C EfI
Universal Input PID Process Controller
-4 digits process (PV) and 4 digits process set value (SV) display Universal process Input (TC, RTD, $\mathrm{mV}=-\mathrm{V}=-\mathrm{mA}=-$) Dual or multipoint calibration for =-=Voltage / Current input Configurable ON/OFF, P, PI, PD ve PID control forms Adaptation of PID coeffic Manual/Automatic
Bumpless transfer
Programmable heating,cooling and alarm functions for contro outputs

SPECIFICATIONS

PROCESS INPUT
Universal Input: TC, RTD, =-_ Voltage / Current Thermocouple(TC): L(DIN 43
(IEC584.1)(ITS90), C (ITS90)
Thermoresistance (RTD): PT-100 (IEC751)(ITS90)
--- Voltage/ Current Input Types: Selectable by parameters. $0 \ldots 50 \mathrm{mV}=-, 0 \ldots 5 \mathrm{~V}=, 0 \ldots 10 \mathrm{~V}=-\quad$ or $0 \ldots 2 \mathrm{~mA}=,-\ldots \ldots \mathrm{mA}=$ Measurement Range: Please refer type and scale.
Accuracy $\pm 0,25$
nd voltage, $\pm 0,70 \%$ of full scale for current.
Cold Junction Compensation: Automatically $\pm 0.1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{C}$.
Line Compensation: Maximum 10 Ohm.
Sensor Break Protection: Upscale.
ampling Cycle: 3 samples per seco
nput Filter: 0.0 to 900.0 seconds.
CONTROL
Control Form: ON/OFF, P, PI, PD or PID (Control form can be ogrammed by the user.)
UTPUT
Standard Relay Outputs :3 pieces 5A@250V~ (at resistive load) (They can be programmed as Control or Alarm output)
Electrical Life : 100000 operation(Full Load))
Analog Output : 0/4 to 20 mA or $0 / 2$ to $10 \mathrm{~V}=-$
SUPPLY VOLTAGE AND POWER
$100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}(-15 \% ;+10 \%)-6 \mathrm{VA}$
$48 \mathrm{~V}=-\mathrm{o}(-15 \% ;+10 \%)-6 \mathrm{~W}$
$4 \mathrm{~V}=(-15 \% ;+10 \%)+10 \%)-6 \mathrm{VA}$
(Must be determined in order.)
DISPLAY
Process Display :
$48 \times 48: 10.1 \mathrm{~mm}$ Red 4 digits LED display
Set Value Display:
$48 \times 48: 8 \mathrm{~mm}$ Green 4 digits LED display EDS : AT (Auto Tune),M (Manual Mode), A (Automatic Mode), PSET Alarm Status), , ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} / \mathrm{V}$ LEDS.
ENVIRONMENTAL RATINGS and PHYSICAL SPECIFICATIONS Operating Temperature: $0 . . .50^{\circ} \mathrm{C}$
Humidity : $0-90 \%$ RH (none condensing)
Protection Class: IP65 at front, IP20 at rear
Veight: $48 \times 48: 170 \mathrm{gr}$.
Dimensions: $(48 \times 48 \mathrm{~mm}$,Depth: 87.5 mm$)$

PANEL MOUNTING

1-Before mounting the device in your panel, make sure that the panel cut-out is suitable.
2-Check front panel gasket position
3 -Insert the device through the cut-out. If the mounting clamp are
on the unit, put out them before inserting the unit to the panel.

4-Insert the unit in the panel cut

 out from the front side5 -Insert the mounting clamps to the holes that located top and the holes that located top and
bottom sides of device and screw up the fixing screws until the unit completely immobile within the panel.

Adjustment of Process and Alarm Set Values

TUNE SELECTIO
By selecting one of the methods below, device can determine
no Device operates according to the defined PID.
REun Auto tune (Limit Cycle Tuning) operation.
Stun Self tune (Step Response Tuning) operation.
REL5E Auto-Self Tune Self Tune operation is performed, if the
conditions are realized when power on firstly.

Piten AUTOMATIC TUNE SELECTION
no Device does not perform tunning
[YE5 Device does perform tunning.
GPLE BUMPLESS TRANSFER
Process output value in manual control is not taken into Process output value in manual control is not taken consideration while passing from manual control to
automatic control. New control output that is measured in
automatic control is applied to process output.

Introduction Brochure. ENG RS ESM-4435 01 V05 07/14

YE5 Last \% process output value in automatic control manual control continues to run.

