AlphaMINI MIN100/120
 Single and Dual Level Trip Amplifiers

\square Lee-Dickens Ltd

GENERAL

The MIN100 and MIN120 are 24 or 12 Volt DC or AC powered Trip Amplifiers. The MIN100 being a single level trip amplifier and the MIN120 a dual level trip amplifier.

TRIP ACTION

Trip amplifiers are supplied with relays that operate in a specified manner with regard to the analogue input signal. The terminology used, such as HIGH and LOW trip and FAIL-SAFE and NON-FAIL-SAFE operation, refer to the set-up for the relay.

HIGH and LOW TRIP refer to the section of the analogue input signal which represents the alarm condition. HIGH TRIP means that the alarm condition is above the set-point and LOW TRIP means that the alarm condition is below the set-point.

FAIL-SAFE OPERATION means that the relays are normally energised and will de-energise in the alarm condition, i.e. the relays FAIL to the alarm condition in the event of a power failure. Furthermore, if the input signal is a 4 to 20 mA current loop, the Trip Amplifier will Fail Safe on Open Circuit / Loss of Input signal.

NON-FAIL-SAFE OPERATION means that the relays are normally de-energised and will energise in the alarm condition.

In all cases, the state of each relay is indicated by a bi-colour RED/GREEN LED, which is visible through the fascia of the instrument.

RED $=$ ALARM Condition and GREEN $=$ NORMAL or SAFE Condition
The instruments, unless otherwise stated on the customer order, are factory set to:
MIN100 - HIGH NON-FAIL-SAFE MIN120 - HIGH-LOW-FAIL-SAFE
These trip settings can be changed by relocating soldered links on the jumper pads located on the printed circuit board (pcb) within the instrument as shown later in this document.

WARNING - MAKE SURE THAT THE POWER SUPPLY IS SWITCHED OFF BEFORE EXTRACTING THE PCB FROM THE OUTER CASING.

In order to extract the pcb from the outer casing first remove the front panel (place a small screw-driver under the top or bottom lip of the front panel and lever out). The terminal blocks are secured by two lugs, which fit into recesses in the outer casing. To remove the pcb gently ease the sides of the outer casing away from the terminal blocks and pull the terminal blocks forward.

AlphaMINI MIN100/120
 Single and Dual Level Trip Amplifiers

INSTALLATION

The AlphaMINI range of instruments is housed in an enclosure with mouldings for mounting the instruments onto a Top Hat DIN rail. The instrument simply clips onto the rail by placing the lower edge of the moulding under the lower edge of the DIN rail and levering upwards. The instrument may be removed just as simply by placing a small screw-driver into the slot on the top of the instrument and levering downwards.

Care should be taken when wiring the instrument to apply the correct supply voltage.
Further care should also be taken to ensure that any other components already located in the terminals are not damaged or misplaced.

CALIBRATION

Each instrument is supplied factory calibrated and no further adjustment should be necessary. If it does become necessary to trim the calibration then please carry out the following procedure:

Refer to next page for location of Span and Zero Potentiometers.
First you will need the remove the instrument from its casing as detailed above.

1) Apply the specified power supply and inject an input signal equal to 0% of span.
2) Rotate RV3 (the Upper Set-point Potentiometer) fully anti-clockwise
3) Use RV1 (the Zero Potentiometer) to set the point where LE1 just turns Red
4) Set the input to 100% of span
5) Rotate RV3 fully clockwise
6) Use RV2 (the Span Potentiometer) to set the point where LE1 just turns Red
7) Repeat operations 1 to 6 until both points are as close as possible
8) Set the input to 50% of span
9) Check that LE1 changes to red when RV3 is at the 50% point

For MIN120s only
10) Rotate RV4 (the Lower Set-point Potentiometer) fully anti-clockwise
11) Check that LE2 changes to Red at an input signal of 0% of input span $\pm 1 \%$
12) Rotate RV4 fully clockwise
13) Check that LE2 changes to Red at an input signal of 100% of input span $\pm 1 \%$
14) Set the input to 50% of the input span
15) Check that LE2 changes to Red when RV4 is at the 50% point.

Having reset the potentiometers, we recommend that the pots are sealed using liquid paper.
Finally replace the instrument in its casing and re-insert the fascia window.

AlphaMINI MIN100/120

Position of LEDs and
Potentiometers RV3 and RV4

MIN120 Component Side Layout (MIN100 is a sub-set of the MIN120)

MIN 100/120 Trip Action Link Pads

For MIN100s and
the top trip on the MIN120s

Trip Action High Non-Fail Safe or Low Fail Safe	Link Pads Link Pad P6 to P7
High Fail Safe or Pad P5 to P8 Low Non-Fail Safe	Link Pad P5 to P6
Link Pad P7 to P8	

LED LE1 Orientation (See Diagram Above)
High Trip Pin 1 Long or Square
Low Trip Pin 1 Short or Curved

For MIN120 lower trip

Trip Action
High Non-Fail Safe
Link Pads
Link Pad P1 to P3 or Low Fail Safe Link Pad P2 to P4

High Fail Safe or
Link Pad P1 to P2
Link Pad P3 to P4
LED LE2 Orientation (See Diagram Above)
High Trip Pin 1 Long or Square Low Trip Pin 1 Short or Curved

AlphaMINI MIN100/120
 Single and Dual Level Trip Amplifiers

