

FEATURES

- Ultrasonic sensors
- insensitivity to countless materials, surface types, and colors
- Wood, metal, orplastic; colored, reflective or transparent
- Narrow Beam and Short Dead Band 30mm
- Temperature Compensated
- Intrinsically Safe CE & IP67 compliant in properly designed integrated system
- Tamperproof & Rugged
- IP67 Enclosure Rating
- Accurate under demanding environmental conditions

RS PRO Ultrasonic Proximity Sensor

RS Stock No.: 2565749

RS Professionally Approved Products bring to you professional quality parts across all product categories. Our product range has been tested by engineers and provides a comparable quality to the leading brands without paying a premium price.

Ultrasonic Proximity Sensors

Product Descriptions

Ultrasonic sensors precisely detect objects made from various materials regardless of their shape, colour, or surface contour. The operate using high-frequency sound waves that are inaudible to the human ear.

- Liquid and Solid Level Measurement
- Position Detection
- Factory automation
- Tanks, Totes, Processing

General Specifications

PVDF
300mm – 8000mm
50KHz
Diffuse Reflection
1 analogue output 420mA
125 ms
12°
\pm 1% of full-scale value
±0.1% of full-scale value
4 core cable
4 core cable
4-wire
4 core cable
2m
-25 °C
75 ℃

Electrical Specifications

Operating Voltage Range	10V dc to 30V DC
Current Consumption	≤15mA (No-load)
Voltage Drop	2V
Maximum Load	500 Ohm
Switching Frequency	
Switching Current	
Reverse Polarity Protection	Yes
Short Circuit Protection	Yes
Overload Protection	Yes

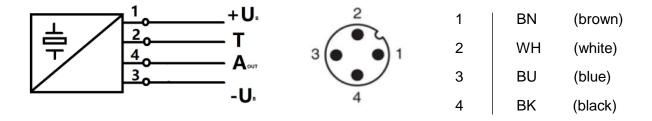
Body Style	Cylindrical
Thread Size	M30
Housing Material	PVDF
Front Material	PVDF
Dimensions	¢64mm x 105mm
Width / Diameter	¢64mm
Length	
Depth	105mm
Weight	400g

Protection Category

IP Rating	IP67

Additional Information

EAN	
Custom Tariff Number	


Classification

eCI@ss	
UNSPSC	

Approvals

Compliance/Certifications	CE / RoHS EN 60947-5-2:2020
Declarations	MFR Declaration of Conformity

Electrical Connection

Wire Colors in accordance with EN 60947-5-2

Ultrasonic Proximity Sensors

Adjusting the evaluation limits

Adjusting the evaluation limits

The ultrasonic sensor features an analogue output with two teachable evaluation limits. These are set by applying the supply voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s. LEDs indicate whether the sensor has recognised the target during the TEACH-IN procedure. The lower evaluation limit A1 is taught with $-U_B$, A2 with $+U_B$. Two different output functions can be set:

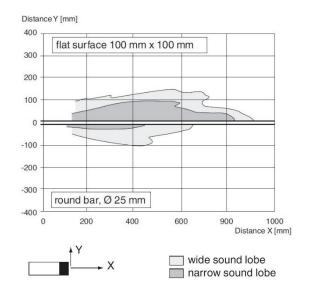
- 1. Analogue value increases with rising distance to object (rising ramp)
- 2. Analogue value falls with rising distance to object (falling ramp) Evaluation limits may only be specified within the first 5 minutes after Power on. To modify the evaluation limits later, the user may specify the desired values only after a new Power On.

TEACH-IN rising ramp (A2 > A1)

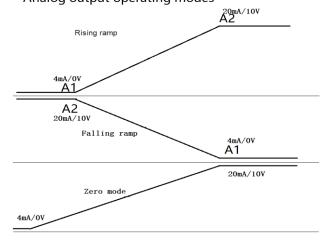
- Position object at lower evaluation limit
- TEACH-IN lower limit A1 with UB
- Position object at upper evaluation limit
- TEACH-IN upper limit A2 with + U_B

TEACH-IN falling ramp (A1 > A2):

- Position object at lower evaluation limit
- TEACH-IN lower limit A2 with + U_B
- Position object at upper evaluation limit
- TEACH-IN upper limit A1 with UB

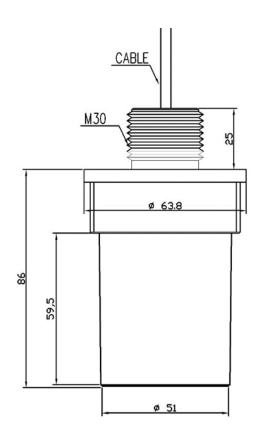

Default setting

A1: unusable area


A2: nominal sensing range

Mode of operation: rising ramp

Characteristic response curve



Analog output operating modes

Drawing

