
θi

θj

θk

�������������

���
����������
	��������������������	����������������

��������������������������

����������

�������������

I LYA K AT S O V

T H E T H E O RY A N D P R A C T I C E O F

E N T E R P R I S E A I

Recipes and Reference Implementations for
Marketing, Supply Chain, and Production Operations

S E C O N D E D I T I O N

iii

Copyright © 2023 Ilya Katsov

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the copyright holder.

This book was set in the LATEX programming language by the author.

Printed in the United States of America.

Katsov, Ilya

The theory and practice of enterprise AI: recipes and reference implementations for
marketing, supply chain, and production operations/ Ilya Katsov. – 2E [edition]

Includes bibliographical references and index.

ISBN 979-8-218-16967-1 (hardcover)

v

Praise for The Theory and Practice of Enterprise AI

“A must read primer for any data science leader. Ilya has taken on the Herculean task of
systemizing AI-based problem solving in a business setting, and has succeeded spectacularly.
This book is of interest to all kinds of analytics practitioners as it comes with real-world examples
for the curious, and an abundance of theoretical explanations for the audacious.”

—Suman Giri
Head of Data Science, Merck & Co.

“This book is an excellent introduction to machine learning and its applications in enterprise.
It is a great resource for data scientists looking for bridging theory and practice – it presents
many distinctly different business use cases and clearly shows how state of the art methods in
AI can be applied, with complete reference implementations provided in interactive notebooks.
In a world where AI is increasingly present in all parts of businesses this is a comprehensive
guide with everything you need to know.”

—Anna Ukhanova
Research Technical Program Manager, Google AI

“Ilya Katsov’s previous book set the standard as the clearest, most complete, and self-contained
treatment of modern algorithmic marketing that I’m aware of – I have used and recommended
it many times. Now he applies the same level of expert guidance providing a one-stop-shop for
deep/reinforcement learning techniques in marketing, supply chain, and operations. This book
will sit within arm’s reach for years to come.”

—Spencer Stirling
Director of Data Science, Activision

“Excellent. I strongly recommend this book for anyone involved in Enterprise AI for a great
overview of solutions for key marketing, supply chain & production business processes.”

—Joost Bloom
Head of Machine Learning & Foundational AI, H&M Group

vi

“This is a unique book in that it dives into the depths of machine learning theory while still
being organized around business applications and use-cases. By presenting a detailed under-
standing of machine learning algorithms alongside their applications, this text is versatile –
applicable to a variety of users from technical students to data scientists and all the way to data
and IT leadership. A very valuable addition to our Data Science world.”

—Ellie Magnant
Director of Data Science, UnitedHealth Group

“This textbook provides an ultimate guide to data scientists and AI engineers on building
best-in-class AI capabilities to solve a wide spectrum of business problems. Furthermore, Ilya
did a great job covering the end-to-end development lifecycle of AI solutions with practical case
studies. Excellent book, Highly Recommended.”

—Fouad Bousetouane
Senior Principal Machine Data Scientist, W.W. Grainger, Inc.,

2020 Timmy-Award, Best-Tech-Manager Chicago Region

“The book is a resource where algorithmic theory, algorithmic system design, and their ap-
plications are strongly tied to each other and discussed in depth. It offers a guide to technical
leaders on how to make their systems more actionable, technically sound, and applicable at var-
ious scales. To business leaders, this book helps connect the dots and offers ideas on how to
improve their current processes to have a meaningful communication with AI practitioners.”

—Addhyan Pandey
Senior Director of Data Science, Cars.com

“The book by Ilya Katsov equips technical and data/AI professionals working in the Marketing,
Supply Chain and Production Operations domains with modern techniques and approaches
for solving a broad range of AI problems. The book provides a very systematic overview of
methodologies and does a fantastic job in explaining rationale and assumptions for their use.
This makes this book suitable not only for entry level but also for expert AI professionals. Finally
the book provides multiple case studies which make it even more valuable for practitioners.”

—Alexander Statnikov
Head of Go-to-Market Platform and Ecosystem Products, Square,

Previously Professor of Data Science at New York University

vii

“The Theory and Practice of Enterprise AI combines cutting-edge AI modeling concepts,
academic rigor, and actionable industry domain knowledge in one concise tome. It is an absolute
must on any data science practitioner’s book shelf or desk.”

—Skander Hannachi
AI/ML Specialist, Google Cloud

“Many books on AI and ML aim to bridge the chasm between theory and practice, but Ilya’s
is one of those rare few that succeeds brilliantly in doing just that. If you are an ML practitioner
looking for a very application-oriented book on enterprise AI, this book should be on your must-
read list. Because of the well-explained rationale and math behind the models, it will serve as
a great reference book for not only the data science community but also for seasoned marketing
and supply professionals.”

—Tushar Kumar
Global Head of Analytics, Signify (f/k/a Philips Lighting)

“The Theory and Practice of Enterprise AI builds on the excellent foundation of its predecessor
Introduction to Algorithmic Marketing. It offers a practical and rigorous guide for applying AI
to achieve business goals. Ilya Katsov covers the essential aspects of designing and deploying
AI systems for the enterprise. The book is written in a clear, concise, and engaging way that
appeals to technical, business practitioners, and non-technical audiences alike. It also provides
numerous business examples and use-cases that are supported by a rich online library of code
snippets in Github across various domains such as marketing, supply chain, and manufacturing.
As a business analytics manager with hands-on experience, I find Enterprise AI very useful
for framing my business problems and taking the next steps to improve business outcomes
significantly. This book is a great investment of your time if you want to deploy AI models
successfully.”

—Juan B. Solana
Global Director Measurement and Advanced Analytics, General Motors

“This book provides technical depth and reference architecture to solve real-world business
problems using AI. The book will resonate with the data science community, and this book is an
excellent addition to AI literature. Ilya has done a fantastic job bringing theoretical and practical
AI closer with this book.”

—Prateek Srivastava
Director of AI Products, Dell Technologies

viii

“The biggest challenge for the adoption of enterprise AI is the divide that separates theory from
application. Ilya bridges it elegantly. The book covers all important AI techniques of the recent
years in great detail. Importantly, the reader is not left alone with the theoretical knowledge.
Ilya discusses real-world business problems and presents state-of-the-art solutions utilizing the
concepts taught in this book. A must-read for anyone eager to keep up with the rapidly evolving
field of enterprise AI.”

—Jan Scholz
Senior Director of Data Science, Loblaw Companies Limited

“Timely and inspiring! An essential handbook for those seeking a primer on the data science
community, from enthusiastic to novice to developers to resident experts interested in scalable
enterprise AI and ML for any industry domain. Ilya paints a vision of what’s possible and aligns
it with the business problem to guide the journey toward solution options & architecture, model
architecture, implementation plan, reference code, and modeling prototype. In addition, Ilya has
created a very comprehensive framework for organizing and prioritizing the key building blocks
of model representation and mapping, customer experience, content intelligence, revenue & in-
ventory management, and production operations. With Ilya’s breadth of experience in the field
of enterprise AI, this book should be considered the de-facto reference guide for any organiza-
tion undergoing a digital AI transformation. If you can’t work directly with Ilya, this is a close
second best! Enjoy, Learn & Apply... and watch what happens...”

—Srikanth Victory
Vice President, Digital Advanced Analytics & Products, CommonSpirit Health

C O N T E N T S

preface xxi

part i building blocks 1

1 decision and process automation in enterprise operations 3

1.1 Scenario Planning Framework . 4

1.1.1 Strategy: Enterprise as a Whole . 6

1.1.2 Tactics: Departments, Services, and Products 10

1.1.3 Execution: Customers, Devices, Transactions, and Interfaces 13

1.2 Modeling Capabilities . 15

1.3 Impact of AutoML and Foundation Models 17

1.4 Summary . 19

2 predictive models 21

2.1 Overview from the System Engineering Perspective 21

2.1.1 Semantic Representations . 22

2.1.2 Predictive Models . 23

2.1.2.1 Specifying the Manifolds . 23

2.1.2.2 Extracting the Semantic Representations 25

2.1.3 Generative Models . 26

2.1.4 Control Models . 27

2.2 Maximum Likelihood Method . 29

2.2.1 Likelihood Estimation . 29

2.2.2 Conditional Likelihood Estimation 30

2.2.3 Likelihood Maximization Using Gradient Descent 31

2.3 Models with Vector Inputs . 32

2.3.1 Linear Layer . 32

2.3.1.1 Regression . 33

2.3.1.2 Single-label Classification . 34

2.3.1.3 Multi-label Classification . 37

2.3.2 Nonlinear Layers . 38

2.3.2.1 Stacking Multiple Layers . 38

2.3.2.2 Activation Functions . 39

2.3.2.3 Regression and Classification Networks 39

2.3.2.4 Example of a Deep Network . 40

2.3.3 Residual Blocks and Skip Connections 42

2.3.4 Distribution Estimation Layers . 43

2.3.5 Sampling Layers . 45

2.3.6 Embedding Lookup Layer . 46

2.3.7 Interaction Layers . 49

2.3.8 Multihead and Multitower Architectures 51

2.4 Models with Sequential Inputs . 53

ix

x contents

2.4.1 Sequence Modeling Problems . 54

2.4.2 Sliding Window Approach . 55

2.4.2.1 Internal and External Features 57

2.4.2.2 Design Options . 58

2.4.3 Convolution Layer . 60

2.4.4 Recurrent Layers . 64

2.4.5 Long Short-Term Memory Layer . 68

2.4.6 Attention Mechanism . 72

2.4.7 Transformer Layer . 74

2.4.7.1 Self-attention . 74

2.4.7.2 Causal Attention . 77

2.4.7.3 From Self-attention to Transformer 78

2.5 Models with Multidimensional Inputs . 81

2.5.1 2D Convolution Operation . 81

2.5.2 2D Convolution Layer . 82

2.5.3 2D Upconvolution Layer . 84

2.5.4 Deep 2D Convolutional Networks . 85

2.5.4.1 Model Types . 85

2.5.4.2 U-Net Model . 87

2.5.5 2D Transformer Layer . 89

2.6 Models for Representation Learning . 90

2.6.1 Loss Functions for Supervised Representation Learning 91

2.6.2 Autoencoders . 92

2.6.2.1 Linear Autoencoder . 92

2.6.2.2 Stacked Autoencoders . 94

2.6.2.3 Loss Functions and Regularization 95

2.6.2.4 Applications and Limitations . 95

2.6.3 Representation of Elements . 96

2.7 Models with Graph Inputs . 99

2.7.1 Machine Learning Tasks on Graphs 100

2.7.2 Learning Node Representations . 101

2.7.2.1 Basic Methods . 101

2.7.2.2 Encoder-Decoder Framework . 102

2.7.2.3 Proximity Measures Using Random Walks 104

2.7.2.4 Usage and Limitations . 106

2.7.3 Graph Neural Networks . 107

2.7.3.1 Neural Message Passing Framework 107

2.7.3.2 Network Architecture . 108

2.7.3.3 Model Training . 108

2.8 Model Correctness . 110

2.8.1 Imbalanced Data . 110

2.8.2 Observational Data . 112

2.9 Foundation Models . 115

2.9.1 Pretraining Strategies . 116

2.9.2 Transfer Strategies . 116

2.9.3 Fine-tuning Methods . 117

2.10 Summary . 119

contents xi

3 generative models 121

3.1 Regularization of the Semantic Space . 122

3.2 Variational Autoencoder . 122

3.2.1 Models with Latent Variables and Their Estimation 123

3.2.2 Scalable Model Estimation Using ELBO 124

3.2.3 Normality Assumptions . 126

3.2.4 Variational Autoencoder Network . 127

3.2.5 Limitations of the Basic VAE . 130

3.2.6 Conditional Variational Autoencoder 130

3.2.7 Hierarchical Variational Autoencoder 131

3.3 Denoising Diffusion Probabilistic Models 133

3.3.1 Forward Process . 134

3.3.2 Reverse Process . 135

3.3.3 Training . 137

3.3.4 Sampling . 139

3.3.5 Conditional Diffusion Models . 139

3.4 Large Language Models . 140

3.4.1 Language Modeling . 141

3.4.2 Foundation Language Models . 141

3.4.3 Scalable Model Architectures . 142

3.4.3.1 Encoder-Only Models . 142

3.4.3.2 Encoder-Decoder Models . 144

3.4.3.3 Decoder-Only Models . 147

3.4.4 Properties of Large Language Models 148

3.4.4.1 Consistent Text Generation . 148

3.4.4.2 Unsupervised Multi-task Learning 149

3.4.4.3 Zero-shot and Few-shot Learning 150

3.4.4.4 Elements of Common Sense and Mathematical Reasoning . . . 150

3.4.4.5 Limitations . 151

3.4.5 Instruction Fine-tuning . 152

3.4.6 Model Chains . 153

3.4.6.1 Chains with Memory . 153

3.4.6.2 Agents . 154

3.5 Summary . 155

4 control models 157

4.1 Basic Decision-making Techniques . 157

4.2 Learning Based on Interactions . 160

4.3 Reinforcement Learning: Bandit Case . 161

4.3.1 Greedy Policies . 162

4.3.2 Upper Confidence Bound Policy . 163

4.3.3 Thompson Sampling . 164

4.3.4 Non-stationary Environments . 166

4.4 Reinforcement Learning: General Case 168

4.4.1 Markov Decision Process . 168

4.4.2 Policies and Value Functions . 170

4.4.3 Policy Optimization Using Dynamic Programming 171

4.4.4 Value-based Methods . 173

xii contents

4.4.4.1 Monte Carlo Sampling . 174

4.4.4.2 Temporal Difference Learning 175

4.4.4.3 On-policy vs Off-policy Learning 176

4.4.4.4 Fitted Q Iteration (FQI) . 178

4.4.4.5 Deep Q-Networks (DQN) . 179

4.4.5 Policy-based Methods . 182

4.4.5.1 REINFORCE . 183

4.4.6 Combined Methods . 185

4.4.6.1 Actor-Critic Approach . 185

4.4.6.2 Deep Deterministic Policy Gradient (DDPG) 187

4.5 Counterfactual Policy Evaluation . 189

4.5.1 Importance Sampling . 190

4.5.1.1 Evaluation . 190

4.5.1.2 Learning . 191

4.5.2 Action Rejection Sampling . 192

4.6 Summary . 193

part ii customer intelligence 195

r1 propensity modeling 197

r1.1 Business Problem . 198

r1.1.1 Scoring . 199

r1.1.2 Event Attribution . 199

r1.2 Solution Options . 200

r1.3 Models with Aggregated Features . 200

r1.4 Event Sequence Modeling . 203

r1.4.1 Scoring . 203

r1.4.2 Event Attribution . 204

r1.5 Prototype . 205

r1.6 Case Study . 209

r1.7 Extensions and Variations . 212

r1.7.1 Advanced Sequential Models . 212

r1.7.2 Convolutional Models . 213

r1.7.3 Target Label Design . 213

r1.7.4 Operationalization . 213

r1.8 Summary . 214

r2 customer feature learning 215

r2.1 Business Problem . 215

r2.2 Solution Options . 217

r2.3 Learning from Event Sequences . 218

r2.3.1 Learning Product Embeddings . 218

r2.3.2 Mixing Behavioral and Content Features 218

r2.3.3 Learning Customer Embeddings . 220

r2.3.4 Learning Embeddings from Logs . 221

r2.4 Learning from Graphs, Texts, and Images 222

r2.5 Semi-supervised Methods . 223

contents xiii

r2.6 Autoencoding Methods . 225

r2.7 Prototype . 226

r2.8 Case Study . 227

r2.9 Summary . 229

r3 dynamic personalization 231

r3.1 Business Problem . 231

r3.2 Solution Options . 232

r3.3 Context-Free Recommendations . 233

r3.4 Contextual Recommendations . 234

r3.4.1 UCB with Warm Start . 235

r3.4.2 LinUCB . 235

r3.5 Evaluation and Bootstrapping . 239

r3.6 Prototype . 240

r3.7 Summary . 242

r4 next best action 245

r4.1 Business Problem . 245

r4.1.1 Objectives and Reward Design . 247

r4.1.2 Action Design . 249

r4.1.3 Modeling and Experimentation . 250

r4.2 Solution Options . 250

r4.3 Advanced Score Design . 251

r4.4 Conditional Propensities . 252

r4.5 Reinforcement Learning . 252

r4.6 Prototype . 254

r4.7 Case Study . 259

r4.7.1 Business Problem . 260

r4.7.2 Solution Architecture . 260

r4.7.3 Algorithms . 262

r4.7.4 Design of Actions, States, and Rewards 262

r4.8 Summary . 263

part iii content intelligence 265

r5 visual search 267

r5.1 Business Problem . 268

r5.2 Solution Options . 269

r5.3 Search by Image Style . 271

r5.3.1 Style Embeddings . 272

r5.3.2 Prototype . 275

r5.4 Search in a Custom Semantic Space . 276

r5.4.1 Custom Images Embeddings and Attributes 278

r5.4.2 Prototype . 280

r5.5 Unsupervised Embedding Learning . 284

r5.6 Object Localization and Segmentation . 286

xiv contents

r5.6.1 Semantic Segmentation . 288

r5.6.1.1 Evaluation Metrics . 289

r5.6.1.2 Network Design . 290

r5.6.2 Prototype . 290

r5.7 Summary . 290

r6 product recommendations 293

r6.1 Business Problem . 293

r6.1.1 High-level Environment Overview 294

r6.1.2 Environment Types . 295

r6.1.3 Evaluation and Optimization Metrics 296

r6.1.3.1 Offline Evaluation: Basic Metrics 297

r6.1.3.2 Offline Evaluation: Advanced Techniques 299

r6.1.3.3 Online Evaluation . 299

r6.2 Solution Options . 300

r6.2.1 System Architecture . 300

r6.2.2 Model Architecture . 301

r6.2.2.1 Continuous Feedback . 301

r6.2.2.2 Unary Feedback . 304

r6.3 Feedback Prediction Models . 305

r6.3.1 Basic Factorization . 305

r6.3.2 Neural Collaborative Filtering . 307

r6.3.3 Case Study . 309

r6.4 Interaction Prediction Models . 310

r6.5 Sequence Models . 313

r6.5.1 Behavior Sequence Transformer . 313

r6.5.2 Case Study . 315

r6.6 Graph Models . 316

r6.6.1 Case Study: Recommendations Using Node2Vec 318

r6.6.2 Recommendations Using GNNs . 320

r6.7 Extensions and Variations . 323

r6.8 Summary . 323

r7 knowledge management 325

r7.1 Business Problem . 325

r7.2 Solution Options . 327

r7.3 Data Preprocessing . 327

r7.3.1 Attribute Discovery . 329

r7.3.2 Attribute Extraction . 330

r7.3.3 Attribute Harmonization . 331

r7.4 Querying Structured Data . 332

r7.5 Querying Unstructured Data . 333

r7.5.1 Querying Using a Single Prompt . 334

r7.5.2 Querying Using Map-Reduce . 335

r7.5.3 Retrieval-Augmented Generation . 335

r7.5.4 Conversational Retrieval . 338

r7.5.5 Agents . 339

contents xv

r7.6 Security and Data Privacy . 340

r7.7 Quality Evaluation . 342

r7.7.1 Data Preprocessing . 342

r7.7.2 Structured Data Querying . 342

r7.7.3 Unstructured Data Querying . 343

r7.8 Summary . 344

r8 synthetic media 345

r8.1 Business Problem . 345

r8.2 Solution Options . 346

r8.3 Language-Image Models . 347

r8.3.1 CLIP Model . 348

r8.3.2 Prototype . 350

r8.4 Text-to-Image Generative Models . 352

r8.4.1 Denoising Diffusion Models for Images 353

r8.4.1.1 U-Net Backbone . 353

r8.4.1.2 Cascaded Diffusion Models . 355

r8.4.2 Latent Diffusion Models . 355

r8.4.2.1 Image Encoding and Decoding 355

r8.4.2.2 Conditioning Mechanism . 357

r8.4.2.3 Training . 360

r8.4.2.4 Structure of the Latent Space . 360

r8.5 Advanced Control Mechanisms . 362

r8.6 Summary . 364

part iv revenue and inventory management 367

r9 demand forecasting 369

r9.1 Business Problem . 369

r9.1.1 Environment . 369

r9.1.2 Demand Patterns . 371

r9.1.3 Tasks . 372

r9.1.4 Applications . 373

r9.1.5 Evaluation Metrics . 374

r9.2 Solution Options . 375

r9.3 State Space Models . 376

r9.3.1 Simple Exponential Smoothing . 377

r9.3.1.1 Weighted Average Form . 377

r9.3.1.2 Component Form . 378

r9.3.1.3 Model Fitting . 378

r9.3.2 Double Exponential Smoothing . 378

r9.3.3 Triple Exponential Smoothing . 379

r9.3.4 Decomposition . 380

r9.3.5 Probabilistic Forecast . 381

r9.4 Time Series Regression . 381

r9.4.1 Probabilistic Forecast . 383

r9.4.2 Model Scope . 383

xvi contents

r9.4.3 Multiple Forecasting Horizons . 383

r9.4.4 Calendar-based Features . 384

r9.4.5 Lag Features . 385

r9.4.6 Product Features . 385

r9.4.7 Pricing Features . 386

r9.4.8 Case Study . 387

r9.5 Sequence Models . 392

r9.5.1 DeepAR Model . 393

r9.5.1.1 Encoder and Training . 393

r9.5.1.2 Decoder and Forecasting . 393

r9.5.1.3 Feature Engineering and Scaling 394

r9.5.2 Case Study . 395

r9.6 Composable Models . 396

r9.6.1 NeuralProphet Model . 397

r9.6.1.1 Trend . 398

r9.6.1.2 Seasonality . 398

r9.6.1.3 Autoregression . 399

r9.6.1.4 Covariates . 399

r9.6.2 Case Study . 400

r9.7 Hierarchical Models . 400

r9.7.1 Hierarchical Time Series . 401

r9.7.2 Hierarchical Forecasting Using Reconciliation 402

r9.7.3 Hierarchical Forecasting Using DeepVAR 403

r9.8 Imputation Techniques for Demand Analytics 404

r9.8.1 Demand Unconstraining . 405

r9.8.2 Product Similarity Analysis . 408

r9.9 Extensions and Variations . 408

r9.9.1 Causal Effects . 409

r9.9.2 Dealing with Disruptions . 410

r9.10 Summary . 410

r10 price and promotion optimization 413

r10.1 Business Problem . 413

r10.1.1 Price Management Process . 414

r10.1.2 Revenue Model . 415

r10.1.3 Strategic Analysis . 416

r10.1.3.1 Price Strategy Differentiation . 416

r10.1.3.2 Competitive Pricing Analysis . 416

r10.1.4 Planning and Evaluation . 417

r10.1.4.1 Planning Process . 417

r10.1.4.2 Planning Process Variations . 418

r10.1.4.3 Variables . 418

r10.1.4.4 Objectives . 419

r10.1.4.5 Constraints . 420

r10.1.4.6 Cross Effects . 421

r10.1.4.7 Designing the Decision Support Tools 421

r10.1.5 Execution . 423

r10.1.6 Measurement . 424

contents xvii

r10.1.6.1 Uplift Metrics . 424

r10.1.6.2 Demand Decomposition . 425

r10.2 Solution Options . 426

r10.3 Price Strategy Differentiation . 428

r10.3.1 Price Strategy Differentiation by Product 428

r10.3.2 Price Strategy Differentiation by Client 432

r10.4 Market Response Modeling . 434

r10.4.1 Linear Model . 434

r10.4.2 Constant-Elasticity Model . 437

r10.4.3 Modeling the Cross-Effects . 437

r10.4.4 Time-Dependent Response Models 440

r10.5 Optimization Using Mathematical Programming 440

r10.5.1 Multiple Products . 442

r10.5.2 Multiple Time Intervals . 445

r10.5.3 Optimization Under Uncertainty . 445

r10.5.3.1 Modeling the Uncertainty . 446

r10.5.3.2 Uncertainty Propagation . 446

r10.5.3.3 Optimization Problems . 446

r10.6 Optimization Using Reinforcement Learning 448

r10.6.1 Motivation . 448

r10.6.2 Prototype . 450

r10.7 Extensions and Variations . 452

r10.7.1 Retail . 452

r10.7.2 Consumer Services . 453

r10.7.3 Consumer Goods . 454

r10.7.4 Industrial Goods and Services . 454

r10.8 Summary . 455

r11 dynamic pricing 457

r11.1 Business Problem . 458

r11.2 Solution Options . 459

r11.3 Limited Price Experimentation . 459

r11.3.1 Solution Design . 459

r11.3.2 Prototype . 461

r11.4 Continuous Experimentation . 463

r11.4.1 Solution Design . 463

r11.4.2 Prototype . 467

r11.5 Variations and Extensions . 469

r11.5.1 Bayesian Demand Models . 469

r11.5.1.1 Poisson-Gamma Model . 469

r11.5.1.2 Constant-Elasticity Model . 470

r11.5.1.3 Cross-Product Dependencies . 471

r11.5.2 Multiple Products and Inventory Constraints 472

r11.6 Summary . 473

r12 inventory optimization 475

r12.1 Business Problem . 476

xviii contents

r12.1.1 Inventory in the Context of Production Processes 476

r12.1.2 Inventory Optimization Strategies . 477

r12.1.3 Inventory Management Process . 477

r12.1.4 Environments . 478

r12.1.4.1 Single-Echelon Environment . 479

r12.1.4.2 Multi-Echelon Environment . 481

r12.1.5 Performance Metrics . 482

r12.2 Solution Options . 483

r12.3 Aggregate Planning . 484

r12.4 Single-Echelon Control Policies . 485

r12.4.1 Inventory Policies . 486

r12.4.2 Environment Simulator . 488

r12.4.3 Scenario 1: Constant Demand, Zero Lead Time 490

r12.4.4 Scenario 2: Constant Demand and Lead Time 493

r12.4.5 Scenario 3: Stochastic Demand, Constant Lead Time 494

r12.4.6 Scenario 4: Stochastic Demand and Lead Time 497

r12.4.7 Lost Sales and Demand Unconstraining 498

r12.5 Multi-Echelon Control Policies . 499

r12.5.1 Stochastic Service Models . 500

r12.5.1.1 Serial Network . 500

r12.5.1.2 Periodic Review Policy for Serial Network 501

r12.5.1.3 Policy Optimization for Serial Network 502

r12.5.1.4 Extensions and Limitations . 504

r12.5.2 Guaranteed-Service Models . 504

r12.5.2.1 Single-Node Model . 505

r12.5.2.2 Policy Optimization for Tree Topology 506

r12.5.3 Control Using Reinforcement Learning 508

r12.5.3.1 Environment Specification . 509

r12.5.3.2 Establishing the Baselines . 512

r12.5.3.3 Learning the Control Policy Using DDPG 512

r12.6 Extensions and Variations . 515

r12.6.1 Seasonal and Perishable Items . 515

r12.6.2 Multiple Sales Channels . 516

r12.6.3 Multiple Items: Policy Differentiation 518

r12.6.4 Multiple Items: Coordinated Replenishment 519

r12.7 Summary . 520

part v production operations and iot 523

r13 anomaly detection 525

r13.1 Business Problem . 525

r13.1.1 Anomaly Monitoring, Scoring, and Detection 526

r13.1.2 Predictive Maintenance . 527

r13.2 Solution Options . 528

r13.3 System Models . 529

r13.4 Monitoring . 531

r13.5 Anomaly Scoring . 534

contents xix

r13.5.1 Basic Models of Normality . 534

r13.5.2 State Prediction Models . 534

r13.5.3 State Manifold Models . 537

r13.5.4 Metric Preprocessing . 539

r13.5.4.1 Frequency-domain Representations 539

r13.5.4.2 Representations for Multivariate Time Series 541

r13.6 Anomaly Detection and Classification . 541

r13.6.1 Thresholding . 541

r13.6.2 Reconstruction Probability . 542

r13.6.3 Supervised Detection and Classification 544

r13.7 Remaining Useful Life Prediction . 545

r13.7.1 Solution Approach . 545

r13.7.2 Prototype . 546

r13.8 Summary . 549

r14 visual quality control 551

r14.1 Business Problem . 551

r14.1.1 Environment . 552

r14.1.2 Data . 553

r14.1.3 Objectives . 554

r14.2 Solution Options . 555

r14.3 Supervised Defect Classification Models 555

r14.4 Anomaly Detection Models . 556

r14.4.1 Model Architecture . 557

r14.4.2 Structural Similarity . 558

r14.4.3 Anomaly Detection with Transfer Learning 560

r14.5 Prototype . 563

r14.6 Extensions and Variations . 564

r14.7 Summary . 566

a loss functions 567

a.1 Loss Functions for Regression . 567

a.1.1 Mean Squared Error . 568

a.1.2 Root Mean Squared Error . 570

a.1.3 Mean Absolute Error . 570

a.1.4 Mean Absolute Percentage Error . 572

a.1.5 Huber Loss . 572

a.1.6 Pinball Loss . 573

a.1.7 Poisson Loss . 574

a.2 Loss Functions for Classification . 576

a.2.1 Binary Cross-Entropy . 576

a.2.2 Categorical Cross-Entropy . 577

a.2.3 Kullback-Leibler Divergence . 578

a.3 Loss Functions for Representation Learning 580

a.3.1 Contrastive Loss . 580

a.3.2 Triplet Loss . 581

a.3.3 Multi-class N-pair Loss . 582

xx contents

a.3.4 InfoNCE Loss . 583

a.3.5 ArcFace Loss . 584

b evaluation metrics 587

b.1 Metrics for Regression . 587

b.1.1 Weighted Average Percentage Error 588

b.1.2 Weighted Quantile Loss . 588

b.1.3 Sharpness . 589

b.2 Metrics for Classification . 589

b.2.1 Confusion Matrix and Related Metrics 589

b.2.2 ROC Curve and AUC . 591

b.2.3 Precision-Recall Curve . 593

b.2.4 F1 Score . 594

b.3 Metrics for Retrieval . 595

b.4 Metrics for Ranking . 596

b.4.1 Hit Ratio . 596

b.4.2 Mean Average Precision . 597

b.4.3 Discounted Cumulative Gain . 597

b.5 Metrics for Natural Language Generation 598

b.5.1 Exact Match Precision and Recall . 599

b.5.2 BLEU . 599

b.5.3 ROUGE . 600

b.5.4 BERTScore . 601

b.5.5 G-Eval . 603

index 605

bibliography 613

P R E FA C E

The role of data-driven automation and optimization in enterprise operations has been
increasing for many decades, and, over the last ten years, the range of use cases that
can be efficiently handled by automatic systems has expanded considerably with the
advent of deep learning methods. These developments have created a diverse land-
scape of decision-making and automation methods, including traditional econometric
models and optimization algorithms, specialized machine learning methods for com-
puter vision and natural language processing which can, however, often be adopted to
other domains, and emerging methods such as deep reinforcement learning that have
limited adoption in enterprise practice. In this book, we explore how a wide range of
enterprise operations including marketing, supply chain management, and production
control, can benefit from the crossover of traditional modeling, optimization, and sim-
ulation techniques with deep learning and reinforcement learning methods. We aim to
develop an engineering framework, as well as a collection of practical recipes, that help
to systematically apply various combinations of these methods in real-world enterprise
settings.

intended audience

This book is written for data scientists and analytics managers to provide a system-
atic treatment of how enterprise decision-making and optimization problems can be
approached using deep learning, reinforcement learning, and probabilistic program-
ming methods. Our primary goal is to develop a systematic framework for translating
various enterprise use cases into quantitative, statistical, and optimization problems
and decomposing these problems into machine learning tasks. At the beginning of the
book, we give an overview of the generic building blocks. Detailed descriptions of the
use of case-specific models and algorithms are covered later, but we do not aim to
provide a systematic treatment of machine learning theory and its mathematical under-
pinnings. The reader is expected to be familiar with the basic concepts of data science
and machine learning, as well as having hands-on experience with statistical modeling
including both traditional and deep learning methods.

