

8-Channel, 24-Bit, Simultaneous Sampling ADC with Power Scaling, 110.8 kHz BW

Data Sheet AD7768

FEATURES

Precision ac and dc performance

8-channel simultaneous sampling

256 kSPS ADC output data rate per channel

108 dB dynamic range

110.8 kHz input bandwidth (-3 dB bandwidth (BW))

-120 dB THD typical

±2 ppm INL, ±50 μV offset error, ±30 ppm gain error

Optimized power dissipation vs. noise vs. input bandwidth

Selectable power, speed, and input bandwidth

Fast: highest speed; 110.8 kHz BW, 51.5 mW per channel Median: half speed, 55.4 kHz BW, 27.5 mW per channel

Eco: lowest power, 13.8 kHz BW, 9.375 mW per channel

Input BW range: dc to 110.8 kHz

Programmable input bandwidth/sampling rates

Cyclic redundancy check (CRC) error checking on data interface Daisy-chaining

Linear phase digital filter

Low latency sinc5 filter

Wideband brick wall filter: ±0.005 dB ripple to 102.4 kHz

Analog input precharge buffers

Power supply

AVDD1 = 5 V, AVDD2 = 2.25 V to 5 V

IOVDD = 2.5 V to 3.3 V or IOVDD = 1.8 V

64-lead LQFP package, no pad

Temperature range: -40°C to +105°C

APPLICATIONS

Data acquisition systems: USB/PXI/Ethernet Instrumentation and industrial control loops

Audio test and measurement

Vibration and asset condition monitoring

3-phase power quality analysis

Sonar

High precision medical EEG/EMG/ECG

FUNCTIONAL BLOCK DIAGRAM

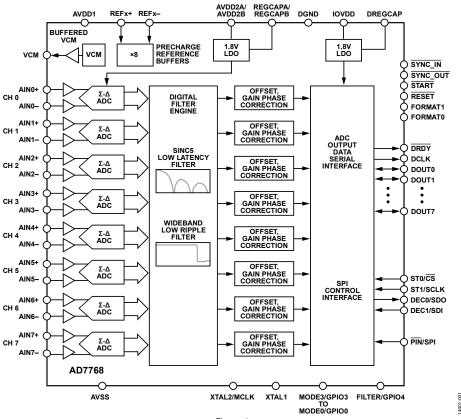


Figure 1.

Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
Revision History	2
General Description	3
Specifications	4
1.8 V IOVDD Specifications	9
Timing Specifications	.2
1.8 V IOVDD Timing Specifications	.3
Absolute Maximum Ratings	.6
Thermal Resistance	.6
ESD Caution1	6
Pin Configuration and Function Descriptions1	.7
Typical Performance Characteristics	21
Terminology	32
Theory of Operation	3
Clocking and Sampling Tree	3
Noise Performance and Resolution	34
Applications Information	36
Power Supplies	37
Device Configuration	8
Pin Control	8
SPI Control4	10
SPI Control Functionality4	1
SPI Mode Extra Diagnostic Features4	13
	IJ
Circuit Information	
Circuit Information	14
	14 14
Core Signal Chain4	14 14 14
Core Signal Chain	14 14 15
Core Signal Chain	14 14 15
Core Signal Chain	14 14 15 15
Core Signal Chain	14 14 15 15
Core Signal Chain	14 14 15 16 16
Core Signal Chain. 4 Analog Inputs. 4 VCM. 4 Reference Input. 4 Clock Selection 4 Digital Filtering. 4 Decimation Rate Control 4	14 14 15 15 16 17
Core Signal Chain	14 14 15 15 16 17
Core Signal Chain	14 14 15 16 17 18

ADC Conversion Output: Header and Data
Functionality
GPIO Functionality57
1.8 V IOVDD Operation57
Analog Supply Internal Connectivity
Register Map Details (SPI Control)
Register Map 58
Channel Standby Register
Channel Mode A Register60
Channel Mode B Register61
Channel Mode Select Register61
Power Mode Select Register
General Device Configuration Register
Data Control: Soft Reset, Sync, and Single-Shot Control
Register
Interface Configuration Register
Digital Filter RAM Built in Self Test (BIST) Register 64
Status Register
Revision Identification Register
GPIO Control Register
GPIO Write Data Register
GPIO Read Data Register
Precharge Analog Input Buffer Enable Register Channel 0 to Channel 3
Precharge Analog Input Buffer Enable Register Channel 4 to Channel 7
Positive Precharge Reference Buffer Enable Register 67
Negative Precharge Reference Buffer Enable Register 68
Offset Registers
Gain Registers
Sync Phase Offset Registers
ADC Diagnostic Receive Select Register
ADC Diagnostic Control Register70
Modulator Delay Control Register71
Chopping Control Register71
Outline Dimensions
Ordaring Guida 72

REVISION HISTORY

1/16—Revision 0: Initial Version

GENERAL DESCRIPTION

The AD7768 is an 8-channel, simultaneous sampling Σ - Δ analog-to-digital converter (ADC) with a Σ - Δ modulator and digital filter per channel, enabling synchronized sampling of ac and dc signals.

The AD7768 achieves 108 dB dynamic range at a maximum input bandwidth of 110.8 kHz, combined with typical performance of ± 2 ppm integral nonlinearity (INL), $\pm 50~\mu V$ offset error, and ± 30 ppm gain error.

The AD7768 user can trade off input bandwidth, output data rate, and power dissipation. Select one of three power modes to optimize for noise targets and power consumption. The flexibility of the AD7768 allows it to become a reusable platform for low power dc and high performance ac measurement modules.

The AD7768 has three modes: fast mode (256 kSPS maximum, 110.8 kHz input bandwidth, 51.5 mW per channel), median mode (128 kSPS maximum, 55.4 kHz input bandwidth, 27.5 mW per channel) and eco mode (32 kSPS maximum, 13.8 kHz input bandwidth, 9.375 mW per channel).

The AD7768 offers extensive digital filtering capabilities, such as a wideband, low ± 0.005 dB pass-band ripple, antialiasing low-pass filter with sharp roll off, and 105 dB attenuation at the Nyquist frequency.

Frequency domain measurements can use the wideband linear phase filter. This filter has a flat pass band (± 0.005 dB ripple) from dc to 102.4 kHz at 256 kSPS, from dc to 51.2 kHz at 128 kSPS, or from dc to 12.8 kHz at 32 kSPS.

The AD7768 also offers sinc response via a sinc5 filter, a low latency path for low bandwidth, and low noise measurements.

The wideband and sinc5 filters can be selected and run on a per channel basis.

Within these filter options, the user can improve the dynamic range by selecting from decimation rates of $\times 32$, $\times 64$, $\times 128$, $\times 256$, $\times 512$, and $\times 1024$. The ability to vary the decimation filtering optimizes noise performance to the required input bandwidth.

Embedded analog functionality on each ADC channel makes design easier, such as a precharge buffer on each analog input that reduces analog input current and a precharge reference buffer per channel reduces input current and glitches on the reference input terminals.

The device operates with a 5 V AVDD1A and AVDD1B supply, a 2.25 V to 5.0 V AVDD2A and AVDD2B supply, and a 2.5 V to 3.3 V or 1.8 V IOVDD supply (see the 1.8 V IOVDD Operation section for specific requirements for operating at 1.8 V IOVDD).

For the purposes of clarity within this document, the AVDD1A and AVDD1B supplies are referred to as AVDD1 and the AVDD2A and AVDD2B supplies are referred to as AVDD2. For the negative supplies, AVSS is used to refer to AVSS1A, AVSS1B, AVSS2A, AVSS2B, and all other AVSS pins.

The specified operating temperature range is -40° C to $+105^{\circ}$ C. The device is housed in a 12 mm \times 12 mm, 64-lead LQFP package.

Throughout this data sheet, multifunction pins, such as XTAL2/MCLK, are referred to either by the entire pin name or by a single function of the pin, for example MCLK, when only that function is relevant.

SPECIFICATIONS

AVDD1A = AVDD1B = 4.5 V to 5.5 V, AVDD2A = AVDD2B = 2.0 V to 5.5 V, IOVDD = 2.25 V to 3.6 V, AVSS = DGND = 0 V, REFx+ = 4.096 V and REFx- = 0 V, MCLK = 32.768 MHz, analog input precharge buffers on, reference precharge buffers off, wideband filter, f_{CHOP} = $f_{MOD}/32$, T_A = -40° C to $+105^{\circ}$ C, unless otherwise noted. See Table 2 for specifications at 1.8 V IOVDD.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
ADC SPEED AND PERFORMANCE					
Output Data Rate (ODR), per Channel ¹	Fast	8		256	kSPS
	Median	4		128	kSPS
	Eco	1		32	kSPS
Bandwidth	Fast, wideband filter			110.8	kHz
	Median, wideband filter			55.4	kHz
	Eco, wideband filter			13.8	kHz
Data Output Coding		T	wos compleme	ent, MSB first	
No Missing Codes ²		24			Bits
DYNAMIC PERFORMANCE	For 1.8 V operation, see Table 2; for dynamic range and SNR across all decimation rates, see Table 11 and Table 12				
Fast	Decimation by 32, 256 kSPS ODR				
Dynamic Range	Shorted input, wideband filter	106.2	108		dB
Signal-to-Noise Ratio (SNR)	1 kHz, –0.5 dBFS, sine wave input				
	Sinc5 filter	109	111		dB
	Wideband filter	106	107.8		dB
Signal-to-Noise-and- Distortion Ratio (SINAD)		104.3	106.9		dB
Total Harmonic Distortion (THD)			-120	-107	dB
Spurious-Free Dynamic Range (SFDR)			128		dBc
Median	Decimation by 32, 128 kHz ODR				
Dynamic Range	Shorted input, wideband filter	106.2	108		dB
SNR	1 kHz, –0.5 dBFS, sine wave input				
	Sinc5 filter	109	111		dB
	Wideband filter	106	107.8		dB
SINAD		105.3	106.9		dB
THD			-120	-113	dB
SFDR			128		dBc
Eco	Decimation by 32, 32 kHz ODR				
Dynamic Range SNR	Shorted input, wideband filter 1 kHz, –0.5 dBFS, sine wave input	106.2	108		dB
	Sinc5 filter	109	111		dB
	Wideband filter	106	107.8		dB
SINAD		105.3	106.9		dB
THD			-120	-113	dB
SFDR			128		dBc
INTERMODULATON DISTORTION (IMD)	$f_{INA} = 9.7 \text{ kHz}, f_{INB} = 10.3 \text{ kHz}$				
	Second order		-125		dB
	Third order		-125		dB
ACCURACY	See Table 2 for 1.8 V operation				
INL	Endpoint method		±2	±7	ppm of FSR
Offset Error ³	DCLK frequency ≤ 24 MHz		±50	±115	μV
	24 MHz to 32.768 MHz DCLK frequency ²		±75	±150	μV

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
Offset Error Drift	DCLK frequency ≤ 24 MHz		±250		nV/°C
	24 MHz to 32.768 MHz DCLK frequency		±750		nV/°C
Gain Error ³	T _A = 25°C		±30	±70	ppm of FSR
Gain Drift vs. Temperature ²			±0.5	±1	ppm/°C
VCM PIN					
Output	With respect to AVSS		(AVDD1 – AVSS)/2		V
Load Regulation	ΔVουτ/ΔΙ _L		400		μV/mA
Voltage Regulation	Applies to the following VCM output		5		μV/V
	options only: $V_{CM} = \Delta V_{OUT}/\Delta (AVDD1 - AVSS)/2$; $V_{CM} = 1.65 \text{ V}$; and $V_{CM} = 2.5 \text{ V}$				
Short-Circuit Current			30		mA
ANALOG INPUTS	See the Analog Inputs section				
Differential Input Voltage Range	$V_{REF} = (REFx+) - (REFx-)$	-V _{REF}		$+V_{REF}$	V
Input Common-Mode Range ²		AVSS		AVDD1	V
Absolute Analog Input Voltage Limits ²		AVSS		AVDD1	V
Analog Input Current					
Unbuffered	Differential component		±48		μΑ/V
	Common-mode component		±17		μΑ/V
Precharge Buffer On⁴	·		-20		μA
Input Current Drift	See Figure 48				,
Unbuffered			±5		nA/V/°C
Precharge Buffer On			±31		nA/°C
EXTERNAL REFERENCE					
Reference Voltage	$V_{REF} = (REFx+) - (REFx-)$	1		AVDD1 – AVSS	V
Absolute Reference Voltage Limits ²	Precharge reference buffers off	AVSS – 0.05		AVDD1 + 0.05	V
	Precharge reference buffer on	AVSS		AVDD1	V
Average Reference Current	See Figure 47				
3	Precharge reference buffers off		±72		μΑ/V/channe
	Precharge reference buffers on		±16		μΑ/V/channe
Average Reference Current Drift	See Figure 47				
3	Precharge reference buffers off		±1.7		nA/V/°C
	Precharge reference buffers on		±49		nA/V/°C
Common-Mode Rejection	3		95		dB
DIGITAL FILTER RESPONSE					
Low Ripple Wideband Filter	FILTER = 0				
Decimation Rate	Up to six selectable decimation rates; see the Decimation Rate Control section	32		1024	
Group Delay	Latency		34/ODR		sec
Settling Time	Complete settling, see Table 31		68/ODR		sec
Pass-Band Ripple ²	, 3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			±0.005	dB
Pass Band	±0.005 dB bandwidth		$0.4 \times ODR$		Hz
	-0.1 dB bandwidth		0.409 × ODR		Hz
	−3 dB bandwidth		0.433 × ODR		Hz
Stop Band Frequency	Attenuation > 105 dB		0.499 × ODR		Hz
Stop Band Attenuation	See the Wideband Low Ripple Filter section		105		dB
Sinc5 Filter	FILTER = 1				
Decimation Rate	Up to six selectable decimation rates; see the Decimation Rate Control section	32		1024	
Group Delay	Latency		3/ODR		sec
· · · · · · · · · · · · · ·		I			
Settling Time	Complete settling, see Table 32		7/ODR		sec

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
REJECTION					
AC Power Supply Rejection	$V_{IN} = 0.1 \text{ V, AVDD1} = 5 \text{ V, AVDD2} = 5 \text{ V,}$				
Ratio (PSRR)	IOVDD = 2.5 V				10
AVDD1			90		dB
AVDD2			100		dB
IOVDD			75		dB
DC PSRR	$V_{IN} = 1 V$		400		10
AVDD1			100		dB
AVDD2			118		dB
IOVDD			90		dB
Analog Input Common-Mode Rejection Ratio (CMRR)	W 24W	0.5			10
DC	$V_{IN} = 0.1 \text{ V}$	95			dB
AC	Up to 10 kHz		95		dB
Crosstalk	–0.5 dBFS input on adjacent channels		-115		dB
CLOCK					
Crystal Frequency		8	32.768	34	MHz
External Clock (MCLK)	See the Timing Specifications section		32.768		MHz
Duty Cycle	For data sheet performance		50:50		%
MCLK Pulse Width ²	Functionality				
Logic Low		12.2			ns
Logic High		12.2			ns
CMOS Clock Input Voltage High, V_{INH}	See the logic inputs parameter				
Low, V _{INL}					
LVDS Clock ²	$R_L = 100 \Omega$				
Differential Input Voltage	100 12	100		650	mV
Common-Mode Input		800		1575	mV
Voltage		000		1373	1114
ADC RESET ²					
ADC Start-Up Time After Reset ⁵	Time to first DRDY, fast mode, decimation by 32		1.58	1.66	ms
Minimum RESET Low Pulse Width	t _{MCLK} = 1/MCLK	$2 \times t_{MCLK}$			
LOGIC INPUTS	See Table 2 for 1.8 V operation				
Input Voltage ²	·				
High, V _{INH}		0.65×			V
-		IOVDD			
Low, V _{INL}				0.7	V
Hysteresis ²		0.04		0.09	V
Leakage Current		-10	+0.03	+10	μΑ
	RESET pin ⁶	-10		+10	μΑ
LOGIC OUTPUTS	See Table 2 for 1.8 V operation				
Output Voltage ²					
High, V _{OH}	$I_{SOURCE} = 200 \mu A$	0.8×IOVDD			V
Low, V _{OL}	$I_{SINK} = 400 \ \mu A$			0.4	V
Leakage Current	Floating state	-10		+10	μΑ
Output Capacitance	Floating state		10		pF
SYSTEM CALIBRATION ²					
Full-Scale Calibration Limit				$1.05 \times V_{\text{REF}}$	V
Zero-Scale Calibration Limit		$-1.05 \times V_{REF}$			V
Input Span		$0.4 \times V_{REF}$		$2.1 \times V_{REF}$	V

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER REQUIREMENTS					
Power Supply Voltage					
AVDD1 – AVSS		4.5	5.0	5.5	V
AVDD2 – AVSS		2.0	2.25 to 5.0	5.5	V
AVSS – DGND		-2.75		0	V
IOVDD – DGND	See Table 2 for 1.8 V operation	2.25	2.5 to 3.3	3.6	V
POWER SUPPLY CURRENTS	Maximum output data rate, CMOS MCLK, eight DOUTx signals, all supplies at maximum voltages				
Eight Channels Active					
Fast Mode					
AVDD1 Current	Precharge reference buffers off on		36 57.5	40 64	mA
AVDD2 Current			37.5	40	mA
IOVDD Current	Sinc5 filter wideband filter		27 63	28 67	mA
Median Mode	·				
AVDD1 Current	Precharge reference buffers off on		18.5 29	20.5 32.5	mA
AVDD2 Current			21.3	23	mA
IOVDD Current	Sinc5 filter wideband filter		16 34	18 37	mA
Eco Mode	The state of the s		- 11 -	- 11 -	
AVDD1 Current	Precharge reference buffers off on		5.1 8	5.8 9	mA
AVDD2 Current	The state of the s		9.3	10.1	mA
IOVDD Current	Sinc5 filter wideband filter		8 12.5	9 13.7	mA
Four Channels Active ²	Sines intelliwideband intel		0 12.5	۱۱۵.7	1107
Fast Mode					
AVDD1 Current	Drochargo reference buffers offlen		10 2020	20 21122 5	mA.
AVDD1 Current AVDD2 Current	Precharge reference buffers off on		18.2 28.8 18.8	20.3 32.5 20.3	
	Cin of Stroub wideless of Strou				mA
IOVDD Current	Sinc5 filter wideband filter		17 37	18.6 40	mA
Median Mode			0.2114.4.7	40 5114 6 6	
AVDD1 Current	Precharge reference buffers off on		9.3 14.7	10.5 16.6	mA
AVDD2 Current			10.7	11.7	mA
IOVDD Current	Sinc5 filter wideband filter		11 21	12.3 23	mA
Eco Mode					
AVDD1 Current	Precharge reference buffers off on		2.7 4.1	3.1 4.7	mA
AVDD2 Current			4.7	5.3	mA
IOVDD Current	Sinc5 filter wideband filter		6.5 9	7.6 10	mA
Two Channels Active ²					
Fast Mode					
AVDD1 Current	Precharge reference buffers off on		9.3 14.7	10.5 16.6	mA
AVDD2 Current			9.5	10.5	mA
IOVDD Current	Sinc5 filter wideband filter		11.9 23.4	13.3 25.5	mA
Median Mode					
AVDD1 Current	Precharge reference buffers off on		4.8 7.5	5.5 8.6	mA
AVDD2 Current			5.5	6.2	mA
IOVDD Current	Sinc5 filter wideband filter		8.5 14.1	9.6 15.5	mA
Eco Mode					
AVDD1 Current	Precharge reference buffers off on		1.52 2.2	1.77 2.6	mA
AVDD2 Current			2.4	3	mA
IOVDD Current	Sinc5 filter wideband filter		5.8 7.2	6.7 8	mA
Standby Mode	All channels disabled (sinc5 filter enabled)		6.5	8	mA
Sleep Mode	Full power-down (SPI mode only)		0.73		mA
Crystal Excitation Current	Extra current in IOVDD when using an		540		μA
E. year. Exertation Current	external crystal compared to using the CMOS MCLK				Fr

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER DISSIPATION	External CMOS MCLK, all channels active, MCLK = 32.768 MHz				
Full Operating Mode Wideband Filter	Analog precharge buffers on				
Fast	AVDD1 = 5 V, AVDD2 = $IOVDD = 2.5 V$, precharge reference buffers off ²		412	446	mW
	AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V , precharge reference buffers on ²		600	645	mW
	AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD = 3.6 V		631	681	mW
Median	AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V , precharge reference buffers off ²		220	240	mW
	AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V , precharge reference buffers on ²		320	345	mW
	AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD = 3.6 V		341	372	mW
Eco	AVDD1 = 5 V, AVDD2 = $IOVDD = 2.5 V$, precharge reference buffers off ²		75	85	mW
	AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V , precharge reference buffers on ²		107	118	mW
	AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD = 3.6 V		124	137	mW
Sinc5 Filter					
Fast	AVDD1 = 5 V, AVDD2 = $IOVDD = 2.5 V$, precharge reference buffers off ²		325	355	mW
	AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V , precharge reference buffers on ²		475	525	mW
	AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD = 3.6 V		501	541	mW
Median	AVDD1 = 5 V, AVDD2 = $IOVDD = 2.5 V$, precharge reference buffers off ²		175	195	mW
	AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V , precharge reference buffers on ²		260	285	mW
	AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD = 3.6 V		277	304	mW
Eco	AVDD1 = 5 V, AVDD2 = $IOVDD = 2.5 V$, precharge reference buffers off ²		65	72	mW
	AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V , precharge reference buffers on ²		95	105	mW
	AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD = 3.6 V		108	120	mW
Standby Mode	All channels disabled (sinc5 filter enabled), AVDD1 = 5.5 V , AVDD2 = IOVDD = 2.5 V^2			18	mW
	$AVDD1 = 5.5 \text{ V, } AVDD2 = IOVDD = 3.3 \text{ V}^2$			26	mW
	AVDD1 = AVDD2 = 5.5 V, IOVDD = 3.6 V			29	mW
Sleep Mode	Full power-down (SPI mode only), AVDD1 = 5.5 V , AVDD2 = IOVDD = 2.5 V^2		1.9		mW
	$AVDD1 = 5.5 \text{ V,.} AVDD2 = IOVDD = 3.3 \text{ V}^2$		2.5		mW
	AVDD1 = AVDD2 = 5.5 V, IOVDD = 3.6 V		2.7		mW

¹ The output data rate ranges refer to the programmable decimation rates available on the AD7768 for a fixed MCLK rate of 32.768 MHz. Varying MCLK rates allow users

a wider variation of ODR.

These specifications are not production tested but are supported by characterization data at initial product release.

Following a system zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale calibration reduces the gain error to the order of the noise for the programmed output data rate.

⁴⁻²⁵ μA is measured when the analog input is close to either the AVDD1 or AVSS rail. The input current reduces as the common-mode voltage approaches (AVDD1 – AVSS)/2. The analog input current scales with the MCLK frequency and device power mode. See Figure 87 for more details.

⁵ For lower MCLK rates or higher decimation rates, use Table 31 and Table 32 to calculate any additional delay before the first DRDY pulse.

⁶ The RESET pin has an internal pull-up device to IOVDD.

