

Math 1A - So you think you can slant (asymptote)?

Peyam Ryan Tabrizian

Wednesday, March 23rd, 2011

In our magical journey of graphing functions, we encountered a completely new concept, that of a **slant asymptote**. Let's first define such a concept!

1 Definition of a slant asymptote

Definition. A line $y = ax + b$ is a **slant asymptote to the graph of f at ∞** if

$$\lim_{x \rightarrow \infty} f(x) - (ax + b) = 0$$

Similarly for $-\infty$

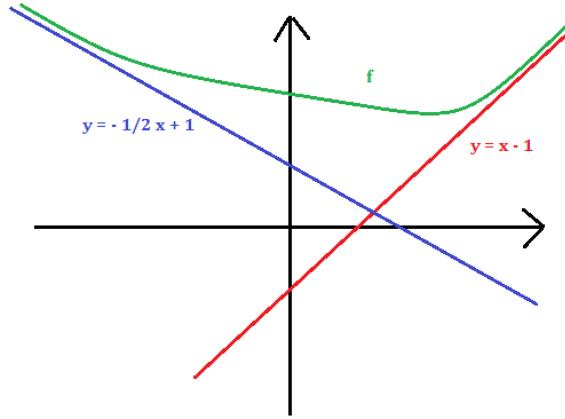
Definition. A line $y = ax + b$ is a **slant asymptote to the graph of f at $-\infty$** if

$$\lim_{x \rightarrow -\infty} f(x) - (ax + b) = 0$$

If you don't like a and b , just think of $2x+3$, or $x-1$, or whatever your two favorite numbers are!

This concept is easier understood with a picture! (see next page)

1A/Handouts/Slant.png



Notice that, as $x \rightarrow \infty$, the graph of f 'approaches' the line $y = x - 2$, so $y = x - 1$ is a slant asymptote to the graph of f at ∞ . Similarly, as $x \rightarrow -\infty$, the graph of f 'approaches' the line $y = -\frac{x}{2} + 1$, so $y = -\frac{x}{2} + 1$ is a slant asymptote to the graph of f at $-\infty$!

What's the point, really? Basically, we're saying that as x becomes very large, the graph of f looks very much like $y = x - 1$, which tells us a great deal about the graph of f .

Also, note that the graph of f **CAN** cross its slant asymptote, and it **CAN** approach this asymptote from below! (the picture is a little bit misleading in this sense).

2 How can we show that a given line is a slant asymptote?

One sample problem would be the following:

Problem. Show that $y = x + 2$ is a slant asymptote to the graph of $f(x) = \sqrt{x^2 + 4x}$

This is the easiest problem you can get about this topic! First, you need to decide whether the above line is a slant asymptote at ∞ or $-\infty$, and this requires 2 seconds of thinking: Notice that $y = x + 2$ goes to $-\infty$ as $x \rightarrow -\infty$, so it **can't** be a slant asymptote at $-\infty$ because f goes to ∞ as $x \rightarrow -\infty$! So, if $y = x + 2$ is a slant

asymptote, then it must be a slant asymptote **at ∞ !**

Now the rest is easy, because we just need to show $\lim_{x \rightarrow \infty} \sqrt{x^2 + 4x} - (x + 2) = 0$. A calculation using 'conjugate forms' shows:

$$\begin{aligned} \lim_{x \rightarrow \infty} \sqrt{x^2 + 4x} - (x + 2) &= \lim_{x \rightarrow \infty} \left(\sqrt{x^2 + 4x} - (x + 2) \right) \frac{\sqrt{x^2 + 4x} + (x + 2)}{\sqrt{x^2 + 4x} + (x + 2)} \\ &= \lim_{x \rightarrow \infty} \frac{x^2 + 4x - (x + 2)^2}{\sqrt{x^2 + 4x} + (x + 2)} \\ &= \lim_{x \rightarrow \infty} \frac{x^2 + 4x - x^2 - 4x - 4}{\sqrt{x^2 + 4x} + (x + 2)} \\ &= \lim_{x \rightarrow \infty} \frac{-4}{\sqrt{x^2 + 4x} + (x + 2)} \\ &= 0 \end{aligned}$$

And so, we showed that $y = x + 2$ is a slant asymptote to the graph of f at ∞ . As an exercise, show that $y = -x - 2$ is a slant asymptote to the graph of f at $-\infty$.

