R

C \in EHI
with Analogue Set, ON/OF or Time Proportional Digital \& Analogue
-4Digits Display
Jtype Thermocouple Input or,
K type Thermocouple Input or,
R type Thermocouple input or,
2 or 3-wire PT 100 Input (It must be determined in order)
ON/OFF or Time Proportional Operation
Adjustable Hysteresis Value with DIP Switch for ON/OFF Control Adjustable Control Period with DIP Switch for ON/OFF Control Adjustable Set Offset Value

Igital \& Analogue Temperature Controllers are designed for measuring and controlling temperature. They can be used in many applications with the hey are mainly used in glass, plastic, petro-chemistry, textile, automotive and heay are mainly used in glass,
SPECIIICATIONS
Thermocouple(TC): J, K (IEC 584.1) (ITS90)
Thermoresistance(RTD): 2 or 3 -wire Pt100 (IEC 751)(ITS90)
Measurement Range: It is in ordering information
Accuracy: $\pm 1 \%$ of full scale
Cold Junction Compensation: Autom
Sensor rreak Protectoon:Uscale
Sampling Cycle: 3 samples per second
CONTROL
ontrol Form: ON/OFF or P(Time Proportional) selectable.
ON/OFF Hysteresis : It can be adjust $\% 0.25,0.5 \%, \% 1$ or $\% 2$ of full scale with DIP switch
Ontrol Timel: 1 second (SSR output active), 5 seconds (SSR and Relay outputs active), 10 seconds (SSR and Relay outputs active) and 20 second
SSR and Relay outputs active) options are selectable with DIP switch OUTPUT
ontrol Output: Relay(5A@250V~ at resistive load)
SSR Driver Output (Maximum 50 mA , meximum $18 \mathrm{~V}=-=$
SETTINGS
t : It can be adjust with potentiometer on the front panel Set Offset : It can be adjust up to $\% 20$ of full scale from the front panel Resolution of Set Point: $\pm \% 0.2$ of full scale
DISPLAY
Sisplay : 8 mm Green 4 digits LED indicato
ED Indicators P PWR(Green) Out(Red)
POWER SUPPLY
Power Supply Voltage : $230 \mathrm{~V} \sim(\pm \% 15) 50 / 60 \mathrm{~Hz}-4 \mathrm{VA}$ $115 \mathrm{~V} \sim(\pm \% 15) 50 / 60 \mathrm{~Hz}-4 \mathrm{VA}$
$24 \mathrm{~V} \sim(\pm \% 15) 50 / 60 \mathrm{~Hz}-4 \mathrm{VA}$ $\underset{\text { (lt must be determined in order.) }}{24 \mathrm{~V} \sim(\pm \% 15) 50 / \mathrm{Hz}-4 \mathrm{~A}}$
NVIRONMENTAL RATINGS and PHYSICAL SPECIFICATIONS perating Temperature : $0 \ldots 50^{\circ} \mathrm{C}$ Humidity: $0-90 \%$ RH (none condensing)
Protection Class : IP65 at front, IP20 at rear

WEIGHT	DIMENSION	PANEL CUT-OUT
000 gr	$72 \times 72 \mathrm{~mm}$, Depth: 104 mm	$69 \times 69 \mathrm{~mm}$
400 gr	$96 \times 96 \mathrm{~mm}$, Depth: 100 mm	$92 \times 92 \mathrm{~mm}$

1- Before mounting the device in your panel, make sure that
the panel cut-outis suitable.

2-Check front panel gasket
3- Insert the device through the cut-out. If the mounting clamp are on the unit, put ou em before inserting the un to the panel.

- Insert the unit in the pane cut-out from the front side.
5- Insert the mounting clamps to holes that located top and screw up the fixing screws until the unit completel
immobile within the panel.

Panel Cut-out

Front Panel Definetion

 cale of the devicet value range changes according to the type and according to the device. Minimum and maxim

Set Values according to the Type and Scale of the Device For PT-100 (-100.0 to 100.0) ${ }^{\circ} \mathrm{C}$
For PT-100 (0.0 to 50.0$)^{\circ} \mathrm{C}$
or PT-100 (0.0 to 200.0$)^{\circ} \mathrm{C}$
For PT-100 (0 to 400$)^{\circ} \mathrm{C}$
For J Type TC (0 to 400$)^{\circ} \mathrm{C}$
For J Type TC (0 to 800$)^{\circ} \mathrm{C}$
For K Type TC (0 to 1200$)^{\circ} \mathrm{C}$
For R Type TC (0 to 1600) ${ }^{\circ} \mathrm{C}$
For S Type TC (0 to 1600) ${ }^{\circ} \mathrm{C}$
ONOFF, Time Proportional Operation Form Selection N/OFF Control Form selection trimpot that is on the front panel.