The book may also be useful for data science and machine learning practitioners who
have a background in bioinformatics, physics, or other fields unrelated to typical enter-
prise operations, and who are looking to learn about specialized modeling methods for
marketing, supply chain, and manufacturing applications.

structure and suggested use

We approach the problem of building enterprise AI solutions from the system engineer-
ing perspective, considering machine learning algorithms mainly as off-the-shelf com-
ponents and focusing on the adaptation of generic methods to specific enterprise use
cases. We spend the first three chapters developing a framework that helps to decom-

xxi

xxii preface

pose enterprise problems into machine learning and optimization tasks, and reviewing
the main categories of machine learning algorithms needed to solve such tasks. Our
choice and categorization of algorithms and methods, however, is somewhat different
from the canonical categorization used in most machine learning textbooks because we
focus exclusively on the enterprise applications. We then develop a number of recipes
(Chapters R1 – R14) for specific use cases in marketing, supply chain, and production
domains. We use the following three-layer structure in most recipes to cover both the
theoretical and practical aspects of the solutions:

design options In each recipe, we define the business problem and discuss several
solution options. Some solutions do not require the generic models or algorithms
to be modified significantly, and we focus mainly on practical aspects such as
integrations and econometric considerations. Other solutions require the devel-
opment of specialized algorithms, and we describe these in full mathematical
detail.

prototypes In each recipe, we develop one or more basic prototypes to illustrate the
approach and main properties of the solution. These reference implementations
typically use synthetic data or simulators to avoid the complexities associated
with real-world datasets. We normally describe how the prototype works and
how the outputs prove the solution to be viable, but we avoid cluttering the
book with low-level implementation details; instead, we provide links to the cor-
responding notebooks in the companion source code repository, so the reader can
dive deeply into the implementation if need be.

case studies For some recipes, we develop more comprehensive reference imple-
mentations using larger data samples created based on the statistics of real-world
datasets. These implementations help to highlight the challenges that do not man-
ifest themselves in the smaller-scale prototypes. Similar to the prototypes, we do
not discuss these implementations at the level of source codes, but provide links
to the repository with complete notebooks.

This book can be read sequentially to study the concepts used in enterprise AI sys-
tematically, including its main building blocks, and major categories of solutions. The
recipes, however, are mostly independent, and readers familiar with deep learning
fundamentals can consider scanning through the first three chapters and reading the
recipes in any order according to their needs and priorities.

reference implementations

The implementations and prototypes referenced in this book, as well as several addi-
tional models, are released as an open source project called TensorHouse. This project
is available on https://github.com/ikatsov/tensor-house. A dedicated git branch
“book-enterprise-ai-edition-2.1” has been created with a version of code compati-
ble with this book. We use TensorFlow as a primary platform for deep learning models
and leverage several other frameworks and libraries for auxiliary operations and spe-
cialized functionality.

The recipes provided in this book and its reference implementations complement
each other. The recipes provide a comprehensive analysis of business problems and
solution options, but only short summaries of the actual implementations. The refer-

https://github.com/ikatsov/tensor-house

preface xxiii

ence notebooks provide detailed step-by-step tutorials on how certain solutions can be
implemented but do not duplicate all the analysis and theoretical details provided in
the book.

what’s new in the second edition?

The second edition includes two major updates and multiple minor changes. First, ex-
tensive new material on generative AI is added to cover the theoretical foundations
(Chapter 3), language modeling applications (Recipe R7), and image generation solu-
tions (Recipe R8). Second, Part IV, on revenue and inventory management, is exten-
sively reworked, and a dedicated chapter on demand forecasting (Recipe R9) is added.
In addition to that, Chapter 2, regarding predictive models and foundations of deep
learning, is significantly updated; two appendices are added to provide a comprehen-
sive reference on the loss functions and evaluation metrics used in the enterprise appli-
cations; and illustrations are improved throughout the book.

Part I
B U I L D I N G B L O C K S

In the first part of this book, we aim to establish a framework that helps to convert
enterprise decision-automation problems into machine learning tasks. In Chapter 1, we
start by examining the typical levels of decision-making in enterprise operations and
defining the basic concepts that are applicable to a wide range of use cases and applica-
tions. In Chapter 2, we develop a toolkit for learning mappings between entities, their
attributes, and trajectories, that enables us to infer hidden properties and predict future
entity states. In Chapter 3, we extend this toolkit with methods for generating complex
entities such as images. Finally, in Chapter 4, we discuss the decision automation and
entity control methods.

1

D E C I S I O N A N D P R O C E S S A U T O M AT I O N I N E N T E R P R I S E
O P E R AT I O N S

We can informally define enterprise artificial intelligence (AI) as a collection of meth-
ods for improving enterprise operations using statistical learning and probabilistic rea-
soning. This collection is very broad and includes methods for improving strategic
decisions at the level of the entire enterprise. Among these are demand forecasting,
methods for optimizing decisions at the level of individual business processes like pro-
motion targeting and safety stock management, and methods that help to automate or
optimize individual transactions such as object detection models and dialog manage-
ment systems.

Although the concept of enterprise AI is relatively new, one can argue that it is fun-
damentally as old as the concept of the enterprise itself. Historically, the first category
of problems that was tackled using data-driven methods was strategic decision-making.
The idea that the financial health and future trajectory of an economic entity can be as-
sessed using aggregated financial records has been well understood since ancient times.
In this sense, accountants were the first enterprise data scientists. By collecting and ag-
gregating financial records, an accountant creates a concise quantitative representation
of the enterprise in the space of certain metrics such as profits and revenues, and this
space is then used to assess the financial performance of the enterprise, forecast future
results, and make managerial decisions. Although it may seem to be a stretch of the
imagination to link accountancy to AI, we will show in the next sections that even the
basic quantitative techniques used in accounting, stock trading, and investments can
be consistently related to the methods that are commonly deemed as modern AI.

The second level of decision automation, that is the optimization of tactical decisions
at the level of individual processes within the enterprise, was mainly unlocked in the
last third of the twentieth century with the widespread availability of affordable com-
puters. These early attempts were largely focused on solving numerical and combinato-
rial optimization problems in supply chain management, transportation, and manufac-
turing. Some of these applications also involved statistical analysis of enterprise data,
but the adoption of data-driven methods was limited by the low level of digitalization
of both businesses and consumers.

The next level of intelligent automation was achieved in the mid-2010s, mainly due
to three factors. The first of these was the comprehensive digitalization of corporate

3

4 decision and process automation in enterprise operations

environments followed by mass adoption of Big Data strategies which made all enter-
prise processes continuously generate detailed, statistically analyzable data traces. The
second factor was the digitalization of consumer environments that enabled the real-
time personalization and optimization of products, services, and their representations.
The third and final factor was the revolutionary advancement in statistical methods,
particularly deep learning, that enabled comprehension of textual and visual data by
software systems which, in turn, unlocked a wide range of new types of automation
related to natural language processing (NLP) and computer vision (CV) use cases.

This book is mainly focused on the methods for small-scale decision and process
automation in data-rich environments, which corresponds to the last level in the above
categorization. However, before we go more deeply into the details of these methods, let
us develop a lightweight framework that helps us to properly plan and place analytical
and decision-automation capabilities within the enterprise, so that we approach the
design of individual components more systematically, from the right angle, and in the
right context.

1.1 scenario planning framework

It is often said that major enterprise systems and capabilities are created with specific
business goals in mind, and the degree of success is typically measured using key
performance indicators (KPIs). For instance, a new product recommendation algorithm
can be developed with the goal of improving session conversion rates from 3% to 3.5%;
a price optimization system can be created to improve profits by $200 million; and a
new computer vision system can be installed on an assembly line to reduce defect rate
by 20%. This is one of the most basic and well-known paradigms in the enterprise
world. However, its practical implementation is not straightforward.

One of the challenges arises from the fact that many improvements and actions im-
pact several KPIs at the same time, and while some metrics can be affected positively,
the influence on others can be negative. For example, trade promotions can increase
the sales volume but reduce profits, increased safety stock levels can improve product
availability and customer experience but increase the storage costs, and profit-optimal
prices can destroy the business that needs to grow its market share to become sustain-
able. The analysis of such tradeoffs and making decisions on them is challenging, and
converting them into formal optimization problems is even more so.

The second challenge is the long-term nature of business operations that sometimes
makes it difficult to define and measure a single KPI. For example, trade promotions
are commonly used by retailers and manufacturers and are known to be an efficient
way of boosting sales, but sales acceleration during the promotional period often comes
at the expense of future sales. This is particularly true for consumable products such
as paper towels where promotions often encourage consumers to buy and stockpile
larger amounts of the products and then wait till the next promotion period. This
makes short-term sales uplift measurements inaccurate or misleading, while long-term
measurements are also challenging because all other parts of the environment change
and drift, distorting the observations.

The third challenge is measurability of the KPIs. In the previous example regarding
trade promotions, long-term effects are one but not the only factor that can invali-

1.1 scenario planning framework 5

date the measurements. Promotions and price changes can make consumers switch
from one product or vendor to another creating cross-products and cross-retailer ef-
fects. Most sellers are aware of such effects and know that the sales uplift numbers of
individual products can be misleading, but more comprehensive and accurate measure-
ments can be challenging because of their higher data requirement and implementation
complexity. In many practical cases, it makes sense to disaggregate a single objective
with multiple internal factors into several metrics or KPIs that can be tracked separately,
and this brings us back to the first challenge of multiple conflicting KPIs.

Finally, we can call out the evaluation of the solution as another major challenge.
Development of a solution that aims to improve certain metrics generally requires some
means of evaluating its performance before it gets deployed into production and actual
results are collected. This problem inherits all of the previously discussed complexities
that essentially belonged to the field of descriptive analytics, and adds predictive and
prescriptive elements on top of them.

These considerations suggest that we generally need to account for multiple entities,
metrics, their correlations, and joint dynamics in order to convert enterprise problems
into optimization and decision-automation problems. We can try to put these basic
ideas together into a more formal framework grounded on the following concepts:

entity When we automate or optimize some aspect of the enterprise, we usually fo-
cus on improving performance of one or several entities that can be the enterprise
as a whole, business unit, location, product, or customer.

scenario Scenario specifies an action or sequence of actions that we can potentially
execute to achieve certain improvements. We can usually choose between several
scenario options including a no-action baseline.

utility space Entities of interest can be described using one or more metrics (KPIs),
and we will refer to the space spanned on the metric dimensions as a utility space.
For example, it is common to use utility spaces such as RevenueˆMargin and
Risk ˆ Reward in conventional business analytics. We will also refer to utility
spaces with two or more dimensions as utility maps or value maps.

trajectory Executing a scenario makes entities move in the space of metrics, ideally
in a direction that is beneficial for the business. Consequently, a scenario leaves a
trace in the utility space that we will call a trajectory.

pareto frontier If the metrics used to construct the utility space are in inverse
relationship (e.g. cost and quality), we can normally choose between several sce-
narios that correspond to different trade-offs. In such a situation, however, we
cannot improve all metrics simultaneously, so the set of best possible trade-offs
will form the Pareto frontier that can be visualized as a surface in the utility space.
However, we can shift the Pareto frontier if we change some underlying factors
that unlock simultaneous improvement of all metrics of the utility space.

These concepts are illustrated in Figure 1.1 where an entity moves in a two-
dimensional utility space, and one considers three alternative intervention scenarios
that lead to three different outcomes that form the frontier.

At this point, our scenario planning framework is fairly abstract and it might not be
clear how to apply this concept to practical problems and how to connect it to machine
learning (ML) methods. We gradually bridge this gap in the next sections where we

6 decision and process automation in enterprise operations

Metric 1

M
et

ric
 2

Entity

Trajectory

Pareto
frontier

Alternative
scenarios

Figure 1.1: The main concepts of the scenario planning framework.

discuss more concrete examples for different types of problems, and then what machine
learning methods are needed to implement that approach. Our goal, however, is only
to illustrate how we can think of different use cases in the scenario planning terms, and
we do not aim to build a rigorous theory around it in this chapter.

1.1.1 Strategy: Enterprise as a Whole

We start with examples of strategic analysis in which one is interested to study the
trajectory of the entire company. This type of analysis is commonly used by venture
capital investors to assess startups and portfolio managers to assess public companies.
This is arguably the highest possible level at which one can consider applying decision-
automation methods.

Imagine that we need to assess an early-stage company to make an investment de-
cision. One of the most basic questions we might ask is how well the company and
its product fit the market – is there an indication that the company is poised to grow
or are there signs of headwinds and deceleration [Hsu, 2019]. To a certain extent, this
question can be answered using quantitative methods, and the results would prescribe
further actions for both the investors and the management of the company.

We can start the assessment with a technique called growth accounting that focuses on
the analysis of the revenue components and evolution of these components over time.
In terms of the scenario planning framework, we define entities as different categories
of revenue, utility space as a single dimension measured in dollars, and trajectories as
the evolution of the revenue categories. For the sake of this analysis, let us decompose
the revenue at time period t as follows:

Revenueptq “ Retainedptq

` Newptq

` Resurrectedptq

` Expandedptq

(1.1)

1.1 scenario planning framework 7

where the retained component corresponds to the revenue from the existing cus-
tomers carried over from the previous time period, new revenue comes from the cus-
tomers who were acquired in time period t, resurrected revenue comes from the cus-
tomers who churned in the past but came back in period t, and expanded revenue is the
incremental growth of revenue from the existing customer on top of the retained part.
Next, let us decompose the retained revenue as follows:

Retainedptq “ Revenuept´ 1q

´ Churnedptq

´ Contractedptq

(1.2)

where churned is the revenue lost due to the customers who were active in period
t´ 1 but became inactive in period t, and contracted is the revenue shrinkage for the
customers who remained active. For example, a company with two customers who
spent $100 and $200 in time period t´ 1 and $150 and $180 in period t, respectively,
will have retained revenue of $280 ($100 + $180), expanded revenue of $50 ($150 – $100),
and contracted revenue of $20 ($200 – $180). We can now combine equations 1.1 and
1.2 into the following identity:

Revenueptq ´Revenuept´ 1q “ Newptq

` Expandedptq

` Resurrectedptq

´ Churnedptq

´ Contractedptq

(1.3)

Since we use a simple one-dimensional utility space, we can visualize the trajectories
of the above revenue components using regular time series plots. Let us examine the
examples that correspond to two different companies shown in Figure 1.2.

Plate (a) shows a company that grows rapidly in terms of revenue having relatively
low churn and contraction rates. This pattern is typical of B2B subscription-based busi-
nesses that are good at expanding revenue from existing customers and can maintain
positive growth even without adding new clients. Plate (b) shows a company that also
grows rapidly in terms of revenue, but its churn and contraction components are much
more significant compared to the first example. This pattern is typical of companies
that sell discretionary B2C products and need a continuous flow of new customers to
maintain growth.

The informal analysis and forecasting of the revenue trajectories in the above exam-
ples provides investors and executives with guidance on which scenarios they need to
plan for. For instance, it appears that the first company will need to scale up its sales
and account management teams, whereas the second company may need to work on
reducing customer acquisition costs to remain sustainable. These more granular prob-
lems that are derived from the top-level analysis can then also be approached using
data-driven methods, but more complex models and techniques can be involved due
to the smaller scale and scope of the task. For example, the problem of the customer
acquisition costs can be addressed using targeting and personalization models that we
will develop in the next chapters.

The second question we might ask while assessing the market fit of the company and
its products, is what the internal structure of the customer base looks like, and what the

8 decision and process automation in enterprise operations

New

Resurrected

Expanded

Churned

Contracted

Oct Jan Apr Jul Oct

$0k

$100k

$200k

Oct Jan Apr Jul Oct

-$400k

$0k

$400k

(a)

(b)

Re
ve

nu
e

Re
ve

nu
e

Figure 1.2: Two examples of growth accounting.

dynamics of individual components are. We choose the cohorts of customers acquired
at different time periods to be the entities, and cumulative lifetime value (LTV) to be
the one-dimensional utility space. This design is illustrated in Figure 1.3: we group
the customers into monthly cohorts based on their acquisition dates, and plot how the
cumulative revenue evolves over time for each cohort as a function of the cohort age.

3 6 9 12 15

$10k

$20k

$30k

LT
V

Jan
Feb
Mar

Apr
May
Jun

Jul
Aug
Sep

Time since acquisition, months

Figure 1.3: An example of cohort analysis.

This technique, called the cohort analysis, helps to profile the dynamics of individual
cohorts, as well as the trajectory of the company with regard to the quality of the
customer base. The example in Figure 1.3 exhibits a strong degradation trend in the
sense that the newest cohorts (e.g. ones acquired in August and September) have much
worse trajectories in the LTV space compared to the older cohorts (e.g. ones acquired

1.1 scenario planning framework 9

in January and February). We can also see that the trajectories of the oldest cohorts
rise steeply at the beginning, which suggests that newly acquired customers tended
to increase product usage after the acquisition, maybe due to upgrades or cross-sells.
The newest cohorts, however, do not exhibit this behavior and accumulate the LTV in a
more linear way. In practice, such dynamics can be caused by an excessively aggressive
customer acquisition strategy that pursues quantity at the expense of quality and long-
term sustainability.

We can extend the analysis of cohorts with other useful metrics that characterize the
dynamics of the customer base. An example is shown in Figure 1.4 where we added the
retention rate dimension to visualize and quantify how well the company retains the
previously acquired clients which is the key metric for subscription-based businesses.
Similar to the growth accounting, the cohort analysis points us to the scenarios that
need to be evaluated such as the optimization of the acquisition costs.

Retention rate

LT
V

100%

$10k

$20k

$30k

90% 80% 70% 60%

Figure 1.4: An example of cohort analysis in the utility space that includes LTV and retention rate.
These are the same cohorts as in Figure 1.3

Both growth accounting and cohort analysis are just business analytics (BI) tech-
niques. However, one can apply more advanced methods such as regression analysis to
understand the factors that drive the entities along their trajectories, time series forecast-
ing to accurately estimate future positions of the entities in the utility spaces, anomaly
detection to identify abnormal developments, and clustering to discover useful entity
groupings. In practice, however, it is not always possible to benefit from advanced
methods at this level of analysis because the processes that we study are influenced
by a large number of complex factors ranging from macroeconomics to management
biases, and the scenario planning itself typically requires deep domain knowledge and
human judgment. On the other hand, we should not underestimate the importance of
quantitative top-level analysis in the overall enterprise AI strategy based on the rel-
ative simplicity of its statistical underpinning: establishing the right entities, metrics,
and perspectives on the market fit, revenue streams, and customer base helps to ensure
that the development of more sophisticated components will drive valuable business
outcomes.

10 decision and process automation in enterprise operations

1.1.2 Tactics: Departments, Services, and Products

In the previous section we reviewed several examples of how enterprise-level enti-
ties can be examined through the optics of the scenario planning framework. We now
turn to smaller entities such as individual business processes, locations, and products.
Smaller scale generally enables a higher degree of decision automation, so we can de-
fine more formal and self-contained optimization problems and engage more advanced
statistical methods for solving them.

First, let us take the concept of the market fit to the next level of details and consider
the case of a company with a relatively large product portfolio, such as a large manufac-
turer or retailer. In order to manage the portfolio, the company needs to analyze how
the positions and trajectories of individual products align with the overall financial tra-
jectory of the company, and then develop proper strategies for these products and other
related entities such as product lines, categories, locations, and business units. We can
start by constructing a utility map that shows how products are moving on the market
and what their significance is to the company. We choose the total product revenue to
gauge a product’s performance on the market and gross profit margin to measure its
value to the company. There are, of course, many alternative metrics. For instance, one
can choose the market share or sales volume as the measure of market performance.
For each product, we can then visualize its past trajectory starting from the product’s
launch date and predict its future trajectory using some forecasting model. An example
of such a utility map is shown in the top chart of Figure 1.5.

Although the above analysis is fairly straightforward, it can help to define pricing
and promotion strategies for the product which, in turn, will be the inputs to the
downstream models for optimizing prices, promotions, and inventory levels. More
specifically, we can choose between the following strategies depicted in Figure 1.5:

(a) In the most favorable situations, it is possible to pursue improvements in both
volume and margin. For instance, this can be the case for a new innovative prod-
uct that rapidly acquires the market share, facing little competition. Trajectory
analysis helps to identify such products and adjust their price setting models
accordingly.

(b) Some products’ trajectories can indicate a potential for increasing the market
share. This is typically the case for products that are in the early stages of their life
cycle. The guideline to optimize for volume can then be passed to the downstream
price optimization models and processes.

(c) Some products may not have enough potential for increasing their volume, and
the company can focus on maximizing the margins that it derives from them. This
is typically the case for products that are approaching the end of their life cycle.
Consequently, the downstream price management components can be configured
to maximize the profits. This will normally involve demand forecasting and price-
response modeling.

Margins can also be improved through the reduction of costs which can be a start-
ing point for involving stock level optimization and other inventory management
models into the process.

1.1 scenario planning framework 11

Margin

Re
ve

nu
e

Margin

Re
ve

nu
e

Margin

Re
ve

nu
e

Margin

Re
ve

nu
e

Margin

Re
ve

nu
e

Forecasted
trajectory

Selected product
Other products

(a) (b)

(c) (d)

Figure 1.5: An example of a product trajectory analysis and strategy development.

(d) Finally, products that are moving towards the zone where both the volumes and
profits are low might need to be retired or upgraded. This can trigger the assort-
ment optimization and product feature management processes.

We can perform similar analyses not only for products but for larger entities such as
categories and locations. Overall, this analysis aims to decompose the top-level financial
targets usually defined in terms of revenue and profitability into granular action plans
which can, in turn, be executed by the next tier of decision-automation components.

We turn next to the second example of process-level scenario planning, this time
focusing on an inventory management use case. Consider a retailer that runs a brick-
and-mortar store and also sells products online, servicing online orders directly from
the store shelves. (This capability is commonly referred to as buy online ship from store.)
Let us assume that the store associates take items directly from shelves, thus compet-
ing with regular customers for the available inventory, orders are processed with some
latency, and the online store receives inventory availability updates every morning.
Consequently, the retailer faces fulfillment exceptions when a certain product is avail-

12 decision and process automation in enterprise operations

able at the beginning of the day, but gets sold out before an online order is placed and
processed. The retailer can attempt to reduce such exceptions by forecasting in-store
demand for each product, reserving the corresponding number of units for in-store cus-
tomers, and making only the remaining inventory available for online ordering. This
approach creates a trade-off between the availability rate (percentage of the inventory
exposed to online customers) and fulfillment rate (percentage of successfully fulfilled
orders). Ideally, the retailer wants to maximize both rates, but these two objectives are
in conflict with one another. This means that all practically possible solutions will be
located within a bounded area on the utility map spanned on these two metrics, and
the boundaries of this area correspond to the Pareto frontier.

An example of the utility map for the above use case is shown in Figure 1.6. Assum-
ing that the total inventory capacity is fixed, each value of the fulfillment rate has the
maximum achievable availability rate, and the set of such rate pairs forms the Pareto
frontier. The retailer is free to choose any point on or under the frontier based on the
business considerations. For instance, the retailer may choose to maintain the high level
of customer experience and pick the point based on the minimum acceptable fulfillment
rate, or may choose to pursue revenues and pick the point based on the availability rate.
The frontier, however, can be lifted by increasing the total inventory capacity (as shown
in the figure) or developing more accurate forecasting or reservation algorithms.

Availability rate

Fu
lfi

llm
en

t r
at

e

0.6 0.7 0.8 0.9

0.92

0.98

0.94

0.96

Pareto frontier
for capacity A

Pareto frontier
for capacity B

Figure 1.6: An example of Pareto frontiers for the Buy Online Ship From Store use case.

The examples considered in this section illustrate that the variety and complexity of
the decision-automation methods generally increases as we move from enterprise-level
to process-level problems and focus on smaller-scale entities. In the above two exam-
ples, forecasting and optimization models are not optional extensions of descriptive
analytics, but the core solution components. Our next step is to examine even lower
levels of granularity.

1.1 scenario planning framework 13

1.1.3 Execution: Customers, Devices, Transactions, and Interfaces

Although all levels of decision-making in the enterprise can benefit from statistical
and optimization methods, the making of automatic decisions becomes a necessity
at the level of individual customers and transactions. At the relatively high levels of
aggregations which we discussed in previous sections, one has a certain freedom to
choose between traditional business analytics, decision support models, and decision
automation, but at the lower levels there are no alternatives to automation. In this
section, we review several examples of scenario planning at the level of individual
customers and transactions, as well as transaction-level automation.

Let us start with an example from the customer intelligence domain. For many
subscription-based businesses such as telecom and insurance, customer attrition
(churn) is a major concern because both customer acquisition costs and lifetime values
are high in these markets which makes customer retention much more preferable to
losing old clients and acquiring new ones. Marketing teams usually create retention
offers that can be presented to customers to prevent them from churning, but efficient
usage of these packages is a complex problem. One needs to identify customers who
are at the risk of churning, determine the optimal offer for each customer based on
the factors that presumably drive this particular customer toward account cancellation,
balance the potential loss with the cost of the offer, determine optimal time to send
the offer, and so on. These decisions are depicted in Figure 1.7 where, using scenario
planning terms, each customer is a separate entity, the probability of churn is the
utility metric, and different offers and intervention times are considered scenarios.

0.80

0.85

0.90

Pr
ob

ab
ili

ty
 o

f c
hu

rn

Feb Mar Apr May Jun

offer
scenario 2

offer
scenario 1

no-action
scenario

Figure 1.7: An example of a customer trajectory in the context of the churn prevention problem.
Alternative utility measures for this problem include survival probability (inverse of
the churn probability) and expected LTV.

In practice, most of these tasks can be efficiently solved using statistical models, so
that each customer gets personalized treatment. Moreover, it is often possible to build
highly automated systems that make many of these decisions autonomously and in

14 decision and process automation in enterprise operations

near real time which is hardly achievable for the more-strategic use cases we discussed
in the previous sections.

Another example that illustrates the capabilities of automated decision-making for
low-level entities is anomaly detection. Many quality and safety-control tasks, includ-
ing the monitoring of system metrics in data centers, the monitoring of telemetry data
collected from industrial equipment, and the surveillance of financial transactions, boil
down to differentiating between normal and abnormal trajectories in various metric
spaces. For example, a bank can monitor the number or percentage of charge-back
transactions and detect outliers that fall out of the regular daily patterns, as illustrated
in Figure 1.8. In practice, the detection of such outliers can often be done automatically
with high precision given that it is possible to build a reasonably accurate model of the
process that approximates the observed patterns, and then to use this model to forecast
the expected behavior deviations which will be deemed to be anomalies.

200

400

600

Ch
ar

ge
 b

ac
k

tr
an

sa
ct

io
ns

Jul 20 Jul 21 Jul 22

Figure 1.8: An example of anomaly in transactional metrics.

At the level of individual transactions, scenario evaluation and decision automation
is only one application of statistical learning and probabilistic reasoning. The second
large area is automatic generation of complex objects such as images, source codes,
or natural language texts with a goal to automate business processes and improve
user productivity. For example, one can improve the productivity of art asset creation
for video games using a generative model that synthesizes images based on natural
language descriptions as shown in Figure 1.9. Other examples include conversational
interfaces that enable users to ask questions and get answers in natural language, code
suggestion assistants, and copywriting tools. In such applications, generative models
for texts and images take the central role.

The examples above illustrate that the development of decision and process automa-
tion components for entities of a smaller scale is often facilitated by the ability to build
reasonably accurate and self-contained mathematical models of the process, which is
more challenging for larger scale entities. Unlike large entities, smaller entities such as
online users, payment transactions, and product images tend to be numerous, so we
often observe millions or billions of instances, which also facilitates and, in fact, com-
mands the usage of statistical methods. The spectrum of entities is very wide, ranging
from entire markets and companies to consumers and transactions, so enterprises usu-
ally need to build a hierarchy of quantitative decision-support and decision-automation
components. The top-level components in this hierarchy are usually decision-support
tools focused on decomposition of a complex problem into smaller ones and determin-
ing the right objectives and parameters for the downstream components. The lower-

1.2 modeling capabilities 15

��������������������������������������
�������������������������������������
����������
������������������
��������	������������������

Figure 1.9: An example of a game asset generation based on a natural language prompt.

level components are usually autonomous models that optimize and automate actions
based on the objectives passed from the upper levels.

1.2 modeling capabilities

In the previous sections, we reviewed several basic examples that illustrate how quan-
titative methods can help with decision-making and process automation at various
levels of granularity and in various enterprise domains. The implementation of these
approaches requires a comprehensive toolkit of statistical and optimization methods
that can collectively address several categories of problems. The first category is related
to the incorporation of various signals and data sources into the analysis and extract-
ing semantically meaningful representations that can be used in decision-making and
process automation:

entity representations Many entities have complex digital footprints that
include numerical, textual, image, and graph data. For example, a customer
can be represented by account settings, transaction and browsing histories,
social connection graphs, and text messages; a product can be represented by
numerical and categorical attributes, textual descriptions, images, and customer
reviews. Consequently, one needs tools to extract semantic meaning out of
these data and to create compact representations of entities that can be used
in downstream models and analytical processes. For instance, textual messages
can be represented as collections of topic and sentiment tags; product images
can be annotated with style tags, and so on. Such semantic representations can
be constructed manually, and this process is referred to as feature engineering, or
learned using statistical techniques which are known as representation learning.

entity algebra The problem of computing semantic representations is closely re-
lated to the problem of computing distances between entities. Many enterprise
AI problems, especially in marketing and information management applications,
can be reduced to estimating distances or, alternatively, similarities between en-
tities in an appropriate semantic space. Examples include product recommen-

16 decision and process automation in enterprise operations

dation systems where one needs to measure similarities between products and
users, text and image search problems where one needs to find items similar
to a search query or reference image, and price and assortment management
problems where a distance metric between products is often required. Semantic
representations provide a generic and convenient way for computing distances
and performing other algebraic operations on entities.

entity property prediction In many applications, we need to predict unob-
served entity properties or entity classes. For example, we might need to estimate
the expected revenue over the next year for customer accounts, or to categorize
images from a surveillance camera as normal situations, crowds, street fights, or
unauthorized vehicles.

entity generation In some applications, we need to generate entities based on
limited inputs. For example, a product personalization service might generate
product design suggestions and corresponding visualizations based on a natural
language description provided by a user.

The second category of problems is related to models that help us to understand
the internal structure of entity trajectories and to forecast future moves. If we use the
branches of physics as an analogy, this category can be thought of as a discipline that
studies the dynamics of entities, whereas the previous category can be viewed as statics.
The problems we need to address in this area are as follows:

trajectory decomposition A trajectory can be shaped by many different forces
which may or may not be directly observable. For example, a retailer can easily
track weekly sales figures for a given product, but this series represents a complex
mix of components such as seasonality, responses to price changes and marketing
campaigns, cannibalization effects related to similar products or competitor price
changes. Most of these effects cannot be measured explicitly, and one needs to
estimate them using statistical analysis. This process of trajectory decomposition
into elementary components enables deeper manual analysis as well as automatic
optimization. For example, a price management system that does not account for
cannibalization effects is prone to making suboptimal decisions that boost sales
of one product, but harm the overall profitability of the category.