1.8 V IOVDD SPECIFICATIONS

 $AVDD1A = AVDD1B = 4.5 \text{ V to } 5.5 \text{ V, } AVDD2A = AVDD2B = 2.0 \text{ V to } 5.5 \text{ V, } IOVDD = 1.72 \text{ V to } 1.88 \text{ V, } AVSS = DGND = 0 \text{ V, } REFx+=4.096 \text{ V and } REFx-=0 \text{ V, } MCLK = 32.76 \text{ 8 MHz, } analog \text{ precharge buffers on, } reference \text{ precharge buffers off, } wideband filter, } f_{CHOP} = f_{MOD}/32, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C, } unless \text{ otherwise noted.}$

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE	For dynamic range and SNR across all decimation rates, see Table 11 and Table 12				
Fast	Decimation by 32, 256 kSPS ODR				
Dynamic Range	Shorted input, wideband filter	106.2	108		dB
SNR	1 kHz, -0.5 dBFS, sine wave input				
	Sinc5 filter	109	111		dB
	Wideband filter	106	107.8		dB
SINAD ¹		103.4	106.9		dB
THD			-120	-107	dB
SFDR			128		dBc
Median	Decimation by 32, 128 kHz ODR				
Dynamic Range	Shorted input, wideband filter	106.2	108		dB
SNR	1 kHz, -0.5 dBFS, sine wave input				
	Sinc5 filter	109	111		dB
	Wideband filter	106	107.8		dB
SINAD		105.3	106.9		dB
THD			-120	-113	dB
SFDR			128		dBc
Eco	Decimation by 32, 32 kHz ODR				
Dynamic Range	Shorted input, wideband filter	106.2	108		dB
SNR	1 kHz, −0.5 dBFS, sine wave input				
	Sinc5 filter	109	111		dB
	Wideband filter	106	107.8		dB
SINAD		105.3	106.9		dB
THD			-120	-113	dB
SFDR			128		dBc
ACCURACY ¹					
INL	Endpoint method		±2	±7	ppm of FSR
Offset Error ²	DCLK frequency ≤ 24 MHz		±50	±115	μV
	24 MHz to 32.768 MHz DCLK frequency		±75	±170	μV
Offset Error Drift	DCLK frequency ≤ 24 MHz		±250		nV/°C
	24 MHz to 32.768 MHz DCLK frequency		±750		nV/°C
Gain Error	$T_A = 25^{\circ}C$		±60	±120	ppm/FSR
Gain Drift vs. Temperature			±0.5	±2	ppm/°C
LOGIC INPUTS					
Input Voltage ¹					
High, V _{INH}		0.65 × IOVDD			V
Low, V _{INL}				0.4	V
Hysteresis ¹		0.04		0.2	V
Leakage Current		-10	+0.03	+10	μΑ
	RESET pin	-10		+10	μΑ
LOGIC OUTPUTS					
Output Voltage ¹					
High, V _{OH}	$I_{SOURCE} = 200 \mu A$	0.8×IOVDD			V
Low, V _{OL}	$I_{SINK} = 400 \mu A$			0.4	V
Leakage Current	Floating state	-10		+10	μΑ
Output Capacitance	Floating state		10		pF

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER REQUIREMENTS					
Power Supply Voltage					
AVDD1 – AVSS		4.5	5.0	5.5	V
AVDD2 – AVSS		2.0	2.25 to 5.0	5.5	V
AVSS – DGND		-2.75		0	V
IOVDD – DGND	DREGCAP shorted to IOVDD	1.72	1.8	1.88	V
POWER SUPPLY CURRENTS	Maximum output data rate, CMOS MCLK, eight DOUTx signals, all supplies at maximum voltages				
Eight Channels Active					
Fast Mode					
AVDD1 Current	Precharge reference buffers off on		36 57.5	40 64	mA
AVDD2 Current	Ü.		37.5	40	mA
IOVDD Current	Sinc5 filter wideband filter		26 63	28.4 69	mA
Median Mode	"				
AVDD1 Current	Precharge reference buffers off on		18.5 29	20.5 32.5	mA
AVDD2 Current			21.3	23	mA
IOVDD Current	Sinc5 filter wideband filter		15 34	16.8 36.8	mA
Eco Mode	"				
AVDD1 Current	Precharge reference buffers off on		5.1 8	5.8 9	mA
AVDD2 Current			9.3	10.1	mA
IOVDD Current	Sinc5 filter wideband filter		7 11.6	8.1 12.9	mA
Four Channels Active	"		"	"	
Fast Mode					
AVDD1 Current	Precharge reference buffers off on		18.2 28.8	20.3 32.5	mA
AVDD2 Current			18.8	20.3	mA
IOVDD Current	Sinc5 filter wideband filter		16 44	17.7 48	mA
Median Mode	Since interill interior		. • [[., ., ., .,	
AVDD1 Current	Precharge reference buffers off on		9.3 14.7	10.5 16.6	mA
AVDD2 Current	Treemange reneration administration		10.7	11.7	mA
IOVDD Current	Sinc5 filter wideband filter		10 24	11.3 26.1	mA
Eco Mode	Sines inter Waesaria inter		101121	11.5 20.1	
AVDD1 Current	Precharge reference buffers off on		2.7 4.1	3.1 4.7	mA
AVDD2 Current	Treenarge reference barrers on por		4.7	5.3	mA
IOVDD Current	Sinc5 filter wideband filter		5.5 9	6.5 10.2	mA
Two Channels Active	Sines interprocessing inter		5.5	3.3 10.2	11171
Fast Mode					
AVDD1 Current	Precharge reference buffers off on		9.3 14.7	10.5 16.6	mA
AVDD1 Current	. recharge reference bullets official		9.5 14.7	10.5 10.0	mA
IOVDD Current	Sinc5 filter wideband filter		11 34	12.3 37	mA
Median Mode	Sines interprocessing inter		- داار،	12.5 57	11171
AVDD1 Current	Precharge reference buffers off on		4.8 7.5	5.5 8.6	mA
AVDD1 Current	Treenarge reference bullets official		4.8 7.5	5.5 6.0 6.2	mA
IOVDD Current	Sinc5 filter wideband filter		7.4 19	8.6 21	mA
Eco Mode	Sinco interpwideband inter		7.4 19	3.0 21	11171
AVDD1 Current	Precharge reference buffers off on		1.52 2.2	1.77 2.6	mA
AVDD1 Current AVDD2 Current	Techange reference builters off off		1.32 2.2 2.4	1.77 2.0 3	mA
IOVDD Current	Sinc5 filter wideband filter			5.8 8.8	mA
	All channels disabled (sinc5 filter enabled)		4.8 7.6	**	
Standby Mode			6.5	8	mA m A
Sleep Mode	Full power-down (SPI mode only)		0.73		mA
Crystal Excitation Current	Extra current in IOVDD when using an external crystal compared to using the CMOS MCLK		540		μΑ

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER DISSIPATION ¹	External CMOS MCLK, all channels active, AVDD1 = AVDD2 = 5.5 V, IOVDD = 1.88 V, MCLK = 32.768 MHz				
Full Operating Mode Wideband Filter	Analog precharge buffers on				
Fast	Precharge reference buffers off		524	571	mW
	Precharge reference buffers on		638	700	mW
Median	Precharge reference buffers off		284	309	mW
	Precharge reference buffers on		342	375	mW
Eco	Precharge reference buffers off		98.5	109	mW
	Precharge reference buffers on		118	130	mW
Sinc5 Filter					
Fast	Precharge reference buffers off		455	495	mW
Median	Precharge reference buffers off		248	271	mW
Eco	Precharge reference buffers off		94	105	mW
Standby Mode	All channels disabled (sinc5 filter enabled)			29	mW
Sleep Mode	Full power-down (SPI mode only)		1.5		mW

¹ These specifications are not production tested but are supported by characterization data at initial product release. ² Following a system zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale calibration reduces the gain error to the order of the noise for the programmed output data rate.

TIMING SPECIFICATIONS

AVDD1A = AVDD1B = 5 V, AVDD2A = AVDD2B = 5 V, IOVDD = 2.25 V to 3.6 V, Input Logic 0 = DGND, Input Logic 1 = IOVDD; C_{LOAD} = 10 pF on the DCLK pin, C_{LOAD} = 20 pF on the other digital outputs; REFx+ = 4.096 V, T_A = -40°C to +105°C. See Table 5 and Table 6 for timing specifications at 1.8 V IOVDD.

Table 3. Data Interface Timing¹

Parameter	Description	Test Conditions/Comments	Min	Тур	Max	Unit
MCLK	Master clock ²		1.15		34	MHz
f_{MOD}	Modulator frequency	Fast mode		MCLK/4		Hz
		Median mode		MCLK/8		Hz
		Eco mode		MCLK/32		Hz
t_1	DRDY high time	$t_{DCLK} = t_8 + t_9$	t _{DCLK} - 10%	28		ns
t_2	DCLK rising edge to DRDY rising edge				2	ns
t ₃	DCLK rising to DRDY falling		-3.5		0	ns
t ₄	DCLK rise to DOUTx valid				1.5	ns
t ₅	DCLK rise to DOUTx invalid		-3			ns
t ₆	DOUTx valid to DCLK falling		9.5	$t_{\text{DCLK}}/2$		ns
t ₇	DCLK falling edge to DOUTx invalid		9.5	$t_{\text{DCLK}}/2$		ns
t ₈	DCLK high time, DCLK = MCLK/1	50:50 MCLK	t _{DCLK} /2	t _{DCLK} /2	$(t_{DCLK}/2) + 5$	ns
	$t_{8a} = DCLK = MCLK/2$	t _{MCLK} = 1/MCLK		t _{MCLK}		ns
	$t_{8b} = DCLK = MCLK/4$			$2\times t_{\text{MCLK}}$		ns
	$t_{8c} = DCLK = MCLK/8$			$4\times t_{\text{MCLK}}$		ns
t 9	DCLK low time DCLK=MCLK/1		$(t_{DCLK}/2) - 5$	$t_{\text{MCLK}}/2$	t _{DCLK} /2	ns
	$t_{9a} = DCLK = MCLK/2$			t _{MCLK}		ns
	$t_{9b} = DCLK = MCLK/4$			$2\times t_{\text{MCLK}}$		ns
	$t_{9c} = DCLK = MCLK/8$			$4 \times t_{\text{MCLK}}$		ns
t ₁₀	MCLK rising to DCLK rising				30	ns
t ₁₁	Setup time DOUT6 and DOUT7		14			ns
t ₁₂	Hold time DOUT6 and DOUT7		0			ns
t ₁₃	START low time		$1 \times t_{MCLK}$			ns
t ₁₄	Falling edge of MCLK to SYNC_OUT valid	Modulator delay disabled	4.5		22	ns
		Modulator delay enabled	9.5		27.5	ns
t ₁₅	SYNC_IN setup time		0			ns
t ₁₆	SYNC_IN hold time		10			ns

¹ These specifications are not production tested but are supported by characterization data at initial product release.

Table 4. SPI Control Interface Timing¹

Parameter	Description	Min	Тур	Max	Unit
t ₁₇	SCLK period	100			ns
t ₁₈	CS falling edge to SCLK rising edge	26.5			ns
t ₁₉	SCLK falling edge to CS rising edge	27			ns
t ₂₀	CS falling edge to data output enable	22.5		40.5	ns
t ₂₁	SCLK high time	20	50		ns
t ₂₂	SCLK low time	20	50		ns
t ₂₃	SCLK falling edge to SDO valid			15	ns
t ₂₄	SDO hold time after SCLK falling	7			ns
t ₂₅	SDI setup time	0			ns
t ₂₆	SDI hold time	6			ns
t ₂₇	SCLK enable time	0			ns
t ₂₈	SCLK disable time	0			ns
t ₂₉	CS high time	10			ns

¹ These specifications are not production tested but are supported by characterization data at initial product release.

² Lower MCLK frequencies than specified can be used by disabling the clock qualifier check. See Table 39 for details.

1.8 V IOVDD TIMING SPECIFICATIONS

 $AVDD1A = AVDD1B = 5 \text{ V}, AVDD2A = AVDD2B = 5 \text{ V}, IOVDD = 1.72 \text{ V to } 1.88 \text{ V (DREGCAP tied to IOVDD)}, Input \ Logic \ 0 = DGND, Input \ Logic \ 1 = IOVDD, C_{LOAD} = 10 \ pF \ on DCLK \ pin, C_{LOAD} = 20 \ pF \ on \ other \ digital \ outputs, T_A = -40 ^{\circ}C \ to \ +105 ^{\circ}C.$

Table 5. Data Interface Timing¹

Parameter	Description	Test Conditions/Comments	Min	Тур	Max	Unit
MCLK	Master clock ²		1.15		34	MHz
f_{MOD}	Modulator frequency	Fast mode		MCLK/4		Hz
		Median mode		MCLK/8		Hz
		Eco mode		MCLK/32		Hz
t_1	DRDY high time		t _{DCLK} - 10%	28		ns
t_2	DCLK rising edge to DRDY rising edge				2	ns
t ₃	DCLK rising to DRDY falling		-4.5		0	ns
t_4	DCLK rise to DOUTx valid				2.0	ns
t ₅	DCLK rise to DOUTx invalid		-4			ns
t_6	DOUTx valid to DCLK falling		8.5	$t_{DCLK}/2$		ns
t ₇	DCLK falling edge to DOUTx invalid		8.5	$t_{\text{DCLK}}/2$		ns
t ₈	DCLK high time, DCLK = MCLK/1	50:50 MCLK	t _{DCLK} /2	$t_{\text{DCLK}}/2$	$(t_{DCLK}/2) + 5$	ns
	$t_{8a} = DCLK = MCLK/2$			t _{MCLK}		ns
	$t_{8b} = DCLK = MCLK/4$			$2 \times t_{\text{MCLK}}$		ns
	$t_{8c} = DCLK = MCLK/8$			$4\times t_{\text{MCLK}}$		ns
t ₉	DCLK low time DCLK=MCLK/1		$(t_{DCLK}/2) - 5$	t _{MCLK} /2	$(t_{DCLK}/2$	ns
	$t_{9a} = DCLK = MCLK/2$			t _{MCLK}		ns
	$t_{9b} = DCLK = MCLK/4$			$2\times t_{\text{MCLK}}$		ns
	$t_{9c} = DCLK = MCLK/8$			$4\times t_{\text{MCLK}}$		ns
t ₁₀	MCLK rising to DCLK rising				37	ns
t ₁₁	Setup time DOUT6 and DOUT7		14			ns
t ₁₂	Hold time DOUT6 and DOUT7		0			ns
t ₁₃	START low time		$1 \times t_{MCLK}$			ns
t ₁₄	Falling edge of MCLK to SYNC_OUT valid	Modulator delay disabled	10		31	ns
		Modulator delay enabled	15		37	
t ₁₅	SYNC_IN setup time		0			ns
t ₁₆	SYNC_IN hold time		11			ns

¹ These specifications are not production tested but are supported by characterization data at initial product release.

Table 6. SPI Control Interface Timing¹

Parameter	Description	Min	Тур	Max	Unit
t ₁₇	SCLK period	100			ns
t ₁₈	CS falling edge to SCLK rising edge	31.5			ns
t ₁₉	SCLK falling edge to CS rising edge	30			ns
t ₂₀	CS falling edge to data output enable	29		54	ns
t ₂₁	SCLK high time	20	50		ns
t ₂₂	SCLK low time	20	50		ns
t ₂₃	SCLK falling edge to SDO valid			16	ns
t ₂₄	SDO hold time after SCLK falling	7			ns
t ₂₅	SDI setup time	0			ns
t ₂₆	SDI hold time	10			ns
t ₂₇	SCLK enable time	0			ns
t ₂₈	SCLK disable time	0			ns
t ₂₉	CS high time	10			ns

¹ These specifications are not production tested but are supported by characterization data at initial product release.

 $^{^2}$ Lower MCLK frequencies than specified can be used by disabling the clock qualifier check. See Table 39 for details.

Timing Diagrams

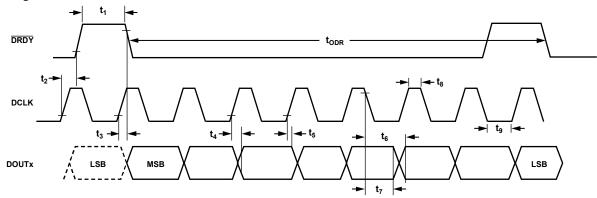


Figure 2. Data Interface Timing Diagram

14001-002

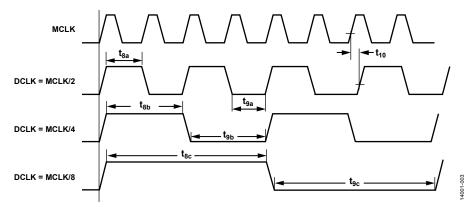


Figure 3. MCLK to DCLK Divider Timing Diagram

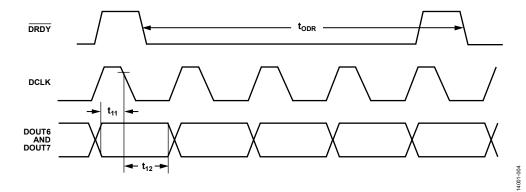


Figure 4. Daisy-Chain Setup and Hold Timing Diagram

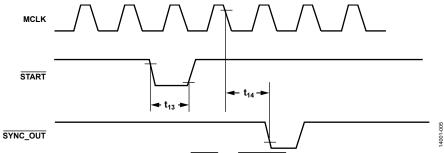


Figure 5. Asynchronous START and SYNC_OUT Timing Diagram

Rev. 0 | Page 14 of 72

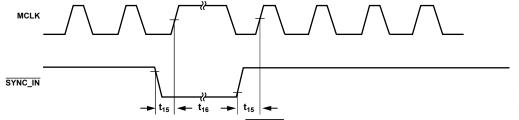


Figure 6. Synchronous SYNC_IN Pulse Timing Diagram

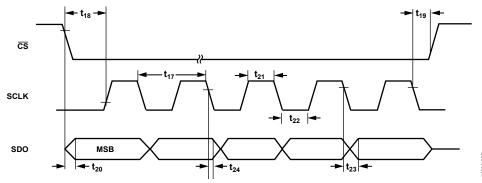


Figure 7. SPI Serial Read Timing Diagram

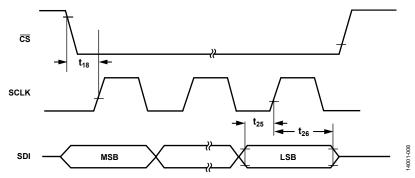


Figure 8. SPI Serial Write Timing Diagram

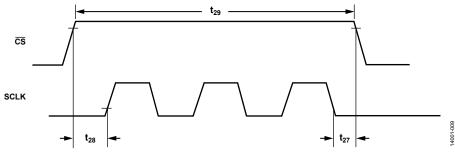


Figure 9. SCLK Enable and Disable Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 7.

Table 7.	
Parameter	Rating
AVDD1, AVDD2 to AVSS ¹	−0.3 V to +6.5 V
AVDD1 to DGND	−0.3 V to +6.5 V
IOVDD to DGND	−0.3 V to +6.5 V
IOVDD, DREGCAP to DGND (IOVDD Tied to DREGCAP for 1.8 V Operation)	-0.3 V to +2.25 V
IOVDD to AVSS	−0.3 V to +7.5 V
AVSS to DGND	−3.25 V to +0.3 V
Analog Input Voltage to AVSS	-0.3 V to AVDD1 + 0.3 V
Reference Input Voltage to AVSS	-0.3 V to AVDD1 + 0.3 V
Digital Input Voltage to DGND	-0.3 V to IOVDD + 0.3 V
Digital Output Voltage to DGND	-0.3 V to IOVDD + 0.3 V
Operating Temperature Range	−40°C to +105°C
Storage Temperature Range	−65°C to +150°C
Pb-Free Temperature, Soldering Reflow (10 sec to 30 sec)	260°C
Maximum Junction Temperature	150°C
Maximum Package Classification Temperature	260°C

¹ Transient currents of up to 100 mA do not cause SCR latch-up.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 8. Thermal Resistance

Package Type	θја	θις	Unit	JEDEC Board Layers
64-Lead LQFP	38	9.2	°C/W	2P2S

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

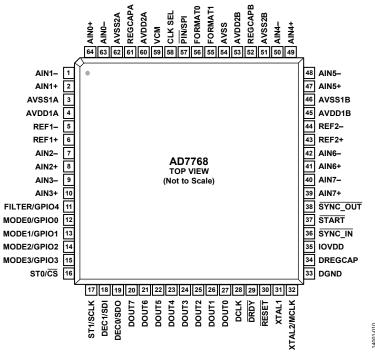


Figure 10. Pin Configuration

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description
1	AIN1-	Al	Negative Analog Input to ADC Channel 1.
2	AIN1+	Al	Positive Analog Input to ADC Channel 1.
3	AVSS1A	Р	Negative Analog Supply. This pin is nominally 0 V.
4	AVDD1A	Р	Analog Supply Voltage, 5 V \pm 10% with Respect to AVSS.
5	REF1-	Al	Reference Input Negative. REF1 – is the negative reference terminal for Channel 0 to Channel 3. The REF1 – voltage range is from AVSS to (AVDD1 – 1 V). Decouple this pin to AVSS with a high quality capacitor, and maintain a low impedance between this capacitor and Pin 3.
6	REF1+	Al	Reference Input Positive. REF1+ is the positive reference terminal for Channel 0 to Channel 3. The REF1+ voltage range is from (AVSS + 1 V) to AVDD1. Apply an external reference differential between REF1+ and REF1- in the range from 1 V to AVDD1 - AVSS . Decouple this pin to AVSS with a high quality capacitor, and maintain a low impedance between this capacitor and Pin 3.
7	AIN2-	Al	Negative Analog Input to ADC Channel 2.
8	AIN2+	Al	Positive Analog Input to ADC Channel 2.
9	AIN3-	Al	Negative Analog Input to ADC Channel 3.
10	AIN3+	Al	Positive Analog Input to ADC Channel 3.
11	FILTER/GPIO4	DI/O	Filter Select/General-Purpose Input/Output 4. In pin control mode, this pin selects the filter type.
			Set this pin to Logic 1 for the sinc5 filter. This sinc5 filter is a low latency filter, and is best for dc applications or where a user has specialized post filtering implemented off-chip.
			Set this pin to Logic 0 for the wideband low ripple filter response. This filter has a steep transition band and 105 dB stop band attenuation. Full attenuation at Nyquist (ODR/2) means that no aliasing occurs at ODR/2 out to the first chopping zone.
			When in SPI control mode, this pin can be used as a general-purpose input/output (GPIO4). See Table 45 for more details.

Pin No.	Mnemonic	Type ¹	Description
12, 13,	MODE0/GPIO0,	DI/DI/O	Mode Selection/General-Purpose Input/Output Pin 0 to Pin 3.
14, 15	MODE1/GPIO1, MODE2/GPIO2, MODE3/GPIO3		In pin control mode, the MODEx pins set the mode of operation for all ADC channels, controlling power consumption, DCLK frequency, and the ADC conversion type, allowing one-shot conversion operation.
			In SPI control mode, the GPIOx pins, in addition to the FILTER/GPIO4 pin, form five general-purpose input/output pins (GPIO4 to GPIO0). See Table 45 for more details.
16	ST0/CS	DI	Standby 0/Chip Select Input.
			In pin control mode, a Logic 1 places Channel 0 to Channel 3 into standby mode.
17	ST1/SCLK	DI	In SPI control mode, this pin is the active low chip select input to the SPI control interface. Standby 1/Serial Clock Input.
			In pin control mode, a Logic 1 places Channel 4 to Channel 7 into standby mode.
			In SPI control mode, this pin is the serial clock input pin for the SPI control interface.
18	DEC1/SDI	DI	Decimation Rate Control Input 1/Serial Data Input.
			In pin control mode, the DEC0 and DEC1 pins configure the decimation rate for all ADC channels. See Table 16 in the Setting the Decimation Rate section for more information.
			In SPI control mode, this pin is the serial data input pin used to write data to the AD7768 register bank.
19	DEC0/SDO	DI/O	Decimation Rate Control Input 0/Serial Data Output.
			In pin control mode, the DEC0 and DEC1 pins configure the decimation rate for all ADC channels. See Table 16 in the Setting the Decimation Rate section for more information.
			In SPI control mode, this pin is the serial data output pin, allowing readback from the AD7768 registers.
20	DOUT7	DI/O	Conversion Data Output 7. This pin is synchronous to DCLK and framed by DRDY. This pin acts
			as a digital input from a separate AD7768 device if configured in a synchronized multidevice daisy chain when the FORMATx pins are configured as 01. To use the AD7768 in a daisy chain, hardwire the FORMATx pins as either 01, 10, or 11, depending on the best interfacing format for the application. When FORMATx is set to 10 or 11, connect this pin to ground through a pull-down resistor.
21	DOUT6	DI/O	Conversion Data Output 6. This pin is synchronous to DCLK and framed by DRDY. This pin acts as a digital input from a separate AD7768 device if configured in a synchronized multidevice daisy chain. To use this pin in a daisy chain, hardwire the FORMATx pins as either 01, 10, or 11, depending on the best interfacing format for the application.
22	DOUT5	DO	Conversion Data Output 5. This pin is synchronous to DCLK and framed by DRDY.
23	DOUT4	DO	Conversion Data Output 4. This pin is synchronous to DCLK and framed by $\overline{\text{DRDY}}$.
24	DOUT3	DO	Conversion Data Output 3. This pin is synchronous to DCLK and framed by DRDY.
25	DOUT2	DO	Conversion Data Output 2. This pin is synchronous to DCLK and framed by DRDY.
26	DOUT1	DO	Conversion Data Output 1. This pin is synchronous to DCLK and framed by DRDY.
27	DOUT0	DO	Conversion Data Output 0. This pin is synchronous to DCLK and framed by DRDY
28	DCLK	DO	ADC Conversion Data Clock. This pin clocks conversion data out to the digital host (DSP/FPGA). This pin is synchronous with DRDY and any conversion data output on DOUT0 to DOUT7 and is derived from the MCLK signal. This pin is unrelated to the control SPI interface.
29	DRDY	DO	Data Ready. Periodic signal output framing the conversion results from the eight ADCs. This pin is synchronous to DCLK and DOUT0 to DOUT7.
30	RESET	DI	Hardware Asynchronous Reset Input. After the device is fully powered up, it is recommended to perform a hard or soft reset.
31	XTAL1	DI	Input 1 for Crystal or Connection to an LVDS Clock. When CLK_SEL is 0, connect XTAL1 to DGND.
32	XTAL2/MCLK	DI	Input 2 for CMOS/Crystal/LVDS Sampling Clock. See the CLK_SEL pin for the details of this configuration.
			External crystal: XTAL2 is connected to the external crystal.
			LVDS: a second LVDS input is connected to this pin.
33	DGND	Р	CMOS clock: this pin operates as an MCLK input. CMOS input with logic level of IOVDD/DGND. Digital Ground. This pin is nominally 0 V.
34	DREGCAP	AO	Digital LDO Regulator Output. Decouple this pin to DGND with a high quality, low ESR, 10 µF
			capacitor. For optimum performance, use a decoupling capacitor with an ESR specification between 50 m Ω and 400 m Ω . This pin is not for use in circuits external to the AD7768. For 1.8 V IOVDD operation, connect this pin to IOVDD via an external trace to provide power to the digital
34	DREGCAP	AO	capacitor. For optimum performance, use a decoupling capacitor with an ESR spectrum between 50 m Ω and 400 m Ω . This pin is not for use in circuits external to the Al

Pin No.	Mnemonic	Type ¹	Description
35	IOVDD	Р	Digital Supply. This pin sets the logic levels for all interface pins. IOVDD also powers the digital processing core via the digital LDO when IOVDD is at least 2.25 V. For 1.8 V IOVDD operation,
			connect this pin to DREGCAP via an external trace to provide power to the digital processing core.
36	SYNC_IN	DI	Synchronization Input. SYNC_IN receives the synchronous signal from SYNC_OUT. It is used in
			the synchronization of any AD7768 that requires simultaneous sampling or is in a daisy chain. Ignore the START and SYNC_OUT functions if the SYNC_IN pin is connected to the system
			synchronization pulse. This signal pulse must be synchronous to the MCLK clock domain.
37	START	DI	Start Signal. The START pulse synchronizes the AD7768 to other devices. The signal can be
			asynchronous. The AD7768 samples the input and then outputs a SYNC_OUT pulse. This
			SYNC_OUT pulse must be routed to the SYNC_IN pin of this device, and any other AD7768
			devices that must be synchronized together. This means that the user does not need to run the
			ADCs and their digital host from the same clock domain, which is useful when there are long
			traces or back planes between the ADC and the controller. If this pin is not used, it must be tied to a Logic 1 through a pull-up resistor.
38	SYNC_OUT	DO	Synchronization Output. This pin operates only when the START input is used. When using the
	J		START input feature, the SYNC_OUT pin must be connected to SYNC_IN via an external trace.
			SYNC_OUT is a digital output that is synchronous to the MCLK signal; the synchronization signal
			driven in on START is internally synchronized to the MCLK signal and is driven out on SYNC_OUT.
			SYNC_OUT may also be routed to other AD7768 devices requiring simultaneous sampling and/or
			daisy-chaining, ensuring synchronization of devices related to the MCLK clock domain. It must
20	A1N17.		then be wired to drive the SYNC_IN pin on the same AD7768 and on the other AD7768 devices.
39	AIN7+	Al	Positive Analog Input to ADC Channel 7.
40	AIN7- AIN6+	AI AI	Negative Analog Input to ADC Channel 7. Positive Analog Input to ADC Channel 6.
41 42	AIN6-	Al	Negative Analog Input to ADC Channel 6.
43	REF2+	Al	Reference Input Positive. REF2+ is the positive reference terminal for Channel 4 to Channel 7.
43	NLI ZT		The REF2+ voltage range is from (AVSS + 1 V) to AVDD1. Apply an external reference differential between REF2+ and REF2- in the range from 1 V to AVDD1 - AVSS . Decouple this pin to AVSS with a high quality capacitor, and maintain a low impedance between this capacitor and Pin 46.
44	REF2-	AI	Reference Input Negative. REF2— is the negative reference terminal for Channel 4 to Channel 7. The
			REF2— voltage range is from AVSS to (AVDD1 – 1 V). Decouple this pin to AVSS with a high quality capacitor, and maintain a low impedance between this capacitor and Pin 46.
45	AVDD1B	Р	Analog Supply Voltage. This pin is 5 V \pm 10% with respect to AVSS.
46	AVSS1B	Р	Negative Analog Supply. This pin is nominally 0 V.
47	AIN5+	AI	Positive Analog Input to ADC Channel 5.
48	AIN5-	Al	Negative Analog Input to ADC Channel 5.
49	AIN4+	Al	Positive Analog Input to ADC Channel 4.
50	AIN4-	AI	Negative Analog Input to ADC Channel 4.
51	AVSS2B	Р	Negative Analog Supply. This pin is nominally 0 V.
52	REGCAPB	AO	Analog LDO Regulator Output. Decouple this pin to AVSS with a 1 µF capacitor.
53	AVDD2B	P	Analog Supply Voltage. This pin is 2 V to 5.5 V with respect to AVSS.
54	AVSS	P	Negative Analog Supply. This pin is nominally 0 V.
55, 56	FORMAT1, FORMAT0	DI	Format Selection Pins. Hardwire the FORMATx pins to the required values in pin and SPI mode. These pins set the number of DOUTx pins used to output ADC conversion data. The FORMATx pins are checked by the AD7768 on power up; the AD7768 then remains in this data output configuration (see Table 28).
57	PIN/SPI	DI	Pin Control/SPI Control. This pin sets the control method.
J.	, 5. 1		Logic 0 = pin control mode for the AD7768. Pin control mode allows pin strapped configuration
			of the AD7768 by tying logic input pins to required logic levels. Tie the logic pins (MODE0 to MODE4, DEC0 and DEC1, and FILTER) as required for the configuration. See the Pin Control section for more details.
			Logic 1 = SPI control mode for the AD7768. Use the SPI control interface signals $(\overline{CS}, SCLK, SDI,$
			and SDO) for reading and writing to the AD7768 memory map.