\% Trimpot is adjusted to point out different from ON/OFF 15 Dart for proportional operation. Proportional Band Value can be adjusted from 0% to 30% of full scale.
Minimum and maximum value of proportional band according to the type and scale of the device are given below:.
\% PB
oportional Band Values according to the type and scale of the device

For PT-100 (-100.0 to 100.0$)^{\circ} \mathrm{C}$ scaled devices : 0.0 to $60.0^{\circ} \mathrm{C}$ For PT-100 (0.0 to 50.0$)^{\circ} \mathrm{C}$ scaled devices : 0.0 to $15.0^{\circ} \mathrm{C}$ For PT-100 (0.0 to 200.0$)^{\circ} \mathrm{C}$ scaled devices : 0.0 to $60.0^{\circ} \mathrm{C}$ For PT-100 (0 to 400$)^{\circ} \mathrm{C}$ scaled devices : 0 to $120^{\circ} \mathrm{C}$ For J Type TC (0 to 400$)^{\circ} \mathrm{C}$ scaled devices : 0 to $120^{\circ} \mathrm{C}$ For J Type TC (0 to 800$)^{\circ} \mathrm{C}$ scaled devices : 0 to $240^{\circ} \mathrm{C}$ For K Type TC (0 to 1200$)^{\circ} \mathrm{C}$ scaled devices : 0 to $360^{\circ} \mathrm{C}$ For R Type TC (0 to $1600^{\circ} \mathrm{C}$ scaled devices. 0 to $480^{\circ} \mathrm{C}$ | For S Type TC (0 to 1600$)^{\circ} \mathrm{C}$ scaled devices : 0 to $480^{\circ} \mathrm{C}$ |
| :--- | :--- | Adjustment of Hysteresis Value for ON/OFF Control

In ON/OFF control algorithm, temperature value is tried to keep equal to set value by opening or closing completely last control element N/OFF controlled system, temperature value oscillates continuously.
Temperature value's oscillation period or amplitude around set value changes according to controlled system. For reducing oscillation period of temperature value, a threshold zone is formed below or around set value and this zone is named hysteresis. Action of control output is described with figures below.

Introduction Brochure. ENG RS ESD-xx50 01 V03 02/16

(i)

In operation with ON/OFF Control form; hysteresis value can be adjusted with DIP Switch on the device.

DIP Switch is under cover and cover is on top side of the device

Hysterisis Value Selection
OFF ON
$\%$ 20.25 of full scale is selected
20

Minimum and maximum value of hysteresis according to the type and cale of the device are given below:

Input Type	Dip Switch Position			
	$\% 0.25$	$\% 0.5$	$\% 1.0$	$\% 2.0$
For PT-100 $(-100.0 \text { to } 100.0)^{\circ} \mathrm{C}:$	$0.5^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$2.0^{\circ} \mathrm{C}$	$4.0^{\circ} \mathrm{C}$
For PT-100 $(0.0 \text { t } 50.0)^{\circ} \mathrm{C}:$	$0.2^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$	$0.5^{\circ} \mathrm{C}$	$1.00^{\circ} \mathrm{C}$
For PT-100 0.0 to 2000.0$)^{\circ} \mathrm{C}:$	$0.5^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$2.0^{\circ} \mathrm{C}$	$4.00^{\circ} \mathrm{C}$
For PT-100 $(0 \text { to } 400)^{\circ} \mathrm{C}:$	$1.0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$4.0^{\circ} \mathrm{C}$	$8.0^{\circ} \mathrm{C}$
For J Type TC $(0 \text { to } 400)^{\circ} \mathrm{C}:$	$1.0^{\circ} \mathrm{C}$	$2.0^{\circ} \mathrm{C}$	$4.0^{\circ} \mathrm{C}$	$8.0^{\circ} \mathrm{C}$
For J Type TC $(0 \text { to } 800)^{\circ} \mathrm{C}:$	$2.0^{\circ} \mathrm{C}$	$4.0^{\circ} \mathrm{C}$	$8.0^{\circ} \mathrm{C}$	$16.0^{\circ} \mathrm{C}$
For K Type TC $(0 \text { to } 1200)^{\circ} \mathrm{C}:$	$3.0^{\circ} \mathrm{C}$	$6.0^{\circ} \mathrm{C}$	$12.0^{\circ} \mathrm{C}$	$24.0^{\circ} \mathrm{C}$
For R Type TC $(0 \text { to } 1600)^{\circ} \mathrm{C}:$	$4.0^{\circ} \mathrm{C}$	$8.0^{\circ} \mathrm{C}$	$16.0^{\circ} \mathrm{C}$	$32.0^{\circ} \mathrm{C}$
For S Type TC $(0 \text { to } 1600)^{\circ} \mathrm{C}:$	$4.0^{\circ} \mathrm{C}$	$8.0^{\circ} \mathrm{C}$	$16.0^{\circ} \mathrm{C}$	$32.0^{\circ} \mathrm{C}$

Adjustment of Control Period For Time Proportional Control
In time proportional operation; Control Period is adjusted by In time proportional operation; Control Period is adjusted
changing the position of the DIP Switch that is on the device.