The trajectory decomposition problem can be viewed as a dynamic counterpart of
entity representation learning. While the main purpose of representation learning
is to describe the static state of an entity using semantically meaningful compo-
nents (dimensions), the main goal of trajectory decomposition is to describe the
dynamics of an entity in terms of forces that have clear semantic meanings.

trajectory forecasting The trajectory analysis and decomposition can typically
be extended into forecasting. In our previous example regarding price manage-
ment, a model that allows for decomposition of the sales numbers into seasonal
and price-related components can be used to forecast future sales. Decomposi-
tion and forecasting can often be viewed as two different modes (descriptive and
predictive) of using the same or similar models.

trajectory property prediction Similar to predicting entity properties, we
might need to predict hidden trajectory properties or trajectory classes. For
example, we might need to categorize the observed trajectories as normal or
anomalous.

1.3 impact of automl and foundation models 17

Finally, the ultimate goal of enterprise AI systems and tools is to improve specific
actions and decisions in terms of optimality or degree of automation, so we define the
third category of tasks that are related to the optimal entity control as follows:

entity control Predictive models enable what-if analysis of possible actions, so that
an optimization algorithm can evaluate multiple scenarios and determine the op-
timal one. This creates a foundation for the development of prescriptive tools and
autonomous decision-making components for entity control. The design of opti-
mization models that capture all important economic factors and that are capable
of finding strategically optimal multistep scenarios are the central problems in
entity control.

In theory, the main goal of entity control algorithms is to produce optimal or
near-optimal action policies or prescriptions. In practice, we often need to answer
additional questions about the solution and the structure of the solution space.
One important example is sensitivity analysis that aims to measure how the qual-
ity of the solution degrades when the action parameters are shifted away from the
optimal values or if modeling assumptions are violated. For instance, an inven-
tory planner might be interested to know the difference between the theoretically
optimal replenishment cycles of 6.53 days and the practically meaningful cycle of
7 days (once a week).

dynamic control The problems we discussed above, starting from representation
learning to action planning, are traditionally approached from the standpoint
of statistical analysis of historical data. This generally includes many manual
steps related to data preparation, model development, and production integra-
tions. This approach is not always feasible in complex or dynamic environments
where representative historical data might not be available or could be getting
obsolete quickly due to continuous changes in the statistical properties of the
processes. For example, a personalization system that relies on customers’ behav-
ioral profiles might not work satisfactorily in an environment with a continuous
stream of new customers. This leads to the problem of dynamic control where the
system is required to continuously explore the environment, learn instantly from
the ongoing feedback, and continuously adjust decision-making and exploration
policies.

In practice, one does not necessarily build a complete pipeline with distinct stages
for representation computing, prediction, and control optimization. For example, some
merchandising processes such as product image tagging can be automated using only
computer vision models that compute image representation and categorize them. The
complete framework, however, can be useful for planning more complex solutions that
automate complex operations and include multiple models and components.

1.3 impact of automl and foundation models

The implementation of the above capabilities can involve a broad range of statistical
and optimization methods. The deep learning and reinforcement learning methods,
however, provide the most comprehensive platform for implementing enterprise AI
applications, covering most of the required capabilities including semantic analysis,
forecasting, and action optimization. We spend the next three chapters lining up the

18 decision and process automation in enterprise operations

necessary building blocks and discussing the above modeling capabilities in more de-
tail.

The implementation of these building blocks and capabilities generally involves mul-
tiple steps such as exploratory data analysis, feature engineering, model design, train-
ing, tuning, selection, interpretation, and validation. All of these steps are essential
for creating useful, well-performing, and trustworthy models. For each of these steps,
there is a comprehensive theoretical base and a large number of applied methods and
techniques, so that each step could be the subject of a separate book1.

To deal with such complexity, we have to choose a specific perspective on the model
development process. Our choice is mainly driven by the following two considerations:

adoption of automl The traditional modeling approach assumes that all steps out-
lined above are performed in a manual or semi-manual mode by a human expert
in statistics and machine learning. This is an involved process that requires ad-
vanced skills, a considerable amount of time, and many trial-and-error steps to
develop a working solution. In the late 2010s, the limitations of this approach be-
came widely recognized and received a lot of attention in the industry for several
reasons. First, the extensive adoption of machine learning across all industries
underscored the need for efficient tools that enable domain experts to create ML-
powered solutions without the involvement of highly qualified machine learning
experts. Second, the explosive development and adoption of deep learning meth-
ods sharply increased the complexity of the model architecture selection and
tuning. These challenges resulted in the rapid development of methods and tech-
niques that are collectively known as automated machine learning or AutoML.

The AutoML methods are generally focused on the declarative approach to model
development where a domain expert specifies only a limited number of inputs
such as the problem type, objective function, and raw data, and the AutoML
engine automatically constructs a pipeline with the necessary data transforma-
tion components and selects the near-optimal model architecture. The construc-
tion process is usually driven by the objective function, so that multiple pos-
sible model architectures are searched through until convergence to the best-
performing option2. For example, a domain expert can pose a problem of time
series forecasting with a goal to minimize the forecasting error, but the specific
input data transformations, model architectures, and hyperparameter values will
be automatically determined by the engine.

adoption of foundation models In traditional enterprise analytics, it is typical
to build models and decision-automation components from scratch using only
proprietary data either generated by the enterprise itself or received from third
parties. However, this approach is not feasible for most applications that involve
computer vision and natural language processing. In the 2010s, off-the-shelf com-
puter vision models pretrained on large general-purpose datasets were adopted
widely in enterprises because the fine-tuning of such models on task-specific
data is usually more efficient than training on limited amounts of task-specific
data alone. In the 2020s, generative AI models, including large language models
(LLMs) and text-to-image models, which are trained on extremely large amounts

1 Examples of such books are [Kuhn and Johnson, 2019] dedicated to feature engineering and [Molnar, 2020]
focused on model interpretation.

2 It is beyond the scope of this book to discuss specific AutoML methods and algorithms, but comprehensive
surveys such as [He et al., 2021] are readily available.

1.4 summary 19

of data, unlocked unique capabilities for process automation and the creation of
next-generation user interfaces. Such models, called foundation models, are usually
distributed as hosted services available via APIs or prepackaged components,
and the creation of such models from scratch, as well as datasets required for
their training, is beyond the reach or needs of most enterprises.

In this book, we make an assumption that the two paradigms outlined above will
dominate the enterprise AI community or, at least, the level of automation offered by
machine learning tools and platforms will increase over time. We incorporate these con-
siderations in Chapters 2 – 4 by focusing on the functional capabilities and interfaces of
the main building blocks. In applied Recipes R1 – R14, we focus mainly on the decom-
position of various enterprise use cases into the standard machine learning problems,
off-the-shelf components, and domain-specific customizations on a premise that many
implementation tasks can be addressed by ML tools and services.

1.4 summary

• Data-driven methods can be applied at different levels of granularity: strategic
decisions and large economic entities such as companies, tactical decisions and
optimization of individual processes, and micro-decisions at the level of individ-
ual customers, transactions, and operations.

• Many enterprise decision-making and optimization problems can be conveniently
represented in terms of entities, utility spaces, trajectories, and intervention sce-
narios.

• Analysis of entities and scenarios requires learning semantically meaningful en-
tity representations, explaining and forecasting trajectories, and evaluating poten-
tial interventions.

• Deep learning and reinforcement learning methods provide a solid platform for
entity and scenario modeling. This platform has certain limitations that can be
addressed using alternative machine learning methods.

• AutoML tools and pretrained models help to reduce data and infrastructure re-
quirements by simplifying the data preparation and model design tasks. This also
helps the developers of enterprise AI solutions to focus on the decomposition of
business problems into standard machine learning tasks.

2

P R E D I C T I V E M O D E L S

In this chapter, we focus on predicting entity properties or process states based on the
available inputs and learning entity representations. We use deep learning as the core
framework that enables us to implement a very broad range of solutions in a unified
way, and develop several categories of modeling methods for different types of entities
and prediction tasks. These methods will then be used throughout the book as generic
building blocks.

We describe machine learning methods mainly from the system engineering stand-
point, considering them as components with certain functionality, inputs, and outputs,
and explaining how multiple components can be wired together. We provide basic de-
tails about statistical and algorithmic underpinning of these methods, but we do not
aim to provide a comprehensive and rigorous introduction into machine learning the-
ory.

2.1 overview from the system engineering perspective

All methods and solutions described in this book rely on the ability to build a model of
a certain entity or process, such as an individual customer or a large group of customers
who are collectively considered as a market. Although we always have an option to
specify the model manually, the complexity of doing this is prohibitively high for the
majority of use cases, and we have to use statistical methods to learn models from past
observations or from ongoing interactions with the environment.

In many cases, it is convenient to view a statistical model as a component that pro-
vides certain functionality and integration points. We generally assume that the model
has inputs and outputs which we denote as x and y, respectively. We further assume
that the model has fixed design (structure), but has parameters that are either fixed or
learned. We refer to the fixed parameters as hyperparameters and denote the learnable
parameters as θ. This setup is sketched in Figure 2.1.

The information that can be used to create a model usually includes prior knowledge
about the structure of the entity or process and data obtained by observing the entity
or process realizations. The prior knowledge is typically used to design the model
structure, to set some of its hyperparameters, or to initialize the values of its learnable

21

22 predictive models

parameters. The data is used to learn the actual values of the parameters that maximize
the goodness of the model according to a certain objective that is selected based on the
prior knowledge.

Model

Input mapper
(encoder)

Output mapper
(decoder)

Inputs (x) Outputs (y)

Semantic
representation (z)

Parameters (θ)

Prior
information

Entity or process

Figure 2.1: The conceptual architecture of a machine learning model.

2.1.1 Semantic Representations

We use term manifold to refer to a subset of inputs that corresponds to a specific output
value or range of such values. For example, we can observe items produced by some
manufacturing process in the form of images captured by an industrial camera, and
aim to create a model that estimates the probability of a given item being defective. In
this case, we say that some samples live on a manifold of defective images and that
other samples live on a manifold of non-defective images. We can also have images, say
random images from the internet, that do not belong to either of these two manifolds.

The shape of the manifold can be extremely complex. This complexity often stems
from the high level of redundancy and noise in the original representation of the input
samples. In the above example regarding defect detection, the items are initially repre-
sented by matrices of pixels, and it is very difficult to specify a rule or function that
delineates the subset of matrices that corresponds to defective items in the space of all
possible matrices.

The problem can, however, be drastically simplified if we manage to find a transfor-
mation that maps the original representation to a smaller, less noisy, and less redundant
representation that is aligned with the semantics of the desired output. In our exam-
ple, the desirable representation should include signals related to edges, contrast, and
other image features that can potentially highlight the presence of anomalies such as

2.1 overview from the system engineering perspective 23

scratches or holes. Consequently, the model design often includes, explicitly or implic-
itly, an input mapper or encoder that learns to produce a condensed representation of the
input, as shown in Figure 2.1.

Dimensions of such a representation, which we usually denote as z, can correspond
to semantically meaningful features of the modeled entity or process, so the space
of such representations is often referred to as a semantic space. We can also view the
condensed representation as a set of latent variables that are not observed but explain
or determine the observations, so the term latent space is commonly used as a synonym
for the semantic space. The dimensionality of the semantic space is typically smaller
than the dimensionality of the input space, and thus it is usual to say that the inputs
are embedded into the semantic space, and to refer to representations of individual input
samples as embeddings.

A properly constructed semantic space enables us to describe the manifolds of in-
terest using much simpler, often trivial, rules or functions compared to functions that
describe the same manifolds based on the initial representation. The function that trans-
forms embeddings into the final output corresponds to the output mapper or decoder
block in Figure 2.1. In our example of visual defect detection, we would first map input
images to low-dimensional embedding vectors and then map these embeddings to the
final defect probability values.

2.1.2 Predictive Models

We can apply the above framework to the main categories of tasks that were outlined
in Section 1.2. Let us first consider the problem of predicting entity attributes and
trajectories. We solve this problem by building a model whose input x is the incomplete
or noisy information about an entity or a process and whose output y is the estimate of
the unobserved current or future properties or states. For example, a model can output
the products that a customer is likely to purchase based on their demographic profile,
the names of the objects shown in the image based on the image bitmap, the word in a
certain position in a sentence based on the surrounding words, and the expected time
to machine failure based on the current sensor metrics. We refer to output y as a target
variable, label, or supervision signal.

The parameters of the predictive model can be learned based on a set of training
pairs px, yq. We refer to this stage as training. Once the parameters are learned, the
model can be used to estimate the expected output py based on the unseen input x or
to estimate its conditional output distribution. This stage is referred to as inference or
evaluation. This layout is illustrated in the upper part of Figure 2.2.

2.1.2.1 Specifying the Manifolds

In order to learn a valid model, the training set needs to sufficiently cover the mani-
folds of interest, so that the model can learn the general shape of the manifolds based
on the available points. The training dataset can be obtained using several different
strategies. These strategies dictate how the model is integrated with the environment
and determine the complexity of this integration.

24 predictive models

Environment Model

Output (y)

Input (x)

Inputs (x) Outputs (y)

Manifold
boundaries
and levels

Training
instances

(b) Categorical output

Training:

Inference:

(a) Numerical output

x1

x2 x2

ˆ

y

y

Figure 2.2: Integration of a predictive model into the environment.

One possible option is to collect a set of observations x and assign target variables y
manually. For example, domain experts can manually tag a collection of images from
industrial cameras with labels showing the defect type.

The second option is to automatically assign output values using a supervision process
that implements some custom business logic. Consider the example of a retailer that
is interested in predicting the revenue for a particular customer in the next six months
based on their activity over the past six months. In this case, the training samples can
be generated by a process that incorporates customer profiles, each of which includes
transactions and other attributes for a time period of twelve months, creates the input
values that describe customer state based on the first six months, and computes the
output labels as the revenue over the last six months. The model then attempts to learn
the manifolds of customer states x that correspond to different levels of the numerical
revenue label y. This situation corresponds to the sketch in Figure 2.2 (a) where we
assume that the customer state is represented by a two-dimensional vector and, conse-
quently, the manifold of the revenue values spans over a two-dimensional plane. The
same approach can be used to learn manifolds specified using categorical labels and
more complex structures such as vectors and matrices. For example, a retailer that aims
to predict whether a customer will make a purchase or not, instead of predicting the
revenue, would build a model for learning the manifolds of purchasers and nonpur-
chasers using a binary output label, which corresponds to the situation depicted in
Figure 2.2 (b).

2.1 overview from the system engineering perspective 25

Finally, the input-output pairs can be extracted from the observed data without ad-
ditional business logic. As an illustration, consider a system that forecasts the number
of active sessions on a website. A typical solution for this problem is a model that fore-
casts the number of sessions for the next time interval based on the patterns observed
during the previous intervals. In this case, the time series that describes how the num-
ber of active sessions changes over time is both the input and output of the model,
and the model can learn to predict the future segments of the series based on the past
segments. A similar strategy is commonly used in language models that are trained
to predict the next word in a sentence based on the previous words by capturing the
manifold of meaningful phrases and sentences. In both cases, the inputs and outputs
of the model are automatically generated from the raw unlabeled data using the prior
knowledge about the problem and structure of the data, that are temporal and spatial
relationships between the segments of a time series or words in a text.

2.1.2.2 Extracting the Semantic Representations

Although the primary function of a predictive model is to estimate the output vari-
ables based on the input, the encoder-decoder design presented in Figure 2.1 offers
a number of additional possibilities. First, the encoder can be used separately to pro-
duce embeddings of the input entities, and these embeddings can be used to compute
distances between the entities and to perform other algebraic operations. Second, the
encoder-decoder design simplifies the creation of composable solutions that include
multiple models. One common pattern is to chain multiple models together in a way
that upstream models extract useful features (embeddings) from complex input struc-
tures such as event sequences, images, texts, and graphs; and downstream models pro-
duce the final outputs by applying additional transformations on top of the extracted
representations. In such architectures, the feature extraction step can often be done
using off-the-shelf models pretrained on the standard datasets, and the final transfor-
mation is learned based on a custom domain-specific dataset.

This scenario is illustrated in Figure 2.3 where we assume that a model of a complex
environment E2 needs to be built based on a limited number of training instances. Since
the environment is complex, the available training instances might not be sufficient to
mark out all the details of the manifold curvature, making the problem intractable. We
can, however, work around this limitation provided that we have enough instances for
a similar or related environment E1 and build an auxiliary model M1 that extracts
useful features from the samples generated by this environment. This model can then
be used to extract features from samples generated by environment E2, and the second
model M2 can be trained to map these embeddings to the final outputs using a limited
number of samples available for E2. This approach works if embeddings z produced
by the first model represent the entities in E2 better than the initial inputs x, making
it easier for the second model to learn E2-specific representations z 1 which are, in
turn, used to compute the final output py. This process, generally referred to as transfer
learning, is illustrated in the lower part of Figure 2.3.

26 predictive models

Environment Model

Training:
Inputs

Output (y)

Input (x)

Inputs (x) Outputs (y)

Training:

Inference:
Embeddings

(z)

x

z

x

z

z’

E1 E2

E1

Environment
E2

M1

Model
M1

Model
M2

ˆ

y

Figure 2.3: Example of model chaining with transfer across two domains.

2.1.3 Generative Models

In some applications, we need to generate or reconstruct the full representation of an en-
tity or process rather than to predict individual properties. Although there is no strict
delineation between producing full representations and individual properties, gener-
ating high-dimensional structures puts emphasis on learning the manifold topology
rather than input-output mappings, and often requires specialized methods.

The full entity representation is typically generated based on the input which is
referred to as a context or conditioning signal. For example, a content generation system
can synthesize images based on a natural text description of the desired output. This
scenario can be viewed as the reverse of predictive modeling – the input of the model
is a coordinate on a manifold, and output is the original entity representation.

2.1 overview from the system engineering perspective 27

A generative model can also be learned without a supervision signal. As an illus-
tration, consider a system that detects manufacturing defects in images obtained from
industrial cameras installed on a production line. This problem can be approached by
building a model that learns the manifold of normal (non-defective) images, maps the
input image to the nearest point on this manifold, generates a new image instance
based on this point, and compares the input and generated instances to determine the
location of the defect. We can implement this strategy by learning the normality model
from a set of unlabeled images during the training phase, and constructing the nearest
normal approximation of the arbitrary input image during the inference phase, as de-
picted in Figure 2.4. Unlike the predictive models discussed in the previous section, we
learn the manifold of normal images without an explicit supervision signal.

Environment Model

Output (x)

Full or partial input

Manifold

Training:

Inference:

Inputs (x)

Training
instances

x1

x2

ˆ

Figure 2.4: Integration of a generative model into the environment.

2.1.4 Control Models

The strategies outlined above prescribe neither exactly how the training samples are
collected, nor how the model outputs are converted into actions and interventions that
change the trajectory of the entities and processes. The most typical approach is to col-
lect a sufficiently large batch of input samples, train the model, and use it to estimate
the outputs for new input instances that arrive from the environment. The estimated
outputs are then operationalized, that is, converted into actions, using some heuristic
process. This approach generally assumes the stationarity of the process we are model-
ing, so that the historical data remain representative during the time needed to build
or retrain the model, and the model remains valid for the time needed to produce and

28 predictive models

operationalize its outputs. These assumptions are never perfectly true in real-world
enterprise environments, but many important problems can be solved practically us-
ing methods that rely on such assumptions and relatively basic modifications such as
frequent model retraining.

In some scenarios, however, it can be challenging to adapt methods that assume
stationarity because of the highly dynamic nature of the environment and other factors.
For example, a newsfeed personalization service that aims to find and recommend the
most relevant articles to its users may have a limited ability to learn patterns from
historical data because new content and new users arrive at very high rates. This type
of problem requires methods that not only fit a model based on past observations, but
that combine learning, environment exploration, and action control in one seamless
algorithm. This strategy, known as reinforcement learning, is illustrated in Figure 2.5.

Environment Model

Action (a)

Input (x)

Value levels

Training
instances

Output (y)

Training and
inference:

x

a

y

Figure 2.5: Integration of a control model into the environment.

Internally, reinforcement learning algorithms usually learn manifolds that connect
possible actions in specific states of the environment with the value (utility) derived
from taking such actions. This concept is sketched in the lower part of Figure 2.5 where
the model estimates value y for a potential scenario represented by the environment
state feature x and action feature a.

We spend the rest of this chapter developing a more rigorous mathematical frame-
work for predictive modeling methods which we introduced informally above. In the
next chapter, we focus on the methods for manifold learning and entity generation.

2.2 maximum likelihood method 29

Finally, we develop methods for learning control policies in the last chapter of this
part.

2.2 maximum likelihood method

Generally speaking, models are created to approximate real-world stochastic processes
based on observed data samples. Each sample can represent an entity generated by a
process or a state of the process at a certain point in time. In this section, our goal is to
create a framework that, first, allows us to evaluate the quality of any proposed process
model based on the available samples and, second, provides a model optimization
procedure so that the optimal or near-optimal approximation quality can be achieved.

2.2.1 Likelihood Estimation

Let us assume that the samples are drawn from a data-generating distribution pdatapxq
that reflects the real-world process, and that a finite set of n samples is observed:

X “ tx1, . . . , xnu (2.1)

We can approach the problem of building a model for this process by defining a fam-
ily of parametric distributions pmodelpx | θq where θ is a vector of model parameters,
and finding the value of θ that provides the best approximation of the available data.
The goodness of approximation can be evaluated based on the probability of generating
the observed data given specific model parameters which is known as the likelihood:

Lpθq “ pmodelpX | θq (2.2)

The optimal values of parameters that correspond to the maximum likelihood (ML) can
then be determined by solving the following optimization problem:

θML “ argmax
θ

Lpθq (2.3)

We can further assume that the observed samples are drawn independently from
the data-generating distribution which allows for the following probability decomposi-
tion1:

θML “ argmax
θ

n
ź

i“1

pmodelpxi | θq

“ argmax
θ

n
ÿ

i“1

log pmodelpxi | θq

(2.4)

1 The assumption about independently drawn samples is appropriate for many practically important problems.
For example, user profiles used in personalization applications are typically viewed as independent samples.
However, many problems exist where observations are by nature interdependent. For instance, a series of daily
sales figures clearly cannot be viewed as a collection of independent values. Such problems can be cast to the
standard formulation with independent samples by a proper design of the input entities, and we discuss this
problem further in Section 2.4.2.

30 predictive models

We can also express the right-hand side as the expected value over the empirical
distribution of the data:

θML “ argmax
θ

Ex„ppdata
r log pmodelpx | θq s (2.5)

This transition is valid because the argmax operation is invariant to rescaling of
its argument, so we can divide the sum of the observed samples by n. Solving this
optimization problem with regard to θ, we obtain a fully specified model that can be
used to draw new samples and study properties of the data-generating process.

The actual optimization problem can be derived from the above framework by ap-
proximating the likelihood by means of an evaluable loss function. It is generally con-
venient to introduce a per-sample loss function and define it as an approximation of
the negative log-likelihood for one observation:

Lpxi, θq “ ´ log pmodelpxi | θq (2.6)

The loss of zero is achieved when the model assigns the probability of one to the
observed ground truth values xi. The actual loss function, however, is not necessarily
identical to the log-likelihood – it can be specified using various approximation tech-
niques, and include special terms that prevent overfitting and computational stability
issues. In certain cases, the design of the loss function can also include business con-
siderations. For example, the right-hand side of expression 2.9 can be rescaled using
a nonlinear function to penalize deviations from the ideal fit based on the business
impact of the error.

2.2.2 Conditional Likelihood Estimation

In the case of supervised learning, we are interested to learn a model that approximates
the mapping (dependency) between input and output values rather than learning a
model that approximates the unconditional distribution of the input values. Conse-
quently, the model learns from a set of samples where each instance is a pair of input
features and output values (labels):

X “ tpx1,y1q, . . . , pxn,ynqu (2.7)

In this formulation, the goal is to learn a model that allows drawing of output labels
y using feature vectors x as input arguments. The framework developed above can be
adapted to this problem by replacing unconditional data distribution by conditional
distribution pdatapy | xq where x is the input feature vector and y is the output label.
The model also changes to pmodelpy | x, θq, so that both θ and x are needed to evaluate
y. Finally, the maximum likelihood expression 2.4 transforms into the following:

θML “ argmax
θ

n
ÿ

i“1

log pmodelpyi | xi, θq

“ argmax
θ

Ex,y„ppdata
r log pmodelpy | x, θq s

(2.8)

Similar to the unconditional case, we can define the per-sample loss function that
achieves its minimum when the model assigns the probability of one to the observed
ground truth values yi:

Lpxi, yi, θq “ ´ log pmodelpyi | xi, θq (2.9)

2.2 maximum likelihood method 31

The concepts of the likelihood and loss functions enable us to evaluate the quality of
the models. Our next step is to develop a model optimization procedure that searches
for the model parameters θ that minimize the loss.

2.2.3 Likelihood Maximization Using Gradient Descent

Assuming that we specified an evaluable per-sample loss function, the total loss that
corresponds to the negative log-likelihood over the observed dataset can be evaluated
as

Jpθq “
1

n

n
ÿ

i“1

Lpxi, yi, θq (2.10)

The minimization of this loss is equivalent to solving problem 2.8. In principle, we
can consider minimizing the loss by performing gradient descent in the space of param-
eters θ. The gradient descent can be implemented as an iterative process that estimates
the gradient of the loss function

∇θJpθq “
1

n

n
ÿ

i“1

∇θLpxi, yi, θq (2.11)

and shifts the parameters in the direction of the minimal loss as follows:

θÐ θ´α ¨∇θJpθq (2.12)

where α is a hyperparameter that controls the update rate. This process produces the
loss-minimizing value of θ that approximates θML and thus allows us to specify the
model.

This methodology can be viewed as a high-level framework for building models of
stochastic processes, but its practical implementation requires the solving of several
challenging problems:

• First, we need to define the model architecture in a way that provides enough
capacity and flexibility for approximating complex data-generating distributions,
but allows for stable and efficient parameter learning. This is a challenging task
that requires developing a comprehensive collection of composable components
that can be used to design custom solutions for various problems and use cases.

• Second, the gradient descent approach assumes that the model is differentiable.
Consequently, we need all components to be differentiable, so that the models
composed from them are differentiable end-to-end.

• Third, the gradient descent process is guaranteed to converge to the optimal pa-
rameter values only for the convex problems. In practice, it is usually not possible
to achieve the necessary capacity and flexibility using the strictly convex models.
The standard solution strategy is to use non-convex models combined with ad-
vanced parameter optimization algorithms that help to escape local minimums.
More generally, the optimization of model parameters is much more challenging
than the basic gradient descent procedure outlined above, and modeling frame-
works combine numerous techniques to achieve acceptable computational com-
plexity and stability for real-world models and datasets.

32 predictive models

• Finally, we need to specify a meaningful and computationally tractable loss func-
tion. The design of such a function generally depends on the type and structure of
the outputs, and also requires the incorporation of various considerations related
to computational stability.

It is beyond the scope of this book to discuss the computational aspects of the op-
timization process, but the model and loss function designs need to be discussed at
some length in order to create a toolkit for the development of real-world enterprise
solutions. We next spend several sections laying this foundation.

2.3 models with vector inputs

The complete reference implementation for this section is
available at https://bit.ly/3EnJByY

We start by reviewing predictive models that are capable of learning the relation-
ship between a one-dimensional input vector and one or several output values. The
input vector is usually a concatenation of several features, each of which describes a
certain property or attribute of the modeled entity or process. These features may or
may not have semantic relationships, but the model design does not make any specific
assumptions about temporal, causal, or spatial dependencies between the features or
their order in the input vector. A wide range of practical enterprise problems can be
cast to such plain-input formulation, making this design extremely versatile.

2.3.1 Linear Layer

Our first step is to examine a basic model design that uses a linear transformation
to map the input vector to the output values. In this section, we discuss how the pa-
rameters of such a linear mapper can be learned and how it can be combined with
several different output mappers to estimate the output values of different types. We
refer to this basic unit as a linear layer because, as we discuss in the next sections, it
can be viewed as one of the building blocks that can be composed together to obtain
higher-capacity models.

The maximum likelihood framework requires specifying a parametric model and
loss function as inputs for the learning process. The model and loss can be designed
to learn the full distribution ppy | x, θq, but in most practical applications we are
interested only in estimating the expected value of y given the known input x, that is
learning a function that computes the estimate of the output value based on the input
vector:

pyi “ E rpmodelpyi | xi, θqs “ fmodelpxi, θq (2.13)

https://bit.ly/3EnJByY

2.3 models with vector inputs 33

In this case, we can interpret the loss function as the distance between the true value
yi and its estimate pyi:

Lpxi, yi, θq “ Lpyi, pyiq

“ Lpyi, fmodelpxi, θqq

“ distancepyi, fmodelpxi, θqq

(2.14)

The distance function should be designed to match the negative log-likelihood de-
fined in expression 2.9, and thus its design depends on the assumed distribution
ppy | xq. This distribution, in turn, needs to be chosen based on the type of the out-
put label y. For example, we can use continuous distributions for real-valued labels
and discrete distributions for categorical labels. Let us examine these cases separately
starting with real-valued labels.

2.3.1.1 Regression

Models that produce real-valued outputs are collectively referred to as regression models.
The basic regression model can be built under an assumption that label y is a normally
distributed variable with a fixed covariance matrix I, that is

ppy | x,θq “ Npy; fmodelpx, θq, Iq (2.15)

It can be shown that for the normally distributed label the likelihood maximization is
equivalent to minimization of the mean squared error (MSE), and thus we can reduce
the loss function in expression 2.14 to Euclidean distance1:

Lpxi, yi, θq “ pyi ´ fmodelpxi, θqq
2 (2.16)

This loss function can be straightforwardly evaluated, plugged into the gradient ex-
pression 2.11, and used to find the optimal model parameters.

The remaining piece is to specify the model. The most basic option we can start with
is a linear function specified by a vector of slope coefficients w and scalar intercept b:

fmodelpx, θq “ wT x` b (2.17)

so that θ “ pw, bq. This model approximates the dependency between the input
and output points as a hyperplane averaging out any nonlinearities (curvatures). The
structure of the model and its training process are illustrated in Figure 2.6 where the
input vector x is assumed to be one-dimensional and the linear unit is specified by
equation 2.17.

The training process optimizes parameters w and b with respect to MSE using gra-
dient descent, and produces an evaluable linear model. We can use this model, for
instance, to estimate output value py for each input point x as shown in Figure 2.7.
This figure illustrates how the linear regression model approximates the dependency
between inputs and outputs by a straight line (one-dimensional hyperplane) averaging
out all noises and deviations.

1 See Appendix A.1 for the proof.

34 predictive models

−3 −2 −1 0 1 2 3
x

−2

0

2

4

6

8

10

y

MSE

Input (x) Output (y)Linear unit

Parameter optimization

�

Figure 2.6: Training pipeline for a linear regression model.

