Platinum Resistance Thermometer (PRT) Selection Guide ### Thermocouple & Platinum Resistance Thermometry - At A Glance #### PRACTICAL BRIDGE CIRCUITS FOR 2, 3 AND 4 WIRE THERMOMETERS The connection between the thermometer assembly and the instrumentation. The cabling introduces electrical resistance which is placed in series with the resistance thermometer. The two resistances are therefore cumulative and could be interpreted as an increased temperature if the lead resistance is not allowed for. The longer and/or the smaller the diameter of the cable, the greater the lead resistance will be and the measurement errors could be appreciable. In the case of a 2 wire connection, little can be done about this problem and some measurement error will result according to the cabling and input circuit arrangement. For this reason, a 2 wire arrangement is only suitable for short cable lengths. If it is essential to use only 2 wires, ensure that the largest possible diameter of conductors is specified and that the length of cable is minimised to keep cable resistance to as low a value as possible. The use of 3 wires, when dictated either by probe construction or by the input termination of the measuring instrument, will allow for a good level of lead resistance compensation. However the compensation technique is based on the assumption that the resistance of all three leads is identical and that they all reside at the same ambient temperature; this is not always the case. Optimum accuracy is therefore achieved with a 4 wire configuration. #### **STEM CONDUCTION** This is the mechanism by which heat is conducted from or to the process medium by the probe itself; an apparent reduction or increase respectively in measured temperature results. The **immersion depth** (the length of that part of the probe which is directly in contact with the medium) must be such as to ensure that the "sensing" length is exceeded (double the sensing length is recommended). Small immersion depths result in a large temperature gradient between the sensor and the surroundings which results in a large The ideal immersion depth can be achieved in practice by moving the probe into or out of the process medium incrementally; with each adjustment, note any apparent change in indicated temperature. The correct depth will result in no change in indicated temperature. For calibration purposes 150 to 300mm immersion is required depending on the probe construction. #### **SELF-HEATING** In order to measure the voltage dropped across the Pt sensing resistor, a current must be passed through it. The measuring current produces heat dissipation in the sensor. This results in an increased temperature indication. It is necessary to minimise the current flow as much as possible; 1mA or less is usually acceptable. If the sensor is immersed in flowing liquid or gas, the effect is reduced because of more rapid heat removal. Conversely, in still gas for example, the effect may be significant. The self-heating coefficient E is expressed as: $$E = \triangle t / (R - I^2)$$ Where $\triangle t = (indicated temperature) -$ (temperature of the medium) R = Pt resistance I = measurement current #### **RESISTANCE V TEMPERATURE AND TOLERANCES FOR PLATINUM RESISTORS TO IEC 751(1995)/BS EN60751(1996)** | Temp | Resistance | | Tole
Class A | rance | ss B | |------|------------|-------|-----------------|-------|------| | (°C) | (Ω) | (±°C) | (±Ω) | (±°C) | (±Ω) | | -200 | 18.52 | 0.55 | 0.24 | 1.3 | 0.56 | | -100 | 60.26 | 0.35 | 0.14 | 0.8 | 0.32 | | 0 | 100.00 | 0.15 | 0.06 | 0.3 | 0.12 | | 100 | 138.51 | 0.35 | 0.13 | 0.8 | 0.30 | | 200 | 175.86 | 0.55 | 0.20 | 1.3 | 0.48 | | 300 | 212.05 | 0.75 | 0.27 | 1.8 | 0.64 | | 400 | 247.09 | 0.95 | 0.33 | 2.3 | 0.79 | | 500 | 280.98 | 1.15 | 0.38 | 2.8 | 0.93 | | 600 | 313.71 | 1.35 | 0.43 | 3.3 | 1.06 | | 650 | 329.64 | 1.45 | 0.46 | 3.6 | 1.13 | | 700 | 345.28 | _ | _ | 3.8 | 1.17 | | 800 | 375.70 | _ | _ | 4.3 | 1.28 | | 850 | 390.48 | _ | - | 4.6 | 1.34 | #### **NEW TOLERANCE CLASSES FOR RESISTORS to IEC 60751(2008)** | For wir | re wound resistors | For f | film resistors | Tolerance value ^a | |--------------------|----------------------------------|--|----------------|------------------------------| | Tolerance
