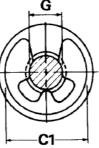

ENGLISH

Datasheet

Steel E Type Circlip, 6mm Shaft Diameter, 4mm Groove Diameter

RS Stock number 289-477



Sizes printed in blue are preferred sizes

Circlip in groove

G d¹ n

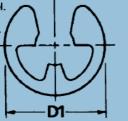
S

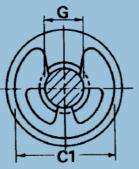
Thrust load calculations see pages 9 & 10

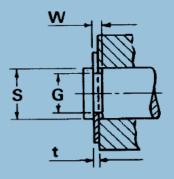
D1500 *This size in Beryllium copper only

SIZE	B.S.	Shaft (S)		S) Groove (G)						Circlip (F)						TcT	⊺gT	Appli-	
CODE		S.	Tol.	G.	Toi.	W.	Tol.	n (min)	d Nom	t	Tol.	<u>D1</u>	C1	A	Tol.	(N)	(N)	cator	BASE
*0008 0012 0015 0019 0023	008MS 012MS 015MS 019MS 023MS	1.20 1.70 2.25 2.75 3.50	±0.20 ±0.30 ±0.25	0.8 1.2 1.5 1.9 2.3	+0.00 -0.04 +0.00 -0.06	0.24 0.34 0.44 0.54 0.64	+ 0.04 - 0.00	0.4 0.6 0.8 1.0 1.0	0.20 0.25 0.38 0.43 0.60	0.20 0.30 0.40 0.50 0.60	±0.02	1.95 2.90 3.85 4.40 5.90	2.25 3.25 4.25 4.8 6.3	0.58 1.01 1.28 1.61 1.94	±0.04	63 203 358 546 835	30 53 105 145 260	- 28 21A 22 3C	- DR 1.2 DR 1.5 DR 1.9 DR 2.3
0032 0040 0050 0060 0070	032MS 040MS 050MS 060MS 070MS	4.50 6.00 7.00 8.00 9.50	±0.50 ±1.00	3.2 4.0 5.0 6.0 7.0	+ 0.00 - 0.075	0.64 0.74 0.74 0.74 0.74	+ 0.05 - 0.00	1.0 1.2 1.2 1.2 1.5	1.00 1.00	0.60 0.70 0.70 0.70 0.70 0.90	±0.02	6.80 8.80 10.75 11.75 13.80	7.3 9.3 11.3 12.3 14.3	2.70 3.34 4.11 5.26 5.84	±0.048	1070 1670 1950 2220 3400	365 745 870 995 1 480	AM9 23B 7B 24 15	DR 3.2 DR 4 DR 5 DR 6 FR 7
0090 0090 0100 0120 0150	080MS 090MS 100MS 120MS 150MS	10.50 12.00 13.00 15.50 20.00	± 1.50 ± 2.00 ± 2.50 ± 4.00	8.0 9.0 10.0 12.0 15.0	+0.00 -0.09 +0.00 -0.11	1.05 1.15 1.25 1.35 1.55	+0.08	1.8 2.0 2.0 2.5 3.0	1.25 1.50 1.50 1.75 2.50	1.00 1.10 1.20 1.30 1.50	±0.03	15.60 18.20 19.65 22.65 28.60	16.3 18.8 20.4 23.4 29.4	6.52 7.63 8.32 10.45 12.61	±0.058 ±0.07	4170 5250 6200 8010 11900	1630 2240 2430 3370 6220	AM20 25 26 27 20B	FR 8 FR 9 FR 10 FR 12 FR 15
0190 0240	190MS 240MS	25.50 31.50	±5.50 ±6.50	19.0 24.0	19.0 + 0.00	1.85 2.05		3.5 4.0	3.25 3.75	1.75 2.00		36.70 43.65	37.6 44.6	15.92 21.88	±0.084	17700 25000	10300 14700	32A 	FR 19 —

RS, Professionally Approved Products, gives you professional quality parts across all products categories. Our range has been testified by engineers as giving comparable quality to that of the leading brands without paying a premium price.