LL[C ALARM Latch CANCELING
no Alarm latch canceling is not performed
YES If there is an alarm output with latching and there is no alarm status, latching op, this parameterbeched by the Automatically.

diSP LiSt: Function Selection for Top and Bottom Display

$d 59$ It defines the function of the top display. This parameter
determines which value is shown in top display.
0 Process value (PV) is shown in top display Difference between process set value and process value(SV-PV) is shown in top display.
bosp It defines the function of the bottom display. This Process set value (SV) is shown in bottom display
0
0
\% Output value that is applied to process control outpu is shown in bottom display

PinP ConF:Process Input Type and Relevant Parameters

.551 Process Input Type

0 TC Process Input Type
[[-=Voltage / Current input type selection.
E[SL TC Input Selection
This parameter is active ifTC input type is selected
$0 \mathrm{~L}\left(-100^{\circ} \mathrm{C} ; 850^{\circ} \mathrm{C}\right)$ or $\left(-148^{\circ} \mathrm{F} ; 1562^{\circ} \mathrm{F}\right)$
. $\mathrm{L}\left(-100.0^{\circ} \mathrm{C} ; 850.0^{\circ} \mathrm{C}\right)$ or $\left(-148.0^{\circ} \mathrm{F} \cdot 999.9^{\circ} \mathrm{F}\right)$
[J $\left(-200^{\circ} \mathrm{C} ; 900^{\circ} \mathrm{C}\right)$ or $\left(-328^{\circ} \mathrm{F} ; 1652^{\circ} \mathrm{F}\right)$
$3 \mathrm{~J}\left(-199.9^{\circ} \mathrm{C} ; 900.0^{\circ} \mathrm{C}\right.$) or ($-199.9^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}$)
$4 \mathrm{~K}\left(-200^{\circ} \mathrm{C} ; 1300^{\circ} \mathrm{C}\right)$ or $\left(-328^{\circ} \mathrm{F} ; 2372^{\circ} \mathrm{F}\right)$
5 K (-199.9 $\left.{ }^{\circ} \mathrm{C} ; 999.9^{\circ} \mathrm{C}\right)$ or ($-199.9^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}$)

R $\left(0.0^{\circ} \mathrm{C} ; 999.9^{\circ} \mathrm{C}\right)$ or $\left(32.0^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}\right)$
8 $\left(00^{\circ} \mathrm{C} 990^{\circ} \mathrm{C}\right)$ ($320^{\circ} \mathrm{F}$
$9 \mathrm{~S}\left(0.0^{\circ} \mathrm{C} ; 999.9^{\circ} \mathrm{C}\right)$ or $\left(32.0^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}\right)$
i0 $\mathrm{T}\left(-200^{\circ} \mathrm{C} ; 400^{\circ} \mathrm{C}\right)$ or $\left(-328^{\circ} ; 752^{\circ} \mathrm{F}\right)$
if $\mathrm{T}\left(-199.9^{\circ} \mathrm{C} ; 400.0^{\circ} \mathrm{C}\right)$ or ($-199.9^{\circ} \mathrm{F} ; 752.0^{\circ} \mathrm{F}$)
[2] $\mathrm{B}\left(44^{\circ} \mathrm{C} ; 1800^{\circ} \mathrm{C}\right)$ or $\left(111^{\circ} \mathrm{F} ; 3272^{\circ} \mathrm{F}\right)$
[3] $\mathrm{B}\left(44.0^{\circ} \mathrm{C} ; 999.9^{\circ} \mathrm{C}\right)$ or $\left(111.0^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}\right)$
${ }^{14} \mathrm{E}\left(-150^{\circ} \mathrm{C} ; 700^{\circ} \mathrm{C}\right)$ or $\left(-238^{\circ} \mathrm{F} ; 1292^{\circ} \mathrm{F}\right)$
i5 E ($-150.0^{\circ} \mathrm{C} ; 700.0^{\circ} \mathrm{C}$) or ($-199.9^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}$)
16 $\mathrm{N}\left(-200^{\circ} \mathrm{C} ; 1300^{\circ} \mathrm{C}\right)$ or $\left(-328^{\circ} \mathrm{F} ; 2372^{\circ} \mathrm{F}\right)$
i7 $\mathrm{N}\left(-199.9^{\circ} \mathrm{C} ; 999.9^{\circ} \mathrm{C}\right)$ or ($-199.9^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}$)
${ }_{18} \mathrm{C}\left(0^{\circ} \mathrm{C} ; 2300^{\circ} \mathrm{C}\right)$ or $\left(32^{\circ} \mathrm{F} ; 3261^{\circ} \mathrm{F}\right)$
[9] $\mathrm{C}\left(0.0^{\circ} \mathrm{C} ; 999.9^{\circ} \mathrm{C}\right)$ or $\left(32.0^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}\right)$
rtdS RTD InputSelection
This parameter is active if RTD input is selected.
[3] PT-100 ($-200^{\circ} \mathrm{C} ; 650^{\circ} \mathrm{C}$) or ($-328^{\circ} \mathrm{F} ; 1202^{\circ} \mathrm{F}$)
I PT-100 (-199.9 ${ }^{\circ} \mathrm{C} ; 650.0^{\circ} \mathrm{C}$) or ($-199.9^{\circ} \mathrm{F} ; 999.9^{\circ} \mathrm{F}$)
URSL =-Voltage / Current Input Selection
This parameter is active if =--Voltage/Current is selected.
© $0 . . .50 \mathrm{mV}=-\mathrm{o}$ (-1999 ; 9999)
$\square 0 \ldots 5 \mathrm{~V}=-\mathrm{C}$ (1999; 9999)
己 $0 . . .10 \mathrm{~V}=-\mathrm{C}(-1999 ; 9999)$
3 $0 . . .20 \mathrm{~mA}=-\mathrm{-}-1999$; 9999$)$
4 4...20mA =-- (-1999; 9999

