

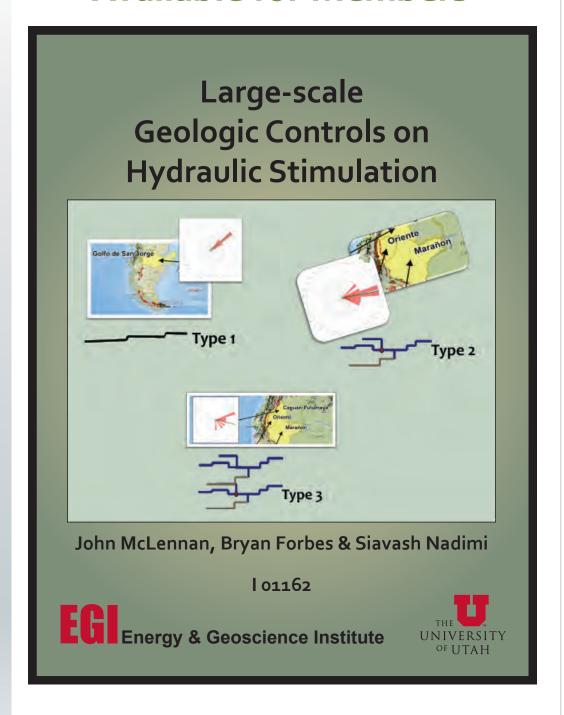
Principal Investigators:

John McLennan, Ph.D.USTAR Associate Professor
Chemical Engineering

Email: jmclennan@egi.utah.edu

Available for EGI Members at EGIconnect.com

Project I 01162


EMAIL:

ContactEGI@egi.utah.edu

PHONE: (801) 585-3826

May 14, 2019 3:41 PM

Available for Members

BACKGROUND

When simulating hydraulic fracturing, the analyst has historically prescribed a single planar fracture. Originally (in the 1950s through the 1970s) this was necessitated by computational restrictions. In the latter part of the twentieth century, hydraulic fracture simulation evolved to incorporate vertical propagation controlled by Young's modulus, fluid loss, and the minimum principal stress. With improvements in software, computational capacity and recognition that in-situ discontinuities are relevant, fully three-dimensional hydraulic simulation is now becoming possible.

Advances in simulation capabilities enable coupling structural geologic data (three-dimensional representation of stresses, natural fractures, and stratigraphy) with decision making processes for stimulation – volumes, rates, fluid types, completion zones. With this interaction between simulation capabilities and geological information, low permeability formation exploitation can be extended to regions outside the currently dominant basins.

MOTIVATION

Currently, the ability to estimate OGIP or OOIP often exceeds the ability to stimulate and economically extract this resource. This inadequacy applies to many tight as well as ultra-low permeability formations – sands or shales. Improved simulation of hydraulic stimulation, amalgamating geologic information (particularly stresses and discontinuities) with controllable engineering parameters – could be of value. Recognizing this, the goals of this work program have been to:

- More fully enfranchise geologic regimes in the stimulation design process. A workflow has been developed (Chapter 3).
- Move the stimulation methodology planning farther upstream. A tool for inferring stresses and discontinuity characteristics during drilling is presented in Chapter 2.
- Develop diagnostic methods that realistically reflect the geologic environments of concern. These would be methods that could be used before, during, and after hydraulic stimulation. Dual porosity methods have been explored for quantifying natural fracture properties - spacing and aperture (Chapter 4).
- Assess geologic signatures that will allow more rock be exposed to recoverable stimulation fluids, to enable fracture aperture to be maintained and to do this with minimized or optimized volumes of treating fluids. This has been done by focusing on post-shut-in pressure decay during DFIT (Diagnostic Fracture Injection Testing), as outlined in Chapters 5 and 6.