3 How can we find slant asymptotes?

There is a wonderful standard procedure to find slant asymptotes, and it is also useful to show that a graph cannot have a slant asymptote! It is based on the following fact:

Suppose $y = ax + b$ is a slant asymptote to f at ∞ . Then:

$$\lim_{x \rightarrow \infty} f(x) - (ax + b) = 0$$

Now, dividing both sides by x , we get:

$$\lim_{x \rightarrow \infty} \frac{f(x)}{x} - \frac{ax + b}{x} = 0$$

That is:

$$\lim_{x \rightarrow \infty} \frac{f(x)}{x} - a + \frac{b}{x} = 0$$

However, $\lim_{x \rightarrow \infty} \frac{b}{x} = 0$, so we get:

$$\lim_{x \rightarrow \infty} \frac{f(x)}{x} - a = 0$$

That is:

$$a = \lim_{x \rightarrow \infty} \frac{f(x)}{x}$$

In other words, the slope of the slant asymptote is given by
$$a = \lim_{x \rightarrow \infty} \frac{f(x)}{x}.$$

And once you found a , finding b (the y -intercept) is even easier, namely:

$$b = \lim_{x \rightarrow \infty} f(x) - ax$$

(you get this by adding b to both sides of the equality: $0 = \lim_{x \rightarrow \infty} f(x) - (ax + b)$).

And of course, the same thing is true for $-\infty$.

Now let's see this in action!

Problem. Find the slant asymptote to $f(x) = \sqrt{x^2 + 4x}$ at ∞

This is the same problem as above, except that we're not given the equation of the slant asymptote! Here, we'll try to find it!

First let's find the slope a :

$$\begin{aligned} a &= \lim_{x \rightarrow \infty} \frac{\sqrt{x^2 + 4x}}{x} \\ &= \lim_{x \rightarrow \infty} \frac{\sqrt{(x^2)(1 + \frac{4}{x})}}{x} \\ &= \lim_{x \rightarrow \infty} \frac{|x| \sqrt{1 + \frac{4}{x}}}{x} \\ &= \lim_{x \rightarrow \infty} \frac{x \sqrt{1 + \frac{4}{x}}}{x} \quad (\text{since } x > 0) \\ &= \lim_{x \rightarrow \infty} \sqrt{1 + \frac{4}{x}} \\ &= 1 \end{aligned}$$

And to find b , we get:

$$\begin{aligned}
b &= \lim_{x \rightarrow \infty} \sqrt{x^2 + 4x} - x \\
&= \lim_{x \rightarrow \infty} \frac{x^2 + 4x - x^2}{\sqrt{x^2 + 4x} + x} \quad (\text{conjugate form}) \\
&= \lim_{x \rightarrow \infty} \frac{4x}{\sqrt{x^2 + 4x} + x} \\
&= \lim_{x \rightarrow \infty} \frac{4x}{|x| \sqrt{1 + \frac{4}{x}} + x} \\
&= \lim_{x \rightarrow \infty} \frac{4x}{x \sqrt{1 + \frac{4}{x}} + x} \\
&= \lim_{x \rightarrow \infty} \frac{4x}{x \left(\sqrt{1 + \frac{4}{x}} + 1 \right)} \\
&= \lim_{x \rightarrow \infty} \frac{4}{\sqrt{1 + \frac{4}{x}} + 1} \\
&= \frac{4}{2} \\
&= 2
\end{aligned}$$

Hence, the slant asymptote to f at ∞ is: $y = x + 2$ (which is the same answer we found above!)

This procedure is also good to show a function cannot have a slant asymptote!

Problem. Show that $f(x) = x + \sqrt{x}$ does not have a slant asymptote at ∞

We'll do a proof by contradiction! Suppose f has a slant asymptote $y = ax + b$. Then we must have:

$$a = \lim_{x \rightarrow \infty} \frac{f(x)}{x} = \lim_{x \rightarrow \infty} \frac{x + \sqrt{x}}{x} = \lim_{x \rightarrow \infty} 1 + \frac{1}{\sqrt{x}} = 1$$

So $y = x + b$.

And then, we get:

$$b = \lim_{x \rightarrow \infty} f(x) - x = \lim_{x \rightarrow \infty} x + \sqrt{x} - x = \lim_{x \rightarrow \infty} \sqrt{x} = \infty$$

Which is a contradiction (since b must be finite!).

Hence f cannot have a slant asymptote at ∞ .