Pin No.	Mnemonic	Type ¹	Description
58	CLK_SEL	DI	Clock Select.
			0 = pull this pin low for the CMOS clock option. The clock is applied to Pin 32 (Connect Pin 31 to DGND).
			1 = pull this pin high for the crystal or LVDS clock option. The crystal or LVDS clock is applied to Pin 31 and Pin 32. The LVDS option is available only in SPI control mode. A write is required to enable the LVDS clock option.
59	VCM	AO	Common-Mode Voltage Output. This pin outputs (AVDD1 – AVSS)/2, which is 2.5 V by default in pin control mode. Configure this pin to (AVDD1 – AVSS)/2, 2.5 V, 2.14 V, or 1.65 V in SPI mode. When driving capacitive loads larger than 0.1 μ F, it is recommended to place a 50 Ω series resistor between the pin and the capacitive load for stability.
60	AVDD2A	P	Analog Supply Voltage. This pin is 2 V to 5.5 V with respect to AVSS.
61	REGCAPA	AO	Analog LDO Regulator Output. Decouple this pin to AVSS with a 1 μF capacitor.
62	AVSS2A	P	Negative Analog Supply. This pin is nominally 0 V.
63	AIN0-	Al	Negative Analog Input to ADC Channel 0.
64	AIN0+	Al	Positive Analog Input to ADC Channel 0.

¹ Al is analog input, P is power, DI/O is digital input/output, DI is digital input, DO is digital output, and AO is analog output.

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD1 = 5 V, AVDD2 = 2.5 V, AVSS = 0 V, IOVDD = 2.5 V, $V_{REF} = 4.096 \text{ V}$, $T_A = 25^{\circ}\text{C}$, wideband filter, decimation = $\times 32$, MCLK = 32.768 MHz, analog input precharge buffers on, precharge reference buffers off, unless otherwise noted.

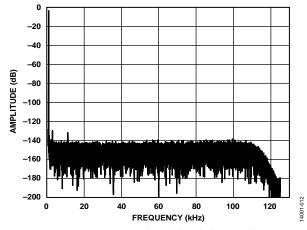


Figure 11. FFT, Fast Mode, Wideband Filter, -0.5 dBFS

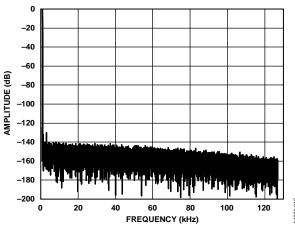


Figure 12. FFT, Fast Mode, Sinc5 Filter, -0.5 dBFS

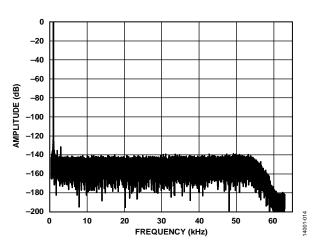


Figure 13. FFT, Median Mode, Wideband Filter, -0.5 dBFS

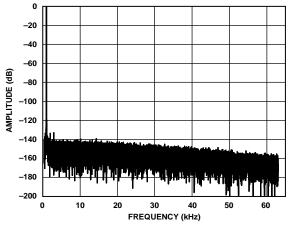


Figure 14. FFT, Median Mode, Sinc5 Filter, -0.5 dBFS

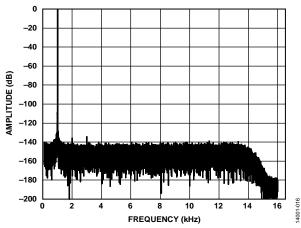


Figure 15. FFT, Eco Mode, Wideband Filter, -0.5 dBFS

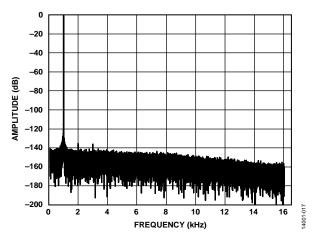


Figure 16. FFT, Eco Mode, Sinc5 Filter, -0.5 dBFS

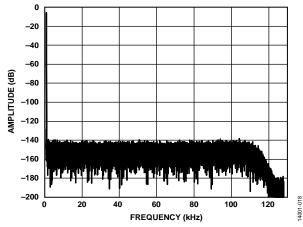


Figure 17. FFT, Fast Mode, Wideband Filter, -6 dBFS

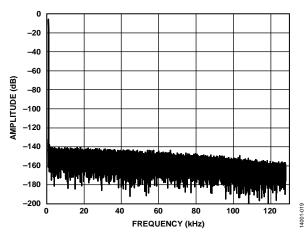


Figure 18. FFT, Fast Mode, Sinc5 Filter, –6 dBFS

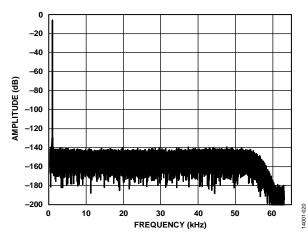


Figure 19. FFT, Median Mode, Wideband Filter, -6 dBFS

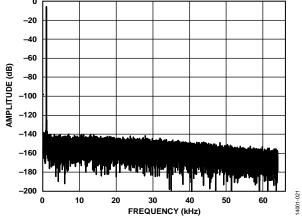


Figure 20. FFT, Median Mode, Sinc5 Filter, -6 dBFS

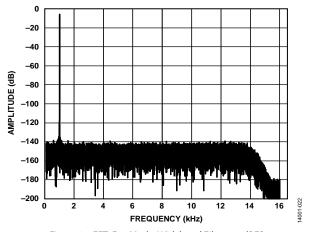


Figure 21. FFT, Eco Mode, Wideband Filter, –6 dBFS

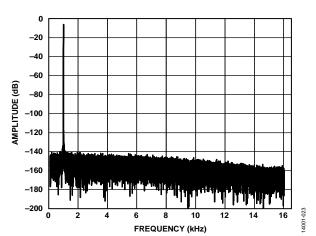


Figure 22. FFT, Eco Mode, Sinc5 Filter, -6 dBFS

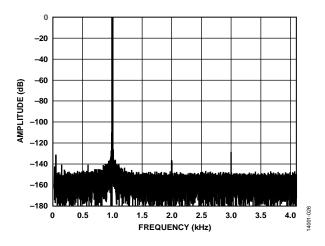


Figure 23. FFT One-Shot-Mode, Sinc5 Filter, Median Mode, Decimation = \times 64, -0.5 dBFS

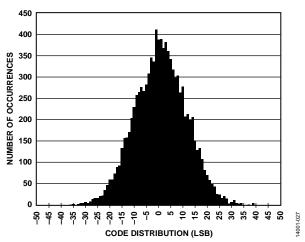


Figure 24. Shorted Noise, One-Shot Mode, Sinc5 Filter, Median Mode, $Decimation = \times 32$

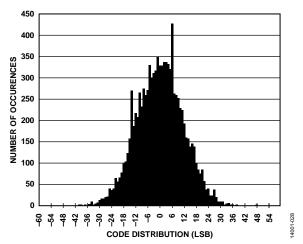


Figure 25. Shorted Noise, Fast Mode, Wideband Filter

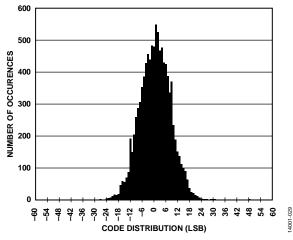


Figure 26. Shorted Noise, Fast Mode, Sinc5 Filter

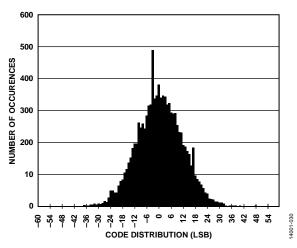


Figure 27. Shorted Noise, Median Mode, Wideband Filter

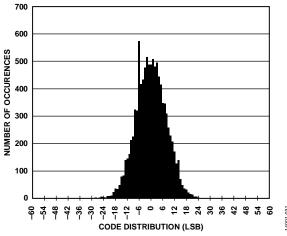


Figure 28. Shorted Noise, Median Mode, Sinc5 Filter

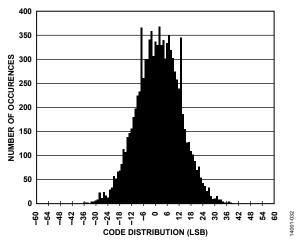


Figure 29. Shorted Noise, Eco Mode, Wideband Filter

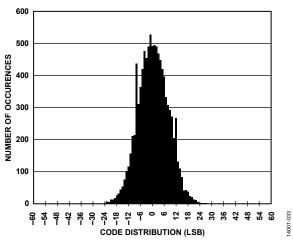


Figure 30. Shorted Noise, Eco Mode, Sinc5 Filter

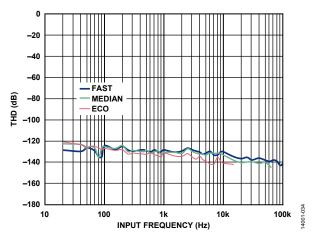


Figure 31. THD vs. Input Frequency, Three Power Modes, Wideband Filter

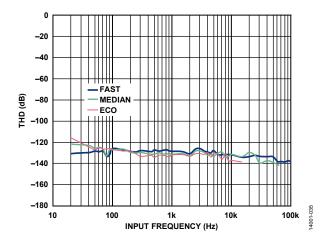


Figure 32. THD vs. Input Frequency, Three Power Modes, Sinc5 Filter

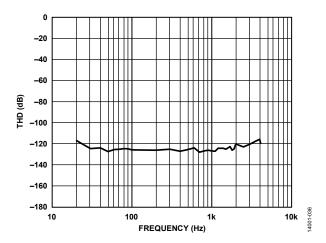


Figure 33. THD vs. Frequency, One-Shot Mode, Sinc5 Filter

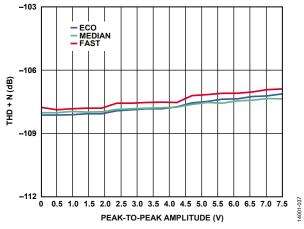


Figure 34. THD + N vs. Peak-to-Peak Amplitude, Three Power Modes, Wideband Filter

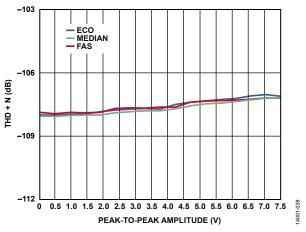


Figure 35. THD + N vs. Peak-to-Peak Amplitude, Three Power Modes, Sinc5 Filter

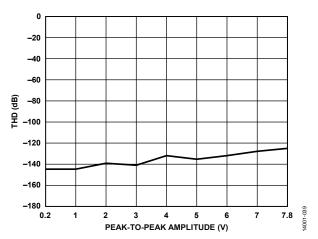


Figure 36. THD vs. Peak-to-Peak Amplitude, One-Shot Mode, Sinc5 Filter

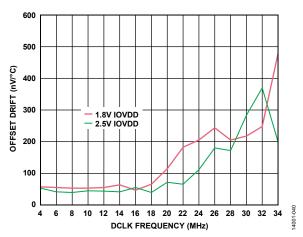


Figure 37. Offset Drift vs. DCLK Frequency

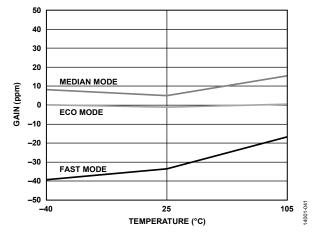


Figure 38. Gain vs. Temperature for Various Power Modes

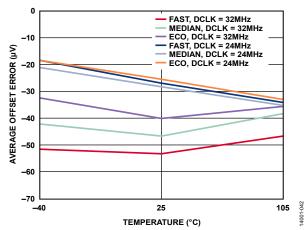


Figure 39. Average Offset Error vs. Temperature for Various Power Modes and DCLK Frequencies

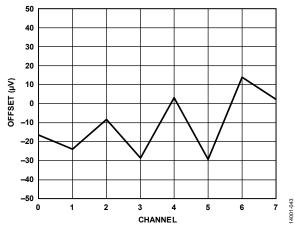


Figure 40. Offset, One-Shot Mode

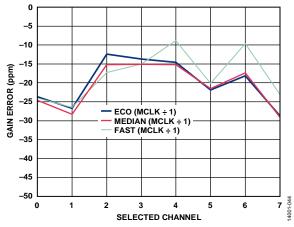


Figure 41. Gain Error vs. Power Modes per Selected Channel

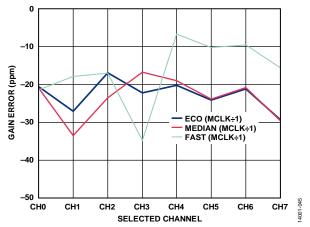


Figure 42. Gain Error vs. Power Mode per Selected Channel, One-Shot Mode

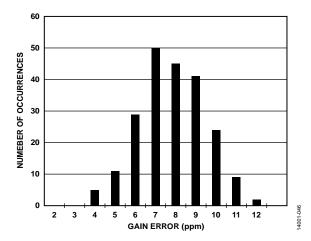


Figure 43. Channel to Channel Gain Error Matching

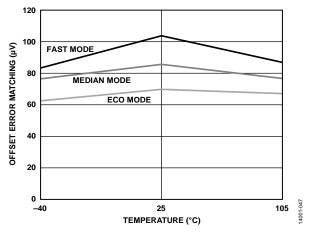


Figure 44. Channel Offset Matching

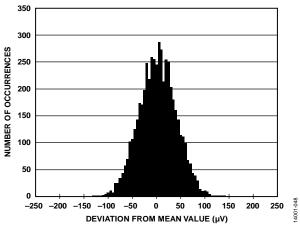


Figure 45. VCM Output Histogram

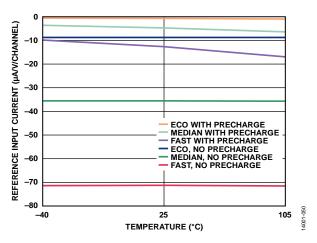


Figure 46. Reference Input Current vs. Temperature, Reference Precharge Buffers On/Off

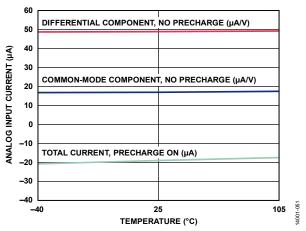


Figure 47. Analog Input Current vs. Temperature, Analog Input Precharge Buffers On/Off

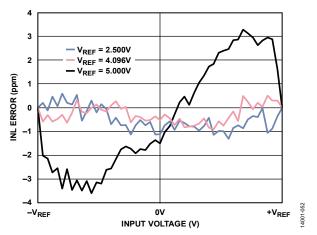


Figure 48. INL Error vs. Input Voltage for Various Voltage Reference Levels, Fast Mode

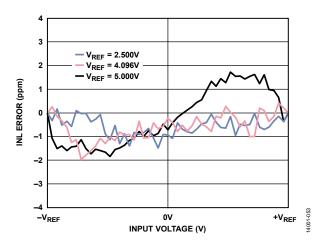


Figure 49. INL Error vs. Input Voltage for Various Voltage Reference Levels, Median Mode

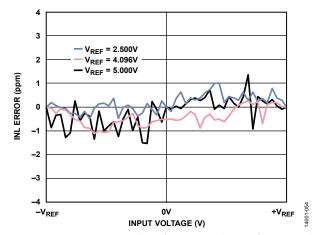


Figure 50. INL Error vs. Input Voltage for Various Voltage Reference Levels, Eco Mode

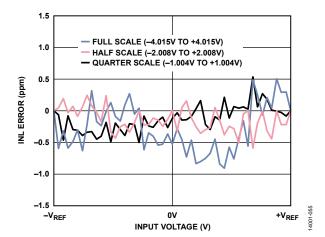


Figure 51. INL Error vs. Input Voltage, Full-Scale, Half-Scale, and Quarter-Scale Inputs

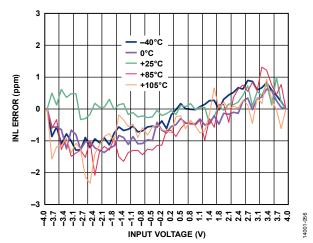


Figure 52. Maximum INL Error vs. Input Voltage for Various Temperatures, Fast Mode

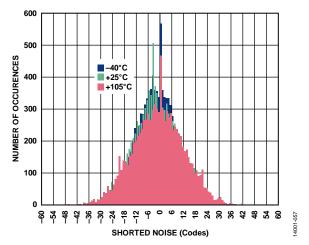


Figure 53. Shorted Noise vs. Temperature Drift

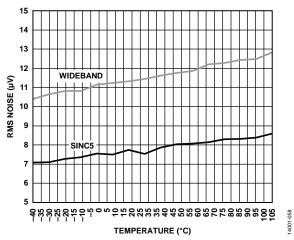


Figure 54. RMS Noise vs. Temperature, Fast Mode

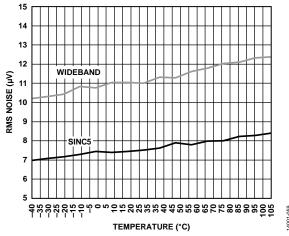


Figure 55. RMS Noise vs. Temperature, Median Mode

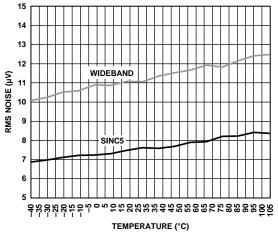


Figure 56. RMS Noise vs. Temperature, Eco Mode

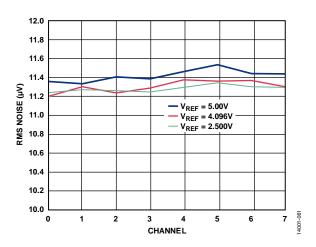


Figure 57. RMS Noise per Channel for Various $V_{\textit{REF}}$ Values

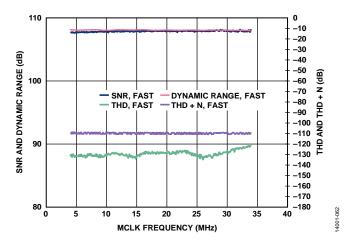


Figure 58. SNR, THD, THD +N, and Dynamic Range vs. MCLK Frequency

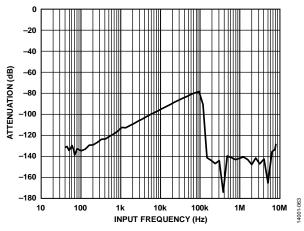


Figure 59. AC CMRR vs. Input Frequency

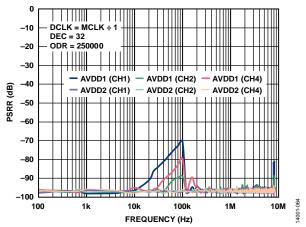


Figure 60. AC PSRR vs. Frequency, AVDD1/AVDD2

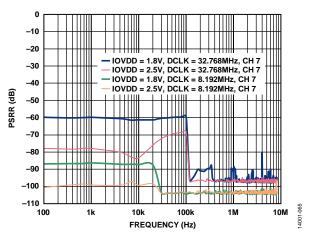


Figure 61. AC PSRR vs. Frequency, IOVDD

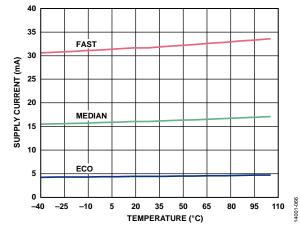


Figure 62. Supply Current vs. Temperature, AVDD1

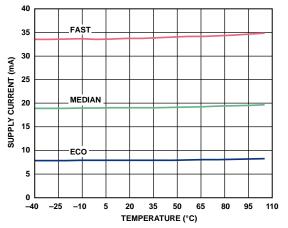


Figure 63. Supply Current vs. Temperature, AVDD2

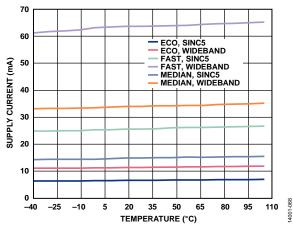


Figure 64. Supply Current vs. Temperature, IOVDD

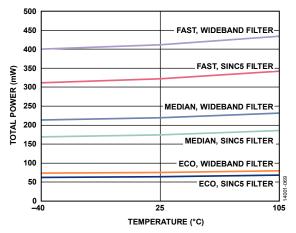


Figure 65. Total Power vs. Temperature

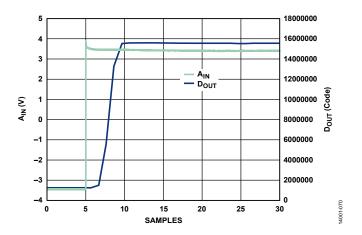


Figure 66. Step Response, Sinc5 Filter

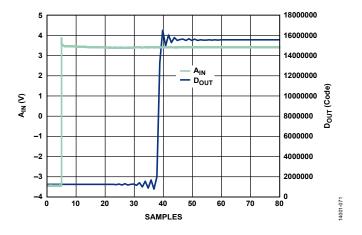


Figure 67. Step Response, Wideband Filter

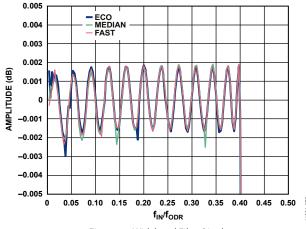


Figure 68. Wideband Filter Ripple

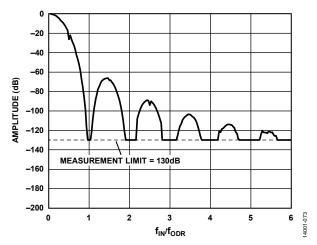


Figure 69. Sinc5 Filter Profile vs. ODR

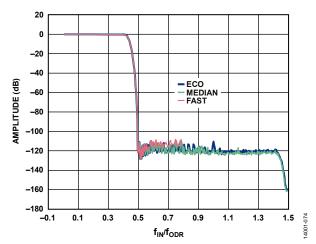


Figure 70. Wideband Filter Profile vs. ODR

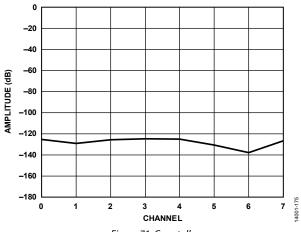


Figure 71. Crosstalk

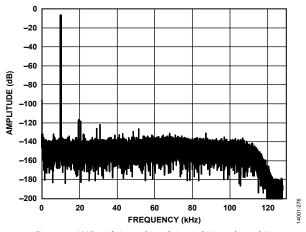


Figure 72. IMD with Input Signals at 9.7 kHz and 10.3 kHz

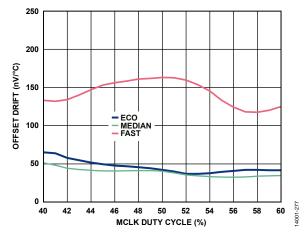


Figure 73. Offset Drift vs. MCLK Duty Cycle

TERMINOLOGY

AC Common-Mode Rejection Ratio (AC CMRR)

AC CMRR is defined as the ratio of the power in the ADC output at frequency, f, to the power of a sine wave applied to the common-mode voltage of AINx+ and AINx- at frequency, f_s.

 $AC CMRR (dB) = 10log(Pf/Pf_S)$

where:

Pf is the power at frequency, f, in the ADC output. Pf_S is the power at frequency, f_S , in the ADC output.

Gain Error

The first transition (from $100 \dots 000$ to $100 \dots 001$) occurs at a level ½ LSB above nominal negative full scale (-4.0959375 V for the ± 4.096 V range). The last transition (from $011 \dots 110$ to $011 \dots 111$) occurs for an analog voltage $1\frac{1}{2}$ LSB below the nominal full scale (+4.0959375 V for the ± 4.096 V range). The gain error is the deviation of the difference between the actual level of the last transition and the actual level of the first transition from the difference between the ideal levels.

Gain Error Drift

Gain error drift is defined as the gain error change due to a temperature change of 1°C. It is expressed in parts per million per degree Celsius.

Integral Nonlinearity (INL) Error

INL error refers to the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs $\frac{1}{2}$ LSB before the first code transition. Positive full scale is defined as a level $\frac{1}{2}$ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line.