Pat Display Point Positio
Active if _-_Voltage / Current input is selected.
0 Not point.
Between first and second digits " 0.0 "
\square Between second and third digits " 0.00 "
3 Between third and fourth digits " 0.000 "
U[RL Display Value Adjustment Type
Active if $=-=$ Voltage / Current input is selected.
© Fixed dual point display adjustment. Display adjustment Iow point value is fixed to-1999, display adjustment high point
value is fixed to 9999 .
User can do dual point display adjustment with tPoL and TPoH.
defined 16 display adjustment points. Low Point Display adjustment (-1999, 9999)Unit Active if .-- Voltage / Current input is selected.

LPoH High Point Display adjustment (-1999, 9999)Uni Active if $=-$ Voltage / Current input is selected.
PoOU Display adjustment points ($(1999,9999)$ Unit
$\begin{array}{ll}\text { a } & \text { Active if-=-=Voltage / Current input is selected. } \\ & \text { In multipoint display adjustment operation, defined scale is }\end{array}$ divided into 16 adjustment points. For example : $\angle A S L$ is $\square 0(0-50 \mathrm{mV})$

Led into 16 equal part
$50116=3.125 \mathrm{mV}=\mathrm{m}$

[oEF Coefficient value $(1.000,9.999)$ Process value is multiplied with this value. Active if $=-$ Voltage / Current input is selected.
un it Unitselection
${ }^{\circ} \mathrm{C}$ U Unit is ${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{F}$ Unit is ${ }^{\circ} \mathrm{F}$
U Unit is Voltage.Active if $=-$ - Voltage/Current input is selected No unit.Active if---Voltage / Current input is selected.
LOL Minimum value of operating scale. It can be changed acording to input type and scale of the process.

UPL Maximum value of operating scale. It can be changed
according to input type and scale of the process.
PUOF Display offset for process value.It can be adjusted -10% $0+10 \%$ of scale. The defined value is added to process
value
FLE Defines filter time for input signal. It can be adjusted from . 0 to 900.0
[Jin] It is active if process input is selected TC input. It decides cold junction compensation is active or no
YES Cold junction compensation is active
no Cold junction compensation is not active.

Conf: FID Cominaration Paramerers
CALE LOW POINT: Minimum process input value in Pt 100 and TC inputs. - -g for $f x e d$ dual point display adjus $t \mathrm{PoL}$ ort $P_{\mathrm{O}} \mathrm{Hl}$ for selectable dual point display adjustment used inputs display adjustment scale low point is the lowest one from Po000 or Po 16 for multipoint used inputs. 100 and TC inputs. 9999 for fixed dual point display adjust ment used inputs, Scale high point is the biggest one from $t P_{0 L}$ ort $P_{0} \cdot H^{H}$ for selectable dual point display adjustme used inputs display adjustment scale high point is the
iggest

- $d b$ PROPORTIONAL BAND SHIFTING
(If cooling function is performed; ; Cooling process set value
is calculated by adding set valuep $\rho \overline{\mathrm{F}} \mathrm{EE}$ with parametero-d is calculated by adaing set value
Control form can be ON/OFF or PID.

bou sensor break output alue (FOR HEATING PID 0.0, 100.0)\%
(FOR COOLING PID $-100.0,0.0$)

When sensor breaks, controlling of the process can continue by entering \% output value tofbow parameter.
If this parameter 0.0, process control output does not perform n output when sensor breaks.

