathrm{~mm}^{2} /$ AWG $1 / 0 \ldots . .250 \mathrm{kcmil}$ Motor: screw terminal 70... $120 \mathrm{~mm}^{2} /$ AWG 1/0... 250 kcmil
With safety function Safely Limited Speed (SLS)	True
With safety function Safe brake management (SBC/ SBT)	True
With safety function Safe Operating Stop (SOS)	False
With safety function Safe Position (SP)	False
With safety function Safe programmable logic	False
With safety function Safe Speed Monitor (SSM)	False
With safety function Safe Stop 1 (SS1)	True
With sft fct Safe Stop 2 (SS2)	False
With safety function Safe torque off (STO)	True
With safety function Safely Limited Position (SLP)	False
With safety function Safe Direction (SDI)	False
Protection type	Thermal protection: motor Safe torque off: motor Motor phase loss: motor Thermal protection: drive Safe torque off: drive Overheating: drive Overcurrent: drive Output overcurrent between motor phase and earth: drive Output overcurrent between motor phases: drive Short-circuit between motor phase and earth: drive Short-circuit between motor phases: drive Motor phase loss: drive DC Bus overvoltage: drive Line supply overvoltage: drive Line supply undervoltage: drive Input supply loss: drive Exceeding limit speed: drive Break on the control circuit: drive
Width	271.0 mm
Height	908.0 mm
Depth	309.0 mm
Product weight	56.4 kg
Continuous output current	106 A at 4 kHz for normal duty 88 A at 4 kHz for heavy duty

Environment

Operating altitude	<= 4800 m with current derating above 1000 m
Operating position	Vertical +/-10 degree
Product certifications	UL CSA TÜV EAC CTick
Marking	CE
Standards	EN/IEC 61800-3 EN/IEC 61800-5-1 IEC 60721-3 IEC 61508 IEC 13849-1 UL 618000-5-1 UL 508C IEC 61000-3-12
Maximum THDI	<48 \% full load conforming to IEC 61000-3-12 <48 \% 80 \% load conforming to IEC 61000-3-12
Assembly style	With heat sink
Electromagnetic compatibility	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6
Environmental class (during operation)	Class 3C3 according to IEC 60721-3-3 Class 3S3 according to IEC 60721-3-3
Maximum acceleration under shock impact (during operation)	$150 \mathrm{~m} / \mathrm{s}^{2}$ at 11 ms
Maximum acceleration under vibrational stress (during operation)	$10 \mathrm{~m} / \mathrm{s}^{2}$ at $13 \ldots 200 \mathrm{~Hz}$
Maximum deflection under vibratory load (during operation)	1.5 mm at $2 . . .13 \mathrm{~Hz}$
Permitted relative humidity (during operation)	Class 3K5 according to EN 60721-3
Volume of cooling air	295.0 m3/h
Type of cooling	Forced convection
Overvoltage category	Class III
Regulation loop	Adjustable PID regulator
Noise level	62.4 dB
Pollution degree	2
Ambient air transport temperature	$-40 . .70^{\circ} \mathrm{C}$
Ambient air temperature for operation	$-15 \ldots 50^{\circ} \mathrm{C}$ without derating (vertical position) $50 \ldots 60^{\circ} \mathrm{C}$ with derating factor (vertical position)
Ambient air temperature for storage	$-40 . .70^{\circ} \mathrm{C}$
Isolation	Between power and control terminals

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Height	60 cm
Package 1 Width	43 cm
Package 1 Length	111 cm
Package 1 Weight	66 kg

Offer Sustainability	
Sustainable offer status	Green Premium product
REACh Regulation	四REACh Declaration
EU RoHS Directive	Pro－active compliance（Product out of EU RoHS legal scope） EU RoHS Declaration
Mercury free	Yes
China RoHS Regulation	ERChina RoHS Declaration
RoHS exemption information	WYes
Environmental Disclosure	泥Product Environmental Profile
Circularity Profile	風End Of Life Information
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
California proposition 65	WARNING：This product can expose you to chemicals including：Lead and lead compounds，which is known to the State of California to cause cancer and birth defects or other reproductive harm．For more information go to www．P65Warnings．ca．gov
Upgradeability	Upgraded components available

Product data sheet
Dimensions Drawings

ATV340D45N4E

Views: Front - Left - Rear
$\frac{\mathrm{mm}}{\mathrm{in}}$

Dimensions in mm

$X 1$	X2	X3
\geqslant	\geqslant	\geqslant
100	100	10

Dimensions in in.

X1	X2	X3
\geqslant	\geqslant	\geqslant
3.94	3.94	0.39

Mounting Types

Mounting Type A: Side by Side IP20

Possible, up to $50^{\circ} \mathrm{C}, 2$ drives only

Mounting Type B: Individual IP20

[^0]Three-Phase Power Supply with Upstream Breaking via Line Contactor Without Safety Function STO
Connection diagrams conforming to standards ISO13849 category 1 and IEC/EN 61508 capacitySIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

(1) Use relay output R1 set to operating state Fault to switch Off the product once an error is detected.

A1: Drive
KM1 :Line Contactor
Q2, Circuit breakers
Q3 :
S1: Pushbutton
S2 : Emergency stop
T1: Transformer for control part

Three-Phase Power Supply with Downstream Breaking via Switch Disconnector

(1) Use relay output R1 set to operating state Fault to switch Off the product once an error is detected.

A1: Drive
Q1: Switch disconnector

Sensor Connection

It is possible to connect either 1 or 3 sensors on terminals AI1/AI3.

Control Block Wiring Diagram

(1) Safe Torque Off
(2) Analog Output
(3) Digital Input
(4) Reference potentiometer
(5) Analog Input
(6) Digital Output
(7) $0-10 \mathrm{Vdc}, x-20 \mathrm{~mA}$
(8) $0-10 \mathrm{Vdc},-10 \mathrm{Vdc} . .+10 \mathrm{Vdc}$

A1: ATV340 Drive
R1A, Fault relay
R1B,
R1C :
R2A, Sequence relay
R2C :
R3A, Sequence relay
R3C :

Digital Inputs Wiring

Switch Set to SRC (Source) Position Using the Output Power Supply for the Digital Inputs

Switch Set to SRC (Source) Position and Use of an External Power Supply for the DIs

Switch Set to SK (Sink) Position Using the Output Power Supply for the Digital Inputs

Switch Set to EXT Position Using an External Power Supply for the DIs

Digital Outputs Wiring

Digital Outputs: Internal Supply
Positive Logic, Source, European Style, DQ switches to +24 V

(1) Relay or valve

Negative Logic, Sink, Asian Style, DQ switches to OV

(1) Relay or valve

Digital Outputs: External Supply
Positive Logic, Source, European Style, DQ switches to +24 V

(1)

Relay or valve

Negative Logic, Sink, Asian Style, DQ switches to OV

(1) Relay or valve

1: Self-cooled motor: continuous useful torque
2 : Force-cooled motor: continuous useful torque
3 : Overtorque for 60 s maximum
4 : Torque in overspeed at constant power

Closed Loop Applications

1: Self-cooled motor: continuous useful torque
2 : Force-cooled motor: continuous useful torque
Overtorque for 60 s maximum
Torque in overspeed at constant power

[^0]: $a \geqslant 110 \mathrm{~mm}$ (4.33 in.)