Intermodulation Distortion (IMD)

With inputs consisting of sine waves at two frequencies, fa and fb, any active device with nonlinearities creates distortion products at sum and difference frequencies of mfa and nfb, where m, n = 0, 1, 2, 3, and so on. Intermodulation distortion terms are those for which neither m or n are equal to 0. For example, the second-order terms include (fa + fb) and (fa – fb), and the third-order terms include (2fa + fb), (2fa – fb), (fa + 2fb), and (fa – 2fb).

The AD7768 is tested using the CCIF standard, where two input frequencies near to each other are used. In this case, the second-order terms are usually distanced in frequency from the original sine waves, and the third-order terms are usually at a frequency

close to the input frequencies. As a result, the second-order and third-order terms are specified separately. The calculation of the intermodulation distortion is as per the THD specification, where it is the ratio of the rms sum of the individual distortion products to the rms amplitude of the sum of the fundamentals, expressed in decibels.

Least Significant Bit (LSB)

The least significant bit, or LSB, is the smallest increment that can be represented by a converter. For a fully differential input ADC with N bits of resolution, the LSB expressed in volts is:

$$LSB(V) = (2 \times V_{REF})/2^N$$

For the AD7768, V_{REF} is the difference voltage between the REFx+ and REFx- pins, and N = 24.

Offset Error

Offset error is the difference between the ideal midscale input voltage (0 V) and the actual voltage producing the midscale output code.

Power Supply Rejection Ratio (PSRR)

Variations in power supply affect the full-scale transition but not the linearity of the converter. PSRR is the maximum change in the full-scale transition point due to a change in the power supply voltage from the nominal value.

Signal-to-Noise Ratio (SNR)

SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels.

Signal-to-Noise-and-Distortion Ratio (SINAD)

SINAD is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels.

Spurious-Free Dynamic Range (SFDR)

SFDR is the difference, in decibels, between the rms amplitude of the input signal and the peak spurious signal (excluding the first five harmonics).

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in decibels.

THEORY OF OPERATION

The AD7768 is an 8-channel, simultaneously sampled, low noise, 24-bit Σ - Δ ADC.

Each ADC within the AD7768 employs a Σ - Δ modulator, sampling at $2 \times f_{MOD}$, to convert the analog input into an equivalent digital representation. The modulator samples represent a quantized version of the analog input signal.

The Σ - Δ conversion technique is an oversampled architecture. This oversampled approach spreads the quantization noise over a wide frequency band (see Figure 74). To reduce the quantization noise in the signal band, the high order modulator shapes the noise spectrum so that most of the noise energy is shifted out of the band of interest (see Figure 75). The digital filter that follows the modulator removes the large out of band quantization noise (see Figure 76).

For further information on the basics as well as more advanced concepts of Σ - Δ ADCs, see the MT-022 Tutorial and the MT-023 Tutorial.

Digital filtering has certain advantages over analog filtering. First, because digital filtering occurs after the analog-to-digital conversion, it can remove noise injected during the conversion process; analog filtering cannot remove noise injected during conversion. Second, the digital filter combines low pass-band ripple with a steep roll-off, while also maintaining a linear phase response.

Figure 74. Σ-Δ ADC Quantization Noise (Linear Scale X-Axis)

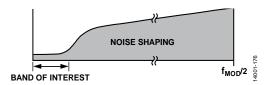


Figure 75. Σ - Δ ADC Noise Shaping (Linear Scale X-Axis)

Figure 76. Σ-Δ ADC Digital Filter Cutoff Frequency (Linear Scale X-Axis)

CLOCKING AND SAMPLING TREE

The AD7768 includes multiple ADC cores. Each of these ADCs receives the same master clock signal, MCLK. The MCLK signal is an external CMOS, crystal oscillator or LVDS clock source. This MCLK signal generates the sampling frequency of the modulator, f_{MOD} , and the digital output clock, DCLK. The f_{MOD} and DCLK are synchronous with MCLK.

The user has three options for the f_{MOD} frequency: MCLK/4, MCLK/8, or MCLK/32. The user has four options for the DCLK rate: MCLK/1, MCLK/2, MCLK/4, and MCLK/8.

Three power modes are available for the modulator: fast, median, and eco. Lower power modes reduce the bias current to the ADC; however, the AD7768 meets the specified performance only when the modulator frequency, f_{MOD} , does not exceed the upper limit of the operating power mode selected by the user. Table 10 shows the recommended f_{MOD} ranges to achieve the best performance while minimizing the power consumption.

To achieve the maximum throughput rate of 256 kSPS/channel, f_{MOD} must be 8.192 MHz. This requires a 32.768 MHz MCLK, MCLK_DIV of MCLK/4, and fast power mode.

By varying the power modes, MCLK_DIV and decimation ratios, users can achieve performance increases or power savings while maintaining the same bandwidth.

For example, if MCLK is 16 MHz and the target bandwidth is approximately 25 kHz, the median power mode is acceptable for all MCLK_DIV ratios, because the maximum $f_{\rm MOD}$ frequency available is MCLK/4, which is 4.0 MHz. The user has the option of using one of the following configurations:

- Median power, f_{MOD} = MCLK/4, decimation = ×64, and ODR = 62.5 kHz, which achieves the maximum performance for the given bandwidth requirements and MCLK rate.
- Median power, $f_{MOD} = MCLK/8$ and decimation = $\times 32$, and ODR = 62.5 kHz, which saves 48 mW of power for a 3 dB reduction in the dynamic range, compared to the previous case.

Table 10. Recommended f_{MOD} Range for Each Power Mode

1 word 100 100 000 1000 1000 1000 100 100					
Power Mode	Recommended f _{MOD} (MHz), MCLK = 32.768 MHz				
Eco	0.036 to 1.024				
Median	1.025 to 4.096				
Fast	4.1 to 8.192				

In pin control mode, the MODEx pins determine the power mode, modulator frequency, and DCLK frequency. The modulator frequency tracks the power mode. This means that f_{MOD} is fixed at MCLK/32 for eco mode, MCLK/8 for median mode, and MCLK/4 for fast mode (see Table 19).

In SPI mode, the user can program the power mode, modulator frequency, and DCLK frequency using Register 0x04 and Register 0x07 (see Table 38 for register information). Independent selection of the power mode and MCLK_DIV allows freedom in the MCLK speed selection to achieve a target modulator frequency.

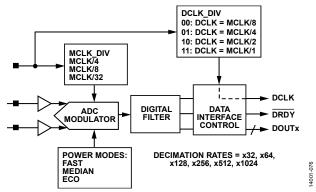


Figure 77. Sampling Structure, Defined by MCLK, DCLK_DIV, and MCLK_DIV Settings

NOISE PERFORMANCE AND RESOLUTION

Table 11 and Table 12 show the noise performance for the wideband and sinc5 digital filters of the AD7768 for various output data rates and power modes. The noise values and dynamic ranges specified are typical for the bipolar input range with an external 4.096 V reference (V_{REF}). The rms noise is measured with shorted analog inputs, which are driven to (AVDD1 – AVSS)/2 using the on-board VCM buffer output.

The dynamic range is calculated as the ratio of the rms shorted input noise to the rms full-scale input signal range.

Dynamic Range (dB) = $20\log_{10}((2 \times V_{REF}/2\sqrt{2})/(RMS\ Noise)$ The LSB size with 4.096 V reference is 488 nV, and is calculated as follows:

$$LSB(V) = (2 \times V_{REF})/2^{24}$$

Table 11. Wideband Filter Noise: Performance vs. Output Data Rate ($V_{REF} = 4.096 \text{ V}$)

Output Data Rate (kSPS)	-3 dB Bandwidth (kHz)	Shorted Input Dynamic Range (dB)	RMS Noise (μV)
Fast Mode			
256	110.8	107.96	11.58
128	55.4	111.43	7.77
64	27.7	114.55	5.42
32	13.9	117.58	3.82
16	6.9	120.56	2.72
8	3.5	123.5	1.94
Median Mode			
128	55.4	108.13	11.36
64	27.7	111.62	7.6
32	13.9	114.75	5.3
16	6.9	117.79	3.74
8	3.5	120.8	2.64
4	1.7	123.81	1.87
Eco Mode			
32	13.9	108.19	11.28
16	6.9	111.69	7.54
8	3.5	114.83	5.25
4	1.7	117.26	3.71
2	0.87	120.88	2.62
1	0.43	123.88	1.85

Table 12. Sinc5 Filter Noise: Performance vs. Output Data Rate ($V_{REF} = 4.096 \text{ V}$)

Output Data Rate (kSPS)	-3 dB Bandwidth (kHz)	Shorted Input Dynamic Range (dB)	RMS Noise (μV)
Fast Mode			
256	52.224	111.36	7.83
128	26.112	114.55	5.43
64	13.056	117.61	3.82
32	6.528	120.61	2.71
16	3.264	123.52	1.93
8	1.632	126.39	1.39
Median Mode			
128	26.112	111.53	7.68
64	13.056	114.75	5.3
32	6.528	117.81	3.72
16	3.264	120.82	2.64
8	1.632	123.82	1.87
4	0.816	126.79	1.33
Eco Mode			
32	6.528	111.57	7.65
16	3.264	114.82	5.26
8	1.632	117.88	3.7
4	0.816	120.9	2.61
2	0.408	123.91	1.85
1	0.204	126.89	1.31

APPLICATIONS INFORMATION

The AD7768 offers users a multichannel platform measurement solution for ac and dc signal processing.

Flexible filtering allows the AD7768 to be configured to simultaneously sample ac and dc signals on a per channel basis. Power scaling allows users to trade off the input bandwidth of the measurement versus the current consumption. This ability, coupled with the flexibility of the digital filtering, allows the user to optimize the energy efficiency of the measurement, while still meeting power, bandwidth, and performance targets.

Key capabilities that allow users to choose the AD7768 as their platform high resolution ADC are highlighted as follows:

- Eight fully differential or pseudo differential analog inputs.
- Fast throughput simultaneous sampling ADCs catering for input signals up to 110.8 kHz.
- Three selectable power modes (fast, median, and eco) for scaling the current consumption and input bandwidth of the ADC for optimal measurement efficiency.
- Precharge analog input and precharge reference buffers reduce the drive requirements of external amplifiers.

- Control of reference and analog precharge buffers on a per channel basis.
- Wideband, low ripple, digital filter for ac measurement.
- Fast sinc5 filter for precision low frequency measurement.
- Two channel modes, defined by the user selected filter choice, and decimation ratios, can be defined for use on different ADC channels. This enables optimization of the input bandwidth versus the signal of interest.
- Option of SPI or pin strapped control and configuration.
- Offset, gain, and phase calibration registers per channel.
- Common-mode voltage output buffer for use by driver amplifier.
- On-board AVDD2 and IOVDD LDOs for the low power,
 1.8 V, internal circuitry.

Refer to Figure 78 and Table 13 for the typical connections and minimum requirements to get started using the AD7768.

Table 14 shows the typical power and performance of the AD7768 for the available power modes, for each filter type.

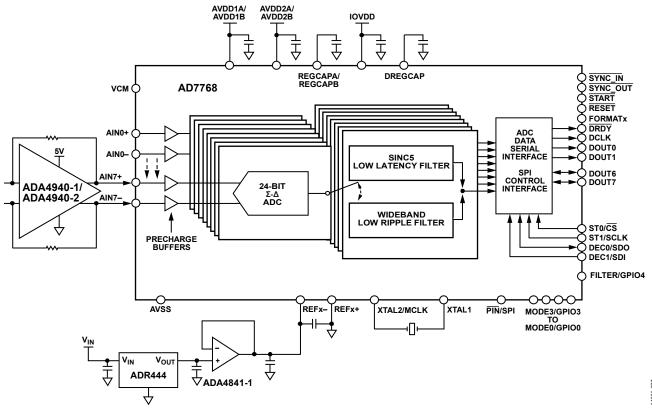


Figure 78. Typical Connection Diagram

Table 13. Requirements to Operate the AD7768

Requirement	Description
Power Supplies	5 V AVDD1 supply, 2.25 V to 5 V AVDD2 supply, 1.8 V or 2.5 V to 3.6 V IOVDD supply (ADP7104/ADP7118)
External Reference	2.5 V, 4.096 V, or 5 V (ADR441, ADR444, or ADR445)
External Driver Amplifiers	The ADA4896-2, the ADA4940-2, the ADA4805-2, and the ADA4807-2
External Clock	Crystal or a CMOS/LVDS clock for the ADC modulator sampling
FPGA or DSP	Input/output voltage of 2.5 V to 3.6 V, or 1.8 V (see the 1.8 V IOVDD Operation section)

Table 14. Speed, Dynamic Range, THD, and Power Overview; Eight Channels Active, Decimate by 321

	Output		Sinc5 Filter			Wideband Filter		
Power Mode	Data Rate (kSPS)	THD (dB)	Dynamic Range (dB)	Bandwidth (kHz)	Power Dissipation (mW per channel)	Dynamic Range (dB)	Bandwidth (kHz)	Power Dissipation (mW per channel)
Fast	256	-115	111	52.224	41	108	110.8	52
Median	128	-120	111	26.112	22	108	55.4	28
Eco	32	-120	111	6.528	8.5	108	13.9	9.5

¹ Analog precharge buffers on, precharge reference buffers and VCM disabled, typical values, AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V, V_{REF} = 4.096 V MCLK = 32.768 MHz, DCLK = MCLK/4, T_A = 25°C.

POWER SUPPLIES

The AD7768 has three independent power supplies: AVDD1 (AVDD1A and AVDD2A), AVDD2 (AVDD2A and AVDD2B), and IOVDD.

The reference potentials for these supplies are AVSS and DGND. Tie all the AVSS supply pins (AVSS1A, AVSS1B, AVSS2A, AVSS2B, and AVSS) to the same potential with respect to DGND. AVDD1A, AVDD1B, AVDD2A, and AVDD2B are referenced to this AVSS rail. IOVDD is referenced to DGND.

The supplies can be powered within the following ranges:

- AVDD1 = 5 V \pm 10%, relative to AVSS
- AVDD2 = 2 V to 5.5 V, relative to AVSS
- IOVDD (with internal regulator) = 2.25 V to 3.6 V, relative to DGND
- IOVDD (bypassing regulator) = 1.72 V to 1.88 V, relative to DGND
- AVSS = 0 V to -2.75 V, relative to DGND

The AVDD1A and AVDD1B (AVDD1) supplies power the analog front end, reference input, and common-mode output circuitry. AVDD1 is referenced to AVSS, and all AVDD1 supplies must be tied to the same potential with respect to AVSS. If AVDD1 supplies are used in a ± 2.5 V split supply configuration, the ADC inputs are truly bipolar. When using split supplies, reference the absolute maximum ratings, which deal with the voltage allowed between AVSS and IOVDD supplies.

The AVDD2A and AVDD2B (AVDD2) supplies connect to internal 1.8 V analog LDO regulators. The regulators power the ADC core. AVDD2 is referenced to AVSS, and all AVDD2 supplies must be tied to the same potential with respect to AVSS. The voltage on AVDD2 can range from 5.5 V (maximum) to 2 V (minimum), with respect to AVSS.

IOVDD powers the internal 1.8 V digital LDO regulator. This regulator powers the digital logic of the ADC. IOVDD also sets the voltage levels for the SPI interface of the ADC. IOVDD is referenced to DGND, and the voltage on IOVDD can vary from 3.6 V (maximum) to 2.25 V (minimum), with respect to DGND. IOVDD can also be configured to run at 1.8 V. In this case, IOVDD and DREGCAP must be tied together and must be within the range of 1.88 V (maximum) to 1.72 V (minimum), with respect to DGND. See the 1.8 V IOVDD Operation section for more information on operating the AD7768 at 1.8 V IOVDD.

Recommended Power Supply Configuration

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a power solution that uses the ADP7118 is shown in Figure 79. The ADP7118 provides positive supply rails for optimal converter performance, creating either a single 5 V, 3.3 V, or dual AVDD1/IOVDD, depending on the required supply configuration. The ADP7118 can operate from input voltages of up to 20 V.

Figure 79. Power Supply Configuration

Alternatively, the ADP7112 or ADP7104 can be selected for powering the AD7768. Refer to the AN-1120 Application Note for more information regarding low noise LDO performance and power supply filtering.

DEVICE CONFIGURATION

The AD7768 has independent paths for reading data from the ADC conversions and for controlling the device functionality.

For control, the device can be configured in either of two modes. The two modes of configuration are

- Pin control mode: pin strapped digital logic inputs (which allows a subset of the configurability options)
- SPI mode: over a 3-wire or 4-wire SPI interface (complete configurability)

On power-up, the state of the $\overline{\text{PIN}}/\text{SPI}$ pin determines the mode used. Immediately after power-up, the user must apply a soft or hard reset to the device when using either control mode.

Interface Data Format

When operating the device, the data format of the serial interface is determined by the FORMATx pins. Table 28 shows that each ADC can be assigned a DOUTx pin, or, alternatively, the data can be arranged to share the DOUTx pins in a time division multiplexed manner. For more details, see the Data Interface section.

PIN CONTROL

Pin control mode eliminates the need for an SPI communication interface. Where a single known configuration is required by the user, or where only limited reconfiguration is required, the number of signals that require routing to the digital host can be reduced using this mode. Pin control mode is useful in digitally isolated applications where minimal adjustment of the configuration is needed. Pin control offers a subset of the core functionality and ensures a known state of operation after power-up, reset, or a fault condition on the power supply. In pin control mode, the analog input precharge buffers are enabled by default for best performance. The reference input precharge buffers are disabled in pin control mode.

Setting the Filter

The filter function chooses between the two filter settings. In pin control mode all ADC channels use the same filter type, which is selected by the FILTER pin, as shown in Table 15.

Table 15. FILTER Control Pin

Logic Level	Function
1	Sinc5 filter selected
0	Wideband filter selected

Setting the Decimation Rate

Pin control mode allows selection from four possible decimation rates. The decimation rate is selected via the DEC1 and DEC0 pins. The chosen decimation rate is used on all ADC channels. Table 16 shows the truth table for the DECx pins.

Table 16. Decimation Rate Control Pins Truth Table

DEC1	DEC0	Decimation Rate
0	0	×32
0	1	×64
1	0	×128
1	1	×1024

Operating Mode

The MODE3 to MODE0 pins determine the configuration of all channels when using pin control mode. The variables controlled by the MODEx pins are shown in Table 17. The user selects how much current the device consumes, the sampling speed of the ADC (power mode), how fast the ADC result is received by the digital host (DCLK_DIV), and how the ADC conversion is initiated (conversion operation). Figure 80 illustrates the inputs used to configure the device in pin control mode.

Table 17. Mode Pins: Variables for Control

Control Variable	Possible Settings
Sampling Speed/Power Consumption	Fast
Power Mode	Median
	Eco
Data Clock Output Frequency (DCLK_DIV)	DCLK = MCLK/1
	DCLK = MCLK/2
	DCLK = MCLK/4
	DCLK = MCLK/8
Conversion Operation	Standard conversion
	One-shot conversion

The MODEx pins map to 16 distinct settings. The settings are selected to optimize the use cases of the AD7768, allowing the user to reduce the DCLK frequency for lower, less demanding power modes and selecting either the one-shot or standard conversion modes.

See Table 19 for the complete selection of operating modes that are available via the MODEx pins in pin control mode.

The power mode setting automatically scales the bias currents of the ADC and divides the applied MCLK to the correct setting for that mode. Note that this is not the same as using SPI control, where separate bit fields exist to control the bias currents of the ADC and MCLK division.

In pin control mode, the modulator rate is fixed for each power mode to achieve the best performance. Table 18 shows the modulator division for each power mode.

Table 18. Modulator Rate, Pin Control Mode

Power Mode	Modulator Rate, f _{MOD}
Fast	MCLK/4
Median	MCLK/8
Eco	MCLK/32

Diagnostics

Pin control mode offers a subset of diagnostics features. Internal errors are reported in the status header output with the data conversion results for each channel.

Internal CRC errors, memory map flipped bits, and external clocks not detected are reported by Bit 7 of the status header and indicate that a reset is required. The status header also reports filter not settled, filter type, and filter saturated signals. Users can determine when to ignore data by monitoring these error flags. For more information on the status header, see the ADC Conversion Output: Header and Data section.

Figure 80. Pin Configurable Functions

Table 19. MODEx Selection Details: Pin Control Mode

Mode Hex.	MODE3	MODE2	MODE1	MODE0	Power Mode	DCLK Frequency	Data Conversion
0x0	0	0	0	0	Eco	MCLK/1	Standard
0x1	0	0	0	1	Eco	MCLK/2	Standard
0x2	0	0	1	0	Eco	MCLK/4	Standard
0x3	0	0	1	1	Eco	MCLK/8	Standard
0x4	0	1	0	0	Median	MCLK/1	Standard
0x5	0	1	0	1	Median	MCLK/2	Standard
0x6	0	1	1	0	Median	MCLK/4	Standard
0x7	0	1	1	1	Median	MCLK/8	Standard
0x8	1	0	0	0	Fast	MCLK/1	Standard
0x9	1	0	0	1	Fast	MCLK/2	Standard
0xA	1	0	1	0	Fast	MCLK/4	Standard
0xB	1	0	1	1	Fast	MCLK/8	Standard
0xC	1	1	0	0	Eco	MCLK/1	One-shot
0xD	1	1	0	1	Median	MCLK/1	One-shot
0xE	1	1	1	0	Fast	MCLK/2	One-shot
0xF	1	1	1	1	Fast	MCLK/1	One-shot

Configuration Example

In the example in Table 21, the lowest current consumption is used, and the AD7768 is connected to an FPGA. The FORMATx pins are set such that all eight data outputs, DOUT0 to DOUT7, connect to the field-programmable gate array (FPGA). For the lowest power, the lowest DCLK frequency is used. The input bandwidth is set through the combination of selecting decimation by 64 and selecting the wideband filter.

$$ODR = f_{MOD} \div Decimation Ratio$$

where:

MCLK = 32.768 MHz.

 f_{MOD} is MCLK/32 for eco mode (see Table 18).

Decimation Ratio = 64.

Thus, for this example, where MCLK = 32.768 MHz,

$$ODR = (32.768 \text{ MHz}/32) \div 64 = 16 \text{ kHz}$$

Minimizing the DCLK frequency means selecting DCLK = MCLK/8. In this example, this results in a 4 MHz DCLK signal. The period of DCLK in this case is 1/4 MHz = 250 ns. The data conversion on each DOUTx pin is 32 bits long. The conversion data takes 32×250 ns = 8 μ s to be output. All 32 bits must be output within the ODR period of 1/16 kHz, which is approximately 64 μ s. In this case, the 8 μ s required to read out the conversion data is well within the 64 μ s between conversion outputs. Therefore, this combination, which is summarized in Table 21, is viable for use.

Channel Standby

Table 20 shows how the user can put channels into standby mode. Set either ST0 or ST1 to Logic 1 to place banks of four channels into standby mode. When in standby mode, the disabled channels hold their position in the output data stream. The 8-bit header and 24-bit conversion result are set to all zeros when the ADC channels are set to standby.

Table 20. Truth Table for the ST0 and ST1 Pins

ST1	ST0	Function
0	0	All channels operational.
0	1	Channel 0 to Channel 3 in standby. Channel 4 to Channel 7 operational.
1	0	Channel 4 to Channel 7 in standby. Channel 0 to Channel 3 operational.
1	1	All channels in standby.

SPI CONTROL

The AD7768 has a 4-wire SPI interface that is compatible with QSPI[™], MICROWIRE[®], and DSPs. The interface operates in SPI Mode 0. In SPI Mode 0, SCLK idles low, the falling edge of \overline{CS} clocks out the MSB, the falling edge of SCLK is the drive edge, and the rising edge of SCLK is the sample edge. This means that data is clocked out on the falling/drive edge and data is clocked in on the rising/sample edge.

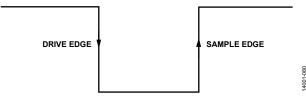


Figure 81. SPI Mode SCLK Edges

Accessing the ADC Register Map

To use SPI control mode, set the PIN/SPI pin to logic high. The SPI control operates as a 16-bit, 4-wire interface, allowing read and write access. Figure 82 shows the interface format between the AD7768 and the digital host.

The SPI serial control interface of the AD7768 is an independent path for controlling and monitoring the AD7768. There is no direct link to the data interface. Both the MCLK and DCLK signals can be configured by the SPI control interface. However, the MCLK and DCLK timing is not related in any way to the timing of the SPI control interface.

Table 21. MODEx Example Selection

Mode Hex.	MODE3	MODE2	MODE1	MODE0	Power Mode	DCLK Frequency	Data Conversion
0×3	0	0	1	1	Eco	MCLK/8	Standard

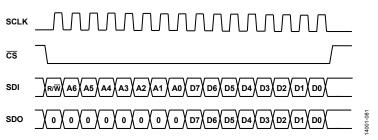


Figure 82. Write/Read Command

SPI Interface Details

Each SPI access frame is 16 bits long. The MSB (Bit 15) of the SDI command is the R/\overline{W} bit; 1= read and 0 = write. Bits[14:8] of the SDI command are the address bits.

The SPI control interface uses an off frame protocol. This means that the master (FPGA/DSP) communicates with the AD7768 in two frames. The first frame sends a 16-bit instruction R/\overline{W} , address, and data) and the second frame is the response where the AD7768 sends 16 bits back to the master.

During the master write command, the SDO output contains eight leading zeros, followed by eight bits of data, as shown in Figure 82.

Figure 83 illustrates the off frame <u>protocol</u>. Register access responses are always offset by one \overline{CS} frame. In Figure 83, the response (READ RESP 1) to the first command (CMD 1) is output by the AD7768 during the following \overline{CS} frame at the same time as the second command (CMD 2) is being sent.

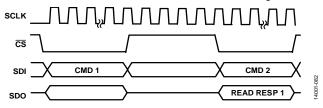


Figure 83. Off Frame Protocol

SPI Control Interface Error Handling

The AD7768 SPI control interface detects if it has received an illegal command. An illegal command is a write to a read only register, a write to a register address that does not exist, or a read from a register address that does not exist. If any of these illegal commands are received by the AD7768, it responds with an error output of 0x0E00.

SPI Reset Configuration

After power-on or reset, the AD7768 default configuration is set to the following low current consumption settings:

- Eco power mode with MCLK/32.
- Interface configuration of DCLK = MCLK/8, header output enabled, and CRC disabled.
- Filter configuration of Channel Mode A and Channel Mode B is set to sinc5 and decimation = ×1024. Channel mode select is set to 0x00, and all channels are assigned to Channel Mode A.
- Channel configuration of Channel 0 to Channel 7 is enabled, with the analog input buffers enabled. The reference precharge buffers are disabled. The offset, gain, and phase calibration are set to the zero position.
- Continuous conversion mode is enabled.

