7 Digit LCD with green backlight
Totalizer signal frequency range from 0.01 Hz to 20 KHz .
Rate indication range from 0.01 to 99999.

- Prescaling \& Postscaling facility for Rate \& Totalizer indication
- Alarm setting facility for Rate/Totalizer values.
- Compact size with panel mounting facility

CONNECTION DIAGRAM:

	Description	Terminal
	Supply	$1(+\mathrm{ve})-2(-\mathrm{ve})$
	$\begin{aligned} & \text { Common -ve } \\ & \text { for signal } \end{aligned}$	$3(-\mathrm{ve})$
	Common for signal input	4(Refer input signal connection
	+ve for signal	5(+ve)
	Terminal Reset	Short 3-6
	Relay Output	7(NO)-8(Pole)

Connection for different types of Input Signal:

FRONT VIEW:

1. Input Signal Frequency Range selection :-

User has to select appropriate input signal frequency range as per requirement, for 50 Hz : For signal frequencies above 0.01 Hz and below 50 Hz , it is advisable to select this range, for better noise immunity, because the hardware filter is enabled in this range. For signal frequencies above 0.01 Hz \& below 20 KHz , " 20 kHz " range has to be selected. Hardware filter is disabled in this range
2. Default Signal state selection: This is default signal state selection creen for counting the pulses and rate calculation.
2.1 Default signal state LOW (dF 5 LO) - LOW Default signal state selection.
"Default LOW" state is selected: Totalizer will increment at Low to High of signal Rate will be calculated for rising to rising edges.

2.2 Default signal state HIGH (dF5 Hil) - HIGH Default signal state selection.
"Default HIGH" state is selected: Totalizer will increment at High to Low of signal

*3. Decimal point selection :- User can select decimal point position up to 4 It is applicable for Rate as well as Totalizer.
*4. Prescaler selection :- Value before decimal point is considered as rescaler \& value after decimal point is considered as Postscaler
rescaler means no. of pulses requis
g. Prescaler value 100 means increment the totaliser value by 1 after 100 input

Postscaler means reciprocal of given entered value
5. Rating Time selection :- It is per unit which is settable by user as
, , Min, Hou
e.g. If prescaler value is 0001.000 and input signal is 50 Hz then

$$
\begin{array}{ll}
\text { Rate per } & \text { Display value } \\
\text { Sec } & 50(50 \times 1) \\
\text { Min } & 3000(50 \times 60) \\
\text { Hrs } & 180000(50 \times 3600)
\end{array}
$$

5.1. Rate Low Update Time(4)-010) :- Minimum time to calculate and display Rate 5.1. Rate Low por values 0.1 sec and 0.2 sec display updates correctly but unsteady.
value
5.2. Rate High Update Time(hilt-10.0):- Maximum time to calculate and display Rat NOTE : High update time > Low updated time
High update time is always greater than Low

Rate Calculation
Rate indicator device should calculate the rate by summing number of falling / rising edges depending upon the selection of "Default Signal Level.
For E.g. Considering default signal state : LOW (1510)
Rate High Update time (Hut-10.0) : 10 Sec
Rate calculation starts on the first rising edge and all rising edges are accumulating time toward Low update time value (1 sec). When the time reaches the Low Update Time value, after that one more rising edge is required to display the rate value
If a rising edge occurs before the High Update Time value is reached, the Rate display will update to the new value and the next sample period will start on the same edge.
Then total rate will be calculated by total number of rising edge in time period of ($t+d t$).

If rising edge will occur after reaching "Rate High Update Time"value, then the Rate Value will be display to zero.

6. Alarm Functionality :-

NOTE:
and if Prescaler entry screen for totalizer or rate, alarm symbol will appear on screen should be non zero. Zero will not be accepted. It will start blinking first digit again if all digits are zero.