SPONSORS

Table of Contents

1.2 Motivation	5
1.3 Geologic Controls on Hydraulic Stimulation: Structural Regimes and Effective Stimulation Stress Contrast	
Structural Regimes and Effective Stimulation Stress Contrast Simulations and Diagnostics 1.4 Report Highlights Chapter 2: A Drilling Classification System Chapter 3: A Drilling Classification System Chapter 4: Learning from Dual Porosity Behavior Chapter 5: Learning from Dual Porosity Behavior Chapter 6: XSite Analyses and the G-Function Pressure-Dependent Leakoff: Fracture Extension After Shut-In with No Pressure Dependent Behavior Square Root of Time Wellbore Storage Compliance Change versus Tangency	6
Stress Contrast Simulations and Diagnostics 1.4 Report Highlights Chapter 2: A Drilling Classification System Chapter 3: A Drilling Classification System Chapter 4: Learning from Dual Porosity Behavior Chapter 5: Learning from Dual Porosity Behavior Chapter 6: XSite Analyses and the G-Function Pressure-Dependent Leakoff: Fracture Extension After Shut-In with No Pressure Dependent Behavior Square Root of Time Wellbore Storage Compliance Change versus Tangency	
Simulations and Diagnostics	6
1.4 Report Highlights	6
Chapter 2: A Drilling Classification System	9
Chapter 3: A Drilling Classification System Chapter 4: Learning from Dual Porosity Behavior Chapter 5: Learning from Dual Porosity Behavior Chapter 6: XSite Analyses and the G-Function Pressure-Dependent Leakoff: Fracture Extension After Shut-In with No Pressure Dependent Behavior Square Root of Time Wellbore Storage Compliance Change versus Tangency	.11
Chapter 4: Learning from Dual Porosity Behavior Chapter 5: Learning from Dual Porosity Behavior Chapter 6: XSite Analyses and the G-Function Pressure-Dependent Leakoff: Fracture Extension After Shut-In with No Pressure Dependent Behavior Square Root of Time Wellbore Storage Compliance Change versus Tangency	.11
Chapter 5: Learning from Dual Porosity Behavior	.12
Chapter 6: XSite Analyses and the G-Function	.13
Pressure-Dependent Leakoff:	.14
Fracture Extension After Shut-In with No Pressure Dependent Behavior	
Square Root of Time	.17
Wellbore Storage Compliance Change versus Tangency	
Compliance Change versus Tangency	
Natural Fracture Properties	.21
·	
Shear Fractures	
Roughness of Fracture Surfaces	
1.5 Future Work	
1.6 References	.24
Chapter 2. Classification of Rock Conditions in Under-Characterized Formations During Drilling	.25
2.1 Introduction	.25
2.2 What Does This Tool Do and How Can It Be Useful?	.25
2.3 Rock Mass Classification	.26
2.4 Rock Assessment and Classification Framework	.27
2.5 Hidden Layer Methodology	.30
2.6 Node 1- Inclined Wellbore Stress Distribution	
Wellbore Collapse	.32
Wellbore Fracturing	.33
Improved Hoek-Brown Failure Criterion	.33
Recap:	.38
2.7 Node 2 - Discontinuities/Unconformities	.40
2.8 Node 3 - Lithology	.41
2.9 Node 4 - Geological Strength Index (GSI)	
2.10 Node 5 - Permeability	

2.11 Drilling Classification	43
2.12 I-Index Value	47
2.13 Summary and Future Work	48
2.14 References	52
APPENDIX 2-A: Value Recommendation Rubric	54
APPENDIX 2-B: Representative Screenshots	57
Chapter 3. Numerical Modeling Workflow	
3.1 Background	
3.2 Workflow	64
3.3 Elements of the Workflow	
Natural Fracture Model (DFN)	
Fracture Length or Radius	
Fracture Spacing	68
Width	68
Mechanical Properties	68
Strike and Dip	69
3.4 Hydraulic Fracturing Simulation – KinetixTM	70
Wellbore Geometry	70
Lithology and Rock Properties	70
Completions	70
Treatment Design	70
DFN Incorporation	
Calibration and History Matching	
Calibrated Product	
3.5 Reservoir Simulation – INTERSECTTM	
3.6 Conclusions	73
Chapter 4. Diagnosing Geologic Parameters Using Dual Porosity Concepts	75
4.1 Introduction	75
4.2 Hydraulically Fractured Vertical Wells in Dual Porosity Reservoirs	78
4.3 Modeling of DFIT in a Naturally Fractured Reservoir	80
4.4 Summary	84
4.5 References	84
Appendix 4-A: Dual Porosity Modeling	87
A.1 Background	88
Chapter 5. DFIT Evaluations Using 3DEC	101
5.1 Context	101
5.2 DFIT	
5.3 Case 1: Normal Stress Regime	102
5.4 Case 2: Strike-Slip Regime	

