
Overview of the ‘yuima’ and ‘yuimaGUI’ R packages

Emanuele Guidotti

Contents
The YUIMA Object 1

Model . 2
Data . 5
Sampling . 5

Simulation 5

Estimation 7
The ‘qmle’ Function . 7

yuimaGUI 9

Code Download 9

The Yuima Project aims at implementing, via the yuima package, a very abstract framework to describe
probabilistic and statistical properties of stochastic processes in a way which is the closest as possible to their
mathematical counterparts but also computationally efficient.
install the package
install.packages('yuima')

load the package
require(yuima)

The YUIMA Object
The main object is the yuima object which allows to describe the model in a mathematically sound way.
Then the data and the sampling structure can be included as well for estimation and simulation purposes.

1

Model
The ‘setModel’ function

The setModel() function defines a stochastic differential equation with or without jumps of the following
form:

dXt = a(t, Xt, α)dt + b(t, Xt, β)dW H
t + c(t, Xt, γ)dZt

where

• a(t, Xt, α) is the drift term. Described by the drift argument
• b(t, Xt, β) is the diffusion term. Described by the diffusion argument
• c(t, Xt, γ) is the jump term. Described by the jump.coeff argument
• H is the Hurst coefficient. Described by the hurst argument
• Zt is the Levy noise. Described by the measure.type and measure arguments

Deterministic Model

dUt = sin(αt)dt

setModel(drift = "sin(alpha*t)", # the drift term
solve.variable = "u", # the solve variable
time.variable = "t") # the time variable

Geometric Brownian Motion

dXt = µXt dt + σXt dWt

2

setModel(drift = "mu*x", # the drift term
diffusion = "sigma*x", # the diffusion term
solve.variable = "x") # the solve variable

CKLS Model

dXt = (θ1 + θ2Xt) dt + θ3Xθ4
t dWt

setModel(drift = "theta1+theta2*x", # the drift term
diffusion = "theta3*xˆtheta4", # the diffusion term
solve.variable = "x") # the solve variable

2-Dimensional Diffusion with 3 Noises

{
dX1

t = −3X1
t dt + dW 1

t + X2
t dW 3

t

dX2
t = −(X1

t + 2X2
t) dt + X1

t dW 1
t + 3dW 2

t

setModel(drift = c("-3*x1","-x1-2*x2"), # the drift vector
diffusion = matrix(c("1","x1","0","3","x2","0"), 2, 3), # the diffusion matrix
solve.variable = c("x1","x2")) # the solve variables

Fractional Ornstein-Uhlenbeck

dXt = −θXt dt + σ dW H
t

setModel(drift = "-theta*x", # the drift term
diffusion="sigma", # the diffusion term
hurst = NA, # the hurst coefficient
solve.variable = "x") # the solve variable

Jump Process with Compound Poisson Measure

dXt = −θXtdt + σdWt + dZt

setModel(drift = "-theta*x", # the drift term
diffusion="sigma", # the diffusion term
jump.coeff = "1", # the jump term
measure.type = "CP", # the measure type
measure = list(# the measure
intensity = "lambda", # constant intensity
df = "dnorm(z, mu_jump, sigma_jump)" # jump density function

),
solve.variable = "x") # the solve variable

The ‘setPoisson’ Function

Defines a generic Compound Poisson model.

Compound Poisson with constant intensity and Gaussian jumps

Xt = X0 +
Nt∑
i=0

Yi : Nt ∼ Poi
(∫ t

0
λ(t)dt

)
, Yi ∼ N(µjump, σjump)λ(t) = λ

3

setPoisson(intensity = "lambda", # the intensity function
df = "dnorm(z, mean = mu_jump, sd = sigma_jump)", # the density function
solve.variable = "x") # the solve variable

Compound Poisson with exponentially decaying intensity and Student-t jumps

Xt = X0 +
Nt∑
i=0

Yi : Nt ∼ Poi
(∫ t

0
λ(t)dt

)
, Yi ∼ t(νjump, µjump)λ(t) = α e−βt

setPoisson(intensity = "alpha*exp(-beta*t)", # the intensity function
df = "dt(z, df = nu_jump, ncp = mu_jump)", # the density function
solve.variable = "x") # the solve variable

The ‘setCarma’ Function

Defines a generic Continuous ARMA model.

