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EXECUTIVE SUMMARY

The main motivation for this study was to understand the thermal history of transform margins

and spatial and temporal distribution of regions with a ductile lower crust. We completed another
generation of thermal modeling, focused on how the thermal evolution of transform margins is
controlled by deformation as ridge migration parallel to the margin causes a pronounced thermal
perturbation. With respect to the structural architecture of transforms, described in detail in Chapters
1-3, one needs to understand that thermal history of transform margin sensu stricto is fundamentally
different from that of both the associated and joining horse-tail structures. While the movements
characterizing the transform sensu stricto are primarily parallel to the plate boundary, the movements
characterizing the horse-tail structures in their normal fault-controlled portions are orthogonal to the
ocean-continent boundary.
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Table 6.3. Overview of all model scenarios. Hot, moderate and cold - initial equilibrium surface heat flow of
72.5,62.5 and 52.5 mWm= Nu 1 and 8 — Nusselt number of 1 and 8. v01, 03, 06 and 12 - sea-floor
spreading rates of 10, 30, 60 and 120 mmy. 247

Table 6.4 Creep parameters of mafic granulite (Wilks and Carter, 1990) are assumed to represent the rheology
of the lower crust in the numerical model. Within the entire range of possible lower crustal rocks,
these parameters result in a moderate creep strength. 256
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Michal Nemcok, PhD
RESEARCH PROFESSOR

Michal holds a Ph.D. in Structural Geology from the Comenius University, Bratislava. He
has 35 years of applied and basic research experience at the Slovak Geological Survey,
University of South Carolina, University of Wales, Cardiff, Imperial College London,
University of Salzburg, University of Wurzburg, and University of Utah. He joined EGI in
1998 and is a Research Professor and Structural Group leader. Michal has published 80+
articles, coauthored 5 monographs, and coedited five books.

Continental Break-up Processes & Controlling Factors

Continental break-up research focuses on both extensional and transform settings, with
a focus on driving mechanisms and controlling factors to achieve predictive models with
respect to structural architecture, thermal regimes, and petroleum systems. The main
research contribution includes understanding anomalous thermal and uplift histories of
transform margins, break-up mechanisms in extensional settings, and micro-continent-
releasing mechanisms. A summary of his last eight years of break-up research is recorded
in a monograph titled “Rifts and Passive Margins; Structural Architecture, Thermal Regimes and
Petroleum Systems” published by Cambridge University Press, and authored by Nemcok,
M. Together with co-authors, a new monograph called Strike-slip Terrains and Transform
Margins—Structural Architecture, Thermal Regimes & Petroleum Systems is being written in
contract with Cambridge University Press.

Thrustbelt Development & Controlling Factors

Michal’s current research focuses on the thrustbelt-foreland interactions, with a
concentration on driving mechanisms and controlling factors behind thick-skin tectonics,
foreland plate flexure mechanisms, and flexural faulting in control of structural architecture
and play concept elements. The main research contribution includes the factors and
mechanisms leading to the lack of foreland flexing and transitions from initial inversion to
full accretion. Accompanying research focuses on modeling of the fluid flow mechanisms
occurring in the thrustbelt front and its foreland. A summary of thrustbelt research is
written in a monograph called “Thrustbelts; Structural Architecture, Thermal Regimes and
Petroleum Systems’; published by Cambridge University Press, and authored by Nemcok,
M., Schamel, S. and Gayer, R.. Current research findings are summarized in several articles
included in the Geological Society of London Special Publication 377, which is edited by
Nemc¢ok, M., Mora, A., and Cosgrove, J.

Fracture Development Prediction

Fracture prediction research includes both detailed well core, rock outcrop and numerical
simulation studies focused on predicting timing, location and kinematics of developing
fractures. Most of the fracture studies come from thrustbelts, although some core-based
studies come from various geothermal reservoirs. The main research contribution includes
tools capable of predicting fracture locations, kinematics and propagation timing in two
and three-dimensions for hydrocarbon reservoirs in thrustbelts, which were tested by well-
based fracture data. Accompanying research includes understanding the role of mechanical
stratigraphy on developing structural architecture. This research is published in a number of
journals run by structural and geothermal communities.
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Samuel Rybar, PhD
SEDIMENTOLOGIST

Education & Experience

Samuel Rybar has been affiliated with EGI since 2015, working in EGI's Bratislava,
Slovakia Lab, where his research focus is basin analysis with emphasis on applying
standard methods of sedimentology, structural geology, tectonics, and organic
geochemistry. Since 2016, Samuel has also served at the Faculty of Natural Sciences
in the Department of Geology and Paleontology at Comenius University in Bratislava,
Slovakia.

Samuel earned his Bachelor (2010) and Master (2012) in Geology and Paleontology
and his Ph.D. in Sedimentology in 2016 from Comenius University. His Doctoral thesis
title was Danube Basin Development During the Middle Miocene.

Samuel is fluent in English, Slovak, and German.