SPI CONTROL FUNCTIONALITY

SPI control offers the superset of flexibility and diagnostics to the user. The following sections highlight the functionality and diagnostics offered when SPI control is used. After any change to these configuration register settings, the user must provide a sync signal to the AD7768 through either the SPI_SYNC command, or by applying the appropriate pulse to the START pin or SYNC_IN pin to ensure that the configuration changes are applied correctly to the ADC and digital filters.

Channel Configuration

The AD7768 has eight fully differential analog input channels. The channel configuration registers allow the AD7768 channel to be individually configured to adapt to the measurement required on that channel. Channels can be enabled or disabled using the channel standby register, Register 0x00. Analog input and reference precharge buffers can be assigned per input terminal. Gain, offset, and phase calibration can be controlled on a per channel basis using the calibration register. See the Per Channel Calibration Gain and Offset and Sync Phase section for more information.

Filter Configuration Registers

In SPI control mode, the user can set up two channel modes, Channel Mode A (Register 0x01), and Channel Mode B (Register 0x02). Each channel mode register can have a specific filter type and decimation ratio. Using the channel mode selection register (Register 0x03), the user can assign either Channel Mode A or Channel Mode B to each channel.

Table 22. Channel Mode A/Channel Mode B, Register 0x01 and Register 0x02

Bits	Bit Name	Setting	Description	Reset	Access
3	FILTER_TYPE_x		Filter output	0x1	RW
		0	Wideband filter		
		1	Sinc5 filter		
[2:0]	DEC_RATE_x		Decimation rate	0x5	RW
		000 to 101	×32 to ×1024		

Table 23. Channel Mode Selection, Register 0x03

Bits	Bit Name	Setting	Description	Reset	Access
[7:0]	CH_x_MODE		Channel x	0x0	RW
		0	Mode A		
		1	Mode B		

Reset over SPI Control Interface

Two successive commands must be written to the AD7768 data control register to initiate a full reset of the device over the SPI interface. This action fully resets all registers to the default conditions. Details of the commands and their sequence are shown in Table 40.

After a reset over the SPI control interface, the first command sent to the AD7768 is responded to with 0x0E00 by the device. This response, in addition the fact that all registers have assumed their default values, indicates that the software reset succeeded.

Sleep Mode

Sleep mode puts the AD7768 into its lowest power mode. In sleep mode, all clocks are internally gated and all ADCs are disabled. A large portion of the digital core is inactive.

The AD7768 SPI remains active and is available to the user when in sleep mode. Write to Register 0x04, Bit 7 to exit sleep mode. For the lowest power consumption, select the sinc5 filter before entering sleep mode.

Channel Standby Mode

For efficient power usage, users can place selected channels into standby mode when not in use. Setting the bits in Register 0x00 disables the corresponding channel (see Table 34). For maximum power savings, switch disabled channels to the sinc5 filter using the channel mode configurations. This disables the wideband filter in the digital core and gives additional power savings.

Clocking Selections

The internal modulator frequency (f_{MOD}) that is used by each of the ADCs in the AD7768 is derived from the externally applied MCLK signal. The MCLK division bits allow the user to control the ratio between the MCLK frequency and the internal modulator clock frequency. This allows the user to select the division ratio which is best for their configuration.

This depends on the power mode, the decimation rate, and the base MCLK available in the system. See the Clocking and Sampling Tree section for further information on setting MCLK_DIV correctly.

MCLK Source Selection

The following clocking options are available as the MCLK input source in SPI mode:

- LVDS
- External crystal
- CMOS input MCLK

Setting CLK_SEL to logic low configures the AD7768 for correct operation using a CMOS clock. Setting CLK_SEL to logic high enables the use of an external crystal.

If CLK_SEL is set to logic high and Bit 3 of Register 0x04 is also set, the application of an LVDS clock signal to the MCLK pin is enabled. LVDS clocking is exclusive to SPI mode and requires the register selection for operation (see Table 38).

The DCLK rate is derived from MCLK. DCLK division (the ratio between MCLK and DCLK) is controlled in the interface configuration selection register, Register 0x07 (see Table 41).

Interface Configuration

The data interface is a master output interface, where ADC conversion results are output by the AD7768 at a rate based on the mode selected. The interface consists of a data clock (DCLK), the data ready (DRDY) framing output, and the data output pins (DOUT0 to DOUT7). The interface can be configured to output conversion data on one, two, or eight of the DOUTx pins. The DOUTx configuration is selected using the FORMATx pins (see Table 28).

The DCLK rate is a direct division of the MCLK input and can be controlled using Bits[1:0] of Register 0x07. The minimum DCLK rate can be calculated as

DCLK (minimum) = Output Data Rate × Channels per $DOUTx \times 32$ bits

where MCLK $\geq DCLK$.

With eight ADCs enabled, an MCLK rate of 32.768 MHz, an ODR of 256 kSPS, and two DOUTx channels, DCLK (minimum) is

 $256 \text{ kSPS} \times 4 \text{ channels per DOUTx} \times 32 \text{ bits} = 32.768 \text{ MHz}$ where DCLK = MCLK/1.

For more information on the status header, CRC, and interface configuration, see the Data Interface section.

CRC Protection

The AD7768 can be configured to output a CRC message per channel every 4 or 16 samples. This function is available only with SPI control. CRC is enabled in the interface control register, Register 0x07 (see the CRC Check on Data Interface section).

ADC Synchronization over SPI

The ADC synchronization over SPI allows the user to request a synchronization pulse to the ADCs over the SPI interface. To initiate the synchronization in this manner, write to Bit 7 in Register 0x06 twice.

First, the user must write a 0, which sets SYNC_OUT low, and then write a 1 to set the SYNC_OUT logic high again.

The SPI_SYNC command is recognized after the last rising edge of SCLK in the SPI instruction, where the SPI_SYNC bit is changed from low to high. The SPI_SYNC command is then output synchronously to the AD7768 MCLK signal on the SYNC_OUT pin. The user must connect the SYNC_OUT signal to the SYNC_IN pin on the printed circuit board (PCB).

The SYNC_OUT pin may also be routed to the SYNC_IN pins of other AD7768 devices, allowing simultaneous sampling to occur across larger channel count systems. Any daisy-chained system of AD7768 devices requires that all ADCs be synchronized.

As per any synchronization pulse present on the SYNC_IN pin, the digital filters of the AD7768 are reset by the SPI_SYNC command. The full settling time of the filters must then elapse before valid data is output on the data interface.

Analog Input Precharge Buffers

The AD7768 contains precharge buffers on each analog input to ease the drive requirements on the external amplifier. Each analog input precharge buffer can be enabled or disabled using the analog input precharge buffer registers (see Table 48 and Table 49).

Reference Precharge Buffers

The AD7768 contains reference precharge buffers on each reference input to ease the drive requirements on the external reference and help to settle any nonlinearity on the reference inputs. Each precharge reference buffer can be enabled or disabled using the precharge reference buffer registers (see Table 50 and Table 51).

Per Channel Calibration Gain and Offset and Sync Phase

The user can adjust the gain, offset, and sync phase of the AD7768. These options are available only in SPI mode. Further register information and calibration instructions are available in the Offset Registers section, the Gain Registers section, and the Sync Phase Offset Registers section. See the Calibration section for information on calibration equations.

GPIOs

The AD7768 has five general-purpose input/output (GPIO) pins available when operating in SPI mode. For further information on GPIO configuration, see the GPIO Functionality section.

SPI MODE EXTRA DIAGNOSTIC FEATURES RAM Built In Self Test

The RAM built in self test (BIST) is a coefficient check for the digital filters. The AD7768 DSP path uses some internal memories for storing data associated with filtering and calibration. A user may, if desired, initiate a built in self test (BIST) of these memories. Normal conversions are not possible while BIST is running. The test is started by writing to the BIST control register, Register 0x08. The results and status of the test are available in the status register, Register 0x09 (see Table 34).

Revision Identification Number

The AD7768 contains an identification register that can be accessed in SPI mode, the revision identification register. This register is an excellent way to verify the correct operation of the serial control interface. Register information is available in the Revision Identification Register section.

Diagnostic Meter Mode

The diagnostic metering mode can be used to verify the functionality of each ADC by internally passing a positive full-scale, midscale, or negative full-scale voltage to the ADC. The user can then read the resulting ADC conversion result to determine that the ADC is operating correctly. To configure ADC conversion diagnostics, see the ADC Diagnostic Receive Select Register section and the ADC Diagnostic Control Register section.

CIRCUIT INFORMATION CORE SIGNAL CHAIN

Each ADC channel on the AD7768 has an identical signal path from the analog input pins to the data interface. Figure 84 shows a top level implementation of the core signal chain. Each ADC channel has its own Σ - Δ modulator that oversamples the analog input and passes the digital representation to the digital filter block. The modulator sampling frequency (f_{MOD}) ranges are explained in the Clocking and Sampling Tree section. The data is filtered, scaled for gain and offset (depending on user settings), and then output on the data interface. Control of the flexible settings for the signal chain is provided by either using the pin control or the SPI control set at power-up by the state of the $\overline{\text{PIN}}/\text{SPI}$ input pin.

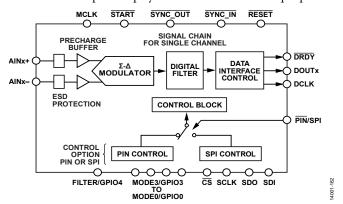


Figure 84. Top Level Core Signal Chain and Control

The AD7768 can use up to a 5 V reference and converts the differential voltage between the analog inputs (AINx+ and AINx-) into a digital output. The analog inputs can be configured as either differential or pseudo differential inputs. As a pseudo differential input, either AINx+ or AINx- can be connected to a constant input voltage (such as 0 V, GND, AVSS, or some other reference voltage). The ADC converts the voltage difference between the analog input pins into a digital code on the output. Using a common-mode voltage of AVDD1/2 for the analog inputs, AINx+ and AINx-, maximizes the ADC input range. The 24-bit conversion result is in twos complement, MSB first, format. Figure 85 shows the ideal transfer functions for the AD7768.

ADC Power Modes

The AD7768 has three selectable power modes. In pin control mode, the modulator rate and power mode are tied together for best performance. In SPI control mode, the user can select the

power mode and modulator MCLK divider settings. This gives more flexibility to control the bandwidth and power dissipation for the AD7768. Table 10 shows the f_{MOD} frequencies allowed for each power mode and Table 38 shows the register information.

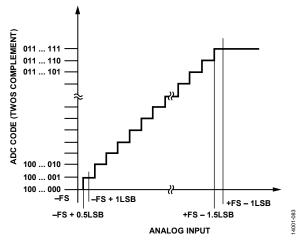


Figure 85. ADC Ideal Transfer Functions (FS is Full-Scale)

ANALOG INPUTS

Figure 86 shows the AD7768 analog front end. Shown on the signal path are the ESD protection diodes that are designed to protect the ADC from some short duration overvoltage and ESD events. The analog input is sampled at twice the modulator sampling frequency, f_{MOD} , which is derived from MCLK. By default, the ADC internal sampling capacitors, CS1 and CS2, are driven by a per channel analog input precharge buffer, to ease the driving requirement of the external network.

The analog input precharge buffers provide the initial rough charging of the switched capacitor network for 25% of the sampling phase. For the final remaining 75% of sampling phase, the fine accuracy settling charge is provided by the external source.

The analog input precharge buffers reduce the switching kickback from the sampling stage to the external circuitry. It reduces the average input current by a factor of eight, and makes the input current more signal independent, to reduce the effects of sampling distortion. This reduction in drive requirements allows pairing of the AD7768 with lower power, lower bandwidth front end driver amplifiers such as the ADA4940-2.

Table 24. Output Codes and Ideal Input Voltages

Description	Analog Input (AINx+ - (AINx-)) V _{REF} = 4.096 V	Digital Output Code, Twos Complement (Hex.)
FS – 1 LSB	+4.095999512 V	0x7FFFFF
Midscale + 1 LSB	+488 nV	0x000001
Midscale	OV	0x000000
Midscale – 1 LSB	–488 nV	0xFFFFFF
−FS + 1 LSB	-4.095999512 V	0x800001
–FS	-4.096 V	0x800000

The analog input precharge buffers can be turned on/off by means of a register write to Register 0x11 and Register 0x12 (Precharge Buffer Register 1 and Precharge Buffer Register 2). Each analog input precharge buffer is selectable per channel. In pin control mode, the analog input precharge buffers are always enabled for optimum performance.

When the precharge analog input buffers are disabled, the analog input current is sourced completely from the analog input source. The unbuffered analog input current is calculated from two components: the differential input voltage on the analog input pair, and the analog input voltage with respect to AVSS. With the precharge buffers disabled, for 32.768 MHz MCLK in fast mode with $f_{\text{MOD}} = \text{MCLK/4}$, the differential input current is approximately 48 μ A/V and the current with respect to ground is approximately 16 μ A/V.

For example, if the precharge buffers are off, with AIN1+= 5 V, and AIN1-= 0 V, estimate the current in each input pin as follows:

AIN1+ = 5 V × 48
$$\mu$$
A/V + 5 V × 16 μ A/V = 320 μ A
AIN1- = -5 V × 48 μ A/V + 0 V × 16 μ A/V = -240 μ A

When the precharge buffers are enabled, the absolute voltage with respect to AVSS determines the majority of the current. The maximum input current of approximately $-25~\mu A$ is measured when the analog input is close to either the AVDD1 or AVSS rails.

With either precharge buffers enabled or disabled, the analog input current scales linearly with the modulator clock rate. The analog input current versus input voltage is shown in Figure 87.

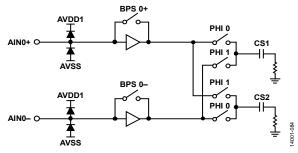


Figure 86. Analog Front End

Full settling of the analog inputs to the ADC requires the use of an external amplifier. Pair amplifiers such as the ADA4805-2 for eco mode, the ADA4807-2 or ADA4940-2 for median mode, and the ADA4807-2 or ADA4896-2 for fast mode with the AD7768. Use the ADA4940-2 with a 4.096 V reference to give the amplifier sufficient headroom and foot room to achieve the best distortion performance from the amplifier. Running the AD7768 in median and eco modes or reducing the MCLK rate reduces the load and speed requirements of the amplifier; therefore, lower power amplifiers may be paired with the analog inputs to achieve the optimum signal chain efficiency.

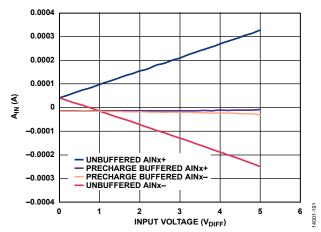


Figure 87. Analog Input Current (A_{IN}) vs. Input Voltage Precharge Buffer On/Off, $V_{CM} = 2.5 \text{ V}$

VCM

The AD7768 provides a buffered common-mode voltage output on Pin 59. This output can bias up analog input signals. By incorporating the VCM buffer into the ADC, the AD7768 reduces component count and board space. In pin control mode, the VCM potential is fixed to (AVDD1 – AVSS)/2, and is enabled by default.

In SPI mode, configure the VCM potential using the general configuration register (Register 0x05). The output can be enabled or disabled, and set to (AVDD1 - AVSS)/2, 1.65 V, 2.14 V, or 2.5 V, with respect to AVSS.

REFERENCE INPUT

The AD7768 has two differential reference input pairs: REF1+ and REF1- for Channel 0 to Channel 3, and REF2+ and REF2- for Channel 4 to Channel 7. The absolute input reference voltage range is 1 V to AVDD1 – AVSS.

Like the analog inputs, the reference inputs have a precharge buffer option. Each ADC has an individual buffer for each REFx+ and REFx-. The precharge buffers help reduce the burden on the external reference circuitry.

In pin control mode, the precharge reference buffers are off by default. In SPI mode, the user can enable or disable the reference precharge buffers. In the case of unipolar analog supplies, in SPI mode, the user can achieve the best performance and power efficiency by enabling only the REFx+ buffers. The reference input current scales linearly with the modulator clock rate.

For 32 MHz MCLK and MCLK/4 fast mode, the differential input current is ${\sim}72~\mu\text{A/V}$ unbuffered, and ${\sim}16~\mu\text{A/V}$ with the precharge buffers enabled.

With the precharge buffers off, REFx+ = 5 V, and REFx- = 0 V, REFx \pm = 5 V \times 72 μ A/V = 360 μ A

With the precharge buffers on, REFx+ = 5 V, and REFx- = 0 V,

REFx
$$\pm$$
 = 5 V × 16 μ A/V = 80 μ A

For the best performance and headroom, it is recommended to use a 4.096 V reference such as the ADR444 or the ADR4540.

For the best performance at high sampling rates, it is recommended to use an external reference drive amplifier such as the ADA4841-1 or the AD8031.

CLOCK SELECTION

The AD7768 has an internal oscillator that is used for initial power-up of the device. After the AD7768 has completed its start-up routine, a clock handover to the externally applied MCLK normally occurs. The AD7768 counts the falling edges of the external MCLK over a given number of internal clock cycles to determine if the clock is valid and at least a frequency of 1.15 MHz. If there is a fault with the external MCLK, the handover does not occur and the AD7768 outputs an error in the status header and the clock error bit is set in the device status register. No conversion data is output and a reset is required to exit this error state.

Three clock source input options are available to the AD7768: external CMOS, crystal oscillator, or LVDS. The clock is selected on power-up and is determined by the state of the CLK_SEL pin.

If CLK_SEL = 0, the CMOS clock option is selected and the clock is applied to Pin 32 (Pin 31 is tied to DGND).

If CLK_SEL = 1, the crystal or LVDS option is selected and the crystal or LVDS is applied to Pin 31 and Pin 32. The LVDS option is available only in SPI control mode. An SPI write to Bit 3 of Register 0x04 enables the LVDS clock option.

DIGITAL FILTERING

The AD7768 offers two types of digital filters. In SPI control mode, these filters can be chosen on a per channel basis. In pin control mode, only one filter can be selected for all channels. The digital filters available on the AD7768 are

- Sinc5 low latency filter, -3 dB at $0.2 \times ODR$
- Wideband low ripple filter, -3 dB at 0.433 in specs \times ODR

Both filters can be operated in one of six different decimation rates, allowing the user to choose the optimal input bandwidth and speed of the conversion versus the desired power mode or resolution.

Sinc5 Filter

Most precision Σ - Δ ADCs use a sinc filter. The sinc5 filter offered in the AD7768 enables a low latency signal path useful for dc inputs, for control loops, or where other specific postprocessing is required. The sinc5 filter path offers the lowest noise and power consumption. The sinc5 filter has a -3 dB BW of $0.2 \times$ ODR. Table 12 contains the noise performance for the sinc5 filter across power modes and decimation ratios.

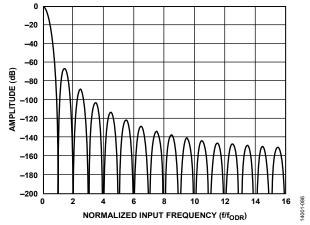


Figure 88. Sinc5 Filter Frequency Response (Decimation = \times 32)

The settling times for the AD7768 when using the sinc5 filter are shown in Table 32.

Wideband Low Ripple Filter

The wideband filter has a low ripple pass band, within ± 0.005 dB of ripple, of $0.4 \times \text{ODR}$. The wideband filter has full attenuation at $0.499 \times \text{ODR}$ (Nyquist), maximizing antialias protection. The wideband filter has a pass-band ripple of ± 0.005 dB and a stop band attenuation of 105 dB from Nyquist out to f_CHOP. For more information on antialiasing and f_CHOP aliasing, see the Antialiasing section.

The wideband filter is a very high order digital filter with a group delay of approximately 34/ODR. After a synchronization pulse, there is an additional delay from the SYNC_IN rising edge to fully settled data. The settling times for the AD7768 when using the wideband filter are shown in Table 31. See Table 11 for the noise performance of the wideband filter across power modes and decimation rates.

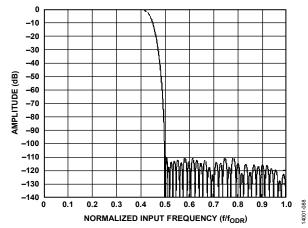


Figure 89. Wideband Filter Frequency Response

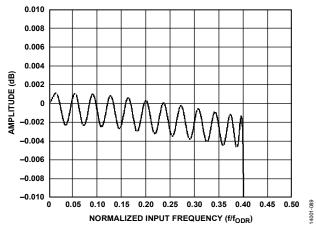


Figure 90. Wideband Filter Pass-Band Ripple

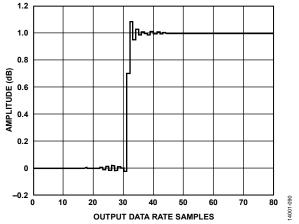


Figure 91. Wideband Filter Step Response

DECIMATION RATE CONTROL

The AD7768 has programmable decimation rates for the digital filters. The decimation rates allow the user to reduce the measurement bandwidth, reducing the speed but increasing the resolution. When using the SPI control, control the decimation rate on the AD7768 through the channel mode registers. These registers set two separate channel modes with a given decimation rate and filter type. Each ADC is mapped to one of these modes via the channel mode select register. Table 25 details both the decimation rates available, and the filter types for selection, within Mode A and Mode B.

In pin control mode, the decimation ratio is controlled by the DEC0 and DEC1 pins; see Table 16 for decimation configuration in pin control mode.

Table 25. Channel x Mode Registers, Register 0x01 and Register 0x02

Bits	Name	Logic Value	Decimation Rate
3	FILTER_TYPE_x	0	Wideband filter
		1	Sinc5 filter
[2:0]	DEC_RATE_x	000	32
		001	64
		010	128
		011	256
		100	512
		101	1024
		110	1024
		111	1024

ANTIALIASING

When designing an antialiasing filter for the AD7768, three main aliasing regions must be taken into account. After the alias requirements of each zone are understood, the user can design an antialiasing filter to meet the needs of the specific application. The three zones for consideration are related to the modulator sampling frequency, the modulator chopping frequency, and the modulator saturation point.

Modulator Sampling Frequency

The AD7768 modulator signal transfer contains a zero, or notch, at odd multiples of f_{MOD} .

The modulator does not reject signals around its sampling frequency of $2\times f_{\text{MOD}}$ or around even multiples of f_{MOD} . Figure 92 shows the modulator frequency response when using the wideband filter. The input frequency is swept from dc to 10 MHz. The rejection at the modulator rate is -35 dB. Table 26 shows the aliasing achieved by the filter options at the critical aliasing points mentioned in this section.

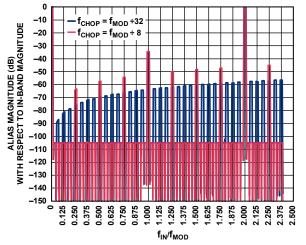


Figure 92. Wideband Filter Stop Band Rejection, $f_{MOD} = 8.192 \text{ MHz}$

Modulator Chopping Frequency

The AD7768 uses a chopping technique in the modulator similar to that of a chopped amplifier to remove offset, offset drift, and 1/f noise. The AD7768 has a predetermined chopping rate of $f_{\text{MOD}}/32$ for pin control mode, and user selectable rates in SPI mode of $f_{\text{MOD}}/32$ or $f_{\text{MOD}}/8$.

The rate of chopping, f_{CHOP} , generates a tone that can appear at $(2 \times N \times f_{CHOP}) \pm f_{IN}$. Chopping at $f_{MOD}/32$ offers the best ac and dc performance for the AD7768. Chopping at $f_{MOD}/8$ offers better stop band attenuation by moving the first chopping tone further out of band, reducing the requirements of the analog filter. However, chopping at $f_{MOD}/8$ may lead to slightly degraded noise and offset performance compared to the default chop rate of $f_{MOD}/32$. Figure 92 displays the frequency response of the AD7768 when using the wideband filter for chopping frequencies of $f_{MOD}/32$ and $f_{MOD}/8$. Table 26 shows the aliasing achieved by the filter options at the critical aliasing points mentioned in this section.

Table 26. External Antialiasing Filter Attenuation

RC Filter	f _{MOD} /32 (dB)	f _{MOD} /16 (dB)	f _{MOD} /8 (dB)	2×f _{MOD} (dB)
First Order	-10	-16	-24	-42
Second Order	-20	-32	-48	-84
Third Order	-30	-48	-72	-126

Modulator Saturation Point

A Σ - Δ modulator can be thought of as a standard control loop, employing negative feedback. The control loop works to ensure that the average processed error signal is very small over time. It uses an integrator to remember preceding errors and force the mean error to be zero. As the input signal rate of change increases with respect to the modulator clock, f_{MOD} , a larger voltage feedback error is processed. Above a certain frequency, the error begins to saturate the modulator.

For the AD7768, the modulator may saturate for inputs greater than $f_{\text{MOD}}/16$, depending on the rate of change of input signal, input signal amplitude, and reference input level. A half power input tone at $f_{\text{MOD}}/8$ also causes the modulator to saturate. To protect against modulator saturation, a first-order antialiasing filter is required with a bandwidth of $f_{\text{MOD}}/16$.

CALIBRATION

In SPI control mode, the AD7768 offers users the ability to adjust offset, gain, and phase delay on a per channel basis.

Offset Adjustment

The CHx_OFFSET_MSB, CHx_OFFSET_MID, and CHx_OFFSET_LSB registers provide 24-bit, signed twos complement registers for channel offset adjustment. If the channel gain setting is

at its ideal nominal value of 0x555555, an LSB of offset register adjustment changes the digital output by -4/3 LSBs. For example, changing the offset register from 0 to 100 changes the digital output by -133 LSBs. As offset calibration occurs before gain calibration, the ratio above changes linearly with gain adjustment via the CHx gain registers (see Table 53). After a reset or power cycle, the offset register values revert to the default factory setting.

Gain Adjustment

Each ADC channel has an associated gain coefficient. The coefficient is stored in three single-byte registers split up as MSB, MID, and LSB. Each of the gain registers are factory programmed. Nominally, this gain is around the value 0x555555 (for an ADC channel). The user may overwrite the gain register setting. However, after a reset or power cycle, the gain register values revert to the hard coded programmed factory setting.

Calculate the approximate result that is output using the following formula:

$$Data = \left(\frac{3 \times V_{IN}}{V_{REF}} \times 2^{21} - (Offset)\right) \times \frac{Gain}{4} \times \frac{4,194,300}{2^{42}}$$

where:

Offset is the offset register setting. *Gain* is the gain register setting.