class | Temperature range of validity °C | perature range of Tolerance Temperature range of validity °C class validity °C | | °C | | W 0.1 | -100 to +350 | F 0.1 | | ± (0.1 + 0.0017 t) | | W 0.15 | -100 to +450 | F 0.15 | -30 to +300 | ± (0.15 + 0.002 t) | | W 0.3 | -196 to +660 | F 0.3 | -50 to +500 | ± (0.3 + 0.005 t) | | W 0.6 | -196 to +660 | F 0.6 | -50 to +600 | ± (0.6 + 0.01 t) | a | t | = modulus of temperature in °C without regard to sign. For any value of R_o ### **NEW TOLERANCE CLASSES FOR THERMOMETERS to IEC 60751(2008)** | | | | • | |-----------------|----------------------|-------------------------------|-------------------------| | Tolerance class | Temperature r | Tolerance values ^a | | | | Wire wound resistors | Film resistors | °C | | AA | -50 to +250 | 0 to +150 | ± (0.1 + 0.0017 t) | | Α | –100 to +450 | -30 to +300 | ± (0.15 + 0.002 t) | | В | –196 to +600 | -50 to +500 | ± (0.3 + 0.005 t) | | С | –196 to +600 | -50 to +600 | ± (0.6 + 0.01 t) | a | t | = modulus of temperature in °C without regard to sign. For any value of R_o ### **RECOMMENDED TERMINATION COLOUR CODES IEC 751(1995)** # **Comparison of Sensor Types** | | Platinum Resistance Thermometer | Thermocouple | Thermistor | |---------------------------|--|--|--| | Sensor | Platinum-wire wound or flat-
film resistor | Thermoelement,
two dissimilar metals/alloys | Ceramic
(metal oxides) | | Accuracy (typical values) | 0.1 to 1.0°C | 0.5 to 5.0°C | 0.1 to 1.5°C | | Long term Stability | Excellent | Variable, Prone to ageing | Good | | Temperature range | -200 to 650°C | -200 to1750°C | -100 to 300°C | | Thermal response | Wirewound – slow
Film – faster
1-50 secs typical | Sheathed – slow Exposed tip –
fast 0.1 to 10 secs typical | generally fast 0.05 to 2.5 secs
typical | | Excitation | Constant current required | None | None | | Characteristic | PTC resistance | Thermovoltage | NTC resistance (some are PTC) | | Linearity | Fairly linear | Most types non-linear | Exponential | | Lead resistance effect | 3 & 4 wire – low. 2 wire – high | Short cable runs satisfactory | Low | | Electrical "pick-up" | Rarely susceptible | susceptible | Not susceptible | | Interface | Bridge
2,3 or 4 wire | Potentiometric input. Cold junction compensation required | 2 wire resistance | | Vibration effects/ shock | wirewound – not suitable. Film –
good | Mineral insulated types suitable | Suitable | | Output/ characteristic | approx. 0.4 W/°C | From 10µV/°C to to 40µV/°C depending on type | -4% / °C | | Extension Leads | Copper | Compensating cable | Copper | | Cost | Wirewound – more expensive
Film – cheaper | Relatively
low cost | Inexpensive
to moderate | Comments and values shown in this chart are generalised and nominal. They are not intended to be definitive but are stated for general guidance. ## **RTD Sensor or Thermocouple?** Choosing between a RTD Sensor and a Thermocouple Resistance Thermometers utilise a high precision sensing resistor, usually platinum, the resistance value of which increases with temperature. The dominant standard adopted internationally is the Pt100 which has a resistance value of 100.0 Ohms at 0°C and a change of 38.50 Ohms between 0 and 100°C (the fundamental interval). The platinum sensing resistor is highly stable and allows high accuracy temperature sensing. Resistance thermometer sensing resistors are 2 wire devices but the 2 wires will usually be extended in a 3 or 4 wire configuration according to the application, the associated instrumentation and accuracy requirements. Thermocouples comprise a thermoelement which is a junction of two specifield, dissimilar alloys and a suitable two wire extension lead. The junction is a short circuit only, the EMF is generated in the temperature gradient between the hot junction and the 'cold' or reference junction. This characteristic is reasonably stable and repeatable and allows for a family of alternative thermocouple types (e.g. J,K,T,N) to be used. The alternative types are defined by the nature of the alloys used in the thermoelements and each type displays a different thermal EMF characteristic. RTD's are, generally: - More expensive - More accurate - Highly stable (if used carefully) - Capable of better resolution - Restricted in their range of temperature - Stem, not tip sensitive - Rarely available in small diameters (below 3mm) In both cases, the choice of thermocouple or RTD must be made to match the instrumentation and to suit the application. Thermocouples are, generally: - Relatively inexpensive - More rugged - Less accurate - More prone to drift - More sensitive - Tip sensing - Available in smaller diameters - Available with a wider temperature range - More versatile # **Comparison of Sheath Materials** | Sheath Material | Max Continuous | Notes | Applications | | |--|----------------|---|---|--| | | ture | | | | | Refractory Oxide
recrystallised, e.g.