Regional & Basin Experience

« Onshore basins: Pannonian basin system, Vienna basin, Black Sea basin, Timan-
Pechora basin, West Siberia basin, Volga-Ural basin, Dniper-Donets basin.

« Offshore basins: Central and Equatorial Atlantic basins, East India basins,
sheared margin basins of West Australia.

Selected Publications

Rybar, S., Sarinova K., Sant, K., Kuiper, K.F, Kova¢ova, M., Vojtko, R., Reiser, MK,
Fordinal, K., Teodoridis, V., Novakova, P, Vi¢ek, T., 2019: New 40Ar/39Ar, fission track
and sedimentological data on a middle Miocene tuff occurring in the Vienna Basin:
implications for the North-Western Central Paratethys region. Geologica Carpathica,
70, 5, 386-404. doi: 10.2478/geoca-2019-0022.

Nemcok, M., Rybar, S., Odegard, M., Dickson, W., Pelech, O. Ledvényiova, L.,
Matejovd, M., Molc¢an, M., Hermeston, S., Jones, D., Cuervo, E., Cheng, R. & Forero,
G., 2015: Development history of the southern terminus of the Central Atlantic;
Guyana-Suriname case study. In: Nemcok, M., Rybar, S., Sinha, S.T., Hermeston, S.A.
& Ledvényiovq, L. (eds.) Transform Margins: Development, Controls and Petroleum
Systems. Geological Society, London, Special Publications, 145-179, 431. doi:
10.1144/5P431.10

Rybar, S., Kova¢, M., Sarinova, K., Halasova E., Hudackova, N., Sujan, M., Kovéacova,
M., Ruman, A. & Kluciar, T. 2016: Neogene changes in paleeogeography,
palaeoenvironment and the provenance of sediment in the Northern Danube Basin.
Bulletin of Geosciences, 91, 2, 367-398. doi: 10.3140/bull.geosci.1571

Nemcok, M. & Rybar, S., 2016: Rift-drift transition in a magma-rich system: the
Gop Rift-Laxmi Basin case study, West India. In: Mukherjee, S., Misra, A.A., Calvés,
G. & Nemcok, M. (eds.) Tectonics of the Deccan Large Igneous Province. Geological
Society, London, Special Publications, 445. doi: 10.1144/SP445.5
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» Unconventional Gas
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Julia Kotulova, PhD
RESEARCH SCIENTIST

Julia earned a Ph.D. in Geology, an B.Sc, RNDr. (M.Sc. equivalent) in Geology,
Geochemistry and Economic geology from Comenius University, Bratislava, Slovakia.
Julia joined EGI in 2011 with extensive experience as a geochemist and petroleum
geologist, having spent the previous nine years working at the Department of
Geophysics and Non-Renewable Energy Sources, State Geological Institute of Dionyz
Stur (Geological Survey), Bratislava, Slovak Republic. Prior to this, Julia worked with
the Geological Institute at Slovak Academy of Sciences. Julia collaborates with the
geochemistry lab and other researchers in the Salt Lake City office from her primary
location in EGI's Bratislava office.

Research Related to Hydrocarbon Systems

« Integration of geology, geochemistry, and basin modeling for a holistic
understanding of hydrocarbon generation, migration, entrapment, and
preservation in order to identify regional characteristics and to de-risk new
exploratory plays and prospects. Design, acquisition, implementation and
interpretation of geochemical data applied to petroleum exploration and
exploitation.

 Design, implementation and management rock, oil, and gas sampling and
analytical programs.

+ Organic geochemistry research into the molecular and isotopic composition of
source rocks, oils, and gases for reservoir geochemistry, source rock quality, and
thermal maturity evaluation.

- Organic petrology research with an emphasis on source rock evaluation, coal
and paleoenvironmental/organic facies characterization; multi-dimensional
geochemical basin modeling for the reduction of petroleum exploration risk.

Global Basin Studies

Julia has experience with various types of basins around the globe - from the Carpathian
accretionary wedge, fore-arc basins, back-arc Black Sea and Danube Basins, and the
intra-arc Transcarpathian Neogene Basin to the Intermountain Basins of Slovakia — with
a focus on petroleum systems, geohistorical models, thermal evolution, and fluid flow
dating and duration. Her experience with passive margin basins includes the Central
and Equatorial Atlantic and NW Australian margins. She also has experience with shale
gas research (Central Europe, Russia, Ukraine and South America) for biogenic and
thermogenic shale gas systems, geological storage of CO: as related to the Northern
part of the Pannonian basin system, Ocean Anoxic Events research (Aptian OAE 1a and
Oligocene Antarctic glaciation Oceanic Anoxic Oi-1 events), PetroMod geochemical
models and Petrel 3-D geological models (East Slovakian Neogene and Intermountain
Horna Nitra Neogene basins), and visual kerogen analysis (Tethys: Aptian; Paratethys:
Cretaceous to Neogene in the Carpathian accretionary wedge and the Circum Black
Sea region, Neogene in the North part of the Pannonian Basin).
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