2.3.1.2 Single-label Classification

Let us now turn to the case where label y is drawn from a discrete set of k classes
c1, . . . , ck. This category of problems is referred to as single-label classification problems.
In this scenario, we can design a model to output a k-dimensional vector where each
element corresponds to the probability of class ck, so that

pyi “ ppyi1, . . . , pyikq “ fmodelpxi, θq (2.18)

and

pyij “ ppyi “ cj | xi, θq (2.19)

The final classification decision can then be made by choosing the class that cor-
responds to the maximum probability value. Since we are assuming that the model
explicitly outputs class probabilities, the per-sample loss function can be evaluated
straightforwardly based on the definition of the likelihood 2.9 as

Lpxi, yi, θq “ ´ log pmodelpyi | xi, θq

“ ´

k
ÿ

j“1

Ipyi “ cjq log pyij
(2.20)

where I is an indicator function that takes value 1 when its argument is true and
value 0 otherwise. This loss function is known as a categorical cross-entropy loss1.

1 See Appendix A.2 for a detailed discussion of the classification loss functions.

2.3 models with vector inputs 35

−3 −2 −1 0 1 2 3
x

−2
0
2
4
6
8
10

y

−3 −2 −1 0 1 2 3
x

−2
0
2
4
6
8
10

y

Input (x)

Output (y)

Linear unit

�

�

Figure 2.7: Inference pipeline for a linear regression model.

The second part of the solution is to specify the model that produces the vector of
class probabilities. Similar to the regression case, we can consider assigning a basic
linear model to each class, so that the following k values are computed:

zj “ wTj x` bj, j “ 1, . . . , k (2.21)

We can stack weight vectors wj into a matrix W and rewrite the above expression in
matrix notation:

z “ Wx` b (2.22)

so that z is a k-dimensional vector. The elements of z cannot be directly interpreted
as probabilities because they are not normalized, but we can rescale them to produce
a vector of valid probability values. This can be done using a softmax function that is
defined as follows:

softmaxpzqj “
exppzjq

řk
c“1 exppzcq

, j “ 1, . . . ,k (2.23)

36 predictive models

The softmax function takes a k-dimensional vector z as an input and produces a
vector of k normalized values that can be used to assemble the final output vector py:

py “ psoftmaxpzq1, . . . , softmaxpzqkq (2.24)

It is easy to check that this vector satisfies the following criteria and thus it represents
a valid vector of class probabilities:

pyj P r0, 1s and
k
ÿ

j“1

pyj “ 1 (2.25)

We can illustrate the overall model architecture with an example shown in Figure 2.8.
In this example, the input is a two-dimensional real vector, and the output is a cate-
gorical label with three possible values (classes). The model is trained using gradient
descent on a dataset that includes three relatively well-separated clusters presented in
the lower part of the figure.

x1

Linear units

softmax

Loss
function

x2

y1 y2 y3

z1 z2 z3

� � �

−4 −2 0 2 4

−4

−2

0

4

Class 1
Class 2
Class 3

2

x1

x2

y

Parameter
optimization

Figure 2.8: Training pipeline for a linear classification model.

The logic learned by the model can be examined through visualization of individual
layers as shown in Figure 2.9. The upper part of the figure is created by evaluating

2.3 models with vector inputs 37

and visualizing values of z at various points of the input two-dimensional space, and
the data points of the corresponding classes are overlaid on top of it. As expected,
the values of z represent linear gradients that are aligned with the locations of the
corresponding clusters. The second row depicts the outputs of the softmax function –
the linear gradients are blended into the curved areas. The final decision boundaries
between the classes, however, are linear as confirmed by the chart below the figure.
This chart is obtained by color coding the points of the input space based on which
class has the maximum estimated probability at a given point.

−4 −2 0 2 4

−4

−2

0

2

4

max

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4 −4 −2 0 2 4

y1 y2 y3� � �

softmax

−4

−2

0

2

4

z1 z2 z3

Figure 2.9: Visualization of the decision boundaries in the linear classification model.

2.3.1.3 Multi-label Classification

The third common category of problems we have to consider is that of multi-label clas-
sification. Similar to the single-label classification discussed in the previous section, the
labels are also drawn from a discrete set, but multiple labels may be assigned to each
instance. In other words, the classes are not mutually exclusive and each instance can
belong to more than one class.

38 predictive models

The output of the multi-label classification model is a vector of class probabilities,
so the expressions 2.18 and 2.19 we used to define the single-label classification model,
are also valid for the multi-label case without any modifications. We can also reuse
the categorical cross-entropy loss specified by expression 2.20, as well as the linear
part of the model specified by equation 2.22. The only part that we need to modify is
the mapping between the outputs of the linear transformation and class probabilities.
Since the classes are not mutually exclusive, we need to independently normalize each
probability value in the output vector rather than jointly normalize all values using the
softmax function. Consequently, we can replace the mapping 2.24 with the following:

py “ pσpz1q, . . . , σpzkqq (2.26)

where zi are the elements of the vector produced by the linear transformation and σ
is the sigmoid function specified as

σpxq “
1

1` e´x
(2.27)

The sigmoid function maps an arbitrary real value to the range from 0 to 1, so that
each element of the output vector is guaranteed to be a valid probability value:

pyj P r0, 1s (2.28)

Unlike the softmax mapping, however, there is no guarantee that all elements sum
up to one.

2.3.2 Nonlinear Layers

The linear models discussed in the previous section are very useful in practical en-
terprise problems that require quantifying the average correlation between inputs and
outputs. By fitting such models, we can establish that a certain factor has positive or
negative impact on the output and estimate how sensitive this dependency is using the
slope coefficients. The linear models, however, are not able to capture the exact shape
of the dependency between inputs and outputs unless it is strictly linear, and neither
can complex interactions between the input features be captured. These limitations can
be addressed by adding nonlinear transformations to the model.

2.3.2.1 Stacking Multiple Layers

Many different approaches exist for adding nonlinearities. One of the most versatile
strategies that logically extends the framework developed in the previous sections is to
stack multiple layers of linear units, interleaving them with nonlinear transformations.
We can implement this approach by extending the linear classification model specified
by expression 2.22 so that the output of the linear unit is transformed using a nonlinear
element-wise function g:

hp1q “ g
´

Wp1qx` bp1q
¯

(2.29)

2.3 models with vector inputs 39

where x is assumed to be m-dimensional input vector, Wp1q is m ˆ k1 matrix of
parameters, bp1q is k1-dimensional vector of parameters, and hp1q is k1-dimensional in-
termediate output. Parameter k1 basically controls the capacity of the layer. The second
layer then can be stacked on top of the first as follows:

hp2q “ g
´

Wp2qhp1q ` bp2q
¯

(2.30)

where Wp2q is k1 ˆ k2 matrix of parameters and hp2q is k2-dimensional output. Just
like for the first layer, the capacity of the second layer is controlled by parameter k2.
We can continue this process and stack more layers on top of each other. For the sake
of convenience, we denote the output of the top layer as z.

This architecture is known as a fully connected neural network because each element of
pi` 1q-th layer is computed as a linear combination of all output elements of i-th layer.
Individual layers that perform the transformation specified by the above expressions
for hpiq are commonly referred to as fully connected layers or dense layers – we further
use these two terms interchangeably. The intermediate layers, that are all layers except
the input layer and output layers, are commonly referred to as hidden layers. As we will
discuss shortly, the fully connected design is an extremely versatile building block for
complex models, and it is often combined with more specialized designs to assemble
problem-specific neural networks.

2.3.2.2 Activation Functions

The design of the nonlinear transformation g, commonly referred to as an activation
function, is usually quite basic. The network learns complex distributions through op-
timizing the coordination between multiple basic units, not through applying complex
transformations to individual units. One of the most common and universal choices for
g is a rectified linear unit (ReLu):

gpxq “ ReLupxq “ maxp0, xq (2.31)

The second option, which we will use in some architectures, is a sigmoid function.
We used it earlier as a tool for mapping arbitrary real values to probabilities, but it is
widely used as a generic nonlinear transformation as well:

gpxq “ σpxq “
1

1` e´x
(2.32)

Several other alternatives exist as well. Each activation function has its own advan-
tages and disadvantages, but ReLu is widely used in complex architectures due to its
computational efficiency and other properties required by the gradient-based training
processes.

2.3.2.3 Regression and Classification Networks

The nonlinear regression and classification models can be created by stacking the lin-
ear regression and classification layer described in Sections 2.3.1.1–2.3.1.3 on top of the
stacks of nonlinear dense layers. In the regression case, this means that the transforma-
tion 2.17 will be applied not to the original input x, but to the output z produced by the

40 predictive models

top layer of the underlying network. In the classification case, the inputs to the softmax
and sigmoid functions will also be obtained by applying the transformation 2.24 to the
outputs of the underlying network.

2.3.2.4 Example of a Deep Network

The fully connected design is illustrated by an example in Figure 2.10. We consider a
classification problem that cannot be solved using a model with linear decision bound-
aries – the two-dimensional input dataset includes two clusters of points twisted in a
spiral. This problem can, however, be solved using a three-layer neural network. The
first two layers are eight-dimensional, that is k1 “ k2 “ 8. The third layer is chosen
to be two-dimensional, that is k3 “ 2, to make its output easily visualizable. The final
output is obtained using a softmax layer, and the model is trained using categorical
cross-entropy loss, just as we did for the linear classification model.

x1

softmax

Loss function

x2

y1 y2

z1 z2

...

...

8 nonlinear
units

8 nonlinear
units

2 nonlinear
units

� �

W(1)

h(1)

W(2)

h(2)

W(3)

h(3)

x1

x2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Class 1
Class 2

y
Parameter

optimization

Figure 2.10: Design of a nonlinear classification model.

2.3 models with vector inputs 41

Throughout this book, we often use diagrams where transfor-
mations (layers) are depicted as arrows that connect complex
functional blocks and data elements such as vectors and ten-
sors, that are depicted as boxes. In some diagrams, we also
assume that certain transformations are applied by default,
and do not visualize them at all for sake of compactness and
readability.

Once the model is fitted, we can analyze the transformations it performs and the
resulting decision boundaries. One crucial insight can be obtained by visualizing the
output of the top layer of the network, z. The space spanned on z can be viewed as a
nonlinearly skewed version of the space spanned on x or, alternatively, vectors z can be
viewed as embeddings of the input vectors x. The space z is of interest to us because
vectors z are mapped to the final class labels using a standard softmax unit that has
linear decision boundaries. This means that the model can work if, and only if, the
classes are linearly separable in space z, so the training process is forced to find a rep-
resentation of the input space that makes it possible, and this representation captures
the curvature of the clusters in the training dataset. The visualization presented in Fig-
ure 2.11 confirms this statement. The training process optimizes the parameters of the
intermediate network layers in such a way that the linearly inseparable clusters in space
x are mapped to the linearly separable clusters in the embedding space z. This ability
of neural networks to find useful representations is remarkable, and we will discuss
various aspects and applications of this capability throughout the book.

0 5 10 15 20 25 30

0

2

4

6

8

10

12

z1

z2

Class 1
Class 2

x1

x2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

Class 1
Class 2

Figure 2.11: Embedding space of the nonlinear classification model.

We can further visualize the overall decision boundaries by computing class proba-
bilities py at different points of the input space x, as shown in Figure 2.12. This chart
corresponds to the charts in the middle row of Figure 2.9, but we need only one map
instead of three because the target label is binary (we have only two classes in this

42 predictive models

example). This visualization clearly demonstrates sharp nonlinear decision boundaries
created by ReLu units, and the ability of the model to accurately capture the spiral
pattern.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x2

Figure 2.12: Decision boundaries of the nonlinear classification model.

We can change the capacity of the model by increasing or decreasing the number
of units at each layer or by changing the number of layers. The number of units at
individual layers is commonly referred to as the network width, and the number of
layers is referred to as the network depth. In most applications, the best performance
is achieved by using relatively deep networks with limited width. As we will discuss
later, it is also usual to start with relatively wide layers on the input end and gradually
decrease the width towards the output end, so that the representations produced by
the network layers become more and more dense.

2.3.3 Residual Blocks and Skip Connections

In practice, one often needs to build models with tens or even hundreds of layers to
achieve capacity and expressiveness sufficient for learning complex manifolds. Design-
ing and training such models is a challenging task, and it is often the case that the
model quality decreases as more layers are added and the depth of the network in-
creases [He et al., 2016]. We can argue that such a degradation cannot be attributed to
the network expressiveness because a deeper network can always perform at least as
well as a shallower one by learning the additional layers to be the identity functions. In-
stead, the quality degradation phenomenon can be better explained by computational
issues and data limitations. Consequently, we can consider making changes in the net-
work design that facilitate the learning of identity mappings.

This idea can be implemented by adding skip connections (also known as residual con-
nections or shortcut connections) that allow the signal to bypass certain transformations
and propagate faster across the layers. This design technique is illustrated in Figure 2.13

where a block of two nonlinear layers is contrasted to a block with a skip connection.
In the regular block, the dotted-line box needs to learn the mapping fpxq; meanwhile

2.3 models with vector inputs 43

the dotted-line box in the block with a skip connection learns the residual mapping
gpxq “ fpxq ´ x which is zero for the identity transformation. Skip connections have
been empirically proven to be an extremely powerful technique, and have become an
essential tool for building high-capacity networks across a wide range of applications.

Linear

Activation function

Linear

Activation function

f(x)

x

Linear

Activation function

Linear

Activation function

g(x)

x

f(x) = g(x) + x x

Regular block Residual block

Figure 2.13: Example of a residual block with an additive skip connection.

More generally, skip connections do not necessarily need to be additive. For example,
the signal from the bottom layers can be merged into the main flow using concatenation,
not addition. We will use both additive and concatenative skip connections later in this
book.

It is often convenient to think about blocks with multiple nonlinear layers and skip
connections between them as standard components that can be stacked on top of each
other just like regular layers. Such blocks are called residual blocks and they are often
used as drop-in replacements for basic nonlinear layers. However, skip connections are
used not only locally (within small blocks), but also globally to facilitate signal propa-
gation and gradient back-propagation at the scale of the entire network. For instance,
later in this chapter we will discuss network architectures with skip connections be-
tween bottommost and topmost layers.

2.3.4 Distribution Estimation Layers

In Section 2.3.1.1, we demonstrated how a regression model can be built under the
assumption that the target variable follows the normal distribution with the fixed vari-
ance. Since the variance was assumed to be fixed, it was sufficient to specify a model
that estimates only the mean of the distribution (expression 2.15), and train it using the
MSE loss (expression 2.16).

44 predictive models

In some applications, we want to estimate not only the expected value of the target
variable, but its full distribution. In particular, many applications require the estimation
of both the mean and variance of the target variable because knowing the uncertainty
of the prediction is important.

Let us assume a parametric distribution model ppy | x, φq where φ is the vector of
the distribution parameters (these parameters should not be confused with the model
parameters θ). The distribution parameters can be estimated by the underlying network
as

φ “ fmodelpx, θq (2.33)

where the model parameters θ are optimized based on the log-likelihood function.
For the sake of illustration, let us consider a regression problem where the label follows
the normal distribution:

ppy | φq “ Npy;µ,σ2q “
1

σ
?
2π

exp
ˆ

´py´ µq2

2σ2

˙

φ “ pµ, σq
(2.34)

Unlike our previous solution in Section 2.3.1.1, we assume that the model needs to
estimate both the mean µ and variance σ of the prediction. We construct an underlying
network that computes the output vector z as a function of x, and then compute the
distribution parameters as follows:

µpzq “ wTµz` bµ

σpzq “ logp1` exppwTσz` bσqq
(2.35)

where σ is computed using a nonlinear transformation1 to ensure that the variance
takes only the positive values, and w and b are the parts of the model parameter vector
θ along with the parameters of the underlying network. The log-likelihood can then be
computed using the complete distribution model without reducing it to the MSE:

Lpxi, yi, θq “ logppyi | φpxi, θqq (2.36)

The log-likelihood can be maximized with regard to parameters θ because φ is ul-
timately a function of xi and θ. The complete model architecture for this solution is
shown in Figure 2.14.

Once the model is trained, it can be used to estimate both µi and σi for each in-
put vector xi. This approach can be easily applied to other distribution models with
different sets of parameters.

1 Transformation fpxq “ logp1` exppxqq is commonly referred to as the softplus function. Softplus can be viewed
as a smooth approximation to the ReLU function: it behaves linearly fpxq « x for a large argument x " 1 and
vanishes exponentially for a negative argument, fpxq « e´|x| for x ă 0. Softplus is often used to constrain the
output to always be positive.

2.3 models with vector inputs 45

Network

μ(z) σ(z)

z

x

L(x, y, θ)y

Parameter
optimization

θ

Figure 2.14: A regression network that learns the parameters of the normal distribution.

We use the distribution estimation layers in Recipe R9 (De-
mand Forecasting) to provide guidance on the forecast un-
certainty range.

2.3.5 Sampling Layers

In some applications, we need to not only estimate the distribution parameters, but also
to draw samples from the estimated distribution. The sampled values can be further
transformed by the downstream network and the obtained values used to evaluate
the loss function. This flow is illustrated in Figure 2.15. In this example, we assume
an upstream network with the distribution estimation layer on top that evaluates the
parameters φ of the distribution model ppq | φq. This distribution model is used to
sample one or multiple values q „ ppq | φq that are further used in the downstream
network to compute the final output py that goes into the loss function.

Although drawing samples from the estimated distribution model is straightforward,
the challenge is how to keep the entire model differentiable so that its parameters can
be optimized using the gradient descent. This problem can be approached using the
fact that many distribution models allow for rescaling. For example, we can obtain
samples from a normal distribution with mean µ and variance σ2 by rescaling samples
drawn from the standard normal distribution:

q „ Npµ, σ2q is equivalent to q “ µ` σ ¨ η, η „ Np0, 1q (2.37)

Provided that the samples η are generated independently of the network parameters
θ, q is a deterministic function of µ and σ, and thus the sampling layer is a differen-

46 predictive models

Upstream
network

φ

x

L(x, y, θ)y

Parameter
optimizationSampling layer

{q}

Downstream
network

ŷ

θ

Figure 2.15: An example of a network with a sampling layer.

tiable transformation. This relationship becomes even more obvious if we assume that
a sufficient number of samples η is precomputed before the optimization process starts.
This technique is often referred to as the reparametrization trick [Kingma and Welling,
2013].

We use the sampling layer in Section 3.2 to build a variational
autoencoder and Recipe R9 (Demand Forecasting) to imple-
ment probabilistic forecasting.

2.3.6 Embedding Lookup Layer

The network architectures discussed in the previous sections assume that the input is
a real-valued vector that can be interpreted as a single entity such as a point in a mul-
tidimensional space. In many applications, however, we have to deal with categorical
variables that represent discrete entities such as cities, colors, or product categories.
These entities can be encoded as integer numbers (for example, black color can be en-
coded as 1, red as 2, and so on), but such a representation is generally not appropriate
for models with continuous transformations because the numerical distances between
the entities are meaningless (for example, the distance between black and red can be 1,
whereas the distance between white and blue can be 5). The better representation can

2.3 models with vector inputs 47

be obtained by mapping a categorical feature with cardinality m to an m-dimensional
vector so that i-th entity is represented as a vector where i-th position is 1 and other
elements are zeros. This approach is known as one-hot encoding and commonly used
in practice. The challenge is that the dimensionality of the model’s input grows pro-
portionally to the cardinality of the categorical features. This increases the number of
model parameters and negatively impacts the efficiency of the training process.

The issues with one-hot encoding, as well as some other issues related to the sparsity
of the input data, can be mitigated using a technique known as lookup embeddings. The
main idea is to maintain a lookup table where each entry represents a low-dimensional
embedding vector that can be randomly initialized and then iteratively updated using
gradient descent as a part of the model training process. Assuming a categorical input
feature of cardinality m, we need to maintain a table with m entries, and embedding
dimensionality k can be chosen arbitrarily. The input values, that can be represented
as category labels or high-dimensional one-hot vectors, can then be transformed into
dense k-dimensional embeddings that are consumed by the downstream network, as
shown in Figure 2.16. The value of k is usually chosen to be much smaller than m, so
that the resulting embeddings are dense real-valued vectors.

Input vector
(m dimensions)

Embedding lookup unit
(m entries, k dimensions)

Embedding
(k dimensions)

Downstream
network

0 0 000...0

0.21 0.87

... ...

0.66 0.20

Parameter
optimization

Loss
function

1

0.66 0.20

Figure 2.16: Learning entity embeddings using lookup tables.

This technique helps to reduce the dimensionality of the network input from m to
k, and also to learn useful semantic representations of the input entities. We illustrate
this process by an example shown in Figure 2.17. In this example, the goal is to model
interactions between a pair of entities of two different types x1 and x2. There are 10

discrete entities of type x1 and 10 entities of type x2, and each interaction is represented
by a real number. Consequently, the input data can include up to 100 samples, each of
which is a tuple that includes the entity of the first type, entity of the second type, and

48 predictive models

the interaction value. However, we do not require the dataset to be complete, and some
entries can be missed. Our goal is to learn meaningful two-dimensional embeddings for
each of 20 entities that capture the semantics of interactions. One real-world use case
that closely follows this model is personalized product recommendations – two types
of entities correspond to users and products, interactions correspond to user feedback,
and the goal is to learn user and product embeddings that allow one to predict the
feedback.

We continue to discuss how lookup embeddings can be used
in recommendation engines in Recipe R6 (Product Recom-
mendations).

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

x1

x2

x1

Embedding
lookup units

Loss
function

x2

y

Dot product
unit

Linear
unit

z1 z2

ˆ

Interaction values

Figure 2.17: Training pipeline with embedding lookup for modeling interactions between two en-
tities.

We use a very basic model design where the input entity indexes are mapped to
embeddings using the lookup units, then the dot product of two embeddings is com-

2.3 models with vector inputs 49

puted, and passed through a linear unit to obtain the interaction value. Consequently,
interaction value v for a pair of entities x1 and x2 can be expressed as

vpx1, x2q “ w ¨ z1px1qT ¨ z2px2q ` b (2.38)

where z1 and z2 are embedding lookup functions which produce two-dimensional
embedding vectors z1 and z2, respectively, and w and b are the linear unit parameters.
This model is basically a regression model, so we train it using the MSE loss function.

Once the model is trained, we can predict the interaction value for any pair of enti-
ties by looking up the corresponding embeddings, computing their dot product, and
rescaling the result using the linear transformation with the parameters learned by the
model. The values predicted this way are shown in Figure 2.18. We can notice that the
original dataset has a distinct pattern. There are two blocks of entities with relatively
high interaction values (the first one consists of the points such that x1 ď 5 and x2 ď 5,
and the second one consists of the points with x1 ě 6 and x2 ě 6); whereas the other
two blocks have relatively low values. The predicted values in Figure 2.18 are mainly
consistent with this pattern indicating that the semantics of interactions was correctly
captured by the embedding vectors. This can also be confirmed by direct visualization
of the embedding vectors. For example, the embeddings for all 10 entities of type x1
are plotted in Figure 2.19, and two distinct clusters of entities that correspond to the
left and right halves of the input matrix are clearly visible.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

x1

x2

Known

Predicted

Figure 2.18: Values predicted using the embedding-based model.

2.3.7 Interaction Layers

The example in the previous section demonstrates how the interaction outcome for two
entities can be predicted using the dot product operation. We used the dot product as
a heuristic solution and did not discuss either its theoretical justification or alternative
options. At the same time, the ability to model interactions between entities is essen-
tial from the scenario planning perspective because we often need to evaluate multiple
possible interaction options and choose the optimal action based on the expected out-
come. The personalized recommendations problem that requires evaluating of possible

50 predictive models

−1.00 −0.50 0.00 0.50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1
2

3

4
5

6

7 8

9

10
z1,2

z1,1

Figure 2.19: Embedding space for the entities of type x1. The dot sizes correspond to the average
interaction value.

interactions between users and items is a classic example, but many other enterprise
problems can be reduced to this formulation as well. In this section, we discuss the
interaction modeling problem more thoroughly and, in particular, put the dot product
operation into a more comprehensive context.

Let us assume that we want to model the interaction between two entities p and q
which are represented as k-dimensional embedding vectors p and q, respectively. These
embeddings can be obtained using either embedding lookup units or deep networks,
as shown in Figure 2.20. Our goal is to design a layer that produces value ypp, qq that
can be interpreted as the strength of association between the entities or as an estimation
of the interaction outcome.

Entity p
features

Interaction
layer

Entity q
features

Interaction
outcome

Dense layers
and/or lookup units

Embeddings
p q

y(p, q)

Figure 2.20: Generic architecture of an interaction network.

2.3 models with vector inputs 51

Let us first assume that both entities belong to the same class. For example, p and q
can represent consumer products, and we might be wanting to evaluate the strength of
association between them. In this case, it is logical to use the Euclidean distance as a
measure of similarity:

yeuclideanpp, qq “ ‖p´ q‖2 (2.39)

If the two entities belong to different classes (e.g. p represents a user and q represents
an item), we can still assume that they are both mapped to the same semantic space,
and the Euclidean distance can approximate the strength of the interaction. This is a
fair assumption because the interaction outcome is estimated based on the Euclidean
distance, and the network parameters are then optimized to produce embeddings that
minimize the estimation error.

We can further recognize that the Euclidean distance and dot product can be used
interchangeably provided that the embedding vectors are normalized. Indeed, the fol-
lowing relationship is true for any pair of vectors such that pTp “ qTq “ 1:

1

2
‖p´ q‖2 “ 1

2

´

pTp` qTq´ 2pTq
¯

“ 1´ pTq (2.40)

Consequently, the dot product layer can be used as a universal component for inter-
action and similarity modeling purposes:

ydotpp, qq “ pTq “
k
ÿ

i“1

piqi (2.41)

The dot product, however, is not always the optimal choice because it captures the
pairwise interactions between the elements of the input vectors, but not the cross-
element interactions. We can address this limitation using the bilinear layer that is de-
fined as follows:

ybilinearpp, qq “ pTWq “
k
ÿ

i“1

k
ÿ

j“1

wijpiqj (2.42)

where W is a kˆ k matrix of learnable parameters. The bilinear layer is less com-
monly used in the network design than the regular dot product layer, but we will
leverage it in some solutions.

2.3.8 Multihead and Multitower Architectures

In the previous sections, we have discussed several building blocks including linear
units, softmax mappers, nonlinear units, and dense layers. We have also demonstrated
how these blocks can be wired together into deep neural networks, and how these
networks can be used to solve basic regression and classification problems. Real-world
enterprise problems, however, can require far more complex architectures that combine
multiple building blocks of different types, including generic and specialized, into one
network. In this section, we examine several common design patterns for building
such networks using a customer behavior prediction model developed by Google and
Pinterest as an example [Wang et al., 2017; Wang, 2020].

52 predictive models

The overall architecture is summarized in Figure 2.21. The network is designed to
predict customer response metrics such as a click-through rate (CTR) based on the
customer features and real-time context such as the type of currently browsed webpage.
The inputs of the network are initially processed by the representation layer that maps
sparse features to dense embeddings using embedding lookup tables, and concatenates
the embeddings, as well as other features that do not require mappings, in one vector.
This vector is then transformed by two parallel subnetworks, often referred to as towers.
One of these networks is a regular fully connected network with k layers denoted as hi.
The second network, called the cross network, has a more specialized design to capture
cross-feature interactions. Each layer of this network is specified as

xi`1 “ x0xTi wi ` bi ` xi (2.43)

where i is the index of the cross layer, xi is the output of i-th layer, wi and bi are the
layer parameters. Assuming that the output of the representation layer x0 has dimen-
sionality d, each layer of the cross network also produces a d-dimensional output xi.

The cross network design can be viewed as a generalization of the basic network
specified by expression 2.38. Meanwhile, this basic network captures only the pairwise
interactions between the embedding elements using a dot product, it can be shown that
the cross network with m layers comprises all the cross terms xα11 xα22 ¨ ¨ ¨ xαdd where xi
are the elements of the input vector and αi’s enumerate all possible combinations of
degrees from 1 to m` 1.

The outputs of the cross network and deep network are then concatenated and trans-
formed by several dense layers. The top of the network can include several heads, that
estimate different customer response and engagement metrics ypjqi . Examples of such
metrics include the click-through rate, probability of high-value clicks followed by a
long page browsing time, and probability of scroll ups. Since these objectives are re-
lated, although not equivalent, it is generally beneficial to use a shared bottom network
that produces a good representation of the customer and context, and then to use
multiple independent heads to map this representation to several specific target labels.
This type of learning is known as multi-task learning (MLT) [Caruana, 1997]. Finally, the
network is trained using a loss function that combines all objectives, that is

Lpxi, y
p1q
i , . . . , ypqqi q “

q
ÿ

j“1

Lpxi, y
pjq
i q (2.44)

where q is the number of objectives, ypjqi is the target label for j-th objective, and
the loss function on the right-hand side is a standard single-objective loss such as
categorical cross-entropy or MSE.

The above example illustrates three common patterns used to build complex net-
works: multiple towers, multiple heads, and multiple objectives. In general, multiple
towers are often used in networks with multiple inputs that require different trans-
formations, so that each input is processed by its own tower and then outputs of all
towers are merged. In the above example, we have only one input, but apply two differ-
ent transformations to increase the expressiveness of the network. Multiple heads are
typically used to produce multiple outputs that can be used separately or combined
into one objective function.

2.4 models with sequential inputs 53

Representation layer

Cross network Deep network

Dense layers

Head 1 Head 2

Objective 1 Objective 2

... ...

...

Dense
features

Sparse
features

x0

h1

h2

hk

x1

x2

xm

h1 = ReLu(Wh,0x0 + bh,0)x1 = x0x0wc,0 + bc,0 + x0

y1 = softmax(WL,1xs,1 + bL,1) y2 = softmax(WL,2xs,2 + bL,2)

xs,1 xs,2

T

Figure 2.21: Cross and deep network architecture.

2.4 models with sequential inputs

The complete reference implementation for this section is
available at https://bit.ly/44CXUdR

https://bit.ly/44CXUdR

54 predictive models

Many important classes of enterprise data are conveniently represented as ordered
sequences of elements. For example, sales data are sequences of real values, customer
interaction histories are sequences of transactions, and texts are sequences of words and
characters. Sequences of elements are complex structures that, in a general case, cannot
be efficiently represented as plain feature vectors, and thus the modeling methods
discussed in the previous sections are not sufficient for solving all types of problems
associated with sequential data. The goal of this section is to develop a specialized
toolkit for sequence modeling.

2.4.1 Sequence Modeling Problems

Sequences or elements are versatile data structures that are used in many different
enterprise applications, so we briefly review the main types of sequences and problems
associated with sequence modeling before we delve into the mathematical details.

The elements of a sequence are assumed to be ordered. In many applications, the
elements are indexed in time order, and such sequences are referred to as time series.
Each element of the sequence can be associated with a timestamp, or it can just be
assumed that elements are observed at successive equally spaced points in time. In
time series generated by enterprise processes, each element typically represents the
state of the process at a certain moment of time.

The elements of a sequence can be real-valued scalars, discrete tokens, vectors, or
other structures. Examples of sequences where elements are real-valued scalars or vec-
tors include weekly sales data, measurements from a sensor installed at a manufactur-
ing machine, and website traffic data. Sequences of discrete tokens can be produced
by digital commerce systems that generate sequences of customer events such as lo-
gins and checkouts, financial systems that generate sequences of transactions, and web
applications that write sequences of words and characters to the logs.