55Et Soft Start Set value

can be adjusted from 0 to 9999 with increment and unction becomes inactive. When the device power on, if the Soft start set value different from no and temperature value is lower than soft start valu on processes, device starts soft start operation, entic
temperature reaches soft start set value. On soft start device output period will be SSCt parameter value and device control output will be SSCo parameter value.
55[0 Soft Start Control Output
It can be adjusted from \%10 to \%90 with increment and Soft Start Control Period
It can be adjusted from 1 to 100 sec with increment and

PCnF ConF: Process Output Configuration Parameters

Rot It determines output functions of Process Outputs If Process Output is chosen Current Output, then oRot
parameter is shown and [[tyP Parameter can be adjust onl PID mode.
If Process Output is chosen Relay Output, then Riot

parameter is invisible

C 0-20 mA Output
oFn[It determines output functions of Process Outputs

HERE Heating

Cool Cooling
[LYP It determines control algorithms of Process Outputs
onof ON/OFF control algorithm
P d PID control algorithm.
H35 Hysteresis value of Process Outputs.
It can be adjusted from 0% to 50% of full scale. (It is active It can be adjusted from 0% to
if ON/OFF control is selected.)
HYO It determines operation form of hysteresi
(It is active if ON/OFF control is selected.) $0 \mathrm{SV}+\mathrm{HYS} / 2$ and $\mathrm{SV}-\mathrm{HYS} / 2$
$\square \mathrm{SV}$ and $\mathrm{SV}+\mathrm{HYS}$ or SV and $\mathrm{SV}-\mathrm{HY}$
OFFE In ON/OFF operation, this time must be passed for the output to be energised again.It can be adjusted from 0.0 to
100.0 seconds. It is active if ON/OFF control is selected.)

Aln1 ConF: ALARM Output-1 Configuration Parameters

OU Logic Output-1
It determines logic output function for Alarm Output-1
© Alarm output
\square Manual /Automatic data output
[] Sensor break alarm output
3 Output is active when the process value is out of the band which is defined with minimum value of operating scale
Loi And maximum value of operating scale Pil $^{\rho /}$
ALE: Alarm-1 Type
It determines alarm type for Alarm-1 Output. It is active if logic outputfunction of Alarm Output-1 is alarm output.
0 Process high alarm
\square Process low alarm.
[2 Deviation high alarm
3 Deviation low alarm.
4 Deviation band alarm.
OLH: Alarm-1 hysteresis value It can be adjusted from 0% to 50% of process input scale. (LoL- - UPL) It is active if logic output function of Alarm Output-1 is alarm output.
Fion:Alarm on delay time foAlarm Output-1.
It can be adjusted from 0 to 9999 seconds. It is active if logic alarm outpu.

Rof : Alarm off delay time for Alarm Output-1. It can be adjusted from 0 to 9998 seconds. When the value is bigger than 9998,LE[His seen on the screen. It means alarm latching output is selected. Logic output function of activated.
PL. 5 Alarm stabilisation time forAlarm Output-1.
It can be adjusted from 0 to 99 second. Logic output function of Output-1 is selected as Alarm, AL S1 parameter will be activated. After the unit is power-on and Alarm Stabilisation
Time is expired, Alarm Output-1 becomes active when the alarm conditions realised in Alt1 parameter.

Aln2 ConF: Alarm-2 Output Configuration Parameters
(i) "Aln2 Conf" Menu is accessible if a[nf parameter in "PCnF (1) ConF" is \square

Loud Determines logic output function for Alarm-2 Output.
\square Alarm output
\square Manual /Automatic selection output
[[Sensor break alarm output
3 Output is active when the process value is out of the band which is defined with minimum value of operating
[RL $L[]$ Determines Alarm type for Alarm-2 Output.
It is active if logic output function of Alarm Output-2 is alarm output.
0 Process high alarm.
\square Process low alarm.
[2 Deviation high alarm.
3) Deviation low alarm.

4 Deviation band alarm.
5. Deviation range alarm.

RLHE Alarm- 2 hysteresis value
Active if logic output function of Alarm-2 Output is alarm output.
Rond Alarm on delay time for Alarm Output-2. Alarm on delay time for Alarm Output-2.
It can be adjusted ram 0 to 9999 seconds . It ative if logic
output function of Alarm Output-2 is alarm output.