Alarm-N (ALAr-ïn). Alarm Disabled:Alarm value can not be set. Output relay will not becomes ON

setting done.
7. Totalizer Alarm Functionality (toti , 己r):- There are two types of

Totalizer Alarms
7.1) tot-rEc - Recurring Type. 7.2) tot-Atr - Auto reset Type

7.1 Recurring type Alarm: Totalizer count will not reset at the alarm activation or deactivation. Types of recurring type alarm is 7.1.1) start to start \& 7.1.2) end to star type | 7.1.1 Start to Start type(5tr-5tr): | $\begin{array}{l}\text { 7.1.2 End to Start type(End-5tr): } \\ \text { If the the }\end{array}$ |
| :--- | :--- |
| If the alarm value is 100 then | | If the alarm value is 100 then output will

activate at 100 . After acknowledged by activate at 100. After acknowledged by
pressing SET key for 2sec(for Latch type). or after time out (for Time out type) output will deactivate \& again activate after every 100 counts
i.e $200,300,400$ so
 the alarm value is 100 then output will
activate at 100 . after acknowledged by pressing SET key for 2 sec (for Latch type) or after time out (for Time out type) output will deactivate \& again activates after Current value +100

7.2. Auto reset type Totalizer(tot-Atr): Count will reset depending on the setting of start to start or end to start type

8. Rate Alarm Functionality:

here are three alarm type for rate.

1) Low rate, 2) High rate, 3) Band rate

On Delay (t0n0000): It is conformation time to register Rate Alarm \& make output ON.
Timeout: It is time in seconds required for confirm rate value to deactivate output rate crosses the alarm set value, output will activated when rate comes within limit

Standby feature: This feature is applicable to low rate alarm and band rate alarm

 with ' A^{\prime} < ' b '-Standby - Yes(5toy-y): It disables 'Low Rate Alarm' output at power-ON, t point Standby- No(5tby-n): Low Rate Alarm functionality enabled at Power ON.

Product Specifications :

Supply Characteristics :					
Supply Voltage Range (Un)	9 to 30 VDC				
Power Consumption	1.5 W				
I/P Signal Characteristics :					
Signal Voltage Range	3 to 30 VDC				
Input Signal	Range 1:			$\begin{array}{l}\text { Input Signal } \\ \text { Frequency Range }\end{array}$	$\begin{array}{l}\text { Range } 1: 0.01 \mathrm{~Hz} \text { to } 50 \mathrm{~Hz} \\ \text { Range } 2: 0.01 \mathrm{~Hz} \text { to 20KHz }\end{array}$
:---	:---				
Output Characteristics :					
Output type	$\begin{array}{l}\text { Relay: } 1 \mathrm{C} / \mathrm{CO}, \text { Contact Rating:5 A(Res.) } \\ \text { @250 VAC/30VDC }\end{array}$		Output type	$\begin{array}{l}\text { Relay: 1 C/O, Contact Ra } \\ \text { @250 VAC/30VDC } \\ \text { Contact Material: Ag Alloy }\end{array}$	
:---	:---				
Functional Characteristics :					

Environmental Characteristics :	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Humidity	5 to $95 \% \mathrm{Rh}$ (Without condensation)
Maximum Operating Altititue	2000 m
Pollution Degree	II
Degree of Protection	Front side $:$ Ipp0; Terminals: Ip20, Housing: IP3
Enclic	

Enclosure material	UL
Casing color	Black
Other Chara	

Mounting	Flush mounting on panel cut-out
Panel Cut-out	$22 \mathrm{~mm} \times 44.8 \mathrm{~mm}$
Weight (Packed)	64 gm
Operating Position	Horizontal
Termination wire Sizes	Wire size $: 22-14$ AWG, $0.3-2.5 \mathrm{~mm}$
EMI /EMC	

EMI/EMC Compliance

ESD
Radiated

Susceptibility
Transients(Supply)
Electrical Fast

Transients(Signal)
Surge (Supply)
Conducted

Conducted
Susceptibility(Supply)

Power Frequency
Magnetic Field

Voltage Dips	IEC $61000-4-29 \mathrm{Ed}$.1.0 (2000-08) Class B				
Col			Conducted Emission	CISPR 11	Ed. 5.1 (2010-05) Class A
:---	:---	:---			
Radiated Emission	CISPR 11	Ed. 5.1 (2010-05) Cass A	$\begin{array}{llll}\text { Radiaced Emission } & \text { CISPR } 11 & \text { Ed. } 5.1 \text { (2010-05) Class A } \\ \text { Safety Compliance: } & \end{array}$		