In some applications, we might treat sequences as atomic entities and learn distri-
butions over the entire sequences. In particular, we can build sequence regression and
sequence classification models that map sequences to numerical and categorical labels,
respectively. For example, a telecom company might be interested to build a classifica-
tion model that estimates customers’ probability of churn based on their event history.
In many other applications, we are interested in learning the distributions of individual
elements, and building element prediction models. For example, we might be looking to
predict future sales figures based on a sequence of historical values. Finally, we might
be interested in generating a new sequence based on the input sequence. For exam-
ple, an online retailer might want to build a recommendation engine that generates an
ordered sequence of items the customer is likely to buy based on the items they pur-
chased previously. We refer to this category of problems as sequence-to-sequence learning.
The semantic relationship between the input and generated sequences can be very dif-
ferent depending on the application. In many applications, the generated sequence is
a continuation of the input sequence, so that the sequence-to-sequence learning essen-
tially represents a generalization of the element prediction. In other applications, the
generated sequence can be an alternative representation of the input or a completely
new object. For instance, a translation model can map a sentence (sequence of words)
written in one language to a sentence with the same meaning in a different language.

2.4 models with sequential inputs 55

In the next section, we discuss the fundamental building blocks that can be applied
to all of the above scenarios. We use these blocks to develop use case-specific solutions
in the next chapters.

2.4.2 Sliding Window Approach

We assume that sequences are generated by stochastic processes, so that a sequence
can be viewed as an ordered collection of random variables. This collection may be
indexed according to the order the values are obtained in time or according to some
other principle. For example, a process can be represented as a sequence x1, x2, . . .,
where xt is a scalar or vector random variable that denotes the state of the process
at time period t. In a general case, we assume that each element of the sequence is
dependent on all other elements, and thus the model of the sequence is a specification
of the joint distribution ppx1, . . . , xT q where T is the sequence length.

In enterprise applications, we are usually interested in learning more specialized
distributions. For example, the sequence classification task requires learning the distri-
bution of the sequence classes c conditioned on the sequence elements:

ppc | x1, . . . , xT q (2.45)

In a similar vein, prediction of the individual sequence elements requires estimating
the distributions or expected values of specific elements xt conditioned on all other
elements:

ppxt | x1, . . . , xt´1, xt`1, . . . , xT q (2.46)

In principle, these problems can be solved using regression and classification mod-
els with vector inputs discussed in the previous section. For example, the classifica-
tion model defined above can be solved using a model that maps a feature vector
px1, . . . , xT q to the class label. This approach can be feasible in certain applications, but
it has several major shortcomings that sharply limit its applicability.

The main disadvantage of the naïve design is that the model parameters are not
shared across the input positions – each position is considered unique, and its contribu-
tion to the model output is controlled by a dedicated set of parameters. This generally
makes the model sample-inefficient – the number of samples needed to train the model
grows exponentially with the input length to ensure that the entire space of possible
input sequences is covered. This can be illustrated with the following example. Let us
assume a training set that consists of binary sequences of length T , that are sequences
of zeros and ones. All sequences that include exactly two consecutive ones are labeled
as positives, and all other sequences are labeled as negatives. A model that considers
each input position as a unique feature cannot recognize that sequence (1, 1, 0, ...) is
positive because other sequences that include a pair of ones such as (0, 1, 1, 0, ...) and
(..., 0, 1, 1) are positive. Consequently, it requires at least T samples with pairs of ones
appearing on each of T positions to generalize properly. In the element prediction prob-
lem, the uniqueness of input feature requires the building of a separate model for each
position t. Finally, the model needs to be built for the specific length of the sequence,
which complicates the processing of variable-length sequences.

56 predictive models

Fortunately, most real-world applications do not require us to estimate the complete
distribution over the entire sequence because some or all of the following assumptions
do hold:

short memory Each element xt generated by the stochastic process is dependent on
context xt´h, . . . , xt´1, xt`1, . . . , xt`h where context size h is finite, and inde-
pendent of the elements outside of the context. The limited memory assumption
is crucial because it enables us to constrain the capacity of the model.

stationarity Assuming a stochastic process with limited memory, the joint proba-
bility distribution over the context does not change when shifted along the index,
so that

ppxt´h`τ, . . . , xt`h`τq “ ppxt´h, . . . , xt`hq (2.47)

for an arbitrary shift τ and all positions t. The stationarity property is extremely
important because it implies that the model parameters can be shared across the
input positions.

causality Each element xt of the sequence is dependent on the preceding elements
xt´1, xt´2, . . . and independent of the subsequent elements xt`1, xt`2,

Assuming a stochastic process that complies with the first two properties, the prob-
lem reduces to learning distribution ppxt´h, . . . , xt`hq. In particular, the previously
defined problem of predicting unknown elements based on the known context reduced
to learning the following distribution:

ppxt | xt´h, . . . , xt´1, xt`1, . . . , xt`hq (2.48)

This can be accomplished by building a supervised model with vector inputs and
training it using samples generated from the original sequence using a sliding window
as shown in Figure 2.22 (a). In this approach, the input features’ vectors are assem-
bled from the context elements, and the central elements become the target labels. This
allows the reduction of the sequence modeling problem to the vector-input formula-
tion and reuse all the regression and classification methods developed in the previous
sections.

Assuming that the causality property holds, the problem of predicting an element
based on its context transforms into a problem of predicting the subsequent elements
based on the preceding elements. In the context of time series problems, it is common to
say that the future (subsequent) elements need to be forecasted based on past (preceding)
elements, and the terms prediction and forecasting are used interchangeably. It is also
common to refer to the elements of the context as lags. The forecasting problem requires
the estimation of the distribution

ppxt`k | xt, . . . , xt´h`1q (2.49)

where k ě 1 is the forecasting horizon. This layout is shown in Figure 2.22 (b). The
causality assumption is often made in applications where the subsequent elements are
not available at the time of the model evaluation (e.g. time series forecasting), but we
do not necessarily need to make this assumption when the bidirectional context is avail-
able. For example, we can assume that the words in a text are generated one by one by
a causal process, and build a word prediction model based on this assumption. How-
ever, we can also assume that each word depends on both preceding and subsequent

2.4 models with sequential inputs 57

..., xt-h , ..., xt-1 , xt , xt+1 , ..., xt+h , ...

(x1 , ..., xh , xh+2 , ..., x2h+1)
...
(xt-h , ..., xt-1 , xt+1 , ..., xt+h)
...
(xT-2h , ..., xT-h-1 , xT-h+1 , ..., xT)

Sliding context window

xh+1
...
xt
...
xT-h

Features Target

..., xt-h+1 , ..., xt-1 , xt , ..., xt+k , ...

(x1 , ..., xh-1 , xh)
...
(xt-h+1, ..., xt-1 , xt)
...
(xT-k-h+1, ..., xT-k-1 , xT-k)

Sliding context window

xh+k
...
xt+k
...
xT

Features Target

(a) Non-causal model (b) Causal model

Figure 2.22: Creating vectors from sequences using the sliding window approach.

words, and build a model that leverages such a bidirectional context, and this approach
generally produces better results.

The feature vectors generated from the original sequence do not necessarily need to
include all context elements, that is 2h elements in total. In some applications, memory
effects can span hundreds or thousands of elements, but these elements can be highly
correlated, and only a small subset of them may be sufficient to capture the contri-
bution of the context to the given element. For example, the input vector of a daily
sales forecasting model can include lags for several previous days, and then one-week-
ago, one-month-ago, and one-year-ago lags that could be sufficient for capturing the
seasonal patterns. In such an application, including all 365 daily lags is typically redun-
dant or possibly even harmful because it increases the number of model parameters
unnecessarily.

2.4.2.1 Internal and External Features

We previously assumed that the element prediction problem requires estimation of
the distribution of a specific element xt based on the context elements xt`τ, and the
elements are vectors. Consequently, we assumed that element xt is completely unob-
served, and the i-th feature xt,i of the predicted element is estimated as a function of
values of the same feature xt`τ, i in the context vectors, as well as other features xt`τ, j
where j ‰ i. We call models that follow this assumption autoregressive models because
the t-th state of the element generating process is predicted exclusively based on its
preceding and subsequent states.

In many cases, however, we can collect external signals that carry useful information
about the state xt at the moment this state needs to be predicted. For example, we can
incorporate the weather forecast into a model that predicts daily sales at a retail store

58 predictive models

in addition to the past sales values. This requires us to estimate the distribution that is
conditioned on both autoregressive and external features:

ppxt | xt´h, . . . , xt´1, xt`1, . . . , xt`h, qtq (2.50)

where qt is the vector of the observed external factors. This extension is relatively
straightforward for all model designs we discuss in the next sections, so we mainly
focus on the autoregressive formulation without the loss of generality.

2.4.2.2 Design Options

The vector-based approach introduced in the previous sections can be implemented in
several different ways depending on a specific task. Let us review the most common
designs:

classification and regression Sequence classification and regression problems
require us to use a whole-sequence window, as shown in Figure 2.23 (a). If se-
quences of variable lengths need to be handled, this is usually done by implement-
ing a model f for a certain fixed length, and then truncating longer sequences and
padding shorter ones with dummy elements such as zeros. The limited ability to
handle variable-length sequences and issues with parameter sharing sharply limit
the applicability of the vector-input design to this category of problems.

element prediction The element prediction tasks are usually solved by building
a model that predicts one element based on the input context, as shown in Fig-
ure 2.23 (b). In many time series forecasting tasks, we need to produce predictions
for multiple horizons, and this can be done by training multiple independent
models for different values of k or iterative application of one model. In the latter
case, we can use a one-step-ahead model to estimate pxt`1 based on the window
pxt, . . . , xt´h`1q, then estimate pxt`2 based on ppxt`1, . . . , xt´h`2q, and so on.
The alternative solution is to build a vector-output model that predicts multiple
elements of a sequence, as shown in Figure 2.23 (c).

sequence-to-sequence The third design option, shown in Figure 2.23 (d), solves
the more general problem of sequence-to-sequence learning. The model is built to
predict the elements of arbitrary target sequence yt based on the input sequence
xt. In a general case, each output element can be predicted based on any subset of
input elements, both preceding and succeeding. Sequence-to-sequence learning
can also be implemented using single-output or multiple-output approaches.

We illustrate the above designs with two basic examples of time series forecasting
models presented in Figures 2.24 and 2.25. In both examples, we use only one instance
of a time series which we separate it into the training and test segments. Each of these
segments is then transformed into a set of labeled samples using a short sliding window
and single-output labels. Finally, we train a linear and two-layer nonlinear models, and
evaluate them, producing the forecasts for both training and test datasets.

2.4 models with sequential inputs 59

x0 x1

f

x2 x3 x4

y3y2

Warmup

y4

x5

y5

xt-3 xt-2

f
(b) Prediction
(single-output)

xt-1 xt xt+1

xt+kxt+k-1 xt+k+1

......

......

...

...

(d) Seq2seq
learning
(single-output)

xt+k-1 xt+k ...

Input window Offset Label

xt-3 xt-2

f
(c) Prediction
(multiple-output)

xt-1 xt xt+1

xt+kxt+k-1 xt+k+m

......

......

xt+k-1 xt+k ...

...

xt+k+m ...

x0 x1

f

x2 x3 x4 x5

y

(a) Clasification,
regression

Figure 2.23: The design of input and output vectors for classification, element prediction, and
sequence-to-sequence learning tasks.

We use the sliding window design for demand forecasting
and price optimization problems in Recipes R9 (Demand
Forecasting) and R10 (Price and Promotion Optimization).

The limitations of the approach using the sliding window and vector-input models
can be overcome using specialized architectures that make more assumptions that are
specific for sequential data. The choice between vector-input models and more special-

60 predictive models

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Ground truth
Predicted, training
Predicted, test

Time steps

Linear layer

xt+k
xtxt-h

Warmup

Warmup

Figure 2.24: Time series forecasting using a linear autoregressive model. We use the input window
of size h “ 5 and forecasting horizon k “ 3.

ized models is generally a trade-off between the expressiveness and number of learn-
able model parameters – more specialized models make more assumptions about the
input structure that may or may not be adequate for a given applicable problem. For
instance, a demand forecast can be heavily influenced by various external factors such
as advertising, weather, and macroeconomic metrics, so that the autocorrelations can
play a secondary role. A model with a vector input may be the right solution in such a
case. This can be contrasted with certain financial applications where autocorrelations
may be the primary factor, and the number of learnable model parameters can be re-
duced by using time series models that make strong explicit assumptions about the
autocorrelation dependencies.

2.4.3 Convolution Layer

In the previous section, we introduced the concept of the sliding window and provided
a couple of basic examples that illustrate how it can be implemented, but we did not
develop any framework for designing models that use the sliding window as an input.
This framework should address a number of questions including the following:

• How to construct the input vector given that the elements of the input sequence
may be scalar real values, vectors of real values, or embeddings of discrete tokens?

• What model architectures should be used for forecasting, sequence-to-sequence
learning, and classification tasks?

• How to summarize a sequence of an arbitrary length into a fixed-length represen-
tation which is needed, for example, to perform sequence classification?

2.4 models with sequential inputs 61

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0
Ground truth
Predicted, training
Predicted, test

Time steps

xt+k
xtxt-h

Dense
layers

Linear
layer

Figure 2.25: Time series forecasting using a nonlinear autoregressive model. We use the input
window of size h “ 5 and forecasting horizon k “ 3.

These questions cannot be fully addressed using arbitrary vector-input models that
operate on a sliding window, and we need to develop more specialized architectures.
We can start by defining a basic operation that performs a sequence-to-sequence map-
ping using a linear transformation over a fixed-width window:

yt “

h
ÿ

i“1

wixt´i`1 ` b (2.51)

where xt are the elements of the input sequence which are assumed to be scalar real
values, yt are the output elements, wi are the weights, b is the intercept parameter, and
h is the window size. This operation is known as discrete convolution, and the vector of
weights w is referred to as a kernel. It is usual to say that the input x is convolved with
kernel w of size h, and denote this operation as y “ w ˚ x.

Most practical problems, however, require the processing of sequences of vectors, not
scalars. For example, sequences of discrete tokens are usually converted to sequences
of embedding vectors, and many forecasting problems involve multiple time series
so that each time step is represented by a vector of metrics. We can extend the basic
convolution operation to support sequences of vectors by replacing scalar weights with
weight vectors:

yt “

h
ÿ

i“1

wTi xt´i`1 ` b (2.52)

62 predictive models

In the above expression, wi and xt are assumed to be k-dimensional vectors, but the
output elements yt are still scalars. The kernel of such a convolution is a kˆ h matrix
obtained by stacking weight vectors wi. This operation can also be viewed as a filter
that transforms the input multivariate signal into the output.

We can develop a sequence-to-sequence transformation component with a higher
capacity by stacking multiple filters, so that the input sequence is independently con-
volved with several kernels, and the results are stacked into output vectors yt. More
specifically, each element of the output vector is computed as

yt,q “

hq
ÿ

i“1

wTqixt´i`1 ` bq (2.53)

where q is the index that iterates all filters, wqi is the i-th weight vector in the kernel
of the q-th filter, and kernel sizes hq can vary across the filters.

Finally, we add an element-wise nonlinear transformation on top of the linear convo-
lution operation to create a basic block for sequence-to-sequence mapping. For instance,
we can use the ReLu operation:

yt,q “ ReLu

¨

˝

hq
ÿ

i“1

wTqixt´i`1 ` bq

˛

‚ (2.54)

This design is known as a convolution layer, and its usage for sequence-to-sequence
mapping is illustrated in Figure 2.26. Just as the dense layer is an elementary com-
ponent that performs a nonlinear vector-to-vector transformation, and multiple dense
layers can be composed to create complex models, the convolution layer is the elemen-
tary component for mapping one sequence of vectors to another.

x1 x2

...

x3 x4

y3 y4 y5

x5

Warmup

...

...

Kernel size
(Filter size)

k

Number
of filters

bq

wq

One
filter

y4,q

Figure 2.26: The design of a convolution layer.

The convolution layer alone, however, does not address all the questions that we
posed in the beginning of this section. It performs only one nonlinear transformation

2.4 models with sequential inputs 63

which is not enough to build complex high-capacity models, and can only map the in-
put sequence to a sequence of the same length1. The first limitation can be addressed by
stacking multiple convolution layers on top of one another, so that the output sequence
produced by the first layer is used as an input to the second layer, and so on. This
enables us to build deep networks that perform multiple nonlinear transformations of
the input sequence.

The second limitation requires us to develop an extension that maps a sequence of
one length to a sequence of a different length. In principle, such a mapping can be done
by dense layers inserted in between the convolution layers. In a dense layer, however,
each output element depends on an input element, and the number of parameters is
proportional to the product of the input and output sequence lengths. This design is
not optimal for sequences with limited memory effects where we should focus on a
local neighborhood of the element rather than on global sequence-wide dependencies.

The alternative approach that overcomes this issue is known as pooling. The main
idea of pooling is to divide the output of the convolution layer into regions and then
map each region to a summary statistic using a pooling function. The most common
choices for the pooling function are maximum and average, that are simple operations
without learnable parameters. Replacing a region, that is a group of elements, with
its maximum or average, generally aims to detect the presence of a certain feature
and propagate this information to the upper layer. Meanwhile, the information about
exactly where this feature is located is discarded. This is indeed a logical approach
to sequence summarization which also helps to make the model insensitive to small
shifts in the input. The pooling operations are usually implemented using a sliding
window, which is similar to the convolution operation, but the window parameters can
be adjusted to produce a shorter output sequence. We illustrate this with an example
presented in Figure 2.27. The pooling operation is performed by processing the input
sequence with a sliding window of three elements (pool size), the window is shifted
by two positions (stride), and each step produces one output element such as the max-
imum over the window. Consequently, the output sequence is half the length of the
input sequence. The ratio between the pool size and stride controls the sequence con-
traction. It is also important that the pooling operation reduces the sensitivity of the
model to local changes in the input even when the input and output sequences are the
same length because the elements are replaced by the region level aggregates such as
averages or maximums.

The convolution and pooling layers provide the necessary toolkit for building com-
plex models for sequence processing and analysis. Such models, typically created by
stacking multiple convolution and pooling layers, are known as deep convolutional neu-
ral networks (CNNs) [LeCun et al., 1989]. A typical architecture of a convolutional model
for sequence classification is presented in Figure 2.28. In this example, we assume
that the model consumes a sequence of k-dimensional vectors, and the length of the
sequence is t. The first convolution layer has q1 filters, and produces a sequence of
q1-dimensional vectors, also of length t. This sequence is then contracted by the first
pooling layer. The pooling operation is applied element-wise, so that each input dimen-
sion is mapped by the pooling function independently of other dimensions, and thus
the output of the pooling layer is also a sequence of q1-dimensional vectors, but its

1 Technically speaking, the output of the convolution layer can be shorter than the input by the size of the kernel
because of the warmup positions, as shown in Figure 2.26. However, the input sequence can be padded with
additional elements before the convolution is performed to produce the output of exactly the same length.

64 predictive models

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3

p

Pool
size

Stride

p p

Figure 2.27: The design of the pooling layer. The pooling function is denoted as p.

length t1 is controlled by the parameters of the pooling layer. This sequence is then
processed by the second convolution layer that consists of q2 filters and produces a
sequence of q2-dimensional vectors. Finally, we use a pooling layer with the pool size
equal to the length of the input sequence (so-called global pooling) to summarize the se-
quence produced by the second convolution layer into a single embedding vector. The
model output is then computed by some standard output mapper such a dense layer
with softmax.

We use one-dimensional convolutions in Recipe
R13 (Anomaly Detection) to predict the remaining use-
ful life of equipment based on the time series collected from
IoT sensors.

2.4.4 Recurrent Layers

The convolutional architecture presented in the previous section is only one of several
commonly used designs for sequence modeling. In this section, we discuss an alter-
native architecture that solves the problem of parameter sharing across the sequence
positions by creating a stateful unit that consumes the input sequence element by ele-
ment.

Let us assume function f specified by a vector of parameters θ that takes two vector
arguments, xt and ct, and produces two output vectors which we denote as yt and
ct`1:

pyt, ct`1q “ fpxt, ct, θq (2.55)

We interpret xt as the primary input, yt as the primary output, and ct as a state
that is updated using xt at every invocation of the function and can be carried over

2.4 models with sequential inputs 65

x1 x2 x3 xt

Pooling layer

Convolution layer

k × t

q1 × t

Convolution layer

Pooling layer

y

q1 × t1

q2 × t1

q2 × 1

1 × 1

...

...

...

...

Dense layer

Input/output
shape

Figure 2.28: An example of a convolutional model for sequence classification.

between the invocations. We can then create a chain of units that implements function
f, and feeds a sequence of elements px1, . . . , xtq into it as shown in Figure 2.29. Note
that all units are assumed to be identical, so that there is only one vector of parameters
θ shared across all units. Since all units are identical, this chain is equivalent to a single
unit that processes the sequence elements one by one, updating the state vector at every
iteration, as illustrated in the right-hand side of Figure 2.29. Assuming that function f
is implemented as a neural network, this design is known as a recurrent neural network
(RNN) and its units are commonly referred to as cells [Rumelhart et al., 1986].

The design presented in Figure 2.29 is essentially a sequence-to-sequence model:
it consumes sequence px1, . . . , xtq and produces a sequence of the same length

66 predictive models

x0

fθ

y0

x1

fθ

y1

xt

fθ

yt

...c0 c1 ct

x0, x1, x2, ...

fθ

y0, y1, y2, ...

c0, c1, c2, ...

Figure 2.29: The conceptual design of a recurrent neural network.

py1, . . . , ytq. This layout can be used, for instance, to create a model that consumes
a text word by word and produces sentiment scores for each position. However, the
RNN approach can be straightforwardly adapted to other standard tasks including
element prediction, sequence classification, and sequence-to-sequence generation as
illustrated in Figure 2.30:

prediction In the case of element prediction, the network can process the available
sequence px1, . . . , xtq and predict the next element xt`1. If a new element arrives,
it is processed using the latest state vector as another input, and a new prediction,
as well as an updated state vector, are produced.

classification In the case of classification, we are interested only in the final output
that is obtained by summarizing the entire sequence into one vector and mapping
this vector to the output label. The intermediate outputs can be discarded.

sequence-to-sequence The third case is a more generic design for sequence-to-
sequence learning which is known as the encoder-decoder architecture. The lim-
itation of the basic design presented in Figure 2.29 is that the input and output
sequences must be of the same length. This approach is not feasible for learn-
ing complex sequence-to-sequence mappings where the length of the output se-
quence is determined by the content of the input sequence, not its length. A
typical example of this is a translation model that consumes a sentence in one
language and produces a sentence in another language.

This type of problem can be solved by learning a sequence embedding (state vec-
tor) using one network and then generating the output sequence using the second
network. These two parts are known respectively as the encoder and decoder. The
sequence-to-sequence architecture shown in Figure 2.30 highlights several typical
design patterns. First, the flow is controlled using special tokens – the end of se-
quence element is appended to the input sequence, and generation of the output
sequence is initiated with the beginning of sequence token. The network is supposed
to learn appropriate embeddings for these tokens that help to finalize the state
vector and initialize the generation, respectively. Second, the output sequence is
generated element by element so that the output of one step is used as the input
to the next step.

In order to implement the RNN architecture, we have to specify the design of an
individual cell. One of the most basic options is presented in Figure 2.31. In this design,
the input and state vector are concatenated, or transformed using a dense layer to
produce a new state, and the output is computed using another dense layer that maps

2.4 models with sequential inputs 67

x0

fθ

x1

x1

fθ

x2

xt

fθ

xt+1

...

x0

fθ

x1

fθ

xt

fθ

y

...Classification

Prediction

x0

fθ

EOS

fθ
Seq2seq
learning

...

BOS

fθ fθ...

xt

fθ

y0

fθ

y1 yq

Sequence
embedding

ct+1

Encoder Decoder

Figure 2.30: Design variants for forecasting, classification, and sequence generation problems. In
the latter case, the flow is controlled using special tokens EOS and BOS which stand for
end of sequence and beginning of sequence, respectively.

the state vector to the required output format. For example, we can specify the design
of a classification model using this layout as follows:

ct “ ReLupWcpct´1, xtq ` bcq

yt “ softmaxpWyct ` byq
(2.56)

where matrices W and vectors b are the model parameters that specify the transfor-
mations performed by the two layers. The model then can be trained using categorical
cross-entropy or another standard loss function to minimize the discrepancy between
output y and ground truth labels.

The design presented in Figure 2.31 is simple and easy to understand, but, unfortu-
nately, it is not feasible for many practical problems. The main idea behind the RNN
architecture is to continuously admix new elements of the input sequence into the state
vector, so that the state vector at each step represents a condensed summary (embed-
ding) of all elements encountered before that step. This summary is used as a context
for predicting the output value of the cell. From that perspective, the crucial question is
for how long the traits of a specific input sample xt stay in the state vector before they

68 predictive models

xt

ct

yt

ct-1

Concatenation Copy Dense layer

Figure 2.31: An example of a basic RNN cell.

are washed out and displaced by subsequent samples xt`1, xt`2, If this process is
misbalanced, and old samples are becoming forgotten relatively quickly, the network
might not be able to learn long-term dependencies between the elements of the se-
quence. It turns out that the basic designs such as the one presented in Figure 2.31 are
prone to this problem, and special enhancements need to be made in order to control
the forgetting dynamics [Bengio et al., 1994]. These enhancements can substantially
improve the ability of the network to memorize the long-term dependencies and im-
prove the overall performance of the model. We discuss one of the most common and
well-known solutions in the next section.

2.4.5 Long Short-Term Memory Layer

The performance of recurrent neural networks on problems that require learning long-
term dependencies can be improved through advanced state management. The long
short-term memory (LSTM) cell architecture implements this idea by extending the basic
RNN cell with special signal amplifying and de-amplifying units called gates that are
controlled by learnable parameters [Hochreiter and Schmidhuber, 1995, 1997].

The LSTM cell includes several components, each of which has a clearly defined
function, so we describe the LSTM design component by component. First, the LSTM
design assumes that the state vector ct is modified using only two operations which are
element-wise multiplication and element-wise addition, as shown in Figure 2.32. The
purpose of the multiplication operation is to modulate the old state, that is to control
how much of the old state will be preserved in the new state. Thus, this operation is
known as the forget gate. The purpose of the addition operation, on the contrary, is to
add new information to the state. This operation is referred to as the input gate. Each
of these operations, of course, requires the second operand, and these operands are
computed by other components of the cell.

The weight vector for the forget gate is computed using a dense layer with a sigmoid
activation function based on the concatenation of the previous cell output yt´1 and

2.4 models with sequential inputs 69

ct-1 ct

... ...

Figure 2.32: The cell state path in LSTM.

current sequence element xt. We denote this weight vector as ft, and specify it as
follows:

ft “ σ pWf ¨ pyt´1, xtq ` bfq (2.57)

where Wf and bf are the layer parameters that are fine-tuned during the learning
process to achieve the optimal forgetting dynamics. The sigmoid activation function
is applied element-wise, and thus ensures that elements of ft are normalized into the
range between zero and one. The value of zero means that the corresponding element
of ct´1 will be completely removed, and the value of one means that the element will
pass through without modifications. The complete design of the forget gate is presented
in Figure 2.33.

σ

yt-1

ct-1 ct

ft

xt

Figure 2.33: The design of the forget gate in LSTM. Block σ denotes a dense layer with a sigmoid
activation function.

The input vector for the input gate is computed using two parallel dense layers. These
layers initially produce the following two vectors based on the concatenated cell input:

rct “ tanh pWc ¨ pyt´1, xtq ` bcq

it “ softmax pWi ¨ pyt´1, xtq ` biq
(2.58)

70 predictive models

We can view vector rct as a candidate state and it as its modulating vector similar
to ft. Vector rct is computed using tanh activation function which is an alternative to
ReLu, and vector it is computed using a sigmoid function. These two vectors are then
multiplied element-wise and added to the state vector, so that the final expression for
the state vector update is as follows:

ct “ ft d ct´1 ` it drct (2.59)

where d denotes the element-wise multiplication. The complete design of the input
gate is shown in Figure 2.34.

σ σ t

yt-1

ct-1 ct

ft it

ct

xt

~

Figure 2.34: The design of the input gate in LSTM. Blocks σ and t denote dense layers with σ and
tanh activation functions, respectively.

Finally, we need to specify how the output vector yt is computed. This part of the
LSTM cell is referred to as the output gate. Similar to the input gate, the output gate con-
sists of two parts. The first part computes the candidate output vector by normalizing
the updated state ct using element-wise tanh transformation, and the second is a dense
layer that computes the modulating vector based on the concatenated cell input, while
the final output is obtained as an element-wise multiplication of these two components:

ot “ σ pWo ¨ pyt´1, xtq ` boq

yt “ ot d tanhpctq
(2.60)

The complete LSTM design that includes the forget, input, and output gates is pre-
sented in Figure 2.35. The full model can also include an output mapper that post-
processes the output vector yt produced by the cell. For example, a sequence classi-
fication model can map the final output obtained at the end of the sequence using a
softmax layer to produce the class label.

As discussed in the previous section, some problems require the use of the full se-
quence of outputs py1, . . . , ytq produced by the cell, and some other problems, such
as sequence classification, can be solved by using only the final output value yt. In the
latter case, intermediate values py1, . . . , yt´1q are computed internally, similar to the
cell state vectors c, but not outputted. These intermediate values are commonly referred
to as hidden state vectors of LSTM.

2.4 models with sequential inputs 71

σ σ t σ

xt

yt

yt-1

ct-1 ct

yt

ft it

ct

ot

tanh

~

Figure 2.35: The complete design of the LSTM cell.

The main concepts of LSTM are used in a number of alternative architectures that
differ in the number and structure of the gates. These variants can outperform LSTM
or reduce computational complexity on certain tasks, but the standard LSTM design is
known to provide an efficient trade-off for many applications [Greff et al., 2017].

LSTM can be used to analyze customer journeys and build
personalization models, optimize marketing spend, and fore-
cast the demand. We discuss these applications in Recipes
R1 (Propensity Modeling) and R10 (Price and Promotion Op-
timization). LSTM is also used in reinforcement learning so-
lutions that require keeping track of the environment history.
We discuss this topic in the context of supply chain optimiza-
tion in Recipe R12 (Inventory Optimization).

We illustrate the capabilities of LSTM using the time series forecasting example pre-
sented in Figure 2.36. In this example, we develop a model for one-step-ahead forecast-
ing of a univariate time series. We train and evaluate the model using a single time
series that is visualized in the figure. The series is cut into short segments of length
k, and the LSTM model is trained using a subset of segments that corresponds to the
beginning of the series. The model is designed as a regression model, so that it predicts
value xt`1 based on input segment pxt, . . . , xt´kq where xt are scalar values taken
from the original series. This approach requires the use of an additional linear layer
that maps the output vector of the LSTM cell yt to scalar value xt`1. Model validation
is done using the samples from the end of the series.

72 predictive models

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0
Ground truth
Predicted, training
Predicted, test

Time steps

LSTM cells

Linear
layer

xt+k

yt

xtxt-h

Figure 2.36: An example of time series forecasting using LSTM. Window size h is 5, forecasting
horizon k is 3. We use a two-dimensional output space (dimpyq “ 2).

2.4.6 Attention Mechanism

The standard LSTM model for classification or regression starts with a random output
vector y0, sequentially updates it with the elements of the input sequence, and esti-
mates the output value based on the final value of the output vector. This approach
is not always optimal because the final value does not necessarily provide a complete
representation of the input sequence, and better results can be obtained by using a
weighted average of intermediate values as outlined in Figure 2.37.

This extension of the basic LSTM architecture is known as an attention mechanism.
It was originally developed for natural language processing applications in which the
intuition was that the weights associated with the intermediate states essentially model
the attention that a human reader pays to different words in a sentence [Bahdanau
et al., 2014].