	1 Second (For SSR Driver Output)
	5 Seconds (For SSR and Relay Output)
	10 Seconds (For SSR and Relay Output)
	20 Seconds (For SSR and Relay Output)

Relay Output : Output period must be short for stable process control Relay must not be used in short output periods because of limited life of heir relay contact (number of open/close events).
SSR Output : If short output period is
SSR Output : If short output period is needed in a system element is recommended.
Example : For a $\left(0,400^{\circ} \mathrm{C}\right)$ scaled device, proportional band is adjusted 5 with proportional band adjustment and ON/OFF control form trimpot, give 100% output, until temperature is in proportional band, namely until temperature is $340^{\circ} \mathrm{C}\left(\mathrm{Scale} \mathrm{e}^{*} 15 / 1000=400^{*} 15 / 100=60\right.$). When
temperature is being close to set value, $\%$ output is started to be temperature is being close to set value, \%output is started to be
reduced. In this case, when the device calculates 60% output, the system will be energised for 60% of device's control period. (For this example; 60% of 10 seconds $\Rightarrow 6$ seconds the system will be energised
and the system will not be energised for 4 seconds)

Adjustment of Set Offset Value

Set offset value can be adjusted with set offset trimpot that is located on
front panel.

When temperature is not equal to SET value, to remove the difference eetween SET value and temperature and to make equal the
temperature and SET value, set offset is used. It can be adjusted from 20% to 20% of full scale.
Minimum and maximum value of set offset value according to the type and scale of the device are given below:

Set Offset Values according to the type and scale of the device For PT-100 (-100.0 to 100.0$)^{\circ} \mathrm{C}$ scaled devices : $(-20.0 \text { to }+20.0)^{\circ} \mathrm{C}$ For PT-100 (0.0 to 50.0$)^{\circ} \mathrm{C}$ scaled devices : $(-10.0 \text { to }+10.0)^{\circ} \mathrm{C}$
 For J Type TC $(0 \text { to } 400)^{\circ} \mathrm{C}$ scaled devices : $(-8 \text { to }+8)^{\circ} \mathrm{C}$ For J Type TC $(0 \text { to } 800)^{\circ} \mathrm{C}$ scaled devices: $(-16 \text { to }+16)^{\circ} \mathrm{C}$ For K Type TC (0 to 1200$)^{\circ} \mathrm{C}$ scaled devices: : $(-24 \text { to }+24)^{\circ} \mathrm{C}$ For R Type TC $(0 \text { to } 1600)^{\circ} \mathrm{C}$ scaled devices: $(-32 \text { to }+32)^{\circ} \mathrm{C}$ For S Type TC (0 to 1600$)^{\circ} \mathrm{C}$ scaled devices : $(-32 \text { to }+32)^{\circ} \mathrm{C}$

Failure Message in Temperature Controller

	Sensor failure in analogue inputs. It occurs if; Sensor connection is wrong or
	The value on analogue input exceeds scale of the device.

Installation

Before beginning installation of this product, please read the instruction manual and warnings below carefully.
In package,

- One piece unit

Two pieces mounting clamps
A visual inspection of this product for possible damage occured during shipment is recommended before installation. It is yyur
responsibility to ensure that qualified mechanical and electrical technicians install this product.
If there is danger of serious accident resulting from a failure defect in this unit, power off the system and separate the electrica .
The unit is normally supplied without a power switch or a fuse. Use power switch and fuse as required.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.
Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.
Never attempt to disassemble, modify or repair this unit Tampering with the unit may results in malfunction, electric shock or fire.
Do not use the unit in combustible or explosive gaseous atmospheres.

During the equipment is putted in hole on the metal panel while mechanical installation some metal burrs can cause injury on hands, you mus

Montage of the product on a system must be done with it's own fixing clamps. Do not do the montage of the device with inappropriate fixing clamps. Be sure that device will not fall while doing the montage.
specified in this instruction manual

Warrants that the equipment delivered is free from defects in material and workmanship. This warranty is provided for a period of two years. The warranty period starts from the delivery date. This warranty is in
force if duty and responsibilities which are determined in warranty document and instruction manual performs by the customer completely.

Maintenance

Repairs should only be performed by trained and specialized personne Do not clean the case with hydrocarbon-based solvents (Petrol Trichlorethylene etc.). Use of these solvents can reduce the mechanical reliability of the device. Use act dean the external plastic case.