Sync Phase Offset Adjustment

The AD7768 has one synchronization signal for all channels. The sync phase offset register allows the user to vary the phase delay on each of the channels relative to the synchronization edge received on the SYNC_IN pin.

By default, all ADC channels react simultaneously to the SYNC_IN pulse. The sync phase registers can be programmed to equalize known external phase differences on ADC input channels, relative to one another. The range of phase compensation is limited to a maximum of one conversion cycle, and the resolution of the correction depends on the decimation rate in use.

Table 27 displays the resolution and register bits used for phase offset for each decimation ratio.

Table 27. Phase Delay Resolution

Decimation			Phase Register
Ratio	Resolution	Steps	Bits
×32	1/f _{MOD}	32	[7:3]
×64	1/f _{MOD}	64	[7:2]
×128	1/f _{MOD}	128	[7:1]
×256	1/f _{MOD}	256	[7:0]
×512	2/f _{MOD}	256	[7:0]
×1024	4/f _{MOD}	256	[7:0]

DATA INTERFACE

SETTING THE FORMAT OF DATA OUTPUT

The data interface format is determined by setting the FORMATx pins. The logic state of the FORMATx pins are read on power-up and determine how many data lines (DOUTx) the ADC conversions are output on.

As the FORMATx pins are read on power-up of the AD7768 and the device remains in this output configuration, this function must always be hardwired and cannot be altered dynamically. Table 28, Figure 93, Figure 94, and Figure 95 show the formatting configuration for the digital output pins.

Calculate the minimum required DCLK rate for a given data interface configuration as follows:

DCLK (minimum) = Output Data Rate \times Channels per $DOUTx \times 32$

where MCLK \geq DCLK.

For example, if MCLK = 32.768 MHz, with 2 DOUTx lines,

DCLK (minimum) = 256 kSPS × 4 channels per DOUTx × 32 = 32.768 Mbps

Therefore, DCLK = MCLK/1.

Or, if MCLK = 32.768 MHz, with 8 DOUTx lines,

 $DCLK (minimum) = 256 \text{ kSPS} \times 1 \text{ channel per DOUTx} \times 32 = 8.192 \text{ Mbps}$

Therefore, DCLK = MCLK/4.

Table 28. FORMATx Truth Table

FORMAT1	FORMAT0	Description
0	0	Each ADC channel outputs on its own dedicated pin. DOUT0 to DOUT7 are in use.
0	1	The ADCs share the DOUT0 and DOUT1 pins: Channel 0 to Channel 3 output on DOUT0. Channel 4 to Channel 7 output on DOUT1. The ADC channels share data pins in time division multiplexed (TDM) output. DOUT0 and DOUT1 are in use.
1	Х	All channels output on the DOUT0 pin, in TDM output. Only DOUT0 is in use.

4001-194

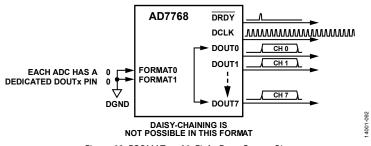


Figure 93. FORMATx = 00, Eight Data Output Pins

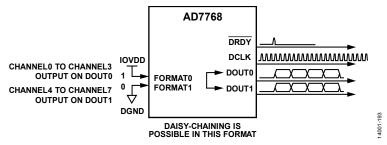


Figure 94. FORMATx = 01, Two Data Output Pins

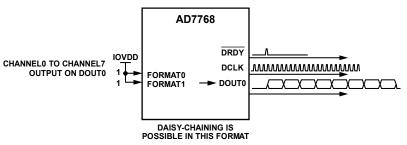


Figure 95. FORMATx = 10 or 11, One Data Output Pin

ADC CONVERSION OUTPUT: HEADER AND DATA

The AD7768 data is output on the DOUT0 to DOUT7 pins, depending on the FORMATx pins. The actual structure of the data output for each ADC result is shown in Figure 96. Each ADC result comprises 32 bits. The first 8 bits are the header status bits, which contain status information and the channel number. The names of each of the header status bits are shown in Table 29, and their functions are explained in the subsequent sections. These header bits are followed by a 24-bit ADC output in two complement coding, MSB first.

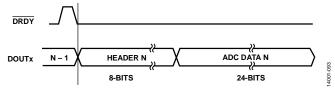


Figure 96. ADC Output: 8-Bit Header, 24-Bit ADC Conversion Data

Table 29. Header Status Bits

Bit	Bit Name
7	CHIP_ERROR
6	Filter not settled
5	Repeated data
4	Filter type
3	Filter saturated
[2:0]	Channel ID[2:0]

Chip Error

The chip error bit indicates that a serious error has occurred. If this bit is set, a reset is required to clear this bit. This bit indicates that the external clock is not detected, a memory map bit flip, or an internal CRC error.

Filter Not Settled

After power-up, reset, or synchronization, the AD7768 clears the digital filters and begins conversion. Due to the weighting of the digital filters, there is a delay from the first conversion to fully settled data. The settling times for the AD7768 when using the wideband and sinc5 filters are shown in Table 31 and Table 32, respectively. This bit is set if this settling delay has not yet elapsed.

Repeated Data

If different channels use different decimation rates, data outputs are repeated for the slower speed channels. In these cases, the header is output as normal with the repeated data bit set to 1, and the following repeated ADC result is output as all zeros. This bit indicates that the conversion result of all zeros is not real; it indicates that there is a repeated data condition because two different decimation rates are selected. This condition can only occur during SPI control of the AD7768.

Filter Type

In pin control mode, all channels operate using one filter selection. The filter selected in pin control mode is determined by the logic level of the FILTER pin. In SPI control mode, the digital filters can be selected on a per channel basis, using the

mode registers. This header bit is 0 for channels using the wideband filter, and 1 for channels using the sinc5 filter.

Filter Saturated

The filter saturated bit indicates that the filter output is clipping at either positive or negative full scale. The digital filter clips if the signal goes beyond the specification of the filter; it does not wrap. The clipping may be caused by the analog input exceeding the analog input range, or by a step change in the input which may cause overshoot in the digital filter. Clipping may also occur where the combination of the analog input signal and the channel gain register setting cause the signal seen by the filter to be higher than the analog input range.

Channel ID

The channel ID bits indicate the ADC channel from which the succeeding conversion data originates (see Table 30).

Table 30. Channel ID vs. Channel Number

Channel	Channel ID2	Channel ID1	Channel ID0
Channel 0	0	0	0
Channel 1	0	0	1
Channel 2	0	1	0
Channel 3	0	1	1
Channel 4	1	0	0
Channel 5	1	0	1
Channel 6	1	1	0
Channel 7	1	1	1

Data Interface: Standard Conversion Operation

In standard mode operation, the AD7768 operates as the master and streams data to the DSP or FPGA. The AD7768 supplies the data, the data clock (DCLK), and a falling edge framing signal (DRDY) to the slave device. All of these signals are synchronous. The data interface connections to DSP/FPGA are shown in Figure 100. The FORMATx pins determine how the data is output from the AD7768.

Figure 97 through Figure 99 show the data interface operating in standard mode at the maximum data rate. In all instances, \overline{DRDY} is asserted one clock cycle before the MSB of the data conversion is made available on the data pin.

Each \overline{DRDY} falling edge starts the output of the new ADC conversion data. The first 8 bits output after the \overline{DRDY} falling edge are the header bits; the last 24 bits are the ADC conversion result.

Figure 97, Figure 98, and Figure 99 are distinct examples of the impact of the FORMATx pins on the AD7768 output operating in standard conversion operation. These figures represent running the AD7768 at maximum data rate for the three format options.

Figure 97 shows FORMATx = 00 each ADC has its own data out pin running at the MCLK/4 bit rate. In pin control mode, this is achieved by selecting Mode 0xA (fast mode, DCLK = MCLK/4, standard conversion, see Table 19) with the decimation rate set as $\times 32$.

Figure 98 shows FORMATx = 01, where Channel 0 to Channel 3 share DOUT0 and Channel 4 to Channel 7 share DOUT1 at the maximum bit rate. In pin control mode, this is achieved by selecting Mode 0x8 (fast mode, DCLK = MCLK/1, standard conversion) with a decimation rate of ×32.

If running in pin control mode, the example shown in Figure 99 represents Mode 0x4 (median mode, DCLK = MCLK/1, standard conversion) with a decimation rate of $\times 32$, giving the maximum output data capacity possible on one DOUTx pin.

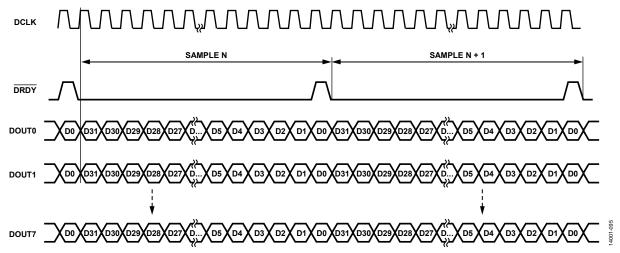


Figure 97. FORMATx = 00: Each ADC Has a Dedicated Data Out Pin, Maximum Data Rate

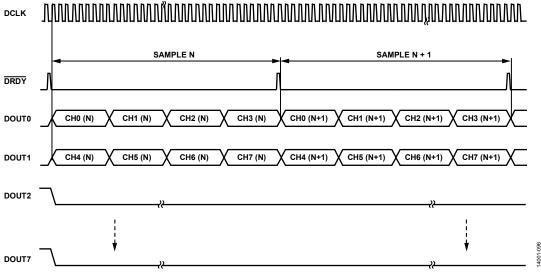


Figure 98. FORMATx = 01: Channel 0 to Channel 3 Share DOUT0, and Channel 4 to Channel 7 Share DOUT1, Maximum Data Rate

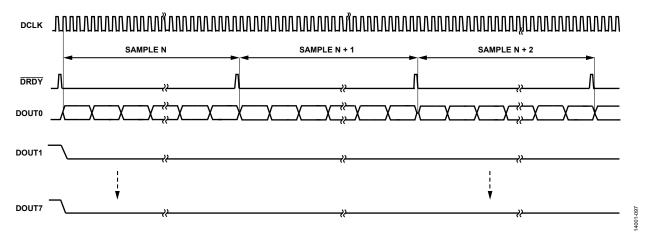


Figure 99. FORMATx = 11 or 10: Channel 0 to Channel 7 Output on DOUT0 Only, Maximum Data Rate

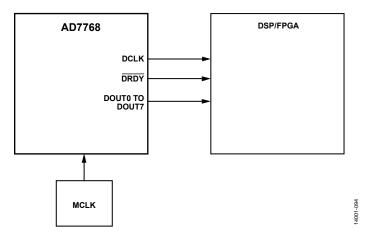


Figure 100. Data Interface: Standard Conversion Operation, AD7768 = Master, DSP/FPGA = Slave

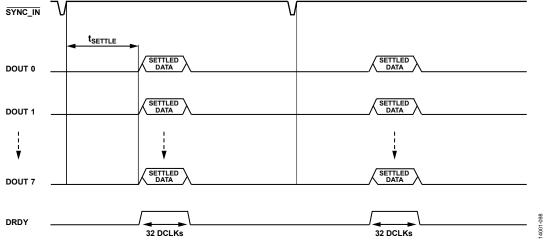


Figure 101. One-Shot Mode

Data Interface: One-Shot Conversion Operation

One-shot mode is available in both SPI and pin control modes. This conversion mode is available by selecting one of Mode 0xC to Mode 0xF when in pin control mode. In SPI control mode, set Bit 4 (single-shot) of Register 0x06, the data control register. Figure 101 shows the device operating in one-shot mode.

In one-shot mode, the AD7768 is a pseudo slave. Conversions occur on request by the master device, for example, the DSP or FPGA. The SYNC_IN pin initiates the conversion request. In one-shot mode, all ADCs run continuously; however, the rising edge of the SYNC_IN pin controls the point in time from which data is output.

To receive data, the <u>master must pulse the SYNC_IN</u> pin to reset the filter and force \overline{DRDY} low. \overline{DRDY} subsequently goes high to indicate to the master device that the device has valid settled data available. Unlike standard mode, \overline{DRDY} remains high for the number of clock periods of valid data before it goes low again; thus, in this conversion mode, it is an active high frame of the data.

When the master pulses SYNC_IN and the AD7768 receives the rising edge of this signal, the digital filter is reset and the full settling time of the filter elapses before the data is available. The duration of the settling time depends on the filter path and decimation rate. Running one-shot mode with the sinc5 filter allows the fastest throughput, because this filter has a lower settling time than the wideband filter.

As soon as settled data is available on any channel, the device outputs data from all channels. The contents of Bit 6 of the channel header status bits indicates if the data is fully settled.

The period before the data is settled on all channels (t_{SETTLE}) is shown in Figure 101. After the data has settled on all channels, \overline{DRDY} is asserted high and the device outputs the required settled data on all channels before \overline{DRDY} is asserted low. By adhering to the constraint of using the same filter and decimation rate on each ADC, the data is settled for all channels on the first \overline{DRDY} output frame. This avoids a period of unsettled data prior to the settled data and ensures that all data is output at the same time on all ADCs. The device then waits for another $\overline{SYNC_IN}$ signal before outputting more data.

Because all the ADCs are sampling continuously, one-shot mode affects the sampling theory of the AD7768. Particularly, a user periodically sending a SYNC_IN pulse to the device is a form of subsampling of the ADC output. The SYNC_IN pulse must be synchronous with the master clock to ensure coherent sampling and reduce the effects of jitter on the frequency response.

Daisy-Chaining

Daisy-chaining devices allows numerous devices to use the same data interface lines by cascading the outputs of multiple ADCs from separate AD7768 devices. Only one ADC device has its data interface in direct connection with the digital host.

For the AD7768, this can be implemented by cascading DOUT0 and DOUT1 through a number of devices, or just using DOUT0; whether two data output pins or only one data output pin is enabled depends on the FORMATx pins. The ability to daisy-chain devices and the limit on the number of devices that can be handled by the chain is dependent on the power mode, DCLK, and decimation rate employed.

The maximum usable DCLK frequency allowed when daisy-chaining devices is limited by the combination of timing specifications in Table 3 or Table 5, as well as by the propagation delay of the data between devices and any skew between the MCLK signals at each AD7768 device. The propagation delay and MCLK skew are dependent on the PCB layout and trace lengths.

This feature is especially useful for reducing component count and wiring connections, for example, in isolated multiconverter applications or for systems with a limited interfacing capacity.

When daisy-chaining, DOUT6 and DOUT7 become serial data inputs and DOUT0 and DOUT1 remain as serial data outputs under the control of the FORMATx pins.

Figure 102 shows an example of daisy-chaining when FORMATx = 01. In this case, the DOUT1 and DOUT0 pins of the AD7768 devices are cascaded to the DOUT6 and DOUT7 pins of the next device in the chain. Data readback is analogous to clocking a shift register where data is clocked on the rising edge of DCLK.

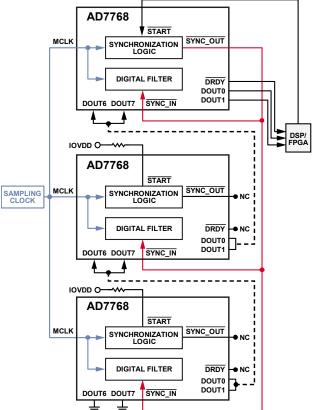


Figure 102. Daisy-Chaining Multiple AD7768 Devices

The scheme operates by passing the output data of the DOUT0 and DOUT1 pins of an AD7768 upstream device to the DOUT6 and DOUT7 inputs of the next AD7768 device downstream in the chain. The data then continues through the chain until it is clocked onto the DOUT0 and DOUT1 pins of the final downstream device in the chain. After power-up, two \$\overline{\text{SYNC_IN}}\$ pulses are required to initialize daisy-chain mode.

Synchronization

An important consideration for daisy-chaining more than two AD7768 devices is synchronization. The basic provision for synchronizing multiple devices is that each device is clocked with the same base MCLK signal.

The AD7768 offers three options to allow ease of system synchronization. Choosing between the options depends on the system, but comes down to whether the user can supply a synchronization pulse that is truly synchronous with the base MCLK signal.

If the user cannot provide a signal that is synchronous to the base MCLK signal, one of the following two methods can be employed:

- Apply a START pulse to the first AD7768 device. The first AD7768 samples the asynchronous START pulse and generates a pulse on SYNC_OUT of the first device related to the base MCLK signal for distribution locally.
- Use synchronization over SPI (only available in SPI control mode) to write a synchronization command to the first AD7768 device. Similarly to the START pin method, the SPI sync generates a pulse on SYNC_OUT of the first device related to the base MCLK signal for distribution locally.

In both cases, route the SYNC_OUT pin of the first device to the SYNC_IN pin of that same device and to the SYNC_IN pins of all other devices that are to be synchronized. The SYNC_OUT pins of the other devices must remain open circuit. Tie all unused START pins to a Logic 1 through pull-up resistors.

If the user can provide a signal that is synchronous to the base MCLK, this signal can be applied directly to the $\overline{SYNC_IN}$ pin. Route the signal from a star point and connect it directly to the $\overline{SYNC_IN}$ pin of each AD7768 device. The signal is sampled on the rising MCLK edge; setup and hold times are associated with the $\overline{SYNC_IN}$ input are relative to the AD7768 MCLK rising edge.

In this case, tie the START pin Logic 1 through a pull-up resistor; SYNC_OUT is not used and can remain open circuit.

CRC Check on Data Interface

The AD7768 delivers 32 bits per channel as standard, which by default consists of 8 status header bits and 24 bits of data.

The header bits default per the description in Table 29. However, there is also the option to employ a CRC check on the ADC conversion data. This functionality is available only when operating in SPI control mode. The function is controlled by CRC_SELECT in the interface configuration register (Register 0x07). When employed, the CRC message is calculated internally by the AD7768 on a per channel basis. The CRC then replaces the 8-bit header every four samples or every 16 samples.

When configured to output a CRC every four conversions, the AD7768 combines four 24-bit data outputs into a 96-bit word, Data N to Data N + 3 (see Figure 103).

The AD7768 uses a CRC polynomial to calculate the CRC message. The 8-bit CRC polynomial used is $x^8 + x^2 + x + 1$.

To generate the checksum, the data is left shifted by eight bits to create a number ending in eight 1s.

The polynomial is aligned such that its MSB is adjacent to the leftmost Logic 1 of the data. An exclusive OR (XOR) function is applied to the data to produce a new, shorter number. The polynomial is again aligned such that its MSB is adjacent to the leftmost Logic 1 of the new result, and the procedure is repeated. This process repeats until the original data is reduced to a value less than the polynomial. This is the 8-bit checksum.

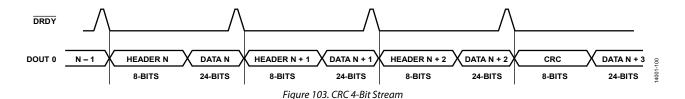


Table 31. Wideband Filter SYNC_IN to Settled Data¹

					After SY	om First MCLK Rise NC_IN Rise to First	Delay f	rom First MCLK Rise Settled Da	After SYNC_ ta DRDY Rise	
	Filter	Type ²	Decimati	on Factor	DRDY Rise		Group A			Group B
Power Mode	Group A	Group B	Group A	Group B	MCLK Periods	Time (μs) (MCLK = 32.768 MHz)	MCLK Periods	Time (μs) (MCLK = 32.768 MHz)	MCLK Periods	Time (µs) (MCLK = 32.768 MHz)
Fast	WB	WB	32	N/A	336	10.25391	8400	256.34766	N/A	N/A
	WB	WB	64	N/A	620	18.92090	16,748	511.10840	N/A	N/A
	WB	WB	128	N/A	1187	36.22437	33,443	1020.59937	N/A	N/A
	WB	WB	256	N/A	2325	70.95337	66,837	2039.70337	N/A	N/A
	WB	WB	512	N/A	4601	140.41138	133,625	4077.91138	N/A	N/A
	WB	WB	1024	N/A	9153	279.32739	267,201	8154.32739	N/A	N/A
	WB	WB	32	32	758	23.13232	8822	269.22607	8822	269.22607
	WB	WB	32	64	758	23.13232	8822	269.22607	17,014	519.22607
	WB	WB	32	128	758	23.13233	8822	269.22608	33,526	1023.13233
	WB	WB	32	256	758	23.13232	8822	269.22607	66,934	2042.66357
	WB	WB	32	512	758	23.13232	8822	269.22607	133,622	4077.81982
	WB	WB	32	1024	758	23.13232	8822	269.22607	267,253	8155.94482
	WB	WB	64	32	759	23.16284	17,015	519.25659	8823	269.25659
	WB	WB	128	32	760	23.19336	33,528	1023.19336	8824	269.28711
	WB	WB	256	32	762	23.25439	66,938	2042.78564	8826	269.34814
	WB	WB	512	32	782	23.86475	133,646	4078.55225	8846	269.95850
	WB	WB	1024	32	806	24.59717	267,302	8157.40967	8870	270.69099
Median	WB	WB	32	N/A	656	20.01953	16,784	512.20703	N/A	N/A
	WB	WB	64	N/A	1225	37.38403	33,481	1021.75903	N/A	N/A
	WB	WB	128	N/A	2359	71.99097	66,871	2040.74097	N/A	N/A
	WB	WB	256	N/A	4635	141.44898	133,659	4078.94898	N/A	N/A
	WB	WB	512	N/A	9187	280.36499	267,235	8155.36499	N/A	N/A
	WB	WB	1024	N/A	18,291	558.19702	534,387	16,308.19702	N/A	N/A
	WB	WB	32	32	820	25.02441	16,948	517.21191	16,948	517.21191
	WB	WB	32	64	820	25.02442	16,948	517.21192	33,588	1025.02467
	WB	WB	32	128	820	25.02441	16,948	517.21191	66,868	2040.64941
	WB	WB	32	256	820	25.02441	16,948	517.21191	133,684	4079.71191
	WB	WB	32	512	820	25.02441	16,948	517.21191	267,316	8157.83691
	WB	WB	32	1024	820	25.02441	16,948	517.21191	534,580	16,314.08691
	WB	WB	64	32	822	25.08545	33,590	1025.08545	16,950	517.27295
	WB	WB	128	32	824	25.14648	66,872	2040.77148	16,952	517.33398
	WB	WB	256	32	844	25.75684	133,708	4080.44434	16,972	517.94434
	WB	WB	512	32	836	25.51270	267,332	8158.32520	16,964	517.70020
	WB	WB	1024	32	852	26.00098	534,612	16,315.06348	16,980	518.18848
Eco	WB	WB	32	N/A	2587	78.94897	67,099	2047.69897	N/A	N/A
	WB	WB	64	N/A	4855	148.16286	133,879	4085.66284	N/A	N/A
	WB	WB	128	N/A	9391	286.59058	267,439	8161.59058	N/A	N/A
	WB	WB	256	N/A	18,495	564.42261	534,591	16,314.42261	N/A	N/A
	WB	WB	512	N/A	36,703	1120.08667	1,068,895	32,620.08667	N/A	N/A
	WB	WB	1024	N/A	73,119	2231.41480	2,137,503	65,231.41480	N/A	N/A
	WB	WB	32	32	2587	78.94898	67,099	2047.69898	67,099	2047.69898
	WB	WB	32	64	2587	78.94898	67,099	2047.69898	134,683	4110.19898
	WB	WB	32	128	2587	78.94898	67,099	2047.69898	267,803	8172.69898
	WB	WB	32	256	2587	78.94897	67,099	2047.69897	535,067	16,328.94897
	WB	WB	32	512	2587	78.94897	67,099	2047.69897	1,069,595	32,641.44897
	WB	WB	32	1024	2587	78.94898	67,099	2047.69898	2,137,627	65,235.19898
	WB	WB	64	32	2587	78.94898	134,683	4110.19898	67,099	2047.69898
	WB	WB	128	32	2587	78.94898	267,803	8172.69898	67,099	2047.69898
	WB	WB	256	32	2587	78.94898	535,067	16,328.94898	67,099	2047.69898
	WB	WB	512	32	2587	78.94898	1,069,595	32,641.44898	67,099	2047.69898
	WB	WB	1024	32	2587	78.94898	2,137,627	65,235.19898	67,099	2047.69898

¹ N/A means not applicable. ² WB means wideband.