Alumina Impervious | 1750°C | Good choice for rare metal thermocouples. Good resistance to chemical attack. Mechanically strong but severe thermal shock should be avoided. | Forging iron & steel. Incinerators carburizing and hardening in heat treatment. Continuous furnaces. Glass Lehrs. | | | Silicon Carbide
(Porous) | 1500°C | Good level of protection even in severe conditions. Good resistance to reasonable levels of thermal shock. Mechanically strong when thick wall is specified but becomes brittle when aged. Unsuitable for oxidising atmospheres but resists fluxes. | Forging iron & steel. Incinerators Billet heating, slab heating, butt welding. Soaking pits ceramic dryers. | | | Impervious 1600°C
Mullite | | Good choice for rare metal thermocouples under severe conditions. Resists Sulphurous and carbonaceous atmospheres. Good resistance to thermal shock should be avoided. | Forging iron & steel. Incinerators. Heat treatment. Glass flues. Continuous furnaces. | | | Mild Steel (cold drawn 600°C seamless) | | Good physical protection but prone to rapid corrosion. | Annealing up to 500°C. Hardening pre-heaters. Baking ovens. | | | Stainless steel 25/20 | 1150°C | Resists corrosion even at elevated temperature. Can be used in Sulphurous atmospheres. | Heat treatment annealing, flues, many chemical processes
Vitreous enamelling. Corrosion resistant alternative to mild
steel. | | | Inconel 600/800* | 1200°C | Nickel-Chromium-Iron alloy which extends the properties of stainless steel 25/20 to higher operating temperatures. Excellent in Sulphur free atmospheres; superior corrosion resistance at higher temperatures. Good mechanical strength. | Annealing, carburizing, hardening. Iron and steel hot blast. Open hearth flue & stack. Waste heat boilers. Billet heating, slab heating. Continuous furnaces. Soaking pits. Cement exit flues & kilns. Vitreous enamelling. Glass flues and checkers. Gas superheaters. Incinerators up to 1000°C. Highly sulphurous atmospheres should be avoided above 800°C. | | | Chrome Iron | 1100°C | Suitable for very adverse environments. Good mechanical strength. Resists severely corrosive and sulphurous atmospheres. | Annealing, carburizing, hardening. Iron & steel hot blast. Open hearth flue and stack. Waste heat boilers. Billet heating, slab heating. Continuous furnaces. Soaking pits. Cement exit flues & kilns. Vitreous enamelling. Glass flues and checkers. Gas superheaters. Incinerators up to 1000°C. | | | Nicrobell* | 1300°C | Highly stable in vacuum and oxidising atmospheres. Corrosion resistance generally superior to stainless steels. Can be used in Sulphurous atmospheres at reduced temperatures. High operating temperature. | As Inconel plus excellent choice for vacuum furnaces and flues. | | ^{*} Tradenames Sheath materials range from mild and stainless steels to refractory oxides (ceramics, so called) and a variety of exotic materials including rare metals. The choice of sheath must take account of operating temperature, media characteristics, durability and other considerations including the material relationship to the type of sensor. # **Thin Film Detectors & Wire-Wound Detector Elements** Α **Thin Film Detectors** В **Wire-Wound Detector Elements** | Image | Resistance | Dimensions
(width x | Tolerance Class A | | Tolerance | e Class B | Tolerance Class 1/3 Din | | | |-------|------------|------------------------|-------------------|---------------|-------------|---------------|-------------------------|----------|--| | | length) | RS order code | Allied code | RS order code | Allied code | RS order code | Allied code | | | | Α | Pt100 | 2 x 5mm | 611-7788 | 70646146 | 611-7801 | 70646148 | - | - | | | Α | Pt100 | 2 x 10mm | 362-9799 | 70643577 | 237-1607 | 70641762 | 362-9812 | 70643578 | | | Α | Pt100 | 2 x 2.3mm | 362-9834 | 70643579 | 362-9840 | 70643580 | 362-9856 | 70643581 | | | Α | Pt1000 | 2 x 10mm | 362-9907 | 70643582 | 362-9913 | 70643583 | 814-0178 | 70656472 | | | Α | Pt1000 | 1 x 3mm | - | - | 814-0171 | 70656470 | - | - | | | Α | Pt1000 | 1.25 x 1.7mm | - | - | 814-0175 | 70656471 | - | - | | | Image | Resistance | Dimensions
