Installation \& Operating Instructions DIGITAL MULTI-FUNCTION INSTRUMENT
rogrammable Multi-function Digital Panel Meter
Article codes \quad Digital Multi-Function Meter, 96x96, 3Ph, V A F
$\begin{array}{ll}\text { 136-5377 } & \text { Digital Multi-Function Meter, 96x96, 3Ph, V A F } \\ \text { 136-5378 } & \text { Digital Multi-Function Meter, } 96 \times 96,3 \text { Ph, V A F, }\end{array}$ with Limit Relay/Switch option

1. INTRODUCTION

The RS PRO is a panel mounted $96 \times 96 \mathrm{~mm}$ DIN Quadratic Digital Panel Meter for the
heasurement of important electrical parameters like AC Voltage, AC Current, RPM, Frequency.
he instrument integrates accurate measurement technology (All Voltages \& current measureme
ED display.

239 ${ }^{\text {mumm }}$	RS PRO can be configured and
5.00 \%..'	(5 A or 1A) and System Type 3 phase $3 W$ or $4 W$ or single phase
50.1 wim	system.
\square	L3-L1 through different screens and configure the product.

2. MEASUREMENT READING SCREENS

In normal operation, the user is presented with one of the measurement reading screens out of several screens. These screens may be scrolled through one at a time in
incremental order by pressing the "UP key" and in decremental order by pressing incremental ord

ABLE 1: Measured Parameters System Wis

Measured Parameters	Units	3P 4W	3 P 3 W	1P 2W
System Voltage	Volts	\checkmark	\checkmark	\checkmark
System Current	Amps	\checkmark	\checkmark	\checkmark
Voltage VL1-N/ /L2-N/ /L3-N	Volts	\checkmark	\times	x
Voltage VL1-L2 / VL2-L3 / VL3-L1	Volts	\checkmark	\checkmark	x
Current L1 / L2 / L3	Volts	\checkmark	\checkmark	
Frequency	Hz	\checkmark	\checkmark	\checkmark
Run Hour	Hours	\checkmark	\checkmark	\checkmark
On Hour	Hours	\checkmark	\checkmark	\checkmark
Number of Interruptions	Counts	\checkmark		\checkmark
Min / Max System Voltage	Volts	\checkmark	\checkmark	\checkmark
Min / Max System Current	Amps	\checkmark	\checkmark	\checkmark

3. Programming

The following sections comprise step by step procedures for configuring the RS PRO for dividual user requirements. To access the set-up screens press and hold the "DOWN nd "UP" keys Simultaneously. This will take the User into the Password Entry scree
Section 3.1).
In Setup mode, if none
measurement mode.
3.1. Password Protection

Password protection can be enabled to preven
by default password protection is not enabled.
Password protection is enabled by selecting a three
a password of ofoo disables the password protection.

Enter Password, prompt for first digit.
(* Denotes that decimal point will be flashing).
Press the "DowN" key to scrall the value of the first digit from 0
through to 9 , the value will wrap from 9 round to 0 .
Press the "UP" key to advance to next digit.
In the special case where the Password is "OOO" pressing the "UP"
key when prompted for the first tigit will advance to the "Password Confirmedr screen
Enter Password, first digit entered, prompt for second digit.
(* .enotes that decimal point will be flashing).
Press the "DOWN" key to scoll the value of to through to 9 , the value will wrap from 9 round to 0 . Press the "UP" key to advance to next digit.

3.2.2. Potential Transformer Primary Value

The nominal full scale voltage which will be displayed as the Line to Line voltage for all
system types. This screen enables the user to display Line to Line and Line to neutral Voltages inclusive of any PT ratios, the values displayed represent the voltage.