$\begin{array}{l}\text { Test Voltage (All } \\ \text { terminal to housing) }\end{array}$	IEC 60947-5-1	Ed. 3.1 (2009-07) 2 kV
Single fault	IEC 61010-1	Ed. 3.0 (2010-06)
Leakage Current	UL 508	Ed. $17 \quad(1999-01)<3.5 \mathrm{~mA}$

Environmental Compliance :		
Cold Heat	IEC 60068-2-1	Ed. 6.0 (2007-03)

Cold Heat
Dry Heat
:---
Repetitive Shock
Non-repetitive Shock

Functional Parameters:

Product Version:			
P5'.d-00	password (01 to 99)		
F-20000	20 kHz frequency	F-20000	
F- 50	50 Hz frequency		
Default Signal Selection:			
	Default signal Low	dF 510	
${ }^{\text {dF }} 5 \mathrm{SH}$	Default signal High		
Decimal Point Menu:			
${ }^{1} \mathrm{P}$	Up to Four Digit($0,1,2,3,4$)	${ }^{\text {dP }}$	
Prescaler Menu:			
0001.000	Value before decimal point is considered as prescaler \& value after decimal point is considered as Postscaler.	0001.000	
Rate per Unit Menu:			
rEE SEL	Rate per Second	reE SEC	
reE in in	Rate per Minute		
rtE hrs	Rate per Hour		
Rate update time:			
	Low update time 0.1 to 99.8 sec	LUt-01.	
Alarm Menu:			
Al Ariin	Alarm No	AlArion	
ALARII ${ }^{\text {a }}$	Alarm Yes		
toti lir	Totalizer	toti icr	
Lo - rte	Low Rate		
Hi - rtE	High Rate		
bnd - rtE	Band Rate		
Totalizer Menu:			
tot - rec	Totalizer Recurring	tot - rec	
tot-Rtr	Totalizer Auto Reset		
Str - 5tr	Start to Start	$5 t r-5 t r$	
End Str	End to Start		
0000001	Alarm value for Totalize		
Low Rate Menu:			
ton 0000 000001	Output On Delay Time Alarm value for Rate	r000001	
Stby - n	Stand by No		
High Rate Menu:			
ton 0000	Output On Delay Time	0000	
Band Rate Menu:			
ton 0000	Output On Delay Time	0000	
R00000 1	Alarm value for Band Rate ' B '		
6000002	Alarm value for Band Rate 'b'	6000002	
56by - n	Stand by No	5tロy - n	
56by-y	Stand by Yes		
Output Menu:			
op - dis	Output Disable	of - dis	
op - En	Output Enable		
op no	Output Logic NO	op no	
op nc	Output Logic NC		
OP - LRE	Output Latch	op - LRt	
op - toll	Output Timeout		
0001	Output Timeout value entry	0001	
OP5 - y	Output save at Power fail	oP5 - n	
OPSu - n	Output not save at Power fail		
MODBUS Menu:			
id 001	Device ID settable from 1 to 247		
$\begin{array}{lc} \hline b \quad 9600 \\ \hline \text { Reset Menu } \\ \hline \end{array}$	Baud rate:2400,4800,9600,19200	$\bigcirc 9600$	
Fr 5 E-y	Front Reset Yes	Fr 5 - -	
Fr5t-n	Front Reset No		
tr5t-y	Terminal Reset Yes	t r 5t -	
tr5t-n	Terminal Reset No		
Por5t - n	Power On Reset - No	Por5t -	
Por5t - y	Power On Reset - Yes		
cntr5t 3	Contrast Level ($0,1,2,3,4,5,6,7$)	3	
SRuE n	Program Save No	SRuE n	
SRuE Y	Program Save Yes		

8.2. High Rate : High rate alarm function flow

8.3. Band Rate: Band rate alarm function flow:
'A'(A): Set value 1 (low rate value)
' $\mathbf{b}^{\prime}(\mathrm{t})$: Set value 2 (high rate value)
Note:

1. 'A.' 'should be non-zero
2. Both values shonld be unequal.
a. CASE 1 : 'A' $<$ ' \mathbf{b} ':

b. CASE 2 : ' A ' $>$ 'b'
Output will activate

3. Output Disable/Enable (op-d $\mathrm{d} / \mathrm{F} / \mathrm{oP}^{\rho}-E_{n}$) :- Using this setting output
can be made either enabled Or disabled.
When output is Enable then the output will activate and alarm symbol will blink. Output Enable: of - no and op - nc applicable for output enable.
If select op - no it turns 'ON' output when activated \& 'OFF' when deactivated
If select op $-n c$ it turns 'OFF' output when activated \& 'ON' when deactivated When output is Disable then the output will be OFF and alarm symbol will blink.
10.Output type :- this allows to select the output reset type,
0.1 Latch(op -LRE)

ON \& remains ON
10.1.1 Output Save: of $5 u-n \& \sigma^{P} 5 u-y$ This parameter is applicable to Latch type
only. If 5 is selected then, output status will be saved at power fail.
If $5 u$ - n is selected then, output status will not be saved at power fail
10.2 Time out (op-tou):

0 to
11. Communication Interface:

Interface - RS485
Protocol - MODBUS Slave
Slave ID - 1 to 247 Selectable
Baud Rate $-2400,4800,9600,19200 \mathrm{bps}$. Selectable
Data size - 8
Parity - None
Stop Bit -1
Supported function code - Read Input Resister FC 04 Write Multiple Holding Resister FC 16
Read Multiple Holding Resister FC 03
12. Reset Types :
12.1 Front reset $(F-r 5 t-n / F-r 5 t-y)$ allows user to reset Count by pressing RST key for

2 sec
12.2
terminal to ground for minimum 80 mS .
12.3 Power ON reset: Por5t n - Count retains at power ON. Por5t y - Count resets at
13. Contrast control(entr5t 3) :-
14. Password entry/change ($P 5^{\prime \prime \prime} 1 d-00$)

Passward 01 to 99 . To enter into the edit mode, press SET \& RST key simultaneously for 2 sec, then password screen will appear only if enabled where user has to enter the password for edit setting.
00 - Password Disabled
01-99 - Password Enabled
Save :- Confirmation to save edited paramete
5RUE y - Saves the edited parameter in Non Volatile Memory
SRuE n - Do not save edited parameters in Memory.
Over range \& roll over condition :-
*In run mode, when input signal is gre
In run mode, when input signal is greater than 25 KHz OR display
In run mode, if Totalizer display is rolles over then "raisplay on Screen.
for 500 msec after every 5 seconds.

Typical Examples:

1) Motor speed indication requirement in RPM
er revolution (say)
Requirement: "Rate" display should show RPM reading

Setting:	
Frequency - F - 20000	Band rate A(low rate) -
00000400	terminal reset - y

Device ID - 001
Hysteresys value - ton 0005 Front reset - y
Here $\mathbf{3 6}$ pulses of input signal is equal to one revolution of motor
Display will show rate in RPM and totalizer displays number of revolution on display.
Also, Output will be ON if rate remains low below 400 OR remains high above 1200 for minimum 5 seconds and after that if for continuous 10 sec rate is greater than 400 and less than 1200 then output will come OFF.
2) To Display total length of rope in feet \& rate of rope delivered in feet per sec. rope is getting delivered. Circumference of wheel is 2 feet.
So, 1 pulse corresponds to 2 feet. So,
Prescaler = $\mathbf{1}$ pulse/ $\mathbf{2}$ feet $=\mathbf{0 . 5 0 0}$
Setting: Output Disable - op d 1.5
Decimal point selection - dP Time out -0005, Device ID - 001, Baud rate - 9600
Prescaler - 0000.500 terminal reset - y
Rate per unit time - rEE SEc Power on reset - n
$\begin{array}{ll}\text { Alarm - } 4 & \text { Contrast - } \exists \\ \text { Totalizer - } & \text { Pass word }\end{array}$
Totalizer - \quad Pass word -
Alarm value - 0000010
As per above setting Output relay become ON after every 10 feet of rope passed .e. $10,20,30$, and so on for 5 sec .
3) If the user wants to display 1.00 for 3 pulses, then prescaler should be $3.000 \&$ rate If user wants to display 0.99 for 3 pulses then prescaler should be $3 / 0.99=3.030$.