(Dia x length) | Tolerance Class A | | Tolerance | e Class B | Duel Element (Pt100 x2) Tolerance Class A | | | |-------|------------|------------------------------|-------------------|-------------|---------------|-------------|---|-------------|--| | | | | RS order code | Allied code | RS order code | Allied code | RS order code | Allied code | | | В | Pt100 | 1.5 x 8mm | 611-7873 | 70646155 | 611-7851 | 70646153 | - | - | | | В | Pt100 | 1.5 x 15mm | 611-7839 | 70646151 | 611-7867 | 70646154 | 397-1595 | 70643873 | | | В | Pt100 | 2.8 x 15mm | 611-7845 | 70646152 | 611-7823 | 70646150 | - | - | | | В | Pt100 | 2.8 x 25mm | 611-7817 | 70646149 | 611-7794 | 70646147 | - | - | | # Platinum Resistance Thermometer with Extended Leads Α Platinum Resistance Pt100 & Pt1000 Detectors with Extended Leads В Pt100 Ceramic Wire-Wound Pt100 Tubular Ceramic Insert Elements with tail wires | lmage | Type | Class | Detector
(WxL) | Cable
Length | AWG | Cable Type | Termination | RS Order
Code | Allied Code | |-------|--------|-------|-------------------|-----------------|--------|-------------------|-------------|------------------|-------------| | A | Pt100 | В | 2 x 10mm | 300mm | 24 AWG | Teflon® insulated | 2 Wire | 891-9132 | - | | A | Pt100 | Α | 2 x 10mm | 1000mm | 26 AWG | Teflon® insulated | 4 Wire | 891-9145 | - | | A | Pt1000 | В | 2 x 10mm | 500mm | 24 AWG | Teflon® insulated | 2 Wire | 891-9157 | - | | Image | Type | Class | Detector | Cable | AWG | Cable Type | Termination | RS Order | Allied Code | |-------|-------|-------|------------|--------|--------|-------------------|-------------|----------|-------------| | | | | (WxL) | Length | | | | Code | | | В | Pt100 | В | 2.8 x 15mm | 300mm | 26 AWG | Teflon® insulated | 2 Wire | 110-4460 | - | | В | Pt100 | В | 2.8 x 15mm | 500mm | 26 AWG | Teflon® insulated | 4 Wire | 891-9160 | - | | В | Pt100 | В | 2.8 x 15mm | 1000mm | 26 AWG | Teflon® insulated | 4 Wire | 891-9163 | - | | Image | Type | Ceramic
Diameter | Ceramic
Length | Lead Length | Cable Type | Termination | RS Order
Code | Allied Code | |-------|-------|---------------------|-------------------|-------------|--------------------|-------------|------------------|-------------| | С | Pt100 | 5mm | 35mm | 50mm | 7/0.2mm SPC Teflon | 2 Wire | 237-1641 | 70641766 | | С | Pt100 | 5mm | 35mm | 450mm | 7/0.2mm SPC Teflon | 4 Wire | 237-1657 | 70641767 | | С | Pt100 | 5mm | 35mm | 10mm | 1/0.4mm Nickel | 4 Wire | 237-1629 | 70641764 | # **Platinum Resistance Pt100 Sensors** | lmage | Type | Class | Probe | Probe | Cable | Cable Type | RS Order | Allied Code | |-------|-------|-------|----------|--------|--------|---|----------|-------------| | | | | Diameter | Length | Length | | Code | | | Α | Pt100 | В | 6mm | 50mm | 2m | Flexible silicone rubber insulated, 7/0.2mm | 455-3968 | 70644349 | | A | Pt100 | В | 6mm | 100mm | 2m | Flexible silicone rubber insulated, 7/0.2mm | 611-8264 | 70646193 | | In | nage | Type | Class | Strip Dimensions
(LxWxH) | Cable
Length | Cable Type | RS Order
Code | Allied Code | |----|------|-------|-------|-----------------------------|-----------------|---|------------------|-------------| | | В | Pt100 | В | 35mm x 6mm x 2mm | 1m | 7/.02mm Teflon® insulated twin twisted lead | 237-1613 | 70641763 | | Image | Type | Class | Probe
Diameter | Probe
Lenath | Cable
Length | Cable Type | RS Order