Pressing the "UP" key acceptst the present value and advances to the
"Current Transformer Primary value Edit" menu. (See Section 3.2.3) Pressing the "DOWN" key will enter the "Potential transformer

Initially the PT value must be selected pressing the "DOWN" key will move the decimal point position to the right side untili it reaches \#\#\#. after which it will
return to \#. \#\# with $\times 1000$ annunciation. Pressing the "UP" key accepts the present mutiplier (Decimal Point position with $\times 1000$
annunciation) and advances to the "Potential Transformer Primary Digit Edit" Screen. Note : PT Values must be set as Line to Line Voltage for Primary as well as Secondary for all system types (3P3W/3P4W/1P2W)

Potential Transformer Primary Digit Edit

Pressing the "DOWN" key will scroll the value of the most significant
digit from 0 to 9 unless the presently displayed Potential Transformer Primary value is less than 799 kilovolits in that case the digit range
will be restricted.
Pressing the "UP
Pressing the "UP" key accepts the present value at the cursor
position and advances the cursor to the next Less significant digit. Note : The flashing decimal point indicates the cursor position, a steady decimal point will be er esesent to idenentify the scaling of the number until the cursor
position coincides with the steady decimal point position. At this stage the decimal point position
will liash.
When the least significant digit has been set, pressing the "UP" key will advance to the otential transformer Primary Value Confirmation" stage.
Screen showing display of 11.0 k VL-L.i.e. 11000 Volts Line to Line indicating steady
decimal point and cursor flashing at the "hundreds of volts" position as shown below.

Potential Transformer Primary Value Confirmation
This screen will only appear following an edit of the Potential Transtormer Primary Value.
If the set value is to be corrected, pressing the "Down" key will
return to the "Potential Transformer Primary value Editi" stage.

Pressing the "UP" key sets the displayed value and Transformer Primary Value. (See section 3.23.)

3.2.3. Current Transformer Primary Value

The nominal full Scale Current that will be displayed as the Line currents. This screen The nominal full Scale Current that will be displayed as the Line currents. This screen
enabies the user to display the Line currents inclusive of any current transformer ratios enables the user todisplay the Line currents inclusive of any current transformer ratios,
the values displayed represent the Current in Amps or in KAmps when $\times 1000$ led is the value
glows.

Pressing the "Down" key will enter the "Current Transformer
Primary Value Edit" mode. Pressing the "UP" key will accept the Primary Value Edit" mode. Pressing the "UP" key will accept the
present value And Advances to the "Potential Transformer Second Vresent value And Advances to the "Po.
Furthe functionality is same as per Potential Transformer Primary
Value (section 3.2.2).
$\square \quad \square$

3.2.4. Potential Transformer Secondary Value

> This screen is used to set the secondary value for Potential Transformer Secondary value from 100 v to $500 \mathrm{VL-L}$. .

Pressing "UP" key accepts the present value and then advances to
Current Transformer Secondary value edit mode
Pressing the "DowN" key will enter the PT secondary value edit
mode. * Denotes that Decimal Point will be flashing.

Potential Transformer secondary value Edit
Pressing "Down" Key advances the Most Significant Digit To scroll
from 1 through 5 . Pressing "UP" Key shifts the Decimal Position to from 1 th
right.
When value of least significant Digit is set, Pressing of "UP" key
advances the screen to "PT secondary value Confirmation" screen.

Pt.S
110 .
$5 E t$
0This screen will only appears following an edit of PT secondary value. If secondary value shown is not correct, pressing the "DOWN" key If secondary value shown is not correct
will return to PT Secondary edit stage.
Pressing "UP" key sets the displayed value and will advance to CT
Secondary Value Edit menu. (See section 3.2 .5)
3.2.5. Current Transformer Secondary Value

[t.5
This screen is used to set the secondary value for Curren
Transformer Secondary value from 1 and 5 Amperes.
Pressing "UP" key accepts the present value and then advances to
RESET menu Pressing the "DOWN" key will enter the CT secondary value edit
mode.

Current Transformer secondary value Edit

Current Transformer secondary value Edit
Pressing "DOWN" key scroll the value between 1 and 5 .
Pressing "UP" key will enter the CT Secondary Value Confirmation
menu.
CT Secondary value confirmation.
This screen will only appears following an edit of CT secondary
value.
If secondary value shown is not correct, pressing the "Down" key will return to CT secondary edit stage.
Pressing "UP" key sets the displayed value and will advance RESET
menu (See section 3.2.5)
3.2.6. Reset

The following screens allow the users to reset the run hour, ON Hour
No. Of Interruptions, Min and Max. Values of Voltage and Current. Pressing the "DOWN" key will enter the "Reset edit" menu. Pressing the "UP" key will Reset None and enter to screen Auto of
fixed selection menu. fixed selection menu.
Edit the Reset of Parameters