ENGLISH



Standard material carbon spring steel. Standard finish phosphate and oil.

Sizes printed in blue are preferred sizes

N1500

*This size in Beryllium copper only

Circlip in groove

+ Thrust load calculations see pages 9 & 10

SIZE	B.S.	Shaf	t (S)		Groov	e (G)			Circli	p (F)		Tct	Tg†	Appli- Bas	Base	SIZE
CODE	Ref.	S	Toi.	G	Tol.	w	Tol.	D1	C1	t	Tol.	(lb.f)	(1b.f)	cator		CODE
*X004 X006 0006 Y006 X009	028PS 054PS -	.040 .062 .062 .062 .094	+ .010 000 + .030 000 + .040 000 + .050 000 + .050 000	.026 .052 .052 .052 .052	+ .002 000	.012 .012 .012 .023 .018	+.002	.079 .140 .156 .187 .230	.090 .150 .165 .200 .245	.010 .010 .010 .020 .015	±.001	15 36 36 72 81	5 6 6 17	- AM2 AM3 - AM7	- SF2 SF3 - SF4	X004 X006 0006 Y006 X009
0009 X011 0012 X014 Y014	076PS 081A2 097PS 104PS 112A1	.094 .110 .125 .140 .140		.074 .079 .095 .102 .110		.018000 .018 .018 .018 .018 .018 .018		.187 .375 .230 .203 .250	200 .390 .240 .214 .265	.015 .015 .015 .015 .015		81 95 108 121 121	17 32 35 50 39	AM5 AM6 AM7 AM8 AM10	SF5 SF6 SF7 SF8 SF10	0009 X011 0012 X014 Y014
0014 0015 X017 X018 0018	107A1 118A1 129PS 	.140 .156 .172 .188 .188		.105 .116 . 127 .125 .147		.029 .029 .029 .029 .029 .029	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	.270 .282 . 312 .375 .335	.285 .295 . 325 .390 .350	.025 .025 .0 25 .025 .025		202 225 248 271 271	46 58 72 110 72	AM9 AM11 AM12 AM13 AM14	SF9 SF11 SF12 SF13 SF14	0014 0015 X017 X018 0018
X021 0025 X031 0037 0043	190PS 212PS 252PS 306PS 346PS	.219 .250 .312 .375 .438	+.100 +.000 +.120 000 +.200 000	.188 .210 .250 .303 .343	.029 .029 .039	.029 .029 .029 .039 .039		.437 .527 .500 .660 .687	.450 .540 .520 .680 .710	.025 .025 .025 .035 .035		316 361 450 757 885	63 93 180 252 388	AM15 AM16 AM16 AM18 AM18 AM19	SF15 SF16 SF17 SF18 SF18 SF19	X021 0025 X031 0037 0043
X043 0050 0062 X074 0075	383A1 399PS 488PS 628A1 583PS	.438 .500 .625 .744 .750		.390 .396 .485 .625 .580	+ .003 000	.039 .046 .046 .056 .056		.600 .800 .940 1.000 1.120	.620 .820 .960 1.020 1.140	.035 .042 .042 .050 .050		884 1210 1510 2160 2520	237 485 816 1190 1630	AM20 AM21 AM22 AM23 AM23 AM24	SF20 SF21 SF22 SF23 SF23 SF24	X043 0050 0062 X074 0075
0087 X098 X118 X137	678PS 	.875 .984 1.188 1.375		.675 .835 1.079 1.230	.056 +.005 000 .068 -	+ .004 000	1.300 1.500 1.626 1.875	1.320 1.530 1.670 1.920	.050 .050 .062 .062	±.003	2840 4250 4920 4920	1370 1210 1860 1860	AM25 AM26 AM27 -	SF25 SF26 SF27	0087 X098 X118 X137	