Code | Allied Code | |-------|-------|-------|-------------------|-----------------|-----------------|---|------------------|-------------| | С | Pt100 | В | 4mm | 150mm | 1m | 7/0.2mm Teflon® insulated 2 twisted leads | 237-1663 | 70641768 | # Platinum Resistance Thermometer Pt100 Precision Probes Platinum Resistance Thermometer Pt100 Precision Probe Platinum Resistance Pt100 Dual Element Mineral Insulated Sensor Probe Platinum Resistance Pt100 Dual Element Industrial Sensor Probe | Image | Type | Class | Probe
Length | Cable
Length | Cable Type | Termination | Probe
Temperature
Ranae | RS Order
Code | Allied Code | |-------|-------|-----------------------|-----------------|-----------------|---|-------------|-------------------------------|------------------|-------------| | A | Pt100 | 1/5 th Din | 250mm | 2m | 7/0.2mm PTFE insulated with silver plated copper screen | 4 Wire | -50°C to +250°C | 236-4299 | 70641759 | | Image | Туре | Class | Probe
Length | Cable
Length | Cable Type | Termination | Probe
Temperature
Range | RS Order
Code | Allied Code | |-------|------------|-------|-----------------|-----------------|------------------------------|-------------|-------------------------------|------------------|-------------| | В | Mineral | В | 150mm | 1m | 7/0.2mm flexible 6 core | 2 x 3 wire | -50°C to +500°C | 397-1416 | 70643859 | | | Insulated | | | | Teflon® insulated & screened | | | | | | | Duplex PRT | | | | | | | | | | Image | Туре | Class | Probe
Length | Cable
Length | Cable Type | Termination | Probe
Temperature
Range | RS Order
Code | Allied Code | |-------|-------|-------|-----------------|-----------------|--|-------------|-------------------------------|------------------|-------------| | С | Pt100 | В | 150mm | 1m | 7/0.2mm flexible 6 core
Teflon® insulated &
screened | 2 x 3 wire | -50°C to +250°C | 397-1393 | 70643857 | ### Platinum Resistance Thermometer Pt100 with Stainless Steel Sheath Platinum Resistance Pt1000 Class B Sensor with Teflon insulated lead in a Stainless-Steel Tube Platinum Resistance Thermometer Pt100 Industrial Sensor Probe, Class B, in a Stainless-Steel Tube | Image | Type | Class | Probe | Probe | Cable | Cable Type | Termination | RS Order | Allied Code | |-------|-------|-------|----------|--------|--------|-------------------|-------------|----------|-------------| | | | | Diameter | Length | Length | | | Code | | | A | Pt100 | В | 3mm | 25mm | 1m | Teflon® insulated | 4 Wire | 762-1134 | 70651745 | | A | Pt100 | В | 3mm | 100mm | 1m | Teflon® insulated | 4 Wire | 158-985 | 70636467 | | A | Pt100 | В | 4mm | 90mm | 1m | Teflon® insulated | 4 Wire | 123-5610 | - | | lmage | Type | Class | Probe
Diameter | Probe
Length | Cable
Length | Cable Type | Termination | RS Order
Code | Allied Code | |-------|--------|-------|-------------------|-----------------|-----------------|-------------------|-------------|------------------|-------------| | В | Pt1000 | В | 4mm | 40mm | 1m | Teflon® insulated | 2 Wire | 123-5612 | - | | Image | Type | Class | Probe | Probe | Cable | Cable Type | Termination | RS Order | Allied Code | |-------|-------|-------|----------|--------|--------|-----------------------------|-------------|----------|-------------| | | | | Diameter | Length | Length | | | Code | | | С | Pt100 | В | 3mm | 150mm | 1m | Teflon® insulated, Screened | 4 Wire | 362-9935 | - | | С | Pt100 | В | 4mm | 25mm | 2m | Teflon® insulated, Screened | 4 Wire | 123-5588 | - | | С | Pt100 | В | 4.5mm | 125mm | 2m | Teflon® insulated, Screened | 4 Wire | 123-5597 | - | | С | Pt100 | В | 6mm | 300mm | 2m | Teflon® insulated, Screened | 4 Wire | 123-5606 | - | ### Platinum Resistance Pt100 & Pt1000 Silicone Patch Sensors Pt100 Silicone Patch Sensor Pt1000 Silicone Patch Sensor | lmage | Type | Class | Patch
Length | Patch
Width | Patch
Height | Cable
Length | Cable Type | Termination | RS Order
Code | Allied Code | |-------|-------|-------|-----------------|----------------|-----------------|-----------------|------------------------------|-------------|------------------|-------------| | A | Pt100 | В | 40mm | 13mm | 5mm | 2m | Teflon Insulated,