Pressing "DOWN" will scroll the parameters in sequence as Follow

1. All: To reset All parameters, 2. Hi : To reset Max values,
2. Lo To
5eset min. Values, 4. H: To reset Run Hrs, On Hrs, 3. LI: :To reset No. Ol Interuytions,
3. None : No to reset any of the Parameters, 6. None : No to reset any of the Parameters,

Select the Correct parameter to Reset and then Press "UP" key. This
will enter to Reset Parameter Confirmation Screen. Confirmation of parameter for RESET
Pressing "DOWN" will enter reset menu back and scroll between
parameters as above. parameters as above
Pressing "UP" key will Reset the Selected Parameter. In this case
hour parameters will get reset.Then it will enter to auto scroling or
fixes scren hour parameiers wiri get rese.t.t.
fixed screen selection parameter.

3.2.7 Screen Auto scrolling / Fixed Screen selection

This menu allow to select scrolling or fixed screen.
Pressing "UP" key enters confirmation of Fixed Screen.
Pressing of "DOWN" key enters to Edit menu.

Fixed Screen / Auto Scrolling Edit
Pressing of "DOWN" key Rolls between "Yes" and "No".
Pressing "UP" key enters Auto scrolling / fixed screen select
confirmation.

Confirmation of Auto Scrolling / Fixed Screen
Pressing "DOWN" key enter back to edit menu.
Pressing "UP" key confirms the selection and enters Number of
poles selection menu.

3.2.8 No. of Poles Selection

This screen enables to set No. of poles on a Generator of which
RPM is to be measured and to which the instrument is connected to RPM is to be measurued and to
measure its output parameters.
Pressing "DOWN" key enters into no. of pole edit menu. Pressing "UP" key will set the displayed number as No. of poles.
Then it advanced to Relay limit parameter selection screen (see section 3.2.9).

Pressing "DOWN" key scrolls the number from 02 to 40 in step of 2 .
Pressing "DOWN" key scrolls the number
After 40 it wraps to the number again 02 .
Pressing "UP" key enters into No. of poles Confirmation screen.
No. of Poles Confirmation
Pressing "DOWN" key enters back to No. of poles edit menu. Pressing "UP" key sets the number on screen, 4 in this case, as
number of poles of generator and advanced to Relay limitit parameter selection screen (see section 3.2.9).

3.2.9 Relay Limit Parameter selection (Optional)

This screen enables user to select Parameter for limit monitoring via
a Relay.
Pressing "UP" key selects the displayed parameter for monitoring
Renters trip point selection screen.
Pressing "DOWN" key enters Trip parameter edit screen.

Pressing "DowN" key scrolls the parameters one by one as per
table 2. Selecting oo(None) disables relay function. table 2 . Selecting 00 (None) isables relay function. Pressing "UP" key selects the parameter and enters the Trip
parameter oconimation screen.ln this case displayed number 10 will
select VLL1-L2. For relay monitoring as per table 2 .

Trip parameter confirmation screen
This screen will appear only after parameter edit.
Pressing "DOWN" key will ae-enter the parameter selection menu. Pressing "DOWN" key will re-enter the parameter selection menu.
Pressing "UP" key will set the parameter for relay trip and then it will
enter the trip point selection menu. Trip point selection
This screen will not appear if parameter None (00) is Selected in previous menu. The trip point can be set as \% of the Nominal value
of selected parameter (Refer Table 2). Pressing "DOWN" key will of selected parameter (Refer Table 2). Pressing "DoWN" key will
enter trip point edit screen. Pressing "UP" key will set displayed
value as trip point and exit set up. value as trip point and exit set up.
 Further Functionality is same as Potential Transformer Secondary
value (see section 3.2.4). TABLE 2 : Parameters for limit monitoring