Table 32. Sinc5 Filter SYNC_IN to Settled Data^{1, 2}

						om First MCLK er SYNC_IN Rise	Delay fro	om First MCLK Rise Settled Da	After SYNC ta DRDY Ris	
	Filter	Туре	Decimati	on Factor	to Fir	st DRDY Rise		Group A		Group B
Power Mode	Group A	Group B	Group A	Group B	MCLK Periods	Time (µs) (MCLK = 32.768 MHz)	MCLK Periods	Time (µs) (MCLK = 32.768 MHz)	MCLK Periods	Time (μs) (MCLK = 32.768 MHz)
Fast	Sinc	Sinc5	32	N/A	199	6.07300	839	25.60425	N/A	N/A
	Sinc5	Sinc5	64	N/A	327	9.97925	1607	49.04175	N/A	N/A
	Sinc5	Sinc5	128	N/A	583	17.79175	3143	95.91675	N/A	N/A
	Sinc5	Sinc5	256	N/A	1095	33.41675	6215	189.66675	N/A	N/A
	Sinc5	Sinc5	512	N/A	2119	64.66675	12359	377.16675	N/A	N/A
	Sinc5	Sinc5	1024	N/A	4167	127.16675	24,647	752.16675	N/A	N/A
	Sinc5	Sinc5	32	32	199	6.07300	839	25.60425	839	25.60425
	Sinc5	Sinc5	32	64	199	6.07300	839	25.60425	1607	49.04175
	Sinc5	Sinc5	32	128	199	6.07300	839	25.60425	3143	95.91675
	Sinc5	Sinc5	32	256	199	6.07300	839	25.60425	6215	189.66675
	Sinc5	Sinc5	32	512	199	6.07300	839	25.60425	12,359	377.16675
	Sinc5	Sinc5	32	1024	199	6.07300	839	25.60425	24,647	752.16675
	Sinc5	Sinc5	64	32	199	6.07300	1607	49.04175	839	25.60425
	Sinc5	Sinc5	1024	32	199	6.07300	24,647	752.16675	839	25.60425
Median	Sinc5	Sinc5	32	N/A	383	11.68823	1663	50.75073	N/A	N/A
	Sinc5	Sinc5	64	N/A	639	19.50073	3199	97.62573	N/A	N/A
	Sinc5	Sinc5	128	N/A	1151	35.12573	6271	191.37573	N/A	N/A
	Sinc5	Sinc5	256	N/A	2175	66.37573	12,415	378.87573	N/A	N/A
	Sinc5	Sinc5	512	N/A	4223	128.87573	24,703	753.87573	N/A	N/A
	Sinc5	Sinc5	1024	N/A	8319	253.87573	49,279	1503.87573	N/A	N/A
	Sinc5	Sinc5	32	32	383	11.68823	1663	50.75073	1663	50.75073
	Sinc5	Sinc5	32	64	383	11.68823	1663	50.75073	3199	97.62573
	Sinc5	Sinc5	32	128	383	11.68823	1663	50.75073	6271	191.37573
	Sinc5	Sinc5	32	256	398	11.68823	1663	50.75073	12,415	378.87573
	Sinc5	Sinc5	32	512	398	11.68823	1663	50.75073	24,703	753.87573
	Sinc5	Sinc5	32	1024	398	11.68823	1663	50.75073	49,279	1503.87573
	Sinc5	Sinc5	64	32	383	11.68823	3199	97.62573	1663	50.75073
	Sinc5	Sinc5	1024	32	398	11.68823	49,279	1503.87573	1663	50.75073
Eco	Sinc5	Sinc5	32	N/A	1487	45.37964	6607	201.62964	N/A	N/A
	Sinc5	Sinc5	64	N/A	2511	76.62964	12,751	389.12964	N/A	N/A
	Sinc5	Sinc5	128	N/A	4559	139.12964	25,039	764.12964	N/A	N/A
	Sinc5	Sinc5	256	N/A	8655	264.12964	49,615	1514.12964	N/A	N/A
	Sinc5	Sinc5	512	N/A	16,847	514.12964	98,767	3014.12964	N/A	N/A
	Sinc5	Sinc5	1024	N/A	33,231	1014.12964	197,071	6014.12964	N/A	N/A
	Sinc5	Sinc5	32	32	1487	45.37964	6607	201.62964	6607	201.62964
	Sinc5	Sinc5	32	64	1487	45.37964	6607	201.62964	12,751	389.12964
	Sinc5	Sinc5	32	128	1487	45.37964	6607	201.62964	25,039	764.12964
	Sinc5	Sinc5	32	256	1487	45.37964	6607	201.62964	49,615	1514.12964
	Sinc5	Sinc5	32	512	1487	45.37964	6607	201.62964	98,767	3014.12964
	Sinc5	Sinc5	32	1024	1487	45.37964	6607	201.62964	197,071	6014.12964
	Sinc5	Sinc5	64	32	1487	45.37964	12,751	389.12964	6607	201.62964
	Sinc5	Sinc5	1024	32	1487	45.37964	197,071	6014.12964	6607	201.62964
	כאווכ	טוונט	1027	32	170/	73.37 304	191,011	0017.12704	0007	201.02304

 $^{^{1}}$ This table is based on default internal clock divide settings of MCLK/4 in fast mode, MCLK/8 in median mode, and MCLK/32 in eco mode. 2 N/A means not applicable.

FUNCTIONALITY GPIO FUNCTIONALITY

The AD7768 has additional GPIO functionality when operated in SPI mode. This fully configurable mode allows the device to operate five GPIOs. These pins can be configured as read or write in any order.

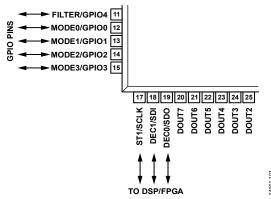


Figure 104. GPIO Functionality

The details for configuration control and read back of the GPIOx pins are dealt with by Register 0x0E, Register 0x0F, and Register 0x10 and documented in Table 45, Table 46, and Table 47.

GPIO read is a useful feature, because it allows a peripheral device to send information to the input GPIO and then this information can be read from the SPI interface of the AD7768.

The GPIOx pins can be set as inputs or outputs on a per pin basis.

1.8 V IOVDD OPERATION

The AD7768 contains an internal 1.8 V LDO on the IOVDD supply to regulate the IOVDD down to the operating voltage of the digital core. This allows the internal logic to operate efficiently at 1.8 V and the input/output logic to operate at the level set by

IOVDD. The IOVDD supply is rated from 2.25 V to 3.6 V for normal operation, and 1.8 V for LDO bypass setup.

Users can bypass the LDO by shorting the DREGCAP pin to IOVDD, which pulls the internal LDO out of regulation and sets the internal core voltage and input/output logic levels to the IOVDD level. When bypassing the internal LDO, the maximum operating voltage of the IOVDD supply is equal to the maximum operating voltage of the internal digital core, which is 1.72 V to 1.88 V.

There are a number of performance differences to consider when operating at 1.8 V IOVDD. See the 1.8 V IOVDD Specifications section for detailed specifications while operating at 1.8 V IOVDD.

ANALOG SUPPLY INTERNAL CONNECTIVITY

The AD7768 has two analog supply rails, AVDD1 and AVDD2, which are both referred to AVSS. These supplies are completely separate from the digital pins IOVDD, DREGCAP, and DGND. To achieve optimal performance and isolation of the ADCs, more than one device pin supplies these analog rails to the internal ADCs.

- AVSS1A (Pin 3) and AVSS2A (Pin 62) are internally connected.
- AVSS (Pin 54) is connected to the substrate, and is connected internally to AVSS1B (Pin 46) and AVSS2B (Pin 51).
- The following supply and reference input pins are separate on chip: AVDD1A, AVDD1B, AVDD2A, AVDD2B, REF1+, REF1-, REF2+, and REF2-.

The details of which individual supplies are shorted internally are given in this section for information purposes. In general, connect the supplies as described in the Power Supplies section.

REGISTER MAP DETAILS (SPI CONTROL)

REGISTER MAP

Table 33. Detailed Register Map

Reg. Name Bit 7

Marco	1 au	ie 55. Detailed i					•					
Dame Mode A December Dec			Bit 7	Bit 6							Reset	RW
Dame Mode Reserved Configuration Co		,	CH_7			CH_4	_	CH_2	<u> </u>	CH_0		
September Sep											_	
Select S										Т		
	0x03	Select									0x00	
Configuration Configurati		_					_				_	
Methodo Met	0x05		Unused	CLK_QUAL_DIS	Reserved	VCM_PD	Reserved	Unused	VCM_	VSEL	0x08	RW
Configuration Configuratio	0x06		SPI_SYNC	Unu	sed	SINGLE_SHOT_EN	+				0x80	
START S		Configuration		Un	used		CRC_	SELECT	DCLK			
Revision ID						Unused	T	1	T	START		
Reserved Reserved				ERROR RUNNING								
Reserved Reserved												
Reserved												
Order GPIO Control USPPO ENABLE Unused GPIO4_FILTER GPIO3_MODE3 GPIO2_MODE2 GPIO1_MODE1 GPIO0_MODE0 Ordo RW											0x00	
ENABLE				,								
Onlog GPIO Read Data Unused GPIO4_READ GPIO3_READ GPIO4_READ GPIO4_RE	0x0E			Unu	sed	GPIOE4_FILTER	_	GPIOE2_MODE2	GPIOE1_MODE1	GPIO0_MODE0	0x00	
Neg Precharge Buffer CH2 PREBUF CH3 PREBUF POS EN NEG												
NEG_EN POS_EN P					1					+		
NEG_EN POS_EN P		, and the second	NEG_EN	POS_EN	_NEG_EN	POS_EN	NEG_EN	POS_EN	NEG_EN	POS_EN		
Reference Buffer Regative Pecharge Reference Buffer Reference		_	NEG_EN	POS_EN	_NEG_EN	POS_EN	NEG_EN	POS_EN	NEG_EN	POS_EN		
Reference Buffer BUF BUF BUF BUF CHO_OFFSET_MSB OX00 RW		Reference Buffer	BUF	BUF	BUF					BUF		
0x1F 0x20 CHO_0FFSET_MID CHO_0FFSET_LSB 0x21 0x22 0x22 0x23 0x24 0x24 0x25 0x24 0x25 0x26 0x26 0x26 0x26 0x26 0x26 0x27 0x27 0x27 0x27 0x28 0x29 0x29 0x29 0x29 0x29 0x29 0x20 0x20		Reference Buffer						CH3_REFN_BUF	CH1_REFN_BUF			
0x20 0x21 0x21 0x21 0x22 0x22 0x22 0x23 0x23 0x23 0x24 0x24 0x24 0x24 0x24 0x25 0x24 0x25 0x26 0x26 0x26 0x26 0x27 0x26 0x26 0x26 0x26 0x27 0x26 0x26 0x26 0x26 0x26 0x26 0x26 0x26		Channel 0 Offset									0x00	RW
0x21												
0x22 0x23 CHI_OFFSET_MID CHI_OFFSET_LSB Ox00 RW 0x24 0x25 0x26 0x26 0x26 0x27 0x27 0x28 0x29 0x29 0x28 0x29 0x29 0x20 0x20 0x20 0x20 0x20 0x20												
0x23 CH1_OFFSET_LSB 0x0 0x24 Channel 2 Offset CH2_OFFSET_MSB 0x00 0x25 CH2_OFFSET_MID 0x00 0x27 Channel 3 Offset CH3_OFFSET_MSB 0x00 0x28 CH3_OFFSET_MID 0x00 0x29 CH3_OFFSET_LSB 0x00 0x20 CH3_OFFSET_MID 0x00 0x20 CH4_OFFSET_MSB 0x00 0x20 CH4_OFFSET_MSB 0x00 0x2D CH4_OFFSET_MSB 0x00 0x2E CH5_OFFSET_MSB 0x00 0x2E CH5_OFFSET_MSB 0x00 0x30 CH5_OFFSET_MSB 0x00 0x31 CH6_OFFSET_MSB 0x00 0x32 CH6_OFFSET_MSB 0x00 0x33 CH6_OFFSET_MSB 0x00 0x33 CH6_OFFSET_MSB 0x00 0x34 CH6_OFFSET_MSB 0x00 0x35 CH6_OFFSET_MSB 0x00 0x36 CH7_OFFSET_LSB 0x00 0x37 CH7_OFFSET_LSB 0		Channel 1 Offset									0x00	RW
0x24 Channel 2 Offset CH2_OFFSET_MSB 0x00 RW 0x25 Ox26 Channel 3 Offset CH2_OFFSET_LSB 0x00 RW 0x27 Channel 3 Offset CH3_OFFSET_MSB 0x00 RW 0x28 Ox28 Channel 4 Offset CH3_OFFSET_MSB 0x00 RW 0x20 Ch3_OFFSET_MSB 0x00 RW 0x20 Ch4_OFFSET_MSB 0x00 RW 0x20 Ch4_OFFSET_MSB 0x00 RW 0x20 Ch5_OFFSET_MSB 0x00 RW 0x21 Ch5_OFFSET_MSB 0x00 RW 0x22 Ch5_OFFSET_MSB 0x00 RW 0x22 Ch5_OFFSET_MSB 0x00 RW 0x22 Ch5_OFFSET_MSB 0x00 RW 0x22 Ch5_OFFSET_MSB 0x00 RW 0x24 Ch5_OFFSET_MSB 0x00 RW 0x25 Ch5_OFFSET_MSB 0x00 RW 0x30 Ch5_OFFSET_MSB 0x00 RW 0x31 Ch5_OFFSET_MSB 0x00 RW 0x32 Ch5_OFFSET_MSB 0x00 RW 0x33 Ch5_OFFSET_MSB 0x00 RW 0x34 Ch5_OFFSET												
0x25 CH2_OFFSET_MID 0x26 CH2_OFFSET_LSB 0x27 Channel 3 Offset CH3_OFFSET_MSB 0x00 0x28 CH3_OFFSET_MID 0x2A CH3_OFFSET_MSB 0x00 0x2B CH4_OFFSET_MSB 0x00 0x2C CH4_OFFSET_MID 0x00 0x2C CH4_OFFSET_LSB 0x00 0x2D Channel 5 Offset CH5_OFFSET_MSB 0x00 0x2E CH5_OFFSET_MID 0x00 0x2E CH5_OFFSET_MID 0x00 0x2E CH5_OFFSET_MID 0x00 0x2F CH6_OFFSET_LSB 0x00 0x30 Channel 6 Offset CH6_OFFSET_MID 0x31 CH6_OFFSET_LSB 0x00 0x32 CH6_OFFSET_LSB 0x00 0x33 CH6_OFFSET_LSB 0x00 0x34 CH7_OFFSET_LSB 0x00 0x35 CH7_OFFSET_LSB 0x36 CH9_GAIN_MID 0xXX												
0x26 CH2_OFFSET_LSB 0x27 Channel 3 Offset CH3_OFFSET_MSB 0x00 RW 0x28 CH3_OFFSET_MID 0x00 RW 0x29 CH3_OFFSET_LSB 0x00 RW 0x20 Channel 4 Offset CH4_OFFSET_MSB 0x00 RW 0x2D Channel 5 Offset CH5_OFFSET_MB 0x00 RW 0x2E CH5_OFFSET_MB 0x00 RW 0x2F CH5_OFFSET_MB 0x00 RW 0x30 Channel 6 Offset CH5_OFFSET_MB 0x00 RW 0x31 CH6_OFFSET_MB 0x00 RW 0x33 Channel 7 Offset CH6_OFFSET_MB 0x00 RW 0x33 Channel 7 Offset CH7_OFFSET_MB 0x00 RW 0x34 CH7_OFFSET_MB 0x00 RW 0x34 CH7_OFFSET_MB 0x00 RW 0x35 CH7_OFFSET_MB 0x00 RW 0x36 Channel 0 Gain CH7_OFFSET_MB 0x00 RW		Channel 2 Offset									0x00	RW
0x27												
0x28 CH3_OFFSET_MID 0x29 CH3_OFFSET_LSB 0x2A Channel 4 Offset CH4_OFFSET_MSB 0x00 RW 0x2B CH4_OFFSET_MID CH4_OFFSET_LSB 0x00 RW 0x2C CH4_OFFSET_LSB 0x00 RW 0x2E CH5_OFFSET_MID 0x00 RW 0x2E CH5_OFFSET_LSB 0x00 RW 0x30 Channel 6 Offset CH6_OFFSET_MSB 0x00 RW 0x31 CH6_OFFSET_MID 0x00 RW 0x32 CH6_OFFSET_MID 0x00 RW 0x33 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MSB 0x00 RW 0x35 CH7_OFFSET_MID 0x00 RW 0x36 Channel 0 Gain CH7_OFFSET_LSB 0x00 RW 0x37 CH0_GAIN_MID CH0_GAIN_MID 0x00 RW												
Ox29 CH3_OFFSET_LSB Ox00 RW 0x2A Ox2B Ox2B Ox2C CH4_OFFSET_MSB 0x00 RW 0x2C Ox2D Ox2C Ox2D Ox2D Ox2D Ox2D Ox2D Ox2D Ox2D Ox2D		Channel 3 Offset									0x00	RW
0x2A												
0x2B CH4_OFFSET_MID 0x2C CH4_OFFSET_LSB 0x2D Channel 5 Offset CH5_OFFSET_MSB 0x00 RW 0x2E CH5_OFFSET_MID CH5_OFFSET_LSB 0x00 RW 0x30 Channel 6 Offset CH6_OFFSET_MSB 0x00 RW 0x31 CH6_OFFSET_LSB 0x00 RW 0x32 CH6_OFFSET_LSB 0x00 RW 0x33 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MID 0x00 RW 0x35 CH7_OFFSET_LSB 0x00 RW 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MID 0xXX RW	-						_					
0x2C CH4_OFFSET_LSB 0x00 RW 0x2D Channel 5 Offset CH5_OFFSET_MSB 0x00 RW 0x2E CH5_OFFSET_LSB CH5_OFFSET_LSB 0x00 RW 0x30 Channel 6 Offset CH6_OFFSET_MSB 0x00 RW 0x31 CH6_OFFSET_LSB 0x00 RW 0x32 CH6_OFFSET_LSB 0x00 RW 0x34 CH7_OFFSET_MID 0x00 RW 0x35 CH7_OFFSET_LSB 0x00 RW 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MID OxXX RW		Channel 4 Offset	 								0x00	RW
0x2D Channel 5 Offset CH5_OFFSET_MSB 0x00 RW 0x2E CH5_OFFSET_MID CH5_OFFSET_LSB 0x00 RW 0x30 Channel 6 Offset CH6_OFFSET_MSB 0x00 RW 0x31 CH6_OFFSET_MID 0x00 RW 0x32 CH6_OFFSET_LSB 0x00 RW 0x33 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MID 0x00 RW 0x35 CH7_OFFSET_LSB 0x00 RW 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MID 0xXX RW		1										
0x2E CH5_OFFSET_MID 0x2F CH5_OFFSET_LSB 0x30 Channel 6 Offset CH6_OFFSET_MSB 0x00 RW 0x31 CH6_OFFSET_MID CH6_OFFSET_LSB 0x00 RW 0x32 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MID CH7_OFFSET_LSB 0x00 RW 0x35 CH7_OFFSET_LSB 0x00 RW 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MID<												
0x2F CH5_OFFSET_LSB RW 0x30 Channel 6 Offset CH6_OFFSET_MSB 0x00 RW 0x31 CH6_OFFSET_MID CH6_OFFSET_LSB 0x00 RW 0x32 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MID CH7_OFFSET_LSB 0x00 RW 0x35 CH7_OFFSET_LSB 0x00 RW 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MID CH0_GAIN_MID CH0_GAIN_MID		Channel 5 Offset									0x00	RW
0x30 Channel 6 Offset CH6_OFFSET_MSB 0x00 RW 0x31 CH6_OFFSET_MID CH6_OFFSET_LSB 0x00 RW 0x32 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MID 0x00 RW 0x35 CH7_OFFSET_LSB 0x00 RW 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MID CH0_GAIN_MID CH0_GAIN_MID												
0x31 CH6_OFFSET_MID 0x32 CH6_OFFSET_LSB 0x33 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MID CH7_OFFSET_LSB 0x00 RW 0x35 CH7_OFFSET_LSB 0x00 RW 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MID CH0_GAIN_MID CH0_GAIN_MID												<u> </u>
0x32 CH6_OFFSET_LSB 0x30 0x30 0x31 0x31 0x32 0x33 0x34		Channel 6 Offset	ļ								0x00	RW
0x33 Channel 7 Offset CH7_OFFSET_MSB 0x00 RW 0x34 CH7_OFFSET_MID CH7_OFFSET_LSB VARIANT CH7_OFFSET_LSB 0x36 CH7_OFFSET_LSB 0x37 CMXX RW 0x37 CH0_GAIN_MSB OxXX RW		1										
0x34 CH7_OFFSET_MID 0x35 CH7_OFFSET_LSB 0x36 Channel 0 Gain 0x3X RW 0x37 CH0_GAIN_MID CH0_GAIN_MID RW												<u> </u>
0x35 CH7_0FFSET_LSB CH7_0FFSET_LSB 0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID CH0_GAIN_MI		Channel 7 Offset	ļ								0x00	RW
0x36 Channel 0 Gain CH0_GAIN_MSB 0xXX RW 0x37 CH0_GAIN_MID RW		1	L			CH7_0	OFFSET_MID					
Ox37 CH0_GAIN_MID	0x35					CH7_OFFSET_LSB						<u> </u>
	0x36	Channel 0 Gain				CH0_	_GAIN_MSB				0xXX	RW
0x38 CH0_GAIN_LSB	0x37					CH0	_GAIN_MID					
	0x38					CH0	_GAIN_LSB					

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW				
0x39	Channel 1 Gain			•	CH1	_GAIN_MSB				0xXX	RW				
0x3A					CH1	_GAIN_MID									
0x3B					CH1	_GAIN_LSB									
0x3C	Channel 2 Gain				CH2	_GAIN_MSB				0xXX	RW				
0x3D					CH2	_GAIN_MID									
0x3E					CH2	_GAIN_LSB									
0x3F	Channel 3 Gain		CH3_GAIN_MSB							0xXX	RW				
0x40					CH3	_GAIN_MID									
0x41					CH3	_GAIN_LSB									
0x42	Channel 4 Gain				CH4	_GAIN_MSB				0xXX	RW				
0x43					CH4	_GAIN_MID									
0x44					CH4	_GAIN_LSB									
0x45	Channel 5 Gain				CH5	_GAIN_MSB				0xXX	RW				
0x46					CH5	_GAIN_MID									
0x47					CH5	_GAIN_LSB									
0x48	Channel 6 Gain				CH6	_GAIN_MSB				0xXX	RW				
0x49					CH6	_GAIN_MID									
0x4A					CH6	_GAIN_LSB									
0x4B	Channel 7 Gain				CH7	_GAIN_MSB				0xXX	RW				
0x4C					CH7	_GAIN_MID									
0x4D					CH7	_GAIN_LSB									
0x4E	Channel 0 Sync Offset				CH0_9	SYNC_OFFSET				0x00	RW				
0x4F	Channel 1 Sync Offset				CH1_9	SYNC_OFFSET				0x00	RW				
0x50	Channel 2 Sync Offset				CH2_9	SYNC_OFFSET				0x00	RW				
0x51	Channel 3 Sync Offset				CH3_9	SYNC_OFFSET				0x00	RW				
0x52	Channel 4 Sync Offset				CH4_9	SYNC_OFFSET				0x00	RW				
0x53	Channel 5 Sync Offset				CH5_5	SYNC_OFFSET				0x00	RW				
0x54	Channel 6 Sync Offset				CH6_9	SYNC_OFFSET				0x00	RW				
0x55	Channel 7 Sync Offset				CH7_9	SYNC_OFFSET				0x00	RW				
0x56	Diagnostic Rx	CH7_RX	CH6_RX	CH5_RX	CH4_RX	CH3_RX	CH2_RX	CH1_RX	CH0_RX	0x00	RW				
0x57	Diagnostic Mux Control	Unused		GRPB_SEL		Unused		GRPA_SEL	•	0x00	RW				
0x58	Modulator Delay Control			Unused		CLK_M	OD_DEL_EN	Reserved	Reserved	0x02	RW				
0x59	Chop Control			Unused		GRP	A_CHOP	GR	PB CHOP	0x0A	RW				

CHANNEL STANDBY REGISTER

Address: 0x00, Reset: 0x00, Name: Channel Standby

Each of the ADC channels can be put into standby mode independently by setting the appropriate bit in the channel standby register. When a channel is in standby mode, its position in the data output stream is held. The 8-bit header is all zeros, as is the conversion result output of 24 zeros.

Table 34. Bit Descriptions for Channel Standby

Bits	Bit Name	Settings	Description	Reset	Access
7	CH_7		Channel 7	0x0	RW
		0	Enabled		
		1	Standby		
6	CH_6		Channel 6	0x0	RW
		0	Enabled		
		1	Standby		
5	CH_5		Channel 5	0x0	RW
		0	Enabled		
		1	Standby		
4	CH_4		Channel 4	0x0	RW
		0	Enabled		
		1	Standby		
3	CH_3		Channel 3	0x0	RW
		0	Enabled		
		1	Standby		
2	CH_2		Channel 2	0x0	RW
		0	Enabled		
		1	Standby		
1	CH_1		Channel 1	0x0	RW
		0	Enabled		
		1	Standby		
0	CH_0		Channel 0	0x0	RW
		0	Enabled		
		1	Standby		

CHANNEL MODE A REGISTER

Address: 0x01, Reset: 0x0D, Name: Channel Mode A

Two mode options are available on the AD7768 ADCs. The channel modes are defined by the contents of the Channel Mode A and Channel Mode B registers. Each mode is then mapped as desired to the required ADC channel. Mode A and Mode B allow different filter types and decimation rates to be selected and mapped to any of the ADC channels.

When different decimation rates are selected, the AD7768 outputs a data ready signal at the fastest selected decimation rate. Any channel that runs at a lower output data rate is updated only at that slower rate. In between valid result data, the data for that channel is set to zero and the repeated data bit is set in the header status bits to distinguish it from a real conversion result (see the ADC Conversion Output: Header and Data section).

Table 35. Bit Descriptions for Channel Mode A

Bits	Bit Name	Settings	Description	Reset	Access
3	FILTER_TYPE_A		Filter selection	0x1	RW
		0	Wideband filter		
		1	Sinc5 filter		

Bits	Bit Name	Settings	Description	Reset	Access
[2:0]	DEC_RATE_A		Decimation rate selection	0x5	RW
		000	×32		
		001	×64		
		010	×128		
		011	×256		
		100	x512		
		101	×1024		
		110	×1024		
		111	×1024		

CHANNEL MODE B REGISTER

Address: 0x02, Reset: 0x0D, Name: Channel Mode B

Table 36. Bit Descriptions for Channel Mode B

Bits	Bit Name	Settings	Description	Reset	Access
3	FILTER_TYPE_B		Filter selection	0x1	RW
		0	Wideband filter		
		1	Sinc5 filter		
[2:0]	DEC_RATE_B		Decimation rate selection	0x5	RW
		000	×32		
		001	×64		
		010	×128		
		011	×256		
		100	×512		
		101	×1024		
		110	×1024		
		111	×1024		

CHANNEL MODE SELECT REGISTER

Address: 0x03, Reset: 0x00, Name: Channel Mode Select

This register selects the mapping of each ADC channel to either Mode A or Mode B.

Table 37. Bit Descriptions for Channel Mode Select

Bits	Bit Name	Settings	Description	Reset	Access
7	CH_7_MODE		Channel 7	0x0	RW
		0	Mode A		
		1	Mode B		
6	CH_6_MODE		Channel 6	0x0	RW
		0	Mode A		
		1	Mode B		
5	CH_5_MODE		Channel 5	0x0	RW
		0	Mode A		
		1	Mode B		
4	CH_4_MODE		Channel 4	0x0	RW
		0	Mode A		
		1	Mode B		
3	CH_3_MODE		Channel 3	0x0	RW
		0	Mode A		
		1	Mode B		
2	CH_2_MODE		Channel 2	0x0	RW
		0	Mode A		
		1	Mode B		

Bits	Bit Name	Settings	Description	Reset	Access
1	CH_1_MODE		Channel 1	0x0	RW
		0	Mode A		
		1	Mode B		
0	CH_0_MODE		Channel 0	0x0	RW
		0	Mode A		
		1	Mode B		

POWER MODE SELECT REGISTER

Address: 0x04, Reset: 0x00, Name: POWER_MODE

Table 38. Bit Descriptions for POWER_MODE

Bits	Bit Name	Settings	Description	Reset	Access
7	SLEEP_MODE		In sleep mode, all clocks are internally gated and all of the ADCs are disabled. The analog LDOs are not disabled.	0x0	RW
			The AD7768 SPI is live and is available to the user. Writing to this bit brings the AD7768 out of sleep mode again. Any decoupling capacitors on the DREGCAP pin must recharge after exiting sleep mode.		
		0	Normal operation.		
		1	Sleep mode.		
[5:4]	POWER_MODE		Power mode. The power mode bits control the power mode setting for the bias currents used on all ADCs on the AD7768. The user can select the current consumption target to meet the application. The power modes of fast, median, and eco give optimum performance when mapped to the correct MCLK division setting. These power mode bits do not control the MCLK division of the ADCs. See the MCLK_DIV bits for control of the division of the MCLK input.	0x0	RW
		00	Eco.		
		10	Median.		
		11	Fast.		
3	LVDS_ENABLE		LVDS clock.	0x0	RW
		0	LVDS input clock disabled.		
		1	LVDS input clock enabled.		
[1:0]	MCLK_DIV	00	MCLK division. The MCLK division bits control the divided ratio between the MCLK applied at the input to the AD7768 and the clock used by each of the ADC modulators. The appropriate division ratio depends on the following factors: power mode, decimation rate, and the base MCLK available in the system. See the Clocking and Sampling Tree section for more information on setting MCLK_DIV correctly. MCLK/32: with a base MCLK of 32.768 MHz, set to MCLK/82 for eco mode. MCLK/8: with a base MCLK of 32.768 MHz, set to MCLK/8 for median mode.	0x0	RW
		11	MCLK/4: with a base MCLK of 32.768 MHz, set to MCLK/4 for fast mode.		