The attention mechanism requires the learning of weights for combining the inter-
mediate output vectors yt together into the final output. These weights, known as
attention weights, can be viewed as modulators that control the contribution of indi-
vidual output vectors to the history vector s which is used to compute the final output. A
typical implementation of the attention mechanism includes the following operations:

2.4 models with sequential inputs 73

LSTM LSTM

ŷ

Attention layer

���

������

y1 yt

s

a1 at

Figure 2.37: The conceptual design of the attention mechanism.

• First, a dense layer with tanh activation function is used to squash each output
vector yt into an attention vector ut:

ut “ tanh pWyt ` bq (2.61)

where W and b are the learnable parameters.

• Second, the importance of each step, that is the attention weight, is estimated as
the normalized similarity between ut and so-called context vector c:

at “ softmax
´

uTt c
¯

(2.62)

The context vector is a vector of model parameters that is learned jointly during
the training process, similar to W and b.

• Finally, the history vector s is obtained as an attention-weighted sum of the inter-
mediate outputs:

s “
ÿ

t

atyt (2.63)

It is easy to see that the design of attention weights is structurally similar to the
design of gates inside the LSTM cell. The final output of the model is created based on
the history vector s using additional layers such as linear or softmax.

The attention layer helps to improve the performance of LSTM on certain classes
of tasks, but it also provides a way of estimating the contribution of individual ele-
ments of the input sequence into the final output. Since the intermediate outputs yt
are modulated by the attention weights, we can interpret each weight at as a measure
of contribution of the corresponding LSTM input xt. This is an important feature that
turns LSTM with attention mechanism into a powerful tool for the analysis of sequen-
tial patterns.

74 predictive models

We use the attention mechanism in Recipe R1 (Propensity
Modeling) for customer journey analytics.

2.4.7 Transformer Layer

The LSTM with attention architecture presented in the previous section has two layers.
The first one is LSTM that transforms the input sequence into another sequence of the
same length. The second layer is the attention mechanism that mixes the outputs of
LSTM into the final output. This layer is relatively simple and lightweight because it
aims only to refine the representations produced by the LSTM layer. A logical question
that can be asked is whether we can extend the attention layer and make it sufficiently
expressive to model the entire sequence, so that the LSTM layer can be removed com-
pletely. This, in particular, can eliminate the disadvantages associated with LSTM such
as computational inefficiency due to sequential processing of the input elements.

In this section, we analyze the concept of attention in greater detail, develop a more
advanced design that can capture complex patterns, and discuss how classification and
forecasting models can be created by stacking multiple attention layers.

2.4.7.1 Self-attention

We aim to develop a component that, similar to LSTM, implements a sequence-to-
sequence operation: it should consume a sequence of vectors px1, . . . , xtq and produce
another sequence of vectors py1, . . . , ytq. For the sake of specificity, let us also assume
that both input and output vectors are embedding some entities. For example, the input
vectors can be created from discrete tokens using embedding lookups, and the output
vectors can be mapped to labels using softmax. One of the most basic implementa-
tions of a sequence-to-sequence operation would be a linear model that estimates each
output element as a linear combination of all input elements:

yi “
t
ÿ

j“1

aijxj (2.64)

where aij are the weights optimized during the training process. This simple model
is not particularly useful because it captures only linear dependencies and its weights
are position-specific which, as we discussed earlier, is not feasible for sequence model-
ing. However, we can extend this design by replacing constant weights with functions
that are evaluated based on the input values:

aij “ fpx1, . . . , xtq (2.65)

Expressions 2.64 and 2.65 define a generic framework, known as self-attention, that
can be used to create specific models by supplying specific functions f. For example, we

2.4 models with sequential inputs 75

can create a basic self-attention model by computing weights as dot products between
the input vectors:

aij “ xTi xj (2.66)

This design is illustrated in Figure 2.38. To understand why this design works, we
can compare it with the model that we developed earlier to illustrate the concept of the
lookup embeddings (see Figure 2.17). In that model, the idea was to express the inter-
actions between two entities as a dot product between the corresponding embedding
vectors. This approach worked because the training process optimized the embeddings
with the goal of making the dot product in the created embedding space a good ap-
proximation of the interaction labels that were actually observed. The same principle
works for the self-attention model specified in expression 2.66 – we fix the weight func-
tion, and then train the model to find the optimal embeddings x for the input elements.
In this simple example, input embeddings are the only learnable model parameters
because the self-attention weights are computed as plain dot products which do not
require any additional parameters. As a general case, the training process jointly learns
both the embeddings and parameters of function f which, as we discuss next, can be
much more complex than a dot product.

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

x2 x2 x2 x2

a21 a22 a23 a24

Figure 2.38: A basic example of a self-attention model.

The dot product–based design is not a feasible solution for most real-world sequence
modeling problems. Instead, it is normal to use the following architecture of the self-
attention layer to provide enough capacity for building complex models:

1. For each input element xi, we compute three additional embeddings using three
separate linear transformations:

qi “ WQxi

ki “ WKxi

vi “ WVxi

(2.67)

These embeddings are referred to as query, key, and value, respectively. Matrices
WQ, WK, and WV are the learnable parameters of the model. The sizes of the
matrices are selected in such a way that the key and query have the same dimen-
sionality dk.

76 predictive models

2. Next, we compute the matrix of attention weights. For each pair of input and out-
put positions xi and yj, the attention weight is computed as a softmax-normalized
product between the corresponding query and key embeddings:

aij “ softmax
j

˜

qTi kj
?
dk

¸

(2.68)

The scaling factor 1{
?
dk is motivated by the fact that the magnitude of the dot

product grows proportionally to dk, and the gradient of the softmax function
can become extremely small in such regions. The rescaling helps to mitigate this
problem.

3. Finally, the output values are computed as a weighted sum of the value embed-
dings:

yi “
ÿ

j

aijvj (2.69)

This design is illustrated in Figure 2.39. The key-value-query terminology is bor-
rowed from the information retrieval field. For each output value, we query the input
sequence, evaluate the relevance of each input element as a dot product between the
query and element’s key, and compute the final output using values of the input ele-
ments.

x1 x2 x3 x4

y1 y2 y3 y4

WKx3

WQx2

a23

WVx3

...

Figure 2.39: The self-attention with key, value, and query transformations.

Finally, we can have multiple parallel self-attention layers to increase the model ca-
pacity even further. These layers are usually referred to as heads, and their outputs
are merged together using a linear operator. This design is known as a multihead self-
attention layer [Vaswani et al., 2017], and we can summarize it using the matrix notation
as follows:

1. The input of the layer is a sequence of t vectors. This input can be represented as
tˆ d matrix X assuming d-dimensional vectors.

2.4 models with sequential inputs 77

2. There are H attention heads in total, and each head computes the query, key, and
value matrices as follows:

Qh “ XWQ
h

Kh “ XWK
h

Vh “ XWV
h

(2.70)

where index h P r1,Hs iterates over the heads, WQ
h and WK

h are dˆ dk projection
matrices, and WV

h is a dˆ dv projection matrix. Consequently, Qh and Kh are
tˆ dk matrices, and Vh is a tˆ dv matrix. In these three matrices, each row can
be viewed as an embedding of the corresponding element of the input sequence.

3. The self-attention is independently computed for each head as follows:

Ah “ softmax

˜

QhKTh?
dk

¸

¨Vh (2.71)

where the softmax operation is applied to its matrix argument row-wise. The result
is a tˆ dv matrix.

4. The final output is computed by concatenating the outputs of all heads and ap-
plying a linear transformation:

Y “ rA1 . . . AHs ¨W0 (2.72)

where Y is the output tˆ dy matrix that can be interpreted as a sequence of t
vectors, dy is the dimensionality of the output vectors, and W0 is a dvHˆ dy
matrix of learnable parameters.

This architecture was originally developed as a component for high-capacity lan-
guage models, and it has proved itself to be very efficient for a wide range of NLP
problems, as well as for other applications including time series forecasting, event se-
quence analysis, and computer vision.

2.4.7.2 Causal Attention

The design of the self-attention layer presented in the previous section assumes that
each output value yi depends on (attends to) all input values xj. This is a valid as-
sumption for classification models that use output values to label the entire sequence,
but this design is not suitable for forecasting problems where each output value yt
must be estimated using only the preceding input elements xt, . . . , x1. In other words,
the relationship between inputs and output sequences in forecasting problems must be
causal. We can adapt the self-attention architecture to this type of problems by masking
the attention weights in a way that the model does not have access to the elements that
follow xt to estimate yt. This can be implemented by inserting a special masking term
into expression 2.68 so that the attention weights are computed as follows:

aij “ softmax
j

˜

qTi kj
?
dk

`mij

¸

(2.73)

78 predictive models

where mij are the elements of a triangular matrix in which entries on the main
diagonal and below it are zeros, and all entries above the main diagonal are set to
´8, as shown in Figure 2.40. The softmax operation then turns all elements of the
weights matrix above the main diagonal into zeros which, in turn, disables all non-
causal dependencies between inputs and outputs, as illustrated in the lower part of
Figure 2.40. This version of the self-attention layer is known as causal attention.

x1

qi kj

xt

y1 yt

...

...

x1 xt

y1 yt

...

...

mij (mask)

Unchanged
elements

Disabled
elements

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

-∞ -∞ -∞ -∞ -∞
-∞ -∞ -∞ -∞

-∞ -∞ -∞
-∞ -∞

-∞

T

Self-attention Causal attention

Figure 2.40: Attention weights masking for causal attention.

2.4.7.3 From Self-attention to Transformer

The self-attention layer is a generic component that performs a sequence-to-sequence
mapping. A model that consists of a single self-attention layer, however, has rela-
tively limited capacity, and we need to develop a method for composing multiple self-
attention layers together in order to build practically useful models.

It turns out that the basic self-attention layers do not provide enough computational
stability to be easily composable, so the first step towards creating a multilayer architec-
ture is to combine self-attention with additional components that improve the learning
efficiency and stability. The result of such a combination is also a generic sequence-
to-sequence layer known as a transformer block or transformer layer. A typical design of

2.4 models with sequential inputs 79

the transformer block is presented in Figure 2.41. This design includes a self-attention
layer, skip connections, layer normalization operations, and shared dense layers. The
skip connections, introduced in Section 2.3.3, are the shortcuts that jump over layers,
helping to train a deep network. The normalization layer rescales each training sample
to zero mean and unit variance which is also a technique for improving the training
efficiency. Finally, the outputs of the first normalization layer are further transformed
with a shared dense layer which is independently applied to each output vector. There
is only one instance of this layer, so exactly the same transformation is applied to all
sequence elements.

x1 x2 xt

...

Self-attention

Layer normalization

Layer normalization

y1 y2 yt

...

Shared
dense layer

Transformer
block

Input

Output

...

...

Skip
connections

Figure 2.41: A typical design of the transformer block.

A composable transformer block enables us to build high-capacity models for vari-
ous tasks that require the learning of complex distributions. Such models are typically
constructed by stacking multiple transformer blocks as shown in Figure 2.42 where two
typical architectures are presented. The first model is a classification model, and its final
output is computed by averaging the output vectors of the topmost transformer. The
second model is an autoregressive model that is trained to predict the next element of
a sequence, and thus it uses a stack of transformer blocks with causal attention layers.

In both models, the input to the first transformer block is created by adding spe-
cial vectors, denoted as pt in Figure 2.42, to the regular inputs. These special vectors,
known as position embeddings, are an essential component for building fully functional
transformer models. The position embeddings are needed because the self-attention
layer is permutation invariant: if we change the order of the elements in the input
sequence, the elements of the output sequence will remain the same but will also be
shuffled. Consequently, a stack of transformer blocks is also permutation invariant. In
causal attention, a partial order is established, but each output element is still invariant
to permutations of its inputs. However, we need a complete model to be fully aware of

80 predictive models

x1 x2 xt

...

Transformer block

Transformer block

...

...

softmax

y

p1 p2 pt

...

x1 x2 xt

...

Causal transformer block

Causal transformer block

...

p1 p2 pt

...

x2 x3 xt+1

(a) Classification (b) Element prediction,
forecasting

Figure 2.42: Transformer-based architectures for classification and forecasting problems.

the order of the input elements. For example, a language model that predicts the next
word in a sentence should account for the order of the previous words. Position embed-
dings are a standard technique for addressing this limitation – we create an embedding
lookup table where entries are indexed by positions rather than by input tokens, and
optimize these embeddings just like regular lookup embeddings during the training
process. The shortcoming of this design is that the lookup table has to have as many
entries as the maximum sequence length, and, if the model is trained on sequences
of various lengths, some embeddings might be undertrained. An alternative solution
is to use position encodings – a fixed set of vectors generated using some deterministic
function such as a sinusoid. Unlike position embeddings, position encodings are non-
learnable parameters of the model. Both of these techniques, as well as their variations,
are used in common transformer architectures [Wang and Chen, 2020].

We develop transformer-based models for sequence genera-
tion in Chapter 3 in the context of natural language modeling.
We further use the transformers to build recommendation
systems in Recipe R6 (Product Recommendations), content
creation tools in Recipe R8 (Synthetic Media), and knowl-
edge management solutions in Recipe R7 (Knowledge Man-
agement).

2.5 models with multidimensional inputs 81

2.5 models with multidimensional inputs

We spent the previous section developing models for sequences, that is one-
dimensional arrays, of elements. In case the elements of the sequence are vectors, the
sequence can be viewed as a two-dimensional matrix where columns correspond to the
elements, and rows correspond to the elements’ dimensions. The models that we have
developed, however, would account only for the order of columns in such a matrix and
consider all rows to be independent. At the same time, many enterprise applications
require the processing of matrices or tensors of elements that have interdependencies
along two or more axes. The most prominent example is computer vision applications
that deal with images represented as two-dimensional arrays of pixels. In photographic
images, the probabilistic distribution of each pixel is, of course, conditioned on its
neighbors along both horizontal and vertical dimensions, and the sequence modeling
framework is insufficient for capturing such two-dimensional dependencies. Other
examples of multi-dimensional inputs include 2D geospatial data, 3D seismic data
used in the oil and gas industry, and 3D magnetic resonance imaging in medical
applications.

The need to model the cross-element dependencies along multiple dimensions is a
distinctive challenge for multidimensional data, but it also inherits all the challenges
associated with sequence modeling including parameter sharing and sample efficiency
problems. In principle, all models that we have developed for one-dimensional se-
quences can be generalized to process multidimensional inputs. In practice, convolu-
tional networks is a default platform for building this type of model, and we devote
this section to developing several variants of the convolution layer for two-dimensional
inputs. The same approach can be used to process inputs with three or more dimen-
sions.

2.5.1 2D Convolution Operation

The one-dimensional convolution operation introduced in Section 2.4.3 can be simply
generalized for the case of two dimensions. This can be done by allowing the input,
filter (kernel), and output, which are all vectors in the one-dimensional case, to be
matrices. Assuming that the filter is a square matrix of size p2s` 1q ˆ p2s` 1q where s
is a nonnegative integer, we can express the basic 2D convolution operation as follows:

yij “

s
ÿ

u“´s

s
ÿ

v“´s

wu`s`1, v`s`1 ¨ xi`u, j`v ` b (2.74)

where xij and yij are the elements of the input and output matrices, respectively,
wij are the elements of the filter matrix, and b is the intercept term which is also a
parameter of the operation. This expression is illustrated by means of an example in
Figure 2.43 where we assume a 3ˆ 3 filter, so that the corresponding value of s in
expression 2.74 is equal to one.

The example in Figure 2.43 suggests that the convolution expression cannot be fully
evaluated for the edge elements of the input matrix for filters larger than 1ˆ 1 because
some parts of the filter would protrude outside of the matrix and refer to non-existing
elements. There are two common ways of handling this problem. The first is to compute

82 predictive models

xij

w11

yij

w12 w13
w21 w22 w23

w31 w32 w33

3 × 3 1 × 1

b

3 × 3

Input Output

Filter

Figure 2.43: An example of a two-dimensional convolution operation for a single-channel input.

the output only for the positions where the filter can be fully evaluated, so that the
convolution between an nˆm input matrix and p2s` 1q ˆ p2s` 1q filter produces a
pn´ 2sq ˆ pn´ 2sq output matrix. This basically corresponds to the warmup zones we
discussed in the section dedicated to one-dimensional convolution. The second option
is to substitute the non-existing elements with the copies of the nearest edge elements,
so that an output matrix exactly the same size as the input is produced.

2.5.2 2D Convolution Layer

The convolution operation specified in the previous section is the core concept for
processing multidimensional inputs, but we need to extend it in several ways to create
a generic component that can be used for building complex models.

First, the convolution operation specified by expression 2.74 is a linear transforma-
tion, and the complete convolution layer generally includes a nonlinear activation func-
tion such as ReLu that is applied to the result of the convolution.

Second, the basic convolution produces an output the same size as the input, but we
often need to produce an output of a smaller size to create denser embeddings. One
possible way to achieve this is to shift the filter window by more than one position at
a time. The number of positions by which the filter window is shifted is referred to as
a stride, and the stride values can be specified independently for each dimension. An
example of the contracting convolution with a stride of two positions is illustrated in
Figure 2.44.

Third, we often need to process matrices with vector-valued elements, that are three-
dimensional tensors. For example, color images are matrices of pixels where each pixel
is represented by three components (red, green, and blue). We refer to each dimension
of the elements as a channel. In addition, we often need to apply multiple convolution

2.5 models with multidimensional inputs 83

Input

Output

Figure 2.44: Controlling the contraction ratio using the stride parameter. In this example, we as-
sume a 3ˆ 3 filter and a stride of two positions for both dimensions.

filters in parallel to increase the model capacity. These filters produce a stack of new rep-
resentations that can be consumed as a multichannel input by the downstream layers of
the model. We already discussed both these problems in the context of one-dimensional
convolution in Section 2.4.3, and the design that we developed for the one-dimensional
case can simply be generalized to the case of two dimensions. More specifically, the
output element at the position pi, jq for a filter with index q can be computed as

yijq “

c
ÿ

k“1

s
ÿ

u“´s

s
ÿ

v“´s

w
q
k, u`s`1, v`s`1 ¨ xk, i`u, j`v ` bq (2.75)

where c is the dimensionality of the elements in the input matrix (number of chan-
nels), wq are the weights of the q-th filter, and all filters are assumed to be of the same
size. In other words, the input, output, and each filter are specified as three-dimensional
tensors, and each output element is computed as the element-wise multiplication of the
filter and the corresponding block of the input tensor. This operation is illustrated in
Figure 2.45.

Number of input
channels

Number of filters

xijk

yijq

Operation
input

Operation
output

Figure 2.45: The two-dimensional convolution operation with multiple input channels and mul-
tiple filters. In this example, we assume 3ˆ 3 filter, three input channels, and three
output filters.

84 predictive models

We can summarize that the standard 2D convolution layer with c channels and n

filters is a component that consumes a three-dimensional input (a stack of c channels),
computes n linear convolutions with variable contraction ratios, applies an element-
wise nonlinear function such as ReLu to the results of the convolutions, and produces
a three-dimensional output (a stack of n matrices).

We use convolution layers in Recipe R5 (Visual Search) to
build visual search models and Recipe R14 (Visual Quality
Control) to build a visual quality control system.

2.5.3 2D Upconvolution Layer

The convolution layer described above produces the output that is either smaller than
the input, or of the same size. This functionality is sufficient for building models that
condense the input into a low-dimensional output which is the case, for example, with
classification models. On the other hand, models with high-dimensional outputs, such
as tensor-to-tensor models, often require layers that upscale the input, that is, produce
output larger than the input. Fortunately, we can build such a layer using the same
convolution operation as we used earlier in the contracting convolution layer. The up-
scaling convolution is commonly referred to as a transposed convolution, upconvolution,
or deconvolution, although this operation is not an inverse transformation for the convo-
lution operation in the mathematical sense.

The upconvolution operation is illustrated in Figure 2.46. Similar to the regular convo-
lution, the upconvolution operation is specified by a filter which is a matrix of weights.
This filter is independently multiplied by each element of the input matrix; the result-
ing matrices are shifted according to the positions of the corresponding input elements
and superimposed, and finally summed into the final output. The expansion ratio can
be further increased using the concept of strides, so that the intermediate matrices are
shifted by two or more positions before they are summed up.

The complete upconvolution layer can then be specified by adding all the capabil-
ities we developed for the convolution layer (nonlinear activation, multiple channels,
and multiple filters) on top of the upconvolution operation. The convolution and up-
convolution layer differ only in how the filtering windows are applied and composed;
other parts of the designs are virtually identical.

We use upconvolution layers in Recipes R5 (Visual Search)
and R14 (Visual Quality Control) for semantic image segmen-
tation.

2.5 models with multidimensional inputs 85

x11 x12

x21 x22

W·x11 W·x12W·x21 W·x22

W

y13 = w13x11 + w12x12

w11 w12 w13
w21 w22 w23

w31 w32 w33

2 × 2

3 × 3

5 × 5

Input

Output

Figure 2.46: An example of the upconvolution operation.

2.5.4 Deep 2D Convolutional Networks

In Section 2.4.3, we discussed that multiple one-dimensional convolution layers can be
stacked and interleaved with pooling layers to create a deep high-capacity network. We
also discussed that such a network can be used to solve several types of sequence model-
ing problems including classification, forecasting, and sequence-to-sequence mapping.
We can apply these principles to the multidimensional case to build deep 2D networks.

2.5.4.1 Model Types

The most common problems that are solved using models with multidimensional in-
puts include the following (for the sake of specificity, we assume a two-dimensional
case):

classification Classification is one of the most common problems solved using
convolutional networks. Most classification networks represent a stack of convo-

86 predictive models

lutional and pooling layers that consume an input with one or several channels
and relatively large height and width, and then progressively reduce height and
width but increase the number of channels using the increasing number of filters,
as shown in Figure 2.47 (a). The output of the top convolution layer is then pro-
cessed by a network head that performs the final mapping to the class label using
dense and softmax layers.

Convolution layer Pooling layer Dense layer

Softmax

Input matrix

Output
class

Input matrix

Output matrix

Embedding

Upconvolution layer

(a) Classificiation (a) Matrix-to-matrix

Figure 2.47: Examples of deep convolutional architectures. The thickness of the layer is propor-
tional to the number of channels.

feature extraction The outputs of the intermediate layers in the model architec-
ture described above can be viewed as embeddings of the input matrix. These
embeddings, often referred to as feature maps, can enable new types of analysis
that cannot be performed directly on the original input. For example, we ana-
lyze and qualitatively compare artistic styles of images using such embeddings
in Recipe R5 (Visual Search).

matrix-to-matrix Some problems require the input matrix to be mapped to an-
other matrix. For example, we might need to assign a class to each pixel of the
input image, so that the output is a matrix of elements, each of which represents
a class label. Similar to sequence-to-sequence mapping problems, this task is of-
ten accomplished using the encoder-decoder approach, so that the input matrix
is first mapped to a dense embedding using a stack of convolution and pooling
layers, and then the embedding is mapped back to a flat matrix using a stack of
convolution and upconvolution layers, as shown in Figure 2.47 (b).

2.5 models with multidimensional inputs 87

matrix-to-tuples Finally, some problems require the production of outputs with a
complex or variable structure. For example, we might need to detect objects such
as people or cars in a photographic image. In this case, the model might produce
a set of tuples, each of which includes the coordinates of an individual object, its
height, width, and class label.

These problem statements can be generalized to more than two dimensions. For
example, color images are usually represented as three-dimensional tensors (height ˆ
width ˆ RGB channels). The examples presented in Figure 2.47 aim only to outline
some of the design principles used for building deep convolutional networks, and we
build multiple specific model architectures later in this book.

2.5.4.2 U-Net Model

One of the most common implementations of the matrix-to-matrix (or tensor-to-tensor)
concept outlined in Figure 2.47 is the U-Net model. This model was proposed in the con-
text of biomedical applications, but later became a universal building block for com-
puter vision solutions where the image-to-image and image-to-masks mappings are
very common tasks [Ronneberger et al., 2015]. Similar to the concept in Figure 2.47 (b),
U-Net consists of a convolutional encoder and decoder, but enhances the basic architec-
ture with skip connections.

The canonical U-Net architecture is shown in Figure 2.48. In this architecture, the
input is assumed to be a color image, and output is assumed to be a classification mask
where each input pixel is mapped to a class probability vector. We discuss the details
of this particular design below for illustrative purposes, but applied solutions differ
widely in terms of the layer designs (e.g. transformer blocks can be used instead of
convolutions), number of layers, and semantic meaning of input and output objects.

The encoder part represents a stack of convolution layers with 3ˆ3 filters and 2ˆ2

max pooling layers. The first block of convolution layers, denoted as E1 in Figure 2.48,
has 64 channels. In the second block (E2), the size of the feature maps is reduced by half
using max pooling, but the number of channels doubles to 128. This process repeats,
and the number of channels subsequently doubles three more times in blocks E3, E4,
and E5, so that the final output of the encoder has 1024 layers.

The decoder part represents a stack of convolution and upconvolution layers. The
final output of the encoder with 1024 channels is first processed by an upconvolution
layer with 512 output channels that doubles the size of the feature maps. This output
is then concatenated with the 512-channel output of the block E4, producing a 1024-
channel tensor. The goal of admixing the partially encoded representation from one of
the previous layers is to provide the necessary detail that facilitates the reconstruction
of accurate segmentation boundaries. This technique is an example of concatenative
skip connections introduced in Section 2.3.3. The result of the concatenation is then
processed by a regular convolution layer with 512 output filters. This process repeats
in decoder blocks D2, D3, and D4, and the number of channels subsequently decreases
to 64, while the size of the feature maps increases to match the size of the input image.
The output of the last decoder block D4 is post-processed by a 1ˆ1 convolution layer to
produce a mask with as many channels as output classes. This mask is then normalized
using a softmax layer to produce the final output.

88 predictive models

512 × 512 × 3

512 × 512 × 64

32 × 32 × 1024

64 × 64 × 512

256 × 256 × 128

128 × 128 × 256

64 × 64 × 512

128 × 128 × 256

256 × 256 × 128

512 × 512 × 64

512 × 512 × k

E1

E2

E3

E4

D1

D2

D3

D4

Convolution
(3 × 3 kernel)

Max pooling
(2 × 2)

Convolution
(1 × 1 kernel)

Upconvolution
(2 × 2)or

no arrow

E5

Figure 2.48: The U-Net architecture. The number of classes in the output mask is denoted as k.

We use U-Net in Recipes R5 (Visual Search) and R8 (Synthetic
Media) for image segmentation and generation, respectively.

2.5 models with multidimensional inputs 89

2.5.5 2D Transformer Layer

The transformer models introduced in Section 2.4.7 outperform both convolutional and
recurrent networks in many sequence modeling applications, so it is logical to explore
how the transformer architecture can be extended to multiple dimensions. In principle,
regular self-attention layers and transformer blocks can straightforwardly consume any
multidimensional tensor provided that it is flattened into a sequence of elements, and
that the spatial relationship between the elements will be captured in position embed-
dings. This naïve approach, however, requires each element to attend to every other
element, so the computational complexity is quadratic in the number of elements in
the input. This problem can be mitigated using various partition strategies that limit
the number of attention links.

One of the most basic strategies is to group the input elements into fixed-size
patches as illustrated in Figure 2.49. We assume that the input is an hˆw matrix of
k-dimensional elements. These elements are grouped into square pˆ p patches, so that
there are n “ hw{p2 patches in total.

z1 z2 zn

Transformer block

Transformer block

...

p1 p2 pn

...

...

...

...W W W

x1

x2

xn

...

Figure 2.49: Adapting a one-dimensional transformer to process a two-dimensional input.

90 predictive models

Each patch is then flattened into a p2k-dimensional vector, so that the entire input
is represented as a sequence of vectors x1, . . . , xn. Finally, these vectors are mapped to
embeddings using a linear projection:

zi “ xiW, i “ 1, . . . ,n (2.76)

where embeddings z are d-dimensional, and W is the p2k ˆ d parameter matrix
shared across all patches.

This design, originally developed for computer vision applications and known as
the vision transformer (ViT) , enables one to control the computational complexity of the
transformer blocks by varying the patch size parameter [Dosovitskiy et al., 2020]. This
architecture represents a generic platform which can be used for solving all standard
tasks introduced previously such as classification and matrix-to-matrix learning.

The transformer architecture makes weaker prior assumptions about the structure of
input than the convolutional networks. In particular, it does not assume the locality of
the element interactions and equivariance to translations which are the main priors of
the convolutional design. This can make the transformer approach less sample-efficient
than the convolutional one in applications such as computer vision, that strongly com-
ply with these priors [Liu et al., 2022]. This limitation can be addressed using more ad-
vanced partitioning schemas with hierarchical and sliding windows that both impose
some of the convolutional priors and reduce the computational complexity to near-
linear [Liu et al., 2021]. The alternative approach is hybrid architectures where convo-
lution layers are used to extract feature maps from the original input, and transformer
layers are used to further process these maps. In this context, the feature-extracting
convolutional network is often referred to as a backbone network.

2.6 models for representation learning

The main focus of the previous sections was on learning functions that perform map-
ping between input and output values. We have seen that such mapping is usually
performed in stages, where each stage produces a new representation of the input data,
and the training process is designed to iteratively align these representations with the
distribution we want to approximate. In particular, we demonstrated that embedding
lookup units can map discrete entities to low-dimensional representations that are
aligned with the entity target labels, and, more generally, deep networks can produce
low-dimensional embeddings and feature maps where the input classes are linearly sep-
arable. Consequently, the ability of the network to accomplish a certain learning task
is often equivalent to the ability to produce high-quality representations. The ability
to produce semantically meaningful embeddings can also help to accomplish various
additional tasks such as entity similarity analysis.

Unfortunately, the methods discussed in the previous sections do not provide much
control over the structure and properties of the embedding space. We can be certain
that the training process will attempt to align the feature maps produced by the top
layers of the network with the target labels (otherwise the network would fail to predict
the target label based on these maps), but no other guarantees are provided. In practice,
this is not necessarily an obstruction because the representations captured at different
layers of supervised networks as byproducts are often useful enough and exhibit good
properties. Nevertheless, it is logical to pose the following questions:

2.6 models for representation learning 91

• How can we influence the properties of the semantic spaces that are learned using
supervised models? What are the desirable properties of the semantic space?

• Is it always necessary to guide the embedding learning process using target la-
bels? Are there alternative ways to specify the desirable structure of the semantic
space?

The goal of this section is to answer the above questions, and to develop additional
methods for learning embeddings in various settings. These methods are important
in many practical applications because they enable algebraic operations over various
entities which, as we discussed in Section 1.2, is one of the fundamental problems in
the field of enterprise machine learning.

2.6.1 Loss Functions for Supervised Representation Learning

In many applications, we need to learn embeddings that are as discriminative as pos-
sible with regard to the known class labels. For example, a fashion retailer might need
to learn an embedding space for product images where the product categories are
well-separated and semantically similar products can be reliably searched using the
Euclidean distance.

This task can be accomplished by building a classification network that maps the
input entity representations to low-dimensional embeddings using an arbitrary trans-
formation and then maps these embeddings to the class labels using a simple transfor-
mation such as the softmax function. As we discussed in Section 2.3.2, training such a
model using the cross-entropy loss tends to produce an embedding space with linear
boundaries between the classes.

The separability of the classes can be significantly improved using the specialized
loss functions that maximize the margin between the classes. This concept is illustrated
in Figure 2.50 where the embedding spaces with and without margins are contrasted.
Both spaces achieve linear class separability, but the space in plate (b) additionally
provides a large inter-class margin and intra-class compactness.