5.5 Recap	116
5.6 References:	117
Chapter 6. XSite Analyses and the G-Function	118
6.1 Introduction	118
6.2 What is XSite™?	118
6.3 Simulation Matrix – Short Injection	119
Normal Faulting Regime Simulations – Low Volume	
Reverse Faulting Regime Simulations – Low Volume	
6.4 Simulation Matrix – Long Injection	141
Strike Slip - Long Injection	
Normal Faulting – Long Injection	145
Appendix 6-A: Early Developments of the G-Function	
A.1. G-Function Basics – The Early Days	
A.2 References:	
Appendix 6-B: Improvements to G-Function Interpretation	162
B.1. G-Function Basics	
Constant Fracture Geometry and No Pressure-Dependent Leakoff	
Fracture Extension After Shut-In with No Pressure Dependent Behavior	
Pressure Dependent Leakoff Behavior (PDL):	168
Pressure Dependent Leakoff and Fracture Compliance	169
Fracture Height Recession During Closure	169
"Normal" Leakoff G-Function:	173
Wellbore Storage	176
Pressure Dependent Leakoff	176
Summary of G-Function Concepts	178
B.2 After Closure Analysis	178
B.3 References	184
Appendix 6-C: Re-Evaluating Fracture Closure in Complicated Reservoirs	186
C.1 Recap	187
C.2 Fracture or Joint Stiffness	188
C.3 Closure Interpretation Based on Compliance or Stiffness	192
C.4 Wellbore Storage	
C.5 References	210
Appendix 6-D: Classical Pressure Transient Interpretation of Shut-In Data	212
D.1 Pressure Transient Analyses:	213
D 2 References	221

imclennan@egi.utah.edu

Phone 801-587-7925

Research Interests

Energy extraction related to:

- Exploration
- Drilling
- Completion
- Stimulation
- Production

ContactEGI@egi.utah.edu

PHONE: (801) 585-3826

John McLennan, PhD Associate Professor Chemical Engineering

John is a USTAR Associate Professor in the Department of Chemical Engineering at the University of Utah. He holds a Ph.D. in Civil Engineering from the University of Toronto, Canada (1980). His experience extends to petroleum service and technology companies. He worked for Dowell Schlumberger in Denver, Tulsa and Houston; later, with TerraTek in Salt Lake City, Advantek International in Houston, and ASRC Energy Services in Anchorage. He has worked on coalbed methane recovery, mechanical properties determinations, produced water and drill cuttings reinjection, as well as casing design issues related to compaction. John's recent work has focused on optimized gas production from shales and unconsolidated formations.

Shale Gas Phase 2

The three key elements for a successful low permeability reservoir play are gas-in-place, heterogeneities providing permeability in excess of the matrix, and successful stimulation. EGI has been addressing the first of these directly, performing fundamental measurements to indicate the formation and reservoir parameters that govern recoverable gas-in-place. Storage mechanisms (adsorption, compressibility, and dissolution) were determined as functions of gas species, pressure history (reliable lost gas measurements), moisture content, and mineralogy. Without reliable gas-in-place forecasts, and the ability to identify desirable settings in advance, play development is expensive and prolonged.

Stimulating Low Permeability Reservoirs

In any low permeability formation – shale, tight sands, oil shale, geothermal, etc. – effective stimulation entails developing extensive, interconnected fracture systems with adequate conductivity. This effort leverages from projects awarded to the Department of Chemical Engineering by RPSEA for development of new generation simulators. This simulation methodology interrelates formation heterogeneity (stresses, fractures, high permeability streaks) with simulations of the growth of fracture systems during injection; and represents production from this specific, complex fracture network – next generation integrated geologic and production simulation.

Enhanced Geothermal Systems

EGI's geothermal group is engaged in development work for Enhanced Geothermal Systems. Hydraulic injection (either above or below fracturing pressure) is one method to develop an enhanced fracture system, providing surface area for exposure of liquids to elevated temperature en route to producing wells and subsequent conversion to usable energy. The key element of these systems is that they are engineered. Fractures are created with optimal morphology by exploiting the *in-situ* stresses and natural heterogeneity – engineering fracture growth for heat extraction.