$\begin{array}{\|c\|} \hline \text { Parameter } \\ \text { No. } \end{array}$	Measured	3P4W	3P3W	1P2W	Trip point Set range	$\begin{aligned} & \text { 100\% } \\ & \text { Value } \end{aligned}$
00	None	\checkmark	\checkmark	\checkmark		
01	Voltage L1	\checkmark	\checkmark	\checkmark	10-120\%	Vnom (L-N)
02	Votage L2	\checkmark	\checkmark	\checkmark	10-120\%	Vnom (L-N)
03	Voltage L3	\checkmark	\checkmark	\checkmark	10-120\%	Vnom (L-N)
04	Current L1	\checkmark	\checkmark	\checkmark	10-120\%	Inom
05	Frequency	\checkmark	\checkmark	\checkmark	10-120\%	Inom
06	Voltage VL1-L2	\checkmark	\checkmark	\checkmark	10-120\%	Inom
07	Current L2	\checkmark	\checkmark	\checkmark	10-100\%	$66 \mathrm{Z}^{(1)}$
10	Current L3	\checkmark	\checkmark	\checkmark	10-120\%	V ($\mathrm{L}-\mathrm{L}$)
11	Voltage VL2-L3	\checkmark	\checkmark	\checkmark	10-120\%	$\mathrm{Vn}(\mathrm{L}-\mathrm{L})$
12	Voltage VL3-L1	\checkmark	\checkmark	\checkmark	10-120\%	$\mathrm{Vn}(\mathrm{L}-\mathrm{L})$
13	System Current	\checkmark	\checkmark	\checkmark	10-120\%	Vnom ${ }^{(2)}$
14	System Voltage	\checkmark	\checkmark	\checkmark	10-120\%	Inom

 (3) Nominal Vaue is to be considered with set CTTPTP Priman values.
(4) For single phase 11 Phase values are to be considerece as system values.

Mounting of RS PRO is featured with easy "Clip- in" mounting. Push the meter in panel slot (size $92 \times 92 \mathrm{~mm}$), it will click fit intop panet with
clips on two sides of meter.
If required Additional support is provided with swivel
screws (optional) as shown in figure. The front of the enclosure conforms to IP50. Additional
protection to the panel may be obtained by the use of an protection to the panel may be obtained by the use of an
potional panel gasket. The terminals at the rear of the pptional panel gasket. The terminals at
product should be protected from liquids.
The RS PRO should be mounted in a reasonably stable ambient temperature and where the operating temperature in within the range - $10^{\circ}{ }^{\circ}$ to $55^{\circ}{ }^{\circ}$ C. Vibration s.oulul be kepp too a
minimum and the product should not be mounted where it will be subjected to excessive direct sunlight.

 2. Votages dangerous to human ifie are present tact muct me be installed by a qualified engineer, 3. These productsts do oot have interanal tuses therefore external tuses must be use disconnection.

4.1 EMC Installation Requirements

This product has been designed to meet the certification of the EU directives when installed to a good code of practice for EMC in industrial environments. e.g. screened output and low signal input leads or have provision for fiting RF
suppression components, such as ferrite absorbers, ine fiters etc., in the event that R fields cause problems.
Note: It is good practice to install sensitive electronic instruments that are performing
critical functions, in $E M C$ e critical functions, in EMC enclosures th
could cause a disturbance in function
Avoid routing leads alonside cables and
Avoid routing
interference.
To protect the product against permanent damage, surge transients must be limited to 2kV k .II is good EMC practice to to suppress damage, surgere transients must be limited to
unitges to 2 kV at the source. The unit thas been designed to automatically recover in the event of a high level of
transients. In extreme circumstances it may be necessary to temporarily disconnect the auxiliary supply for a period of greater than 5 seconds to restore correct operation. The Current inputs of these products are designed for connection in to systems via ESD precautions must be taken at all times when handling this product.
4.2 Case Dimension and Panel Cut Out

4.3 Wiring

Input connections are made directly to screw-type terminals with indirect wire pressure. regulations. Terminal for both Current and Voltage inputs will accept upto $4 \mathrm{~mm}^{2}$ (12 AWG solid or $2.5 \mathrm{~mm}^{2}$ (12AWG) standard cable.

4.4 Auxiliary Supply

RS PRO should ideally be powered from a dedicated wher how RS PRO should ideally be powered from a dedicated supply, however it may be powered
om the signal source, provided the source remains within the limits of the chosen Uuxiliary voltage range.