RoF? Alarm off delay time foAlarm Output-2. It can be adjusted from 0 to 9998 seconds. When the value It can be adjusted from is bigger than 9998 ,LLECH is seen on the screen. It means alarm latching output is selected. It is active if logic output
function ofAlarm Output-2 is alarm output.

9L52 Alarm stabilisation time for Alarm Output-2. can be adjusted from 0 to 99 second. Logic output function of Output2 if is selected as Alarm, ALS2 parameter will be activated. After the unit is power-on and Alarm Stabilisation Time is expired, Alarm Output-2 becomes
alarm conditions realised in Alt2 2 parameter.

Gen ConF: General Parameters

5U-L Process Set Value Low Limit (Lot, 5U-U)Unit
$5 \mathrm{U}-\mathrm{U}$ Process Set Value Up Limit (5U-i , UPD) Unit
Prt: Alarm Set Values Protection
no Alarm Set values can be changed.

Prte AUTO / MANUAL Selection Button Protection
\square no Auto or Manual selection is possible with A/M button in
पE5 Auto or Manual selection is not possible with A/M button in Main Operation screen.
Prty AT (AUTO TUNE) Button Protection
no Limit Cycle Tuning operation can be active or inactive
पE5 Limit Cycle Tuning operation can not be active or inactive Limit Cycle Tuning operation can not be active or inactive
with AT(Auto Tune) Button in Main Operation screen.

PASS ConF: Technician Password

t[P5 Technician Password (0, 9999)
It is used for accessing to the technician parameters
It can be adjusted from 0 to 9999 .
If it is \square; there is no password protection while entering to the technician parameters.
If this parameter is different from " 0 " and user wants access to the technician parameters;
1-If technician does not enter E[PS password correctly: It turns to operation screen without entering to technician parameters.
2- When E[PS in top display and Oin bottom display, if technician presses SET button without entering password (For observing parameter)
Technician can see all menus and parameters except Technician Password menu ("Pass Conf"), but parameters
can notbechanged.

Process high alarm

Process low alarm

Deviation high alarm

Deviation low alarm

Deviation Band Alarm

Deviation Range Alarm

Process Set + Alarm Set ON

$$
\begin{aligned}
& { }^{5} 5 b_{00} \\
& \text { (0) } 800 \text { (e) }
\end{aligned}
$$

1-Sensor failure in analogue inputs. Sensor connection is
no sensor connection
c 15 1-
2- If value on top display blinks: If analogue input value is less than
minimum value of operating scale minimum value of operating scale Value on the top display starts to blink.
(P) (i) (B) (9)

(P) (다) (4) (6)

- - -

4- If technician password is different from "O" and technician accessses to the
parameters by Set button without entering the technician password and
wants to change a wants to change a parameter, device
does not allow to do any changes in parameters. If increment or decrement button is pressed, a warning message
will appear on the bottom display will appear on the bottom display as
shownonthe left shown on the left.

5- If tuning operation can not be completed in 8 hours, AT led starts to blink. Blinking can be canceled by pressing Enter button.
"RL! EBME

6- If user does not do anything for 120
seconds while device is on technicia seconds while device is on technician
menus, device turns to operation screen.

package,

- One piece unit
- One piece instruction manua

A visual inspection of this product for possible damage occured during shipment is recommended before installation. It is your
responsibility to ensure that qualified mechanical and electrical echnicians install this product.
there is danger of in this unit, power of the system and the electrical connection of the device from the system.
The unit is normally supplied without a power switch or a fuse. Use power switch and fuse as required.
Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure. Keep the power off until all of the wiring is compl
seeck and trouble with the unit can be prevented.
Never attempt to disassemble, modify or repair this unit. Tampering with the unit may results in malfunction, electric shock or fire
Do not use the unit in combustible or explosive gaseous atmospheres. During the equipment is putted in hole on the metal panel while mechanical installation some metal burrs can cause njury on hands, you must be carefu
Montage of the product on a system must be done with it's mounting clamp. Do not do the montage of the device with inappropriate mounting clamp. Be sure that device will not fall while doing the is your responsibility if this equipment is used in a manner not specified in this instruction manual.

Warranty

Warrants that the equipment delivered is free from
defects in material and workmanship. This warranty is provided for a period of two years. The warranty period starts from the delivery date.

This warranty is in force if duty and responsibilities which are instruction manual performs Maintenance
Repairs should only be performed by trained and specialized personnel. Cut power to the device before accessing internal patal Do not clean the case with hydrocarbon-based solvents (Petro Trichlorethylene etc.). Use of these solvents can reduce the alcohol or water to clean the external plastic case

PRロ