7/0.2mm | 4 Wire | 285-661 | 70637793 | | A | Pt100 | В | 40mm | 13mm | 5mm | 5m | Teflon Insulated,
7/0.2mm | 4 Wire | 762-1137 | 70651746 | | Image | Type | Class | Patch
Length | Patch
Width | Patch
Height | Cable
Length | Cable Type | Termination | RS Order
Code | Allied Code | |-------|--------|-------|-----------------|----------------|-----------------|-----------------|------------------------------|-------------|------------------|-------------| | В | Pt1000 | В | 30mm | 15mm | 4mm | 1m | Teflon Insulated,
7/0.2mm | 2 Wire | 762-1130 | 70651744 | # **Hygienic Platinum Resistance Pt100 Thermometer** Platinum Resistance Pt100 Hygienic Thermometer, 1.5" Tri-Clamp fitting | Image | Sensor Type | Sheath
Diameter | Sheath
Length | Support
Diameter | Support
Length | Transmitter Fitted (3 Wire Configuration) | | No Transmitter Fitted (4 Wire Configuration) | | |-------|-------------|--------------------|------------------|---------------------|-------------------|---|-------------|--|-------------| | | | | | | | RS Order Code | Allied Code | RS Order Code | Allied Code | | Α | Pt100 | 6mm | 75mm | 8mm | 50mm | 872-2761 | - | 872-2764 | - | | A | Pt100 | 6mm | 125mm | 8mm | 50mm | 872-2770 | - | 872-2767 | - | | Image | Sensor Type | Sheath
Diameter | Sheath
Length | Support
Diameter | Support
Length | Transmitter Fitted (3 Wire Configuration) | | No Transmitter Fitted
(4 Wire Configuration) | | |-------|-------------|--------------------|------------------|---------------------|-------------------|--|-------------|---|-------------| | | | | | | | RS Order Code | Allied Code | RS Order Code | Allied Code | | В | Pt100 | 6mm | 75mm | 8mm | 50mm | 872-2786 | - | 872-2773 | - | | В | Pt100 | 6mm | 125mm | 8mm | 50mm | 872-2789 | - | 872-2777 | - | ## **Pt100 Wall-Mounted Air Boxes** Platinum Resistance Pt100 Indoor Air Temperature Sensor Platinum Resistance Thermometer Pt100 Outdoor/Cold Store Temperature Sensors 4-20mA remote wall mounted housing, Platinum Resistance Pt100 input with 1 metre lead | Image | Class | Length | Width | Height | Indoor/Outdoor Use? | RS Order Code | Allied
Code | |-------|-------|--------|-------|--------|---------------------|---------------|----------------| | Α | В | 85mm | 85mm | 30mm | Indoor Only | 338-9491 | 70643384 | | Image | Class | Length | Width | Height | Elements | Pt100 | 4-20Ma | Indoor/Outdoor Use? | RS Order | Allied Code | |-------|-------|--------|-------|--------|----------|------------|--------------|-----------------------|----------|-------------| | | | | | | Type | Connection | Output | | Code | | | В | В | 80mm | 74mm | 54mm | Single | 4 Wire | No | Indoor or Outdoor use | 236-4283 | 70641758 | | В | В | 80mm | 74mm | 54mm | Duplex | 2 x 4 Wire | No | Indoor or Outdoor use | 455-4208 | 70644358 | | В | В | 80mm | 74mm | 54mm | Single | 3 Wire | Yes (2 Wire) | Indoor or Outdoor use | 455-4214 | 70644359 | | Image | Cable
Glands | Cable
Length | Cable
Insulation | Transmitter
Fitted? | Transmitter Range | Indoor/Outdoor Use? | RS Order
Code | Allied Code | |-------|-----------------|-----------------|---------------------|------------------------|-------------------|---------------------|------------------|-------------| | С | M16 | 1000mm | PFA Teflon | Yes | -50°C to +150°C | Indoor Only | 872-2758 | - | | С | M16 | 1000mm | F/G + SSOB | Yes | 0°C to + 400°C | Indoor Only | 872-2751 | - | # Platinum Resistance Pt100 with Terminal Heads Platinum Resistance Pt100 4 wire class B Resistance Thermometer with DIN B Head Platinum Resistance Pt100 4 wire class B Resistance Thermometer with Compact KNS Head Platinum Resistance Pt100 3 wire class B Resistance Thermometer with KNE Head and Fitted Transmitter | Image | Sensor Type | Probe Diameter | Probe Length | Head Termination | RS Order Code | Allied Code | |-------|-------------|----------------|--------------|------------------|---------------|-------------| | Α | Pt100 | 6mm | 100 | IP67 Din B Head | 872-2736 | - | | Α | Pt100 | 6mm | 200 | IP67 Din B Head | 872-2733 | - | | Α | Pt100 | 6mm | 500 | IP67 Din B Head | 872-2749 | - | | Image | Sensor Type | Probe Diameter | Probe Length | Head Termination | RS Order Code | Allied Code | |-------|-------------|----------------|--------------|------------------|---------------|-------------| | В | Pt100 | 6mm | 150 | IP67 KNS Head | 872-2711 | - | | В | Pt100 | 6mm | 250 | IP67 KNS Head | 872-2720 | - | | В | Pt100 | 6mm | 300 | IP67 KNS Head | 872-2727 | - | | Image | Sensor | Probe | Probe | Head | Transmitter | Transmitter Range | RS Order Code | Allied Code | |-------|--------|----------|--------|---------------|-------------|-------------------|---------------|-------------| | | Type | Diameter | Length | Termination | Fitted? | | | | | С | Pt100 | 6mm | 150 | IP67 KNE Head | Yes | -50°C to +150°C | 872-2708 | - | | С | Pt100 | 6mm | 150 | IP67 KNE Head | Yes | 0°C to 100°C | 872-2701 | - | | С | Pt100 | 6mm | 150 | IP67 KNE Head | Yes | 0°C to 200°C | 872-2705 | - | | С | Pt100 | 6mm | 150 | IP67 KNE Head | Yes | 0°C to 400°C | 872-2714 | - | ### Platinum Resistance Pt100 Industrial Probe with Lagging Extension 4 wire sensor with 1/2"BSPP process connection Replaceable insert for 4 wire sensor with 1/2"BSPP process connection | Image | Туре | Class | Probe
Diameter | Probe Length Below 1/2" BSPP Process Connection | Lagging Length | Termination | RS Order
Code | Allied Code | |-------|-------|-------|-------------------|---|----------------|-------------|------------------|-------------| | A | Pt100 | В | 8mm | 250mm | 75mm | KNE Head | 455-3980 | 70644351 | | Image | Type | Class | Probe
Diameter | Replaceable insert
Length | RS Order
Code | Allied Code | |-------|-------|-------|-------------------|------------------------------|------------------|-------------| | В | Pt100 | В | 6mm | 275mm | 455-4012 | 70644353 | # **Digital Thermometer / Data Logger** L200 Digital Thermometer & Data Logger The Labfacility L200 Pt100 thermometer can be used in conjunction with a PC to provide accurate, Pt100 temperature measurement, scanning and logging of measured values. It can also be used as a "stand alone" indicator/logger and incorporates a digital display of measured temperature. Self-calibration of Pt100 ranges is simple and uses plug-in precision resistors. The L200 is designed to provide exceptional stability with high measurement resolution and represents an ideal crossover between plant practicality and laboratory performance at a very competitive price. | RS Code | Allied Code | |----------|-------------| | 910-6826 | - | L300 8-ZONE TEMPERATURE ALARM / ON-OFF CONTROLLER WITH 10A SWITCHING FOR LABORATORY / TRAINING APPLICATIONS The Labfacility L300 Pt100 temperature alarm / on-off controller can be used in conjunction with a PC to provide accurate monitoring and alarm or on-off control of up to 8- zones simultaneously. It can also be used as a stand-alone instrument without the need for a PC. The PC software supplied with the instrument allows control, configuration, measurement, logging, charting, alarm & relay configuration and calibration functions via a PC. Self-calibration of Pt100 ranges is simple and uses plug-in precision resistors. | RS Code | Allied Code | |----------|-------------| | 910-6823 | - | ## **Frequently Asked Questions** Information given here is for general guidance only and is not definitive – it is not intended to be the basis for product installation or decision making. ### Q. How accurately can I measure temperature using a standard sensor? A. To published, internationally specified tolerances as standard, typically ± 2.5°C for popular thermocouples, ±0.5°C for PRT. Higher accuracy sensors can be supplied to order, e.g. ±0.5°C