Continuous ARMA(3,1) process driven by a Brownian Motion

CARMA(3, 1)

setCarma(p = 3, # autoregressive coefficients
q = 1) # moving average coefficients

Continuous ARMA(3,1) process driven by a Compound Poisson with Gaussian jumps

CARMA(3, 1)

setCarma(p = 3, # autoregressive coefficients
q = 1, # moving average coefficients
measure.type = "CP", # compound poisson
measure = list(# cp measure

intensity = "lambda", # intensity function
df = "dnorm(z, 'mu', 'sigma')" # density function

))

The ‘setCogarch’ Function

Defines a generic Continuous GARCH model.

Continuous COGARCH(1,1) process driven by a Compound Poisson with Gaussian jumps

COGARCH(1, 1)

setCogarch(p = 1, # autoregressive coefficients
q = 1, # moving average coefficients
measure.type = "CP", # compound poisson
measure = list(# cp measure

intensity = "lambda", # intensity function
df = "dnorm(z, 'mu', 'sigma')" # density function

))

4

Data
The setData() function prepares the data for model estimation. The delta argument describes the time
increment between observations. If we have monthly data and want to measure time in years, then delta
should be 1/12. If we have daily data and want to measure time in months, then delta should be 1/30. If
we have financial daily data and want to measure time in years, then delta should be 1/252, since 252 is
the average number of trading days in one year. In general, if we want to measure time in unit T , delta
should be 1 over the average number of observations in a period T . The unit of measure of time affects the
estimated value of the model parameters.

The following example downloads and sets some financial data (see tutorial on Data Acquisition in R).
Install the quantmod package if needed:
install.packages('quantmod')

load quantmod
require(quantmod)

download Facebook quotes
fb <- getSymbols(Symbols = 'META', src = 'yahoo', auto.assign = FALSE)

setData with time in years -> delta = 1/252
(there are 252 observations in 1 year)
setData(fb$META.Close, delta = 1/252, t0 = 0)

##
##
Number of original time series: 1
length = 3276, time range [2012-05-18 ; 2025-05-29]
##
Number of zoo time series: 1
length time.min time.max delta
META.Close 3276 0 12.996 0.003968254

Sampling
The setSampling() function describes the simulation grid. If delta is not specified, it is calculated as
(Terminal-Initial)/n. If delta is specified, the Terminal is adjusted to be equal to Initial+n*delta.
define a regular grid using delta
setSampling(Initial = 0, delta = 0.01, n = 1000)

define a regular grid using Terminal
setSampling(Initial = 0, Terminal = 2, n = 1000)

Simulation
Simulation of a generic model is perfomed with the simulate() function.

Example Solve an Ordinary Differential Equation
model: ordinary differential equation
model <- setModel(drift = 'sin(t)*t', solve.variable = 'x', time.variable = 't')
simulation scheme
sampling <- setSampling(Initial = 0, Terminal = 10, n = 1000)
yuima object
yuima <- setYuima(model = model, sampling = sampling)

5

https://emanueleguidotti.dev/R/data-acquisition.html

simulation
sim <- simulate(yuima)
plot
plot(sim)

0 2 4 6 8 10

−
5

0
5

10

t

x

Example Simulate one trajectory of a jump diffusion model
model: jump diffusion
model <- setModel(drift = "-theta*x",

diffusion="sigma",
jump.coeff = "1",
measure.type = "CP",
measure = list(

intensity = "lambda",
df = "dnorm(z, mu_jump, sigma_jump)"