Margin

(a) (b)

Figure 2.50: Examples of embedding spaces with linearly separable classes (a) and inter-class mar-
gin (b). Both examples assume five classes and embeddings of a unit length.

92 predictive models

We discuss a general framework for losses that ensure margins, collectively known
as contrastive loss functions, and specific designs, including the triplet, InfoNCE, and Ar-
cFace losses, in Appendix A.3. Specialized loss functions and regularization terms are
extremely powerful tools that help to align embeddings with the supervision signals,
enhance the discriminative power of the embedding features, and control other embed-
ding properties such as feature sparsity. We will discuss more techniques for altering
the embedding properties in the next sections.

Custom loss functions are important in visual search appli-
cations that require high-quality image embeddings. We con-
tinue to discuss this topic in Recipe R5 (Visual Search).

2.6.2 Autoencoders

The supervised methods can learn new entity representations so that entities with the
same or similar target labels are collocated. This approach is well-suited for applica-
tions that require the embeddings and their features to be discriminative with regard
to the target labels. At the same time, applications exist where the target labels are
unnecessary or unknown, and we want to learn representations that capture the most
characteristic features of the input entities and describe the manifold the entities live on.
This generally requires specifying a loss measure that can guide the feature selection
process based on the input samples rather than target labels. One possible solution is
to guide the feature selection process by the ability to accurately reconstruct the input
based on a limited number of features. The models that implement this approach are
collectively known as autoencoders, and we make use of this section to discuss the basic
principles used in the autoencoder design.

2.6.2.1 Linear Autoencoder

The basic idea of autoencoding can be illustrated by a simple model presented in Fig-
ure 2.51. This is a linear model that takes a k-dimensional vector x as an input, maps
it to a d-dimensional embedding z using a linear layer, and then maps the embedding
to a k-dimensional output vector using another linear transformation. These two oper-
ations are referred to as encoding and decoding, respectively, and we can express them
using the following notation:

z “ Wex

px “ Wdz
(2.77)

where We and Wd are dˆ k and kˆd matrices, respectively, and d is assumed to be
smaller than k. The latter assumption, often referred to as the information bottleneck, is
a crucial one because it prevents the model from learning trivial embeddings such as
direct copying of the inputs to the outputs.

2.6 models for representation learning 93

We further assume that the training process is guided by the MSE loss which can be
expanded as follows:

LpX, Wd, Weq “
1

n

n
ÿ

i“1

‖xi ´ pxi‖2 “
1

n

n
ÿ

i“1

‖xi ´WdWexi‖2 (2.78)

where X is the training dataset that consists of n samples xi. In other words, we are
trying to find a d-dimensional representation of the k-dimensional input that minimizes
the input reconstruction error.

x

z

x

Linear layer (Wd)

Linear layer (We)

MSE

Figure 2.51: A basic linear autoencoder.

The minimization of the reconstruction error generally necessitates the features of
z to be characteristic for the manifold of x, but the ability to learn such features is
limited to the linearity of the encoding and decoding operations. The encoding oper-
ation defined by matrix We performs a projection of the k-dimensional space on a d-
dimensional hyperplane, so the feature selection essentially boils down to selecting the
optimal orientation of this hyperplane in the input space. We can get deeper insights
into this process by recognizing the similarities between our model and the principal
component analysis (PCA) problem. The PCA problem has several equivalent formula-
tions, and one of them also requires finding a linear transformation of the input space
that minimizes the reconstruction error, but additionally constrains the basis of this
transformation to be orthogonal:

min
W

1

n

n
ÿ

i“1

∥∥∥xi ´WWT xi
∥∥∥2

subject to WTW “ Id

(2.79)

where W is a kˆ d matrix, and Id is a dˆ d identity matrix, and the d-dimensional
vector WT x can be interpreted as an embedding. The PCA transformation has multiple
useful properties. In particular, the embedding hyperplane obtained using PCA is ori-
ented in a way that maximizes the variance of the projected data, and the embedding
features are decorrelated. The linear autoencoder finds the same semantic space as PCA,
but converges to a different basis which is not necessarily orthogonal. Consequently, the
linear autoencoder achieves the same reconstruction error as the PCA algorithm, but it
does not guarantee the nice properties of PCA entailed by the orthogonality constraint.
We can, however, modify the basic autoencoder model to enforce the orthogonality and
thus make it equivalent to PCA [Teo, 2020]. For example, the orthogonality can be en-

94 predictive models

forced by tying the encoder and decoder weights so that WT
e “ Wd “ W and adding a

proper regularization on top of the MSE loss:

LpX, Wq “ MSEpX, Wq ` λ
∥∥∥WTW´ Id

∥∥∥2 (2.80)

where the regularization term penalizes non-orthogonal basis vectors, and λ is a
regularization weight.

The basic linear model demonstrates the core principle of unsupervised representa-
tion learning using autoencoders. The limited-size intermediate representation, that is
the information bottleneck, forces the model to learn the most characteristic features
of the manifold the input samples live on. The linear model, however, is only able to
produce the optimal projections of the input features on a hyperplane which sharply
limits the expressiveness of the features it can learn.

2.6.2.2 Stacked Autoencoders

The limitations of the linear autoencoder can be overcome by replacing linear transfor-
mations with regular nonlinear dense layers and stacking multiple layers as shown in
Figure 2.52. The networks that follow this architecture are referred to as stacked autoen-
coders.

x

z

x

Dense layer

Tied
weights

...
...

Figure 2.52: A basic stacked autoencoder.

The encoder part of the stacked autoencoder gradually reduces the dimensionality
of the input vector x using a stack of dense layers. In most architectures, the dimension-
ality of the output monotonically decreases from layer to layer, and the final encoding
layer produces embedding z. The decoder part performs the inverse transformation,
gradually increasing the dimensionality of the representation and producing the final
output px of the same size as the input.

The encoder and decoder parts do not necessarily need to be symmetrical, but sym-
metrical architectures are often optimal. It is also common to tie the parameters of the
same-level encoder and decoder layers, as shown in Figure 2.52, so that

Wm “ WT
n´m`1, m “ 1, 2, . . . ,n{2 (2.81)

2.6 models for representation learning 95

where m is the index of the layer, Wm is the weight matrix of layer m, and n is the
total number of layers which is assumed to be even. The tied weights help to reduce the
number of model parameters and impose the PCA-style regularization as discussed in
the previous section.

A stacked autoencoder can be thought of as several nested two-layer autoencoders:
the outermost encoder and decoder layers respectively, perform the initial feature ex-
traction and reconstruction; the representation produced by the outermost layers is
further approximated by the next pair of layers, and so on. In fact, deep autoencoders
are often trained layer by layer, so that the outermost encoder-decoder pair is first
trained separately just like a two-layer autoencoder, then the next encoder-decoder pair
is trained to approximate the embeddings produced by the first pair, and so on. This
helps to reduce the training time and improve the training stability.

We use stacked convolutional autoencoders in Recipe R14 (Vi-
sual Quality Control) to detect manufacturing defects based
on images.

2.6.2.3 Loss Functions and Regularization

The properties of the semantic space can be influenced using a wide range of tech-
niques. One of the most basic options is to change the loss function by adding a spar-
sity penalty for the embedding layer on top of the reconstruction error. Autoencoders
that use the loss functions with sparsity penalties are commonly known as sparse au-
toencoders. In particular, we can use L1 regularization which is the most common choice
for sparsity penalization across all machine learning applications:

Lsparsepx, pxq “ MSEpx, pxq ` λ
d
ÿ

i“1

| zi | (2.82)

where λ is a hyperparameter that controls the regularization strength. The L1 regu-
larization term encourages embedding z to be sparse, driving some features zi to zero.
Consequently, sparse autoencoders tend to discover a limited number of characteris-
tic features even if the dimensionality of the embedding space is larger than needed
to represent the manifold. This basic technique demonstrates the idea of altering the
properties of the embeddings learned by autoencoders using regularization.

2.6.2.4 Applications and Limitations

The stack of dense layers depicted in Figure 2.52 is one of the most basic autoencoder
architectures, and more complex networks can be assembled by stacking convolutional
or recurrent layers. Such networks are capable of extracting complex features from a
wide range of input structures including vectors, sequences, and tensors. This capability
has many important applications in enterprise operations including the following:

96 predictive models

feature extraction Embeddings computed using autoencoders can replace or
augment manually designed features for downstream models. This is a generic
technique that helps to reduce the feature engineering effort.

similarity metrics Distances in the embeddings space can be used to evaluate
similarities between entities and search for nearest neighbors. This capability can
be used for entity search and retrieval tasks.

noise removal The information bottleneck ensures that the reconstructions pro-
duced by the autoencoder retain only the most characteristic features and discard
noises (the reconstructions are essentially projections of the input samples on
the manifold learned during the training process). This property can be used to
de-noise time series, images, and some other types of data.

anomaly detection The difference between the input and its reconstruction
gauges the deviation from the normal manifold, and this can be used to detect
anomalies and outliers. This capability is applicable to a wide range of problems
including time series monitoring, visual inspection, and cyber security.

instance generation We can generate new objects that live on the manifold by
sampling random embedding vectors and decoding them. This capability can be
used for forecasting, text generation, image synthesis, and some other tasks.

In some applications, the above tasks can be solved using a relatively simple stacked
architecture as described earlier in this section. These basic models, however, are prone
to producing irregular embedding spaces which makes them infeasible for certain ap-
plications. We discuss this issue and advanced solutions that address it in Chapter 3.

2.6.3 Representation of Elements

Autoencoding is a generic solution for unsupervised representation learning that can be
applied to a wide range of entities including vectors, sequences, and tensors. In many
applications, however, we are interested not in learning representations of the entire
entities, but in learning representations of the individual elements these entities are
comprised of. For example, we might be interested to learn embeddings of individual
elements in a sequence of discrete elements (tokens). The most common instantiation of
this problem is the learning of word embeddings from texts. In this section, we study
this problem more thoroughly, and develop a generic algorithm for learning token
representations from sequences. This algorithm can be directly applied to a wide range
of enterprise problems, and, as we discuss in the next sections, it can also be used as
a building block in representation learning solutions for more complex structures such
as graphs.

We have discussed in Section 2.4 that a stochastic sequence of tokens x1, . . . , xT can
be described using the token distribution conditioned on the context:

p pxt | xt´h, . . . , xt´1, xt`1, . . . , xt`hq (2.83)

where the context size h can be assumed to be finite for most practical applications
due to the limited memory effects. We further discussed that this distribution can be
learned using autoregressive models that essentially reduce the problem to the super-
vised learning formulation. This creates a foundation for unsupervised learning of rep-

2.6 models for representation learning 97

resentations of individual tokens xt because the samples and labels needed for training
of the autoregressive model are generated from the sequence itself.

We can approach the problem of learning the above distribution in two ways. The
first option is to build a model that predicts the middle token xt based on its context
xt´h, . . . , xt´1, xt`1, . . . , xt`h. The second approach is to build a model that pre-
dicts individual tokens of the context based on the middle token. Each of these two
approaches has its own advantages and disadvantages depending on a specific appli-
cation. For the sake of brevity, we focus on the second approach, although the two
strategies are, to a large extent, symmetrical, and the same design principles can be
applied to both.

Assuming that we want to predict the tokens of the context based on the middle
token, we can generate the training samples from the sequence as shown in Figure 2.53.

..., xt-h , ..., xt-1 , xt , xt+1 , ..., xt+h , ...

(xt, xt-h)
...
(xt, xt-1)
(xt, xt+1)
...
(xt, xt+h)

Input (xt) Target (xj)

Sliding context window

Figure 2.53: Generating samples for the context prediction model. The context window moves
along the sequence with the stride of one, so we generate hp2T ´h´1q samples for
a sequence of length T .

These samples can then be used to train a multinomial classification model, so that
the loss for the entire sequence is evaluated as follows:

Lpx1, . . . , xT q “ ´
1

T

T
ÿ

t“1

ÿ

´hďjďh
j‰0

logppxt`j | xtq (2.84)

We can further assume that the probability of token xj being in the context of the
middle token xt can be modeled using the dot product of the corresponding embed-
dings. This leads us to the following log probability estimate that can be plugged into
the above loss function:

logppxj | xtq “ log
exp

´

pTxjqxt
¯

řV
v“1 exp

`

pTvqxt
˘

(2.85)

In this expression, vectors p are the embedding of the corresponding context tokens,
q is the embedding of the middle token, and index v iterates over all distinct tokens
(vocabulary). It is important to note that the embeddings for the context and middle
tokens are obtained using two different embedding lookup tables, so the same token
can be mapped to two different embeddings depending on whether it is in the input
(middle token) or candidate output (context token). A neural network that implements
this design is shown in Figure 2.54. This solution was originally developed in the con-
text of NLP applications for learning word embeddings from texts, and it is commonly
known as Word2Vec [Mikolov et al., 2013a].

98 predictive models

xt

softmax

p(xj | xt)

qxt
px1

Input
embedding
lookup unit

Input Context

pxV

...

Cross-entropy
loss

...

Context
embedding
lookup unit xj

...

Figure 2.54: Architecture of the basic Word2Vec network.

The basic model design described above, however, has a limitation that makes it com-
putationally intractable for problems with a large number of distinct tokens. The issue
is that the evaluation of the denominator in the softmax function 2.85 needs to be iter-
ated over the all distinct tokens, and this computation repeats for each training sample.
This issue can be resolved by reformulating the problem as a binary classification, so
that we take a pair of tokens as the input, and estimate the probability that the second
token appears in the context of the first one. This requires changing the sample genera-
tion procedure to produce samples, each of which consists of two tokens and a binary
target label. The target label equals one when the second token is in the context of the
first one, and zero otherwise. The positive samples (labeled as one) can be generated
as before using the token pairs from the sliding context window. We also need, how-
ever, to generate negative samples (labeled as zero), and this can be accomplished by
sampling them from some distribution S over tokens that are not in the current context.
This distribution can be uniform or skewed in a way that the more frequent tokens
are more likely to be selected as negative samples [Mikolov et al., 2013b]. This new
sampling process, called negative sampling, is shown in Figure 2.55.

The binary mode is trained using the binary cross-entropy loss that requires the
evaluation of only two probabilities, regardless of the number of distinct tokens:

ppd “ 1 | xt, xjq “ σppTxjqxtq

ppd “ 0 | xt, xjq “ 1´ σppTxjqxtq “ σp´pTxjqxtq
(2.86)

where d is the target label and σ is the sigmoid function. This allows us to replace
the potentially intractable softmax 2.85 with the following:

logppxj | xtq “ logσppTxjqxtq `
ÿ

xs„S

logσp´pTxsqxtq (2.87)

The number of negative instances xs sampled for each positive sample is a hyperpa-
rameter of the model which is selected based on the size of the training dataset of other
considerations.

2.7 models with graph inputs 99

..., xt-h , ..., xt-1 , xt , xt+1 , ..., xt+h , ...

(xt, xt-h, 1)
...
(xt, xt-1, 1)
(xt, xt+1, 1)
...
(xt, xt+h, 1)

(xt, xs1
, 0)

...
(xt, xsm

, 0)

Input Target (d)

Sliding context window

Positive
samples

Negative
samplesDistribution S

Figure 2.55: Negative sampling.

The Word2Vec model is a relatively simple but generic and powerful solution for
learning token embeddings from sequences. It can be applied to a wide range of enter-
prise use cases including customer analytics where one needs to deal with sequences of
events, log analytics where once deals with sequences of tokens, and more traditional
NLP applications.

We use Word2Vec in Recipe R2 (Customer Feature Learning)
to learn customer embeddings based on event sequences.

2.7 models with graph inputs

A wide range of enterprise problems involves multiple interconnected or interrelated
entities, and the topology of these connections and relations can be extremely important
for understanding and predicting the properties of the entities. Examples of such prob-
lems include the analysis of interactions between customers and products with the goal
of producing personalized recommendations, analysis of financial transactions between
economic agents aimed at detecting fraud, and the analysis of connectivity between IoT
sensors for detecting failures. The methods developed in the previous sections were de-
signed to predominantly model individual entities, and we cannot apply them directly
to problems that involve multiple entities and relations. At the same time, collections
of entities and the relations between them can usually be represented as graphs, and
we can attempt to develop a generic framework for learning on inputs from graphs. In
this section, we review the most common learning tasks associated with graphs and
develop a toolkit of supervised and unsupervised methods that will later be used in
the use case-specific recipes.

100 predictive models

2.7.1 Machine Learning Tasks on Graphs

We define graph G “ pV ,Eq as a set of nodes V and a set of edges E that connects these
nodes. We denote an edge that goes from node u P V to node v P V as pu, vq P E. We
further assume that there is at most one edge between any pair of nodes, all edges are
undirected so that pu, vq P Eô pv,uq P E, and individual nodes can be associated with
m-dimensional feature vectors so that we denote the feature vector of node u as xu.

Graphs can be used to represent a wide range of enterprise environments, and dif-
ferent environments require solving different types of computational problems on the
corresponding graph representations. However, the majority of real-world problems
can be casted to one of the following generic formulations:

node classification The node classification problem assumes that each node u is
associated with a target label yu. The standard setup is that we are provided with
labels for a training subset of nodes Vtrain Ă V , and our goal is to build a model
that predicts labels for the remaining nodes. The model should leverage both the
topology information and known node features xu to make the prediction.

One common example of enterprise problems that can be expressed as a node
classification task is fraud detection. For instance, a social network might need
to detect bots in a graph that represents users and social connections. Another
illustrative use case is the analysis and prediction of user interests. For example, a
photo-sharing service where users can follow each other and subscribe to various
interest groups might be looking to predict relevant interest groups for a given
user based on their existing relations with other users [Tang and Liu, 2009].

node similarity evaluation In some applications, we need to evaluate a similar-
ity score for a pair of nodes based on their position in the graph and the structure
of the neighborhood. For example, we can evaluate similarities between products
based on a graph that captures how products are grouped by orders.

We use product similarity scores in Recipe R10 (Price and
Promotion Optimization) to overcome limited data avail-
ability.

relation prediction In relation prediction problems, the goal is to predict the
most likely or missed edges between the nodes in a graph. From the model de-
velopment standpoint, we usually assume that we are provided with a training
subset of edges Etrain Ă E, and the objective is to infer the missing edges.

A classic example of a relation prediction task in enterprise settings is personal-
ized product recommendations: the interactions between users and items can be
represented conveniently as a graph, and recommendations can be produced by
predicting the most probable edges between the user and item nodes [Ying et al.,
2018].

2.7 models with graph inputs 101

We develop a graph-based recommendation engine in
Recipe R6 (Product Recommendations).

graph classification The fourth standard problem formulation is classification
or regression over entire graphs. In this setup, the goal is to learn a function
that maps a whole graph G to a single label. For example, we can be given a
graph of components that represents a complex machine, and our objective may
be to predict whether a machine is in a normal or abnormal state. Another typi-
cal enterprise use case that can be approached as a graph classification problem
is personalized recommendations – user browsing histories or individual web
sessions can be represented as graphs of content items or web pages, and the
next item a given user is likely to interact with can be predicted using a graph
classification model.

We can approach the node classification problem from the representation learning
perspective: we first need to develop specialized layers or models that map individual
nodes to low-dimensional embeddings, and then use standard output mappers to es-
timate the target label yu based on these embeddings. The main challenge is how to
capture the topology information, that is the information about a node’s role and rela-
tions within the graph, in a low-dimensional representation. We spend the next sections
developing several solutions, and then discuss how these solutions can be applied to
relation prediction and graph classification problems.

2.7.2 Learning Node Representations

We can capture the information about a node’s direct and indirect neighbors and its
overall role in the graph using a number of methods including manually designed
features, algebraic algorithms, unsupervised representation learning, and supervised
methods guided by training labels. In this section, we review several basic algebraic
methods, and then develop a more general framework for unsupervised node repre-
sentation learning. The supervised methods will be discussed in the next section.

2.7.2.1 Basic Methods

Assuming the simple graph structure we agreed on in the previous section, graph
G “ pV ,Eq can be represented as a |V| ˆ |V| adjacency matrix A so that

auv “

$

&

%

1, if pu, vq P E,

0, otherwise
(2.88)

102 predictive models

We can conveniently use the notion of the adjacency matrix to specify various fea-
tures that characterize the role of the node in the graph. One of the most basic options
is the node degree which is defined as the number of edges connected to the node:

degpuq “
ÿ

vPV

auv (2.89)

The degree of a node can be viewed as a measure of node importance, and it is a
highly discriminative feature in most applications. For example, users of a social net-
work who have many connections are very different from most practical standpoints,
from users with comparatively fewer connections. The degree metric, however, consid-
ers only the nearest neighbors of the node and treats them equally, regardless of their
own importance.

We can extend the concept of a degree to account for multi-hop connections. For in-
stance, we can associate each node uwith importance value zu that obeys the following
recurrent equation:

zu “
1

λ

ÿ

vPV

auvzv (2.90)

where λ is a constant. Since the value for each node is obtained by aggregating the
values for its neighbors, this recurrent relationship means that a node is considered
important when it is connected to many nodes which are themselves important. It is
easy to see that expression 2.90 is effectively the eigenvector equation for the adjacency
matrix: we can rewrite it in a matrix form as Az “ λz to make this link more obvious.
This means that values zu are components of the eigenvector z of adjacency matrix A,
and thus they are referred to as eigenvector centralities of the corresponding nodes.

Node degrees and eigenvector centralities are just examples of features that capture
the topology of the graph, and we can include these statistics into hand-crafted node
feature vectors consumed by the downstream node classification or relation prediction
models. Besides that, computing eigenvectors for very large graphs such as social net-
works is computationally challenging, although efficient iterative algorithms such as
PageRank do exist [Page et al., 1999]. However, the idea of summarizing the topology
information by means of recurrent (multi-hop) value propagation across the network
of nodes is extremely powerful, and we repeatedly use it in the next sections to build
more advanced solutions.

2.7.2.2 Encoder-Decoder Framework

The Word2Vec algorithm introduced in Section 2.6.3 learns embeddings for tokens in
a sequence using the concept of a context: tokens are mapped to such embeddings
so that the dot product of two embeddings yields the probability of observing the
corresponding tokens in the context of each other. In other words, the embeddings are
optimized to evaluate the proximity between tokens. Although an ordered sequence of
tokens is not a graph (tokens in a sequence can repeat but nodes in a graph cannot),
we can then explore the idea of learning embeddings for nodes in a graph based on the
ability to evaluate some measure of proximity between the nodes.

2.7 models with graph inputs 103

Let us first define a general framework that allows for plugging in arbitrary proximity
measures. We first assume that each node u is encoded into a d-dimensional embedding
zu using a standard embedding lookup table:

zu “ encodepuq (2.91)

We denote a |V| ˆ d matrix obtained by stacking these embedding vectors as Z. We
further assume that each pair of nodes is associated with some proximity value quv,
and this value is estimated based on the corresponding embeddings using a decoding
function:

pquv “ decodepzu, zvq (2.92)

In other words, this function decodes the embeddings into the proximity measure.
We assume that the decoding function does not have any learnable parameters, so the
training process aims to optimize only the encoding part, that is the embedding lookup
table. This requires defining a loss function that guides the optimization process:

LpDq “
ÿ

pu,v,quvqPD

Lppquv, quvq (2.93)

In the above, we assume that D is the training dataset that consists of the node pairs
with the ground truth proximity labels quv. Equations 2.91–2.93 provide a general
framework, known as the encoder-decoder framework, for unsupervised learning of node
embeddings [Hamilton et al., 2017].

The encoder-decoder framework requires specifying four components: a pairwise
node proximity measure, encoder function, decoder function, and loss function. We
have already assumed that the encoder function is a standard embedding lookup unit,
but the other three components still need to be specified, and this can be done in many
different ways. Let us examine one specific option for the sake of illustration:

• We can assume a proximity measure that is equal to one when a pair of nodes are
adjacent, and zero otherwise. Consequently, proximities are given by the entries
of the adjacency matrix: quv “ auv.

• We can further assume that the proximity is estimated as a dot product of the
corresponding node embeddings:

decodepzu, zvq “ zTuzv (2.94)

• Finally, we choose to use the MSE loss function, so that

LpDq “
ÿ

pu,v,quvqPD

∥∥∥zTuzv ´ auv
∥∥∥2 “ ∥∥∥ZZT ´A

∥∥∥2 (2.95)

The above specification essentially means that we perform the factorization of ad-
jacency matrix A and learn its lower-rank representation Z that minimizes the recon-
struction error. Consequently, this variant of the encoder-decoder model is known as
graph factorization. The graph factorization algorithm allows for efficient distributed im-
plementation, and it can be used to learn embeddings in very large graphs – it was
originally developed at Yahoo Research to analyze an email communication network
with more than 200 million nodes and 10 billion edges [Ahmed et al., 2013].

104 predictive models

2.7.2.3 Proximity Measures Using Random Walks

The graph factorization algorithm optimizes the embeddings to predict the immedi-
ate neighbors of a given node. This leads to embeddings that mostly capture the local
structure of the graph rather than the global (multi-hop) context of each node. We can
attempt to overcome this limitation by using a different proximity measure. For exam-
ple, we can normalize the adjacency matrix to make it interpretable as a probability
transition matrix, and predict its powers to simulate multi-hop transitions [Cao et al.,
2015]. In this section, we explore an even more powerful approach that specifies the
proximity measure using random walks.

Let us assume that we have a procedure that traverses the graph starting at a given
node u and making N steps by randomly sampling the destination node from the
current node’s neighbors at each step. The output of such a procedure is a sequence of
nodes pu, v1, . . . , vNq which we call a random walk. We can then specify the proximity
measure as the probability pNpv | uq of visiting node v on a random walk of length N
starting at node u:

quv “ pNpv | uq (2.96)

This is a very different way of defining the proximity measure compared to the deter-
ministic and symmetric measure used in the graph factorization model. The stochastic
random walk measure, however, efficiently captures the multi-hop context of a node.

Assuming that we can evaluate the empirical probability of node v to be in the context
of node u, we can optimize embedding to approximate this value. This can be done
using a dot product of the corresponding node embeddings, but we need to apply the
softmax normalization to obtain the valid probabilities:

decodepzu, zvq “
exppzTuzvq

ř

kPV exppzTuzkq
“ pquv (2.97)

The embedding can then be learned by minimizing the cross-entropy loss function:

LpDq “
ÿ

pu,v,quvqPD

´ logpdecodepzu, zvqq (2.98)

This specification leads us to the same problem that we had previously with
Word2Vec: evaluation of the denominator in the softmax mapper requires computing
as many dot products as there are nodes in the graph. We already know that this prob-
lem can be tackled using the negative sampling technique introduced in Section 2.6.3
which replaces the multinomial classification problem with a binary classification task.
We can simply apply negative sampling to the current case as well, and, moreover,
we can use the Word2Vec procedure that implements negative sampling as the
off-the-shelf component. Indeed, random walks can be viewed as sequences of nodes,
that are sequences of discrete tokens, and we can use arbitrary methods for learning
token representations including Word2Vec to learn node embedding from random
walks.

The implementation of this idea is known as the Node2Vec algorithm [Grover and
Leskovec, 2016]. Its formal specification is provided in box 2.1, and includes two rou-
tines. The main one iterates over all nodes in the input graph, generates multiple ran-
dom walks out of each node, and applies the standard Word2Vec algorithm to the

2.7 models with graph inputs 105

dataset where each sequence is a walk and each token is a node. The random walk is
performed by the second subroutine that traverses the graph starting with the given
node.

Algorithm 2.1: Node2Vec

Main Node2Vec routine:
input:

G “ pV ,Eq – input graph with nodes V and edges E
N – walks per node

function node2vec(G):
walks = []
for i “ 1 to N do

for u in V do
walks.append(random_walk(G, u))

end
end

return word2vec(walks)
end

Random walk subroutine:
input:

G “ pV ,Eq – input graph
u – start node
L – maximum walk length

function random_walk(G, u):
walk = [u] (Initialize the walk (list of nodes))
c = u (Current node)
for i “ 1 to L do

neighbors = G.neighbors(c)
c = sample(neighbors) (Sample the next node)
walk.append(c)

end

return walks
end

It is easy to see that this algorithm essentially implements the specification of the
encoder-decoder model given by expressions 2.97 and 2.98, but delegates all the
complexity associated with negative sampling and other computational aspects to
the Word2Vec subroutine. The Node2Vec algorithm highlights the similarity between
representation learning on sequences and graphs: we literally use the same model, but
specify the context in two different ways to appropriately capture the topology of the
structure.

The Node2Vec algorithm has one more important aspect that needs to be discussed.
We have previously stated that, at each step, the random walk process samples the
node to move to from the neighbors of the current node, but we did not specify exactly

106 predictive models

how this sampling is performed. The most basic option is to sample according to the
uniform distribution, so that all neighbors of the current node are equiprobable. This
simple strategy, however, does not necessarily capture the topology of the neighbor-
hood around the node in an optimal way. From that perspective, we generally want
to find the balance between breadth-first and depth-first searches. The breadth-first
search (BFS) tends to generate localized sequences that describe the structural role of
the node (hubs, bridges, periphery, etc.), whereas the depth-first search (DFS) produces
sequences that describe how nodes are interconnected at a macro level. The ability
to employ these two strategies and capture both local and global aspects of the node
position is essential for producing useful embeddings.

Node2Vec addresses this problem using an advanced sampling algorithm that can be
fine-tuned using hyperparameters. Let us assume a random walk that traversed some
node v and then moved to its neighbor node v 1. The algorithm now has to choose
the next node v2 to move to from all neighbors of v 1. In Node2Vec, the transition
probabilities are assigned to the candidate nodes according to the following rule:

ppv, v2q 9

$

’

’

&

’

’

%

1{p, if dpv, v2q “ 0

1, if dpv, v2q “ 1

1{q, if dpv, v2q “ 2

(2.99)

where dpv, v2q is the length of the shortest path between nodes v and v2. The length
of zero means that we return from v 1 to v, and thus parameter p controls the likelihood
of returning to the already-visited nodes and exploring the local structure in a BFS
fashion. The length of 1 means that node v2 is connected to both v and v 1. Finally, the
length of 2 means that we are moving away from v, and thus small values of q ă 1

make the algorithm more focused on exploring the global structure in a DFS fashion.
These three options cover all possible cases because the length of the shortest path
between v and v2 cannot exceed 2.

In some applications, the transition rule 2.99 can be customized to incorporate edge
weights or domain knowledge. For example, we can increase the transition probability
for edges with high weights (strong links) and decrease it for edges with low weights
(weak links) if such weights are available. We use this technique in R6 (Product Rec-
ommendations) to capture the information about the strength of relationships between
products in the catalog.

2.7.2.4 Usage and Limitations

The unsupervised methods that follow the encoder-decoder framework, including
graph factorization and Node2Vec, can be applied to all problems outlined in Sec-
tion 2.7.1. First, the node embeddings produced by the encoder can be consumed as
input features by the downstream models that perform the actual node classification.
Since the topology information is already captured in embeddings, the downstream
classification can typically be performed by generic models such as logistic regres-
sion [Grover and Leskovec, 2016]. Second, node similarities can simply be computed
as distances in the embedding space. Third, relation prediction can be performed
by computing edge embeddings based on the corresponding node embeddings, and
using them as inputs to the downstream edge prediction model. The edge embeddings

2.7 models with graph inputs 107

can typically be computed using a basic aggregation operation. For example, we
can compute embedding zuv for an edge between nodes u and v as an average
pzu ` zvq{2 or element-wise product zu d zv of the corresponding node embeddings.
The edge prediction can then be performed using a binary classification model that
uses embeddings zuv as inputs and entries of the adjacency matrix as target labels.
Finally, graph embeddings for small graphs can also be obtained by aggregating node
embeddings [Hamilton et al., 2017].