for type T thermocouple, ±0.2°C for PRT. All of these values are temperature dependent. A close tolerance, 4-wire PRT will give best absolute accuracy and stability. #### Q. How do I choose between a thermocouple and a PRT? A. Mainly on the basis of required accuracy, probe dimensions, speed of response and the process temperature. #### Q. What is the difference between a RTD and PRT sensor? A. Nothing. RTD means resistance thermometer detector (the sensing element) and PRT means Platinum resistance thermometer (the whole assembly) i.e. a PRT uses a RTD! #### O. What is a Pt100? A. An industry standard Platinum RTD with a value of 100 Ohms @0°C to IEC751; this is used in the vast majority of PRT assemblies in most countries. # Q. Are there other types of temperature sensor apart from thermocouple and PRT Types? A. Several, but these two groups are the most common. Alternatives include thermistors, infra-red (non-contact), conventional thermometers (stem & dial types) and many others. #### Q. Why offer 2,3 or 4 wire PRT probes? A. Because all 3 are encountered. Two-wire should be avoided, three-wire is widely used and four-wire gives optimum accuracy. Your instrument will be configured for 2,3 or 4 wire. #### Q. What is the minimum immersion depth for a PRT probe? A. Usually 150mm or more; increase the immersion until the reading is unchanged. ### Q. What is the practical difference between wire-wound and film RTDs? A. Wire-wound type provides greater accuracy and stability but is vulnerable to shock; film type is resistant to shock and has quicker thermal response. ## Q. Is a sensor with a calibration certificate more accurate than an uncalibrated one? A. No. However, the errors and uncertainties compared with a reference sensor are published and corrected values can be used to obtain better measurement accuracy. ### Q. How long will my sensor last in the process? A. Not known but predictable in some cases; this will be a function of sensor type, construction, operating conditions and handling. ## **Frequently Asked Questions** # Q. What is the longest thermocouple I can have without losing accuracy? A. Try to ensure a maximum sensor loop resistance of 100 Ohms for thermocouples and 4 wire PRTs. Exceeding 100 Ohms could result in a measurement error. Note By using a 4-20mA transmitter near the sensor, cable runs can be much longer and need only cheaper copper wire. The instrument must be suitable for a 4-20mA input though. # Q. Do I need a power supply when using a transmitter, and what length of extension lead can I run with a transmitter fitted? A. A 24Vdc, 20mA supply will be needed if this is not incorporated in the measuring instrument. Long runs of copper cable can be used. # Q. What accuracy will I get at a certain temperature using a Pt100 detector; if a better grade detector is used what effect will this have to the accuracy? A. Refer to this Labfacility Temperature Handbook for Pt100 tolerance information. ### Q. What accuracy loss will I get using a transmitter in line? A. This depends on the accuracy of the specified transmitter; there will always be some degradation. # Q. As most instrumentation only takes 2 or 3 wire Pt100s, if I took the correction made on the 3 wire system and incorporated that on to the single leg could I achieve a 4 wire system? A. No; cable length and ambient temperature variations come into play. ### Q. What is the difference between a flat film and wire wound Pt100 element? A. Film uses platinum deposition on a substrate; wire wound uses a helically wound Pt wire in ceramic. Wire-wound type provides greater accuracy and stability but is vulnerable to shock; film type is resistant to shock and has quicker thermal response. Information given here is for general guidance only and is not definitive – it is not intended to be the basis for product installation or decision making.