GENERAL DEVICE CONFIGURATION REGISTER

Address: 0x05, Reset: 0x08, Name: General Configuration

Table 39. Bit Descriptions for General Configuration

Bits	Bit Name	Settings	Description	Reset	Access
6	CLK_QUAL_DIS	0 1	Clock check. This bit enables or disables the clock qualification check when switching from the internal clock to the external clock at start up. When enabled, the external MCLK frequency is checked to be at least approximately 1.15 MHz before being accepted as valid. If the qualification check fails, the NO_CLOCK_ERROR bit is set. Users can disable this qualification check to allow lower MCLK frequencies to be used without causing an error. Enabled. Clock qualification check is performed. Disabled. Clock qualification check is not performed.	0x0	RW

Bits	Bit Name	Settings	Description	Reset	Access
4	VCM_PD		VCM buffer power-down.	0x0	RW
		0	Enabled: VCM buffer normal mode.		
		1	Powered down: VCM buffer powered down.		
3	Reserved	1	Not a user option. This bit must be set to 1.	0x1	RW
[1:0]	VCM_VSEL		VCM voltage. These bits select the output voltage of the VCM pin. This voltage is derived from the AVDD1 supply and can be output as half of that AVDD1 voltage, or other fixed voltages, with respect to AVSS.	0x0	RW
		00	(AVDD1 – AVSS)/2.		
		01	1.65 V.		
		10	2.5 V.		
		11	2.14 V.		

DATA CONTROL: SOFT RESET, SYNC, AND SINGLE-SHOT CONTROL REGISTER

Address: 0x06, Reset: 0x80, Name: Data Control

Table 40. Bit Descriptions for Data Control

Bits	Bit Name	Settings	Description	Reset	Access
7	SPI_SYNC	0	Software synchronization of the AD7768. This command has the same effect as sending a signal pulse to the START pin. To operate the SPI_SYNC, the user must write to this bit on two separate times. First, write a zero, putting SPI_SYNC low, and then write a 1 to set SPI_SYNC logic high again. The SPI_SYNC command is recognized after the last rising edge of SCLK in the SPI instruction where the SPI_SYNC bit is changed from low to high. The SPI_SYNC command is then output synchronous to the AD7768 MCLK on the SYNC_OUT pin. The user must connect the SYNC_OUT signal to the SYNC_IN pin on the PCB. The SYNC_OUT pin may also be routed to the SYNC_IN pins of other AD7768 devices, allowing larger channel count simultaneous sampling systems. Any daisy-chained system of AD7768 devices requires that all ADCs be synchronized. As per any synchronization pulse seen by the SYNC_IN pin, the digital filters of the AD7768 are reset. The fully settling time of the filters must elapse before data is output on the data interface. Change to SPI_SYNC low.	0x1	RW
4	SINGLE_SHOT_EN	0	One-shot mode. Enables one-shot mode. In <u>one-shot</u> mode, the AD7768 outputs a conversion result in response to a SYNC_IN rising edge. Disabled. Enabled.	0x0	RW
[1:0]	SPI_RESET	00 01 10	Soft reset. These bits allow\ a full device reset over the SPI port. Two successive commands must be received in the correct order to generate a reset: first, write 0x03 to the soft reset register, and then write 0x02 to the soft reset register. This causes the digital core to reset and all registers return to their default values. Following a soft reset, if the SPI master sends a command to the AD7768, it responds on the next frame to that command with an output of 0x0E00. No effect. No effect. Second reset command.	0x0	RW
		11	First reset command.		

INTERFACE CONFIGURATION REGISTER

Address: 0x07, Reset: 0x0, Name: Interface Configuration

Table 41. Bit Descriptions for Interface Configuration

Bits	Bit Name	Settings	Description	Reset	Access
[3:2]	CRC_SELECT		CRC select. These bits allow the user to implement a CRC on the data interface. When selected, the CRC replaces the header every fourth or 16 th output sample depending on the CRC option chosen. There are two options for the CRC; both use the same polynomial: x ⁸ + x ² + x + 1. The options offer the user the ability to reduce the duty cycle of the CRC calculation by performing it less often: in the case of having it every 16 th sample or more often in the case of every fourth conversion. The CRC is calculated on a per channel basis and it includes conversion data only.	0x0	RW
		00	No CRC. Status bits with every conversion.		
		01 10	Replace the header with CRC message every 4 samples. Replace the header with CRC message every 16 samples.		
		11	Replace the header with CRC message every 16 samples. Replace the header with CRC message every 16 samples.		
[1:0]	DCLK_DIV	00 01 10 11	DCLK divider. These bits control division of the DCLK clock used to clock out conversion data on DOUT0 to DOUT7. The DCLK signal is derived from the MCLK applied to the AD7768. The DCLK divide mode allows the user to optimize the DCLK output to fit the application. Optimizing the DCLK per application depends on the requirements of the user. When the AD7768 is using the highest capacity output on the fewest DOUTx pins, for example, running in decimate by 32 using the DOUT0 and DOUT1 pins, the DCLK must equal the MCLK; thus, in this case, choosing the no division setting is the only way the user can output all the data within the conversion period. There are other cases, however, when the ADC may be running in fast mode with high decimation rates, or in median or eco mode where the DCLK does not need to run at the same speed as MCLK. In these cases, the DCLK divide allows the user to reduce the clock speed and makes routing and isolating such signals easier. Divide by 8. Divide by 4. Divide by 2. No division.	0x0	RW

DIGITAL FILTER RAM BUILT IN SELF TEST (BIST) REGISTER

Address: 0x08, Reset: 0x0, Name: BIST Control

Table 42. Bit Descriptions for BIST Control

Bits	Bit Name	Settings	Description	Reset	Access
0	RAM_BIST_START		RAM BIST. Filter RAM BIST is a built in self test of the RAM storage of the coefficients used by the digital filter. This test cannot be run concurrent with ADC sampling. The test may be run at intervals depending on user preference. The status and result of the RAM BIST is available in the device status register; see the RAM_BIST_PASS and RAM_BIST_RUNNING bits in Table 43.	0x0	RW
		0	Off.		
ī		1	Begin RAM BIST.		

STATUS REGISTER

Address: 0x09, Reset: 0x0, Name: Device Status

Table 43. Bit Descriptions for Device Status

Bits	Bit Name	Settings	Description	Reset	Access
3	CHIP_ERROR		Chip error. Chip error is a global error flag that is output within the status byte of each ADC conversion output. The following bits lead to the chip error bit being set to logic high: CRC check on internally hard coded settings after power-up does not pass; XOR check on the memory map does not pass (this check runs continuously in the background); and clock error is detected on power-up.	0x0	R
		0	No error present.		
		1	Error has occurred.		
2	NO_CLOCK_ERROR		External CLK check. This bit indicates if the externally applied MCLK is detected correctly. If the MCLK is not applied correctly, to the ADC at power up this bit is set and the DCLK frequency is approximately 16 MHz. If this bit is set, the chip error bit is set to logic high in the status bits of the data output headers.	0x0	R
		0	MCLK detected.		
		1	No MCLK detected.		
1	RAM_BIST_PASS		BIST pass/fail. RAM BIST result status. This bit indicates the result of the most recent RAM BIST. The result is latched to this register and is only cleared by a device reset.	0x0	R
		0	BIST failed or not run.		
		1	BIST passed.		
0	RAM_BIST_RUNNING		BIST Status. Reading back the value of this bit allows the user to poll when the BIST test has finished.	0x0	R
		0	BIST not running.		
		1	BIST running.		

REVISION IDENTIFICATION REGISTER

Address: 0x0A, Reset: 0x06, Name: Revision ID

Table 44. Bit Descriptions for Revision ID

Bits	Bit Name	Description	Reset	Access
[7:0]	REVISION_ID	ASIC revision. 8-bit ID for revision details.	0x06	R

GPIO CONTROL REGISTER

Address: 0x0E, Reset: 0x00, Name: GPIO Control

Table 45. Bit Descriptions for GPIO Control

Bits	Bit Name	Setting	Description	Reset	Access
7	UGPIO_ENABLE		User GPIO enable. The GPIOx pins are dual-purpose and can be operated only when the device is in SPI control mode. By default, when the AD7768 is powered up in SPI control mode, the GPIOx pins are disabled. This bit is a universal enable/disable for all GPIOx input/outputs. The direction of each general-purpose pin is determined by Bits[4:0] of this register.	0x0	RW
		0	GPIO Disabled.		
		1	GPIO Enabled.		
4	GPIOE4_FILTER		GPIO4 Direction. This bit assigns the direction of GPIO4 as either an input or an output. For SPI control, GPIO4 maps to Pin 11, which is the GPIO4/FILTER pin.	0x0	RW
		0	Input.		
		1	Output.		
3	GPIOE3_MODE3		GPIO3 Direction. This bit assigns the direction of GPIO3 as either an input or an output. For SPI control, GPIO3 maps to Pin 15, which is the GPIO3/MODE3 pin.	0x0	RW
		0	Input.		
		1	Output.		

Bits	Bit Name	Setting	Description	Reset	Access
2	GPIOE2_MODE2		GPIO2 Direction. This bit assigns the direction of GPIO2 as either an input or an output. For SPI control, GPIO2 maps to Pin 14, which is the GPIO2/MODE2 pin.	0x0	RW
		0	Input.		
		1	Output.		
1	GPIOE1_MODE1		GPIO1 Direction. This bit assigns the direction of GPIO1 as either an input or an output. For SPI control, GPIO1 maps to Pin 13, which is the GPIO1/MODE1 pin.	0x0	RW
		0	Input.		
		1	Output.		
0	GPIO0_MODE0		GPIO0 Direction. This bit assigns the direction of GPIO0 as either an input or an output. For SPI control, GPIO0 maps to Pin 12, which is the GPIO0/MODE0 pin.	0x0	RW
		0	Input.		
		1	Output.		

GPIO WRITE DATA REGISTER

Address: 0x0F, Reset: 0x00, Name: GPIO Write Data

This register writes the values to be set on each of the general-purpose pins when selected as general-purpose outputs. Each bit, from Bits[4:0], maps directly to the GPIOx pins.

Table 46. Bit Descriptions for GPIO Write Data

Bits	Bit Name	Description	Reset	Access
4	GPIO4_WRITE	GPIO4/FILTER	0x0	RW
3	GPIO3_WRITE	GPIO3/MODE3	0x0	RW
2	GPIO2_WRITE	GPIO2/MODE2	0x0	RW
1	GPIO1_WRITE	GPIO1/MODE1	0x0	RW
0	GPIO0_WRITE	GPIO0/MODE0	0x0	RW

GPIO READ DATA REGISTER

Address: 0x10, Reset: 0x00, Name: GPIO Read Data

This register reads back the value of the logic input level at the general-purpose pins when selected to operate as general-purpose inputs. Each bit, from Bits[4:0], maps directly to the GPIO0 to GPIO4 pins.

Table 47. Bit Descriptions for GPIO Read Data

Bits	Bit Name	Description	Reset	Access
4	GPIO4_READ	GPIO4/FILTER	0x0	R
3	GPIO3_READ	GPIO3/MODE3	0x0	R
2	GPIO2_READ	GPIO2/MODE2	0x0	R
1	GPIO1_READ	GPIO1/MODE1	0x0	R
0	GPIO0_READ	GPIO0/MODE0	0x00	R

PRECHARGE ANALOG INPUT BUFFER ENABLE REGISTER CHANNEL 0 TO CHANNEL 3

Address: 0x11, Reset: 0xFF, Name: Precharge Buffer 1

This register turns on or off the precharge buffers on the analog inputs. When writing to these registers, the user must write the inverse of the required bit settings. For example, to clear Bit 7 of this register, the user must write 0x01 to the register. This clears Bit 7 and sets all other bits. If the user reads the register again after writing 0x01, the data read is 0xFE, as required.

Table 48. Bit Descriptions for Precharge Buffer 1

Bits	Bit Name	Settings	Description	Reset
7	CH3_PREBUF_NEG_EN	0	Off	0x1
		1	On	
6	CH3_PREBUF_POS_EN	0	Off	0x1
		1	On	

Bits	Bit Name	Settings	Description	Reset
5	CH2_PREBUF_NEG_EN	0	Off	0x1
		1	On	
4	CH2_PREBUF_POS_EN	0	Off	0x1
		1	On	
3	CH1_PREBUF_NEG_EN	0	Off	0x1
		1	On	
2	CH1_PREBUF_POS_EN	0	Off	0x1
		1	On	
1	CH0_PREBUF_NEG_EN	0	Off	0x1
		1	On	
0	CH0_PREBUF_POS_EN	0	Off	0x1
		1	On	

PRECHARGE ANALOG INPUT BUFFER ENABLE REGISTER CHANNEL 4 TO CHANNEL 7

Address: 0x12, Reset: 0xFF, Name: Precharge Buffer 2

This register turns on or off the precharge buffers on the analog inputs. When writing to these registers, the user must write the inverse of the required bit settings. For example, to clear Bit 7 of this register, the user must write 0x01 to the register. This clears Bit 7 and sets all other bits. If the user reads the register again after writing 0x01, the data read is 0xFE, as required.

Table 49. Bit Descriptions for Precharge Buffer 2

Bits	Bit Name	Settings	Description	Reset
7	CH7_PREBUF_NEG_EN	0	Off	0x1
		1	On	
6	CH7_PREBUF_POS_EN	0	Off	0x1
		1	On	
5	CH6_PREBUF_NEG_EN	0	Off	0x1
		1	On	
4	CH6_PREBUF_POS_EN	0	Off	0x1
		1	On	
3	CH5_PREBUF_NEG_EN	0	Off	0x1
		1	On	
2	CH5_PREBUF_POS_EN	0	Off	0x1
		1	On	
1	CH4_PREBUF_NEG_EN	0	Off	0x1
		1	On	
0	CH4_PREBUF_POS_EN	0	Off	0x1
		1	On	

POSITIVE PRECHARGE REFERENCE BUFFER ENABLE REGISTER

Address: 0x13, Reset: 0x00, Name: Positive Precharge Reference Buffer

This register turns on or off the precharge buffers on the reference positive input to each of the ADCs from Channel 0 to Channel 7.

Table 50. Bit Descriptions for Positive Precharge Reference Buffer

Bits	Bit Name	Settings	Description	Reset
7	CH7_REFP_BUF	0	Off	0x0
		1	On	
6	CH6_REFP_BUF	0	Off	0x0
		1	On	
5	CH5_REFP_BUF	0	Off	0x0
		1	On	
4	CH4_REFP_BUF	0	Off	0x0
		1	On	

Bits	Bit Name	Settings	Description	Reset
3	CH3_REFP_BUF	0	Off	0x0
		1	On	
2	CH2_REFP_BUF	0	Off	0x0
		1	On	
1	CH1_REFP_BUF	0	Off	0x0
		1	On	
0	CH0_REFP_BUF	0	Off	0x0
		1	On	

NEGATIVE PRECHARGE REFERENCE BUFFER ENABLE REGISTER

Address: 0x14, Reset: 0x00, Name: Negative Precharge Reference Buffer

This register turns on or off the precharge buffers on the reference negative input to each of the ADCs from Channel 0 to Channel 7.

Table 51. Bit Descriptions for Negative Precharge Reference Buffer

Bits	Bit Name	Settings	Description	Reset
7	CH7_REFN_BUF	0	Off	0x0
		1	On	
6	CH6_REFN_BUF	0	Off	0x0
		1	On	
5	CH5_REFN_BUF	0	Off	0x0
		1	On	
4	CH4_REFN_BUF	0	Off	0x0
		1	On	
3	CH3_REFN_BUF	0	Off	0x0
		1	On	
2	CH2_REFN_BUF	0	Off	0x0
		1	On	
1	CH1_REFN_BUF	0	Off	0x0
		1	On	
0	CH0_REFN_BUF	0	Off	0x0
		1	On	

OFFSET REGISTERS

The CHx_OFFSET_MSB, CHx_OFFSET_MID, and CHx_OFFSET_LSB registers provide 24-bit, signed twos complement registers for channel offset adjustment. If the channel gain setting is at its ideal nominal value of 0x5555555, an LSB of offset register adjustment changes the digital output by -4/3 LSBs. For example, changing the offset register from 0 to 100 changes the digital output by -133 LSBs. As offset adjustment occurs before gain adjustment, the ratio above changes linearly with gain adjustment via the CHx_GAIN registers. After a reset or power cycle, the register values revert to the default factory setting.

Table 52. Per Channel 24-Bit Offset Registers, Three 8-Bit Registers for Each Channel, Split with MSB, MID, and LSB

	Address					Reset		
MSB	MID	LSB	Name	Description	MSB	MID	LSB	Access
0x1E	0x1F	0x20	Channel 0 Offset	Channel 0 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW
0x21	0x22	0x23	Channel 1 Offset	Channel 1 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW
0x24	0x25	0x26	Channel 2 Offset	Channel 2 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW
0x27	0x28	0x29	Channel 3 Offset	Channel 3 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW
0x2A	0x2B	0x2C	Channel 4 Offset	Channel 4 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW
0x2D	0x2E	0x2F	Channel 5 Offset	Channel 5 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW
0x30	0x31	0x32	Channel 6 Offset	Channel 6 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW
0x33	0x34	0x35	Channel 7 Offset	Channel 7 offset registers, upper, middle and lower bytes (24 bits in total)	0x00	0x00	0x00	RW

GAIN REGISTERS

Each ADC channel has an associated gain coefficient. The coefficient is stored in three single-byte registers split up as MSB, MID, and LSB. Each of the gain registers are factory programmed. Nominally, this gain is around the value 0x555555 (for an ADC channel). The user may overwrite the gain register setting however, after a reset or power cycle, the gain register values revert to the hard coded programmed factory setting.

Table 53 Per Channel 24-Bit Gain Registers, 3 8-Bit Registers for Each Channel, Split with MSB, MID, and LSB

	Address	3			Reset			
MSB	MID	LSB	Name	Description	MSB	MID	LSB	Access
0x36	0x37	0x38	Channel 0 Gain	Channel 0 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW
0x39	0x3A	0x3B	Channel 1 Gain	Channel 1 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW
0x3C	0x3D	0x3E	Channel 2 Gain	Channel 2 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW
0x3F	0x40	0x41	Channel 3 Gain	Channel 3 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW
0x42	0x43	0x44	Channel 4 Gain	Channel 4 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW
0x45	0x46	0x47	Channel 5 Gain	Channel 5 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW
0x48	0x49	0x4A	Channel 6 Gain	Channel 6 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW
0x4B	0x4C	0x4D	Channel 7 Gain	Channel 7 gain registers, upper, middle and lower bytes (24 bits in total)	0xXX	0xXX	0xXX	RW

SYNC PHASE OFFSET REGISTERS

The AD7768 has one synchronization signal for all channels. The sync phase offset register allows the user to vary the phase delay on each of the channels relative to the synchronization edge received on the SYNC_IN pin. See the Sync Phase Offset Adjustment section for details on the use of this function.

Table 54. Per Channel 8-Bit Sync Phase Offset Registers

Address	Name	Description	Reset	Access
0x4E	Channel 0 Sync Offset	Channel 0 sync phase offset register	0x00	RW
0x4F	Channel 1 Sync Offset	Channel 1 sync phase offset register	0x00	RW
0x50	Channel 2 Sync Offset	Channel 2 sync phase offset register	0x00	RW
0x51	Channel 3 Sync Offset	Channel 3 sync phase offset register	0x00	RW
0x52	Channel 4 Sync Offset	Channel 4 sync phase offset register	0x00	RW
0x53	Channel 5 Sync Offset	Channel 5 sync phase offset register	0x00	RW
0x54	Channel 6 Sync Offset	Channel 6 sync phase offset register	0x00	RW
0x55	Channel 7 Sync Offset	Channel 7 sync phase offset register	0x00	RW

ADC DIAGNOSTIC RECEIVE SELECT REGISTER

Address: 0x56, Reset: 0x00, Name: Diagnostic Rx

The AD7768 ADC diagnostic allows the user to select a zero-scale, positive full-scale, or negative full-scale input to the ADC, which can be converted to verify the correct operation of the ADC channel. This register enables the diagnostic. Enable the receive (Rx) for each channel and set each bit in this register to 1.

The ADC diagnostic feature depends on some features of the analog input precharge buffers. The user must ensure that the analog input precharge buffers are enabled on the channels that are selected to receive the diagnostic voltages internally.

Table 55. Bit Descriptions for Diagnostic Rx

Bits	Bit Name	Settings	Description	Reset	Access
7	CH7_RX		Channel 7	0x0	RW
		0	Not in use		
		1	Receive		
6	CH6_RX		Channel 6	0x0	RW
		0	Not in use		
		1	Receive		
5	CH5_RX		Channel 5	0x0	RW
		0	Not in use		
		1	Receive		

Bits	Bit Name	Settings	Description	Reset	Access
4	CH4_RX		Channel 4	0x0	RW
		0	Not in use		
		1	Receive		
3	CH3_RX		Channel 3	0x0	RW
		0	Not in use		
		1	Receive		
2	CH2_RX		Channel 2	0x0	RW
		0	Not in use		
		1	Receive		
1	CH1_RX		Channel 1	0x0	RW
		0	Not in use		
		1	Receive		
0	CH0_RX		Channel 0	0x0	RW
		0	Not in use		
		1	Receive		

ADC DIAGNOSTIC CONTROL REGISTER

Address: 0x57, Reset: 0x00, Name: Diagnostic Mux Control

The AD7768 ADC diagnostic allows the user to select a zero-scale, positive full-scale, or negative full-scale input to the ADC, which can be converted to verify the correct operation of the ADC channel. This register controls the voltage that is applied to each of the ADC channels for the diagnostic. There are three input voltage options that the user can select. The voltage selected is mapped the channels based on which mode (Mode A or Mode B) they belong to. This is set according to the channel mode select register (Register 0x03).

Set Bits[7:0] to 1 in the ADC diagnostic receive select register, then select the voltage check desired for the channels on Mode A and the channels on Mode B through Bits[2:0] and Bits[6:4], respectively.

Table 56. Bit Descriptions for Diagnostic Mux Control

Bits	Bit Name	Settings	Description	Reset	Access
[6:4]	GRPB_SEL		Mux B.	0x0	RW
		000	Off.		
		011	Positive full-scale ADC check. A voltage close to positive full-scale is applied internally to the ADC channel.		
		100	Negative full-scale ADC check. A voltage close to negative (or minus) full-scale is applied internally to the ADC channel.		
		101	Zero-scale ADC check. A voltage close to 0 V is applied internally to the ADC channel.		
[2:0]	GRPA_SEL		Mux A.	0x0	RW
		000	Off.		
		011	Positive full-scale ADC check. A voltage close to positive full-scale is applied internally to the ADC channel.		
		100	Negative full-scale ADC check. A voltage close to negative (or minus) full-scale is applied internally to the ADC channel.		
		101	Zero-scale ADC check. A voltage close to 0 V is applied internally to the ADC channel.		

MODULATOR DELAY CONTROL REGISTER

Address: 0x58, Reset: 0x02, Name: Modulator Delay Control

Table 57. Bit Descriptions for Modulator Delay Control

Bits	Bit Name	Settings	Description	Reset	Access
[3:2]	CLK_MOD_DEL_EN		Enable delayed modulator clock.	0x0	RW
		00	Disabled delayed clock for all channels.		
		01	Enable delayed clock for Channel 0 to Channel 3 only.		
		10	Enable delayed clock for Channel 4 to Channel 7 only.		
		11	Enable delayed clock for all channels.		
[1:0]	Reserved	10	Not a user option. Must be set to 0x2.	0x2	RW

CHOPPING CONTROL REGISTER

Address: 0x59, Reset: 0x0A, Name: Chop Control

Table 58. Bit Descriptions for Chop Control

Bits	Bit Name	Settings	Description	Reset	Access
[3:2]	GRPA_CHOP		Group A chopping	0x2	RW
		01	Chop at f _{MOD} /8		
		10	Chop at f _{MOD} /32		
[1:0]	GRPB_CHOP		Group B chopping	0x2	RW
		01	Chop at f _{MOD} /8		
		10	Chop at f _{MOD} /32		

OUTLINE DIMENSIONS

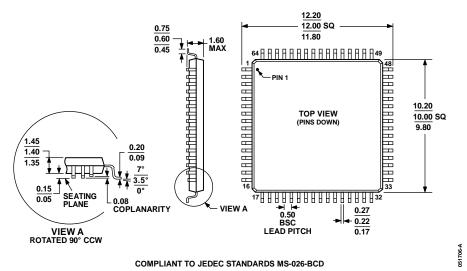


Figure 105. 64-Lead Low Profile Quad Flat Package [LQFP] (ST-64-2) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD7768BSTZ	−40°C to +105°C	64-Lead Low Profile Quad Flat Package [LQFP]	ST-64-2
AD7768BSTZ-RL7	-40°C to +105°C	64-Lead Low Profile Quad Flat Package [LQFP]	ST-64-2
AD7768BSTZ-RL	-40°C to +105°C	64-Lead Low Profile Quad Flat Package [LQFP]	ST-64-2
EVAL-AD7768FMCZ		Evaluation Board	
EVAL-SDP-CH1Z		Controller Board	

 $^{^{1}}$ Z = RoHS Compliant Part.