),
solve.variable = "x")

simulation scheme
sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)

yuima object
yuima <- setYuima(model = model, sampling = sampling)

simulation
sim <- simulate(yuima, # the yuima object

xinit = 1, # the initial value
true.parameter = list(# specify the parameters:

theta = 1, # value for the 'theta' parameter
sigma = 1, # value for the 'sigma' parameter
lambda = 10, # value for the 'lambda' parameter
mu_jump = 0, # value for the 'mu_jump' parameter

6

sigma_jump = 2 # value for the 'sigma_jump' parameter
))

plot
plot(sim)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0
1

t

x

Estimation
The ‘qmle’ Function
The qmle() function calculates the quasi-likelihood and estimate of the parameters of the stochastic differential
equation by the maximum likelihood method or least squares estimator of the drift parameter.

Example Simulate a Geometric Brownian Motion and estimate its parameters
model: geometric brownian motion
model <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')

simulation scheme
sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)

yuima object
yuima <- setYuima(model = model, sampling = sampling)

simulation
sim <- simulate(yuima, true.parameter = list(mu = 1.3, sigma = 0.25), xinit = 100)

estimation
estimation <- qmle(sim, # the yuima object

start = list(mu = 0, sigma = 1), # starting values for optimization
lower = list(sigma = 0)) # lower bounds

estimates and standard errors

7

summary(estimation)

Quasi-Maximum likelihood estimation
##
Call:
qmle(yuima = sim, start = list(mu = 0, sigma = 1), lower = list(sigma = 0))
##
Coefficients:
Estimate Std. Error
sigma 0.2476376 0.005623821
mu 1.1498516 0.247637569
##
-2 log L: 3182.872

Example Estimate the yearly volatility (σ in the Geometric Brownian Motion) of Google stock quotes
Install the quantmod package if needed:
install.packages('quantmod')

load quantmod
require(quantmod)

download Google quotes
goog <- getSymbols(Symbols = 'GOOG', src = 'yahoo', auto.assign = FALSE)

setData with time in years -> delta = 1/252
(there are 252 observations in 1 year)
data <- setData(goog$GOOG.Close, delta = 1/252, t0 = 0)

model: geometric brownian motion
model <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')

yuima object
yuima <- setYuima(model = model, data = data)

estimation
estimation <- qmle(yuima, # the yuima object

start = list(mu = 0, sigma = 0.5), # starting values for optimization
lower = list(sigma = 0)) # lower bounds

estimates and standard errors
summary(estimation)

Quasi-Maximum likelihood estimation
##
Call:
qmle(yuima = yuima, start = list(mu = 0, sigma = 0.5), lower = list(sigma = 0))
##
Coefficients:
Estimate Std. Error
sigma 0.2984614 0.003103375
mu 0.1911261 0.069630259
##
-2 log L: 9813.243

8

yuimaGUI
The yuimaGUI package provides a user-friendly interface for yuima. It simplifies tasks such as estimation
and simulation of stochastic processes, including additional tools related to quantitative finance such as
data retrieval of stock prices and economic indicators, time series clustering, change point analysis, lead-lag
estimation.

The yuimaGUI is available online for free, but it is strongly recommended to install the application via the R
package on your local machine for better performance and less downtime.
install the package
install.packages('yuimaGUI')

load the package
require(yuimaGUI)

run the interface
yuimaGUI()

Code Download
Download the full code to generate this document and reproduce the examples. The file is in R Markdown,
format for making dynamic documents with R. An R Markdown document is written in markdown, an
easy-to-write plain text format, and contains chunks of embedded R code.
Download: https://storage.googleapis.com/emanueleguidotti/R/yuima-and-yuimaGUI.zip

9

https://yuima.shinyapps.io/yuimaGUI/
https://rmarkdown.rstudio.com/
https://storage.googleapis.com/emanueleguidotti/R/yuima-and-yuimaGUI.zip

	The YUIMA Object
	Model
	Data
	Sampling

	Simulation
	Estimation
	The `qmle' Function

	yuimaGUI
	Code Download