4.5 Fusing

is recommended that all voltage lines are fitted with 1 amp HRC fuse
4.6 Earth/Ground Connections

6. Optional Pluggable Module

7. Specification

System
Inputs
inputs
Nominal Input Voltage
System PT Primary values System PT Secondary values
Max continuous input voltage Max shontit duration input voltage Nominal input voltage burden Nominal Input Current Max continuous input 1 current Nominal input current burden
Max short duration Max short duration input current System CT Primary values
System CT Secondary values Operating Measuring Ranges
Voltage Voltage
Current

Frequency

Auxiliar
External

Frequency Range VA Burdon	$\begin{aligned} & 45 \text { to } 65 \mathrm{~Hz} \\ & <4 \mathrm{VA} \end{aligned}$
Accuracy	
Voltage	+1.0\% of nominal value
Current	+1.0\% of nominal value
Frequency	+0.5\% of mid frequency
Reference conditions for Accuracy	
Reference temperature	$23^{\circ} \mathrm{C}+2^{\circ} \mathrm{C}$
Curent	10... 100% of nominal value
Voltage	20...100\% of nominal value
Input frequency	$50 / 60 \mathrm{~Hz}+2 \%$
Input waveform	Sinusoidal (distortion factor 0.005)
Auxiliary supply voltage	Rated Value + 1 \%
Auxiliary supply frequency	Rated Value $+1 \%$
Relay	
Settable parameters	as per table 2
Trip Point setting	10%... 120% of set range of parameter (except frequency which is 10%...100\%)

57.7 V - 290 VLL

100VL-L to 799 kVL-L programmable at site
120% of Rated value
$2 \times$ Rated value (1s application repeated
<0.3 VA Approx. per phase
1A/5AAC

$20 \times$ Rated value per phase 1 sapplication repeated
5 times at 5 min. interval)
1 A to 799 K Amps progra
1 A or 5 A programmable at site
10... 120% of Rated value
... 120% of Rated value
$45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$
it starts from 75 mA .
40 V to 300 V AC/DC (+1-5\%)
(except frequency which is 10%... 100%)

Hysteresis
Contact type
Contact rating
Contact rating
Influence of Variations
Temperature Coefficient
Display
LED
LED
Update rate
Controls
User Interface
Applicable Standards
EMC
EMC
Immunity
Safety
IP for water \& dust
Pollution degree
Pollution degree
Installation category
Isolation
High Voltage Test
Environmental
Operating temperature
Storage temperature
Relative humidity
Warm up time
Warm up
Shock
Vibration
Shock
Vibration
Enclosure
Enclosure front
Enclosure back
Enclosure
Style
Material
-
Naterial
Terminals
Depth
Depth
Weight
Article codes
Article $\mathrm{No}: 136-5377$
RS Pro Volts, Amps and Frequency, $96 \times 96 \mathrm{~mm} 3$ Phase $3 / 4 \mathrm{~W}$ programmable onsite, AC VAF meter, 14 mm display,
Input. $100-500 \mathrm{VLL}$,
Input. 1 or 5 Amps AC
Input. 1 or 5 Amps AC,
Supply
values)

Article No: $136-5378$ RS Pro Volts, Amps and

RS Pro Volts, Amps and Frequency, $96 \times 96 \mathrm{~mm} 3$ Phase $3 / 4 \mathrm{~W}$ programmable onsite, AC VAF meter, 14 mm display,
Input. 100-500VLL,

Supply Voltage. 40-300 V AC/DC auxiliry (Programmable CT/PT primary and secondary values with Limit Switch/Relay O/P)

Company bel abale tor any other incidental, indirect or consequential damages arising trom the use or misusse of
the prooucts.

OR MORE INFORMATION VISIT THIS SITE
http://www.rs-components.com/index.html
5% of trip point
single pole NO single pole $\mathrm{NO}+\mathrm{NC}$, volt free contacts
$0.05 \% /{ }^{\circ} \mathrm{C}$
3 line 3 digits, Display height: 14 mm
Approx. 1 seconds
eys
IEC 61326
EC 61000-4-3. 10V/m min - Level 3
 IEC 60529
${ }^{2}$ III
$3.3 \mathrm{kV} \mathrm{AC}, 50 \mathrm{~Hz}$ for 1 minute between all
Electrical circuits
-10 to $+55^{\circ} \mathrm{C}$
-20 to $+65^{\circ} \mathrm{C}$
.... 90% non condensing
Minimum 3 minute
15 in 3 planes

|P50
|P20
Pomm $\times 96 \mathrm{~mm}$ DIN Quadratic
Polycarbonate Housing
Screw-type terminals
Screw-type terminals
60 grams Approx.