The encoder-decoder approach, however, has several limitations. First, it is an un-
supervised solution, so it cannot be guided by target labels to produce task-specific
representations. Second, each node is interpreted as a unique token. This means that
we cannot compute embeddings for nodes that are not in the training set, and all em-
beddings have to be recomputed when the graph changes. The reliance on the node
identities also means that we cannot incorporate node feature vectors xu and transfer
learnings across different parts of the graph that have similar or identical structures
(topologies) but are comprised of different sets of nodes. We discuss how to overcome
these limitations in the next section.

2.7.3 Graph Neural Networks

We previously discussed that embeddings for various structures including vectors, se-
quences, and tensors, as well as their elements, can be learned using two different
approaches – we can build a supervised model and capture the embeddings at certain
points of their transformation chain, or we can use unsupervised methods that employ
some variant of the information bottleneck to produce dense embeddings. The methods
discussed in the previous section implement the latter approach and inherit its limita-
tions. In this section, we focus on the supervised approach and develop a framework
for solving the standard learning tasks on graphs in a supervised way.

2.7.3.1 Neural Message Passing Framework

Let us assume graph G “ pV ,Eq where each node u P V is associated with feature
vector xu. We generally want to build a network that maps each node to dense repre-
sentation zu, and then maps these representations to some output for which we have
ground truth labels. The complete network can then be trained in a supervised way
guided by the discrepancy between the output and ground truth labels, and intermedi-
ate representations zu can be deemed as the node embeddings.

The node embeddings should capture both the structural information about the
neighborhood and the node features xu. We have already seen that methods like eigen-
vector centrality capture the structural information using iterative value propagation
across the graph, so we can attempt to generalize this approach. We can start by ini-
tializing node embeddings with the input feature vectors, so that zu “ xu, and then
iteratively update each node by aggregating embeddings of the adjacent nodes:

mpkqu “ φptzpkqv uq, v P Npuq

zpk`1qu “ ψpzpkqu , mpkqu q

(2.100)

108 predictive models

where Npuq is the set of adjacent nodes, that is neighborhood, of node u, mpkqu is
the aggregation of the embeddings received from its neighbors at iteration k, φ is the
aggregation function, and ψ is the update function. The embedding values propagated
from the neighborhood to the given node can be thought of as the messages, so the
iterative process specified by the above equations is commonly referred to as neural
message passing. Similar to the eigenvector centrality, we expect the process to converge
to some final values of zu that can be interpreted as embeddings. The message passing
framework, however, is an abstraction that requires specifying the aggregation and
update functions, as well as the overall model design and training procedure.

2.7.3.2 Network Architecture

The message passing architecture can be implemented as a neural network provided
that we specify the aggregation and update functions appropriately. Let us choose the
aggregation function φ to be a simple sum of the messages received from the neighbors:

mpkqu “
ÿ

vPNpuq

zpkqv (2.101)

Next, we can define the update function ψ as a dense layer that is applied to a node’s
own embedding and incoming messages. This can be expressed as follows:

zpk`1qu “ g
´

Wpk`1q
a zpkqu `Wpk`1q

b mpkqu
¯

(2.102)

In the above, Wpkq
a and Wpkq

b are the learnable linear operators applied at iteration
k to the node’s own and incoming embeddings, respectively, and g is the element-size
activation function such as a sigmoid or ReLu. We can rewrite the update function
more concisely in matrix form as follows:

Zpk`1q “ g
´

ZpkqWpk`1qT
a `AZpkqWpk`1qT

b

¯

(2.103)

We assume that each iteration is associated with its own linear operator, and thus
we can implement a sequence of n updates as a neural network with n layers where
parameters Wpkq

a and Wpkq
b are learned independently for each layer (index k iterates

from 1 to n). This design is illustrated in Figure 2.56 where a part of the network that
corresponds to the computational graph for one of the nodes is presented.

The architecture defined above and its variants are collectively known as graph neural
networks (GNNs) [Scarselli et al., 2009]. The GNN design is a fundamental building
block that can be used to solve various supervised learning and representation learning
tasks with graph inputs.

2.7.3.3 Model Training

In the previous section, we outlined the basic GNN architecture, but did not specify
how a GNN network can be used to solve standard learning problems such as node
classification or relation prediction. In this section, we focus on building such end-to-
end solutions.

2.7 models with graph inputs 109

A

C

B

D

E

F

G

zF
(1)

zG
(1)

zA
(1)

zA
(1)

zD
(1)

zE
(1)

zA
(1)

zC
(1)

φ

ψzB
(1)

zB
(2)

φ

ψzD
(1)

zD
(2)

φ

ψzC
(1)

zD
(2)

φ

ψzA
(1)

zA
(2)

Figure 2.56: Example of a neural message passing network. We assume a two-layer network and
show only a fragment of the network that corresponds to the computational graph
for node A.

In node classification problems, we have a training set D of nodes represented by
their feature vectors xu and corresponding class labels yu. Assuming that there are c
classes in total, we can represent a label for node u as c-dimensional one-hot vector yu.
The node embeddings computed by the GNN model can then be mapped to the class
probability vectors using the softmax normalization:

pyu “ softmax
´

Wszpnqu
¯

(2.104)

where we assume a GNN with n layers, zpnqu are d-dimensional node embeddings,
Ws is a c ˆ d matrix of learnable parameters, and pyu are c-dimensional stochastic
vectors. We then use the node features as inputs to the first layer of the network, so that
zp0qu “ xu, and train it using a regular cross-entropy loss:

LpDq “
ÿ

uPD

´ log
c
ÿ

j“1

yuj ¨ pyuj (2.105)

This design allows us to build node classification models, as well as to learn node em-
beddings aligned with the target labels which can be used for node similarity scoring
and other tasks.

In relation prediction tasks, we can reuse the methods developed earlier for encoder-
decoder models. For example, we can use the entries of the adjacency matrix auv as

110 predictive models

the ground truth labels, and estimate the probability of relations using dot products of
the corresponding node embedding:

ppauv “ 1 | zu, zvq “ σpzTuzvq

ppauv “ 0 | zu, zvq “ σp´zTuzvq
(2.106)

The GNN can then be trained using the negative sampling loss which we used pre-
viously for Word2Vec and Node2Vec models [Yang et al., 2020]:

LpDq “
ÿ

pu,vqPD

´ logσpzTuzvq ´
ÿ

vn„S

logσp´zTuzvnq (2.107)

where dataset D consists of positive samples with auv “ 1, and S is the distribution
from which the negative instances are sampled. This design is very similar to Word2Vec
and Node2Vec (see expressions 2.86 and 2.87), but the key difference is that the lookup
embeddings are replaced by an arbitrary neural network, so node embeddings zu and
zv can potentially capture more complex semantics.

2.8 model correctness

All methods developed earlier in this chapter aim to learn functions (networks) that ap-
proximate the properties of the data-generating process based on the observed samples.
In the previous sections, we implicitly assumed that the input samples cover the man-
ifold that needs to be approximated in a consistent way, so that the gradient descent
algorithm is likely to converge to a valid model provided that the model architecture
and optimization hyperparameters are chosen correctly. In practice, this assumption
can never be taken for granted, and one has to use a broad range of statistical methods
and techniques to ensure both the validity of the input data and correctness of the ob-
tained model. A comprehensive treatment of such methods is beyond the scope of this
chapter, but we discuss two typical scenarios that illustrate the problem of inconsistent
manifold coverage by the available data in the next sections. These two scenarios are
very common in enterprise applications, so the checks and corrections described below
can be viewed as a part of the standard data validation and preparation checklist.

2.8.1 Imbalanced Data

The first typical scenario is a nonuniform coverage of the manifold by the training sam-
ples. This problem appears in virtually all enterprise applications, but it is particularly
pronounced in applications with rare events. For example, the number of fraudulent
transactions in a payment system can be several orders of magnitude less than the
number of non-fraudulent transactions, and the number of defective parts in a manu-
facturing process can be several orders of magnitude less than the number of normal
parts. This leads to imbalanced datasets where some areas of the manifold of interest
are densely covered by the data samples while other areas have very low coverage
density. In the regular gradient descent process, the overall loss used for the model pa-
rameters update is computed as a simple average of the per-sample losses, as defined
in expression 2.11, and thus the process might fail to capture the curvature of the areas
with low coverage density.

2.8 model correctness 111

The imbalance problem can be approached in several different ways. For the sake
of illustration, let us focus on the binary classification problem with real-valued input
feature vectors. Assuming that the input dataset is imbalanced, we have the majority
class that makes up the larger proportion of the data and minority class that makes
up the smaller proportion. One possible solution for learning a classification model in
such a setup is to modify the loss function and assign weights to per-sample losses,
so that either the minority samples are upweighted or the majority samples are down-
weighted according to the ratio of class cardinalities. This solution is feasible practically
and is supported in most machine learning libraries and frameworks, but it is not al-
ways optimal because it uses only the original samples without any randomization or
interpolation.

The alternative strategy is to explicitly resample the dataset by adding or removing
samples. We can approach the resampling task in two major ways. The first is by under-
sampling the majority class. Assuming that there are nmin instances of the minority class,
we can simply implement this approach by randomly sampling nmin instances from the
majority class and forming a balanced dataset with 2nmin samples where both classes
are equally represented. The under-sampling strategy is generally prone to discarding
informative samples and increasing the variance of the classifier. In certain cases, this
issue can be improved by using more selective under-sampling techniques. For exam-
ple, we can under-sample the majority class by removing only the instances from the
so-called Tomek links on the borders between the classes and areas where the classes in-
termix, as shown in Figure 2.57. We can view under-sampling as a generalization of the
majority class downweighting where zero weights are assigned to individual instances
using various algorithms.

Original dataset Tomek links Resampled dataset

Figure 2.57: The majority class under-sampling using Tomek links. Tomek links occur between
two samples that have different classes, but are the nearest neighbors to each other
[Tomek, 1976]. In this example, we remove only the majority class instance from each
link, but other strategies such as the removal of both instances can be used.

The second option is the over-sampling of the minority class. The most basic imple-
mentation of this idea is sampling with replacement – assuming that the majority class
contains nmaj instances, we sample nmaj points from the minority class, and create a
balanced dataset of 2nmaj samples. This strategy is essentially equivalent to the minor-
ity class upweighting discussed earlier because the duplication basically increases the
weights of the corresponding samples in the loss function. However, we can replace
this basic duplication by a more advanced randomization or interpolation algorithm.
This can help to increase the robustness of the learning process, although we, of course,
cannot learn the minutia of the manifold curvature that are not present in the original
data. One of the most commonly used over-sampling algorithms is Synthetic Minor-

112 predictive models

ity Oversampling TEchnique, or SMOTE [Chawla et al., 2002]. The SMOTE algorithm
starts by selecting a random minority class instance q, finding its k nearest minority
class neighbors, and selecting one of these neighbors p at random. The new instance
is then created by randomly picking a point at the line segment that connects q and p,
and the process repeats until the desired number of new instances is generated. This
algorithm is illustrated in Figure 2.58.

Original dataset Resampled datasetCreation of new instances

Figure 2.58: The minority class over-sampling using SMOTE.

The balancing methods described above can be combined in multiple ways. For in-
stance, a hybrid strategy that includes partial under-sampling of the majority class
and minority class over-sampling can outperform pure under-sampling [Chawla et al.,
2002]. In practice, a specific balancing strategy is designed based on the dataset sizes
(it may be unfeasible to under-sample small sets), computational considerations (over-
sampling may be computationally infeasible for large sets), model evaluation criteria,
feature types, and other factors.

We discuss the use cases that usually involve imbalanced
data in Recipes R1 (Propensity Modeling), R13 (Anomaly De-
tection), and R14 (Visual Quality Control), although all use
cases discussed in this book are prone to some degree of data
imbalance.

2.8.2 Observational Data

The second common scenario that often requires the use of advanced data preparation
methods is the analysis and planning of actions that are intended to change the trajecto-
ries of entities or produce some other outcomes. In such problems, we usually want to
build a model for evaluating the potential causal effect of a specific action on a specific
entity, and then use this model to optimally assign actions to entities. In this context,
actions are commonly referred to as treatments or interventions. The development of a
model that correctly evaluates the causal effect of the treatment is a challenging prob-
lem because the validity of the evaluation can be compromised in many different ways.
In this section, we explore some aspects of this problem using a specific use case, and

2.8 model correctness 113

more comprehensive studies that discuss other problematic scenarios are readily avail-
able (see, for example, [Guo and Fraser, 2015]).

Consider a telecom company that runs targeted retention campaigns to prevent cus-
tomer churn. The company wants to develop a model that evaluates the probability of
churn for a specific customer provided that this customer is treated with a retention
offer, as well as for an alternative scenario where the customer is not treated:

ppy | x, aq “ fpx, aq (2.108)

where y is the churn event, x is the customer feature vector, a is a binary variable
that indicates whether the customer is treated or not, and f is the model. The devel-
opment of such a model requires collecting a representative dataset of px,a,yq tuples.
The ideal approach for collecting such a dataset is as follows: allocate the population of
customers into test and control groups, treat the test group, and observe the outcomes
during a sufficiently long period of time, as shown in Figure 2.59. It is essential to per-
form the allocation in such a way that the test and control groups are consistent, so that
we can observe both treatment and no-treatment outcomes for similar values of x, iso-
lating the treatment effect from other churn factors that can vary across the customers.
This can be accomplished by allocating the test and control groups at random, so that
the allocation decisions are independent from the customer features. This approach is
known as randomized experimentation.

Population

Allocation

Test group Control group

Test group
outcomes

Control group
outcomes

Dataset

Treatment No treatment

Figure 2.59: Data collection for the treatment effect modeling.

Unfortunately, data collection using randomized experiments is not always feasible
in practice. In the example described above, as well as many other scenarios, compa-
nies can provide only historical data collected under some biased allocation policy. For
example, the telecom company could use manually configured business rules to target
specific segments of customers prior to the development of a statistical targeting model.
This introduces the selection bias, that is the systematic difference between the test and
control groups. The problem of evaluating the treatment effects based on the biased
data is known as an observational study. This term underscores the fact that we do not

114 predictive models

control the allocation policy used for data collection like in randomized experimenta-
tion, but only observe the given allocation process and corresponding outcomes.

The selection bias can make it impossible to learn a model that correctly evaluates
the treatment effect for arbitrary instances from the population. An extreme case of
this situation is the complete separation of the test and control groups along a certain
dimension. In our running example with the telecom company, we might not be able
to build a model for evaluating customers from an arbitrary US state if the historical
data were collected under a policy that targeted only one specific state.

If the selection bias is limited, so that the test and control groups overlap, we can
attempt to correct the bias using resampling. Conceptually, the goal of the resampling
process is to ensure that each instance in the test group matches a comparable instance
in the control group, so that the groups become consistent. The implementation of this
idea requires defining the exact matching criteria which can be done in several different
ways.

One of the most common and theoretically well-grounded matching strategies is
known as propensity score matching [Rosenbaum and Rubin, 1983]. This approach is
based on the observation that, for the purposes of the treatment effect analysis, the bias
can be fully characterized by the conditional dependency between the treatment as-
signment a and observed features x. Assuming that this dependency can be estimated,
the dataset can be rebalanced to reduce the bias. More specifically, we can define the
propensity score as the conditional probability of assignment to a particular treatment
given the vector of observed features:

ppa | xq “ gpxq (2.109)

where the score estimating model g is fitted based on the available observational data.
In practice, g is typically a low-capacity model such as the basic logistic regression.
Once this model is fitted, we can resample the dataset to ensure that the distribution of
the propensity scores is approximately the same in both test and control groups. One of
the ways to implement such a resampling procedure is to perform one-to-one matching
between the test and control groups. We iterate this over all instances in the test group,
and, for each instance xi, we find instance xj from the control group that is the nearest
neighbor of xi in the space of propensity scores:

xj “ argmin
xjP control group

ˇ

ˇ gpxiq ´ gpxjq
ˇ

ˇ

(2.110)

The pair of xi and xj is then added to the output dataset, instance xj is removed
from the test group to prevent it from being drawn again, and the process repeats for
the next instance from the test group. This procedure creates a dataset where each test
instance is matched with a control instance of a similar propensity level. This dataset
can be used to evaluate the treatment effect and build downstream models such the
one defined previously in expression 2.108.

2.9 foundation models 115

We continue to discuss the problem of action planning and
evaluation in Chapter 4 and Recipes R1 (Propensity Model-
ing) and R4 (Next Best Action).

2.9 foundation models

Throughout this chapter, we have implicitly assumed that models are created by spe-
cific companies or departments to solve particular problems, and that each model is
trained from scratch on a dataset created specifically for this purpose. This scenario is
typical for models primarily trained on first-party data, such as website clickstream or
transactions. However, more complex scenarios are possible in environments where the
transfer learning methods outlined in Section 2.1.2.2 can be applied. In this regard, we
can distinguish between the following strategies:

private task-specific models These models are designed for a specific task using
a dataset developed or customized for that particular task, domain, and company.
An example is an offer personalization model created using customer profile data
and transaction histories.

private foundation models These models are created using company-specific
datasets for reuse across multiple tasks. For example, a medical company can
train a generic classification or autoencoding model on proprietary X-ray images
and then use it to build more specialized models for scoring the severity levels of
specific diseases (one model for each disease). We refer to such a generic model
as a foundation model, and its training as pretraining.

public foundation models These models are intended to be used by multiple
companies to solve various tasks. Such models are typically developed by cloud
providers and research organizations and are distributed as APIs or download-
able packages. For instance, a cloud provider can train a representation model
for texts on public datasets like books and web pages and provide an API for
computing text embeddings.

Reusable foundation models are particularly powerful solutions for image and lan-
guage modeling domains. High-quality models can be pretrained on large volumes
of generic data and then adapted to task-specific applications using relatively small
amounts of domain-specific data and computational resources. This enables the cre-
ation of high-capacity models with exceptional properties that would not be possible
to create from scratch using only domain-specific data and limited computational re-
sources. The practical use of foundation models requires addressing two key challenges:
the design and pretraining of a reusable task-agnostic model, and its adaptation to a
specific task or domain, which is referred to as the transfer.

116 predictive models

2.9.1 Pretraining Strategies

The goal of the pretraining process is to learn a model of the manifold that can be
helpful for solving downstream tasks. The quality of the foundation model produced
by the pretraining process can vary greatly. At one extreme, the pretraining process
can merely initialize the model parameters to roughly align it with the manifold of
interest, requiring significant tuning during the adaptation phase to create the final
model. At the other extreme, a versatile multitask model that requires no additional
modifications can be pretrained and deployed directly into the target environments.
Consequently, pretraining can generally be accomplished using virtually any training
techniques, including both supervised and unsupervised methods as discussed in the
previous sections.

The choice of a specific pretraining method is predominantly determined by the data
domain. In particular, it is common to create foundation models for images by pre-
training supervised models on labeled datasets, and foundation language models are
created using unsupervised pretraining of element representation models on unlabeled
texts. We will continue to discuss this topic in Chapter 3, where we develop even more
powerful unsupervised learning methods for creating high-capacity foundation models
for both images and texts.

2.9.2 Transfer Strategies

A pretrained foundation model can be used to build a task-specific solution in several
different ways. The most typical options are as follows (all these options can be viewed
as particular methods of transfer learning):

embedding extraction As we discussed in the previous sections, the intermediate
representations produced by the inner layers of the foundation model can be
captured and used as inputs to downstream task-specific models and applications.
In supervised foundation models, the output of the top layer is usually used. In
autoencoding models, the output of the encoder is usually captured.

fine-tuning The second option is to create a task-specific model by adjusting the
parameters of the foundation model using additional gradient descent iterations
on a task-specific or domain-specific dataset. This process is known as fine-tuning.

in-context learning The foundation model can be designed to consume the task
specification as a part of its input. For example, a foundation language model
can consume the input sequence “Review: This product sucks. Sentiment: negative.
Review: I love this product. Sentiment:” that specifies the task and generate the out-
put “positive” to solve it correctly. This strategy is known as in-context learning or
few-shot learning, which refers to one or several input-output example pairs (shots)
that are provided to the model.

zero-shot learning Finally, the foundation model can be enabled to solve a
domain-specific task despite not having received any training examples of that
task. For example, an image classification model can determine the category of
an object without ever having seen an image of that type of object before. This
capability is known as zero-shot learning.

2.9 foundation models 117

Embedding extraction and fine-tuning are relatively simple methods that can be ap-
plied to a broad range of models, including those trained on numerical data, images,
and texts. We discuss fine-tuning methods in more detail in the next section. In contrast,
in-context and zero-shot learning are more powerful capabilities that require special-
ized model architectures and pretraining processes. Foundation models with in-context
and zero-shot learning abilities are usually created for computer vision and language
processing domains. We discuss in-context and zero-shot learning in more detail in
Section 3.4.

We use embedding extraction techniques in Recipes R2 (Cus-
tomer Feature Learning), R5 (Visual Search), and R14 (Visual
Quality Control).

2.9.3 Fine-tuning Methods

The fine-tuning process can include structural modifications of the foundation model to
adapt it to a specific task and the adjustment of its parameters through additional train-
ing on a task-specific dataset. Similarly to pretraining, fine-tuning can be accomplished
using both supervised and unsupervised methods.

To better understand the fine-tuning process, let us consider the case of a classifica-
tion model depicted in Figure 2.60. We assume that the foundation model is pretrained
on a labeled dataset with a certain number of classes. The model includes multiple lay-
ers; the size of the top layer matches the number of classes, and its output is normalized
using the softmax function to obtain the class probabilities as shown in Figure 2.60 (a).

For fine-tuning, we create a custom dataset with domain-specific labels. The number
of classes in this dataset can be different from the number of classes in the pretrain-
ing dataset, so we replace the pretrained top layer with a custom layer that produces
outputs of the required dimensionality, as shown in Figure 2.60 (b).

Once the structural adjustments of the network are made, we train it to fine-tune the
network parameters. This additional training can be performed using a regular gradient
descent algorithm that optimizes the entire network end-to-end, just like training from
scratch. The individual layers of the network can be treated in one of three different
ways:

train The parameters of the newly added or redesigned layers of the network are just
randomly initialized, so these layers need to be trained from scratch. In particular,
this applies to the resized top layers of the pretrained network.

freeze The bottom layers of the pretrained network generally extract low-level fea-
tures from the input. The features produced by these layers are usually suitable
for many tasks and domains [Yosinski et al., 2014]. It is common to freeze the
parameters of these layers, so they are not modified during training.

118 predictive models

softmax

Class
probabilities

Input

Freeze

Fine-tune

Pretraining dataset

(a) Pretraining

Redesing
and train

softmax

Class
probabilities

Input

Fine-tuning dataset

(b) Fine-tuning

Model layers

Figure 2.60: Fine-tuning of a classification model.

tune Finally, the parameters of the intermediate layers can be initialized using the
values from the pretrained model, but they are updated by the gradient descent
algorithm during training. This helps produce feature maps aligned with the
domain-specific guidelines before these maps are fed into the classifier at the top
of the network.

In practice, we can use different combinations of the above three techniques depend-
ing on the domain, data availability, and computational capacity. The trade-off between
freezing and tuning layers can be described as follows:

• We can train a custom classifier on top of the network while freezing all other
layers. The top classifier usually has a lot fewer parameters than the entire net-
work, and it can thus be trained using far less data and computational resources
than are needed to train the complete network. However, this approach might not
work well for target domains that are very different from the original domain of
the pretrained model.

• The ability to accommodate highly specific target domains can be improved by
unfreezing and fine-tuning several pretrained layers under the top classifier. The
more layers we fine-tune, the better we can adapt to the new domain, but the train-
ing dataset also needs to be larger. The fine-tuning process, however, is sample-
efficient because we start with pretrained parameters rather than randomly ini-
tialized values.

• Finally, we can fine-tune all layers, which requires a significant amount of data
and computational resources.

2.10 summary 119

Fine-tuning is a powerful technique that greatly improves the practical applicability
of foundation models and enables the creation of domain-specific models with rela-
tively small amounts of domain-specific data. In some applications, fine-tuning can re-
quire only tens of domain-specific samples to be available. However, fine-tuning large
models still requires a significant amount of computational resources, which makes it
less convenient than in-context and zero-shot learning, particularly in low-latency ap-
plications (e.g., online services where the transfer needs to be performed based on the
samples uploaded by the user).

We discuss fine-tuning strategies for language models in Sec-
tion 3.4. We use fine-tuning to create domain-specific com-
puter vision models in Recipe R5 (Visual Search) and image
generation models in Recipe R8 (Synthetic Media).

2.10 summary

• In many enterprise applications, it is convenient to view statistical models as
components that map observed inputs to hidden properties, expected outcomes,
or recommended interventions. This mapping can be learned based on explicitly
provided guiding labels, feedback collected through interactions with the envi-
ronment, or structural relationships between the parts of the input data.

• Enterprise entities can often be represented as vectors of features that can be
mapped to the outputs using a network of transformations that are jointly opti-
mized using the gradient descent algorithm. Common design patterns for such
networks include linear layers, nonlinear layers, embedding lookup layers, inter-
action layers, multihead and multitower architectures.

• Enterprise processes, as well as some entities, can usually be represented as se-
quences of numerical values or categorical tokens. The typical tasks associated
with sequences include sequence classification, element prediction, and sequence-
to-sequence mapping. These tasks are performed using specialized blocks such
as convolution layers, recurrent layers, and transformers.

• Many enterprise entities are represented as multidimensional structures such as
matrices and tensors. The typical tasks associated with these structures include
classification, feature extraction, matrix-to-matrix and matrix-to-tuple mappings.
These tasks are performed using specialized blocks such as two-dimensional con-
volution layers.

• Many enterprise problems can be conveniently represented as graphs. Node rep-
resentations that capture the topology of the graph can be produced using graph
neural networks and then used to solve node classification and relation prediction
tasks.

• The entity and process representations produced at different stages of the net-
works can be used for entity similarity evaluation and other tasks. The quality of

120 predictive models

such representations can be improved using specialized loss functions and model
architectures.

• The validity of the model can be compromised by various types of biases in
the input data. Some types of biases can be corrected using data resampling
techniques.

• Task-agnostic foundation models can be pretrained on generic datasets. Task-
specific and domain-specific solutions can then be created based on these foun-
dation models using transfer learning techniques.

3

G E N E R AT I V E M O D E L S

In Chapter 2, we discussed how both supervised and unsupervised models can be
used to learn semantic spaces. These models encode input entities, such as vectors,
tensors, sequences, and graphs, into lower-dimensional representations and decode
these representations into labels that reveal hidden properties or reconstructions of
unobserved parts of the entities.

In this section, we explore whether such models can be used to learn semantic spaces
for complex manifolds, like high-resolution photographic images, traverse these man-
ifolds, and generate entities with desirable properties based on selected points in the
semantic space. The methods that aim to address these problems are collectively known
as generative AI methods. The conceptual relationship between predictive and genera-
tive modeling is illustrated in Figure 3.1.

(a) Predictive model

x1

x2

y1 y2Input
entity (x)

Output
property (y1)

(b) Generative model

x1

x2

y1 y2Input
property

(y1)

Output
entity (x)

Figure 3.1: The relationship between predictive and generative modeling. We assume a two-
dimensional entity x “ px1,x2q and categorial label y that is either the prediction
output or the generation context.

We consider two major categories of manifolds: images and texts. These categories
are crucial for several reasons. First, they are the most common representations of
the information that humans work with, both in general and in enterprise settings.
The ability to model image and text manifolds enables the creation of highly versatile
process automation tools and user interfaces. Second, the vast amounts of image and
text data that can be collected from sources like social media, code repositories, books,
and more enable the creation of foundation models with remarkable capabilities that
match or even outperform humans in many creative and reasoning tasks.

121

122 generative models

Unsupervised learning, particularly autoencoding, plays a central role in manifold
modeling and entity generation. However, the specific approaches differ for images
and text. We begin by building a toolkit geared primarily towards image generation.
First, we revisit the basic autoencoders introduced in Section 2.6.2, discussing their
limitations and the properties of the semantic spaces they produce. Next, we explore
how these limitations can be addressed using variational inference techniques. Finally,
we use these results as a foundation for building models with high capacity and ex-
pressiveness for learning complex manifolds and generating high-dimensional entities,
such as images. These methods can also be applied to text, but the results generally fall
short of more specialized language models, which we discuss in the second half of this
chapter.

To create a toolkit for text, we start by revisiting the sequence modeling methods
introduced in Section 2.4. We then develop transformer-based architectures that can
scale to an extremely large number of model parameters and amounts of training data.
Subsequently, we discuss the properties of language models trained on large volumes
of textual data and the capabilities that these models offer for enterprise applications.

3.1 regularization of the semantic space

An autoencoder that is guided solely by the objective to minimize the reconstruction
error is prone to overfitting. From the semantic space perspective, this means that two
completely different input entities can be encoded into two close points in the semantic
space, and, conversely, two close points in the semantic spaces can be decoded into
completely different output entities as illustrated in Figure 3.2 (a). Moreover, points
that are randomly sampled from the semantic space can decode into invalid or seman-
tically meaningless entities, which is also depicted in Figure 3.2 (a). Such an irregular
structure of the semantic space can make it infeasible for similarity evaluation, instance
generation, and some other tasks which we generally want to solve using autoencoders.
Consequently, we want the autoencoder to not just minimize the reconstruction error,
but to also construct embedding spaces that exhibit the following properties:

continuity Two close points in the embedding space should decode into similar
entities.

completeness Any point sampled from the embedding space should decode into a
valid entity.

The concept of a regular embedding space that exhibits these two properties is illus-
trated in Figure 3.2 (b).

The regularity of the embedding spaces can be controlled and enhanced using spe-
cialized techniques discussed in Section 2.6 such as contrastive loss functions and regu-
larization terms. However, these means are insufficient for learning complex manifolds
from high-dimensional inputs.

3.2 variational autoencoder

We can attempt to overcome the limitations of the basic autoencoding methods using a
probabilistic approach and learning conditional distributions ppz | xq and ppx | zq that

3.2 variational autoencoder 123

(a) Irregular
embedding
space

(b) Regular
embedding
space

Input ReconstructionEmbedding space

Figure 3.2: Regular and irregular embedding spaces.

relate to the original entity representation x and its embedding in the semantic space z.
Conceptually, this approach can help to improve the continuity of the semantic space
provided that we choose appropriate distribution models. In this section, we discuss
one of the most commonly used realizations of this approach known as the variational
autoencoder (VAE) [Kingma and Welling, 2013].

The mathematical basis of the variational autoencoder is totally different from the
considerations we used to build linear and stacked autoencoders, but the final archi-
tecture resembles the regular autoencoder design. Consequently, we begin with a dis-
cussion of a more general distribution learning problem, and then relate it back to the
autoencoding problem.

3.2.1 Models with Latent Variables and Their Estimation

Suppose that we observe a stochastic process ppxq that generates samples x. We would
like to build a model of this process, but we do not know what form ppxq should
have because the process can be arbitrarily complicated. We can make an assumption
that each observation x is determined or explained by another variable z, which we
call a latent variable, that represents the coordinate (embedding) of x on the manifold
determined by the process. For example, if x is an image, z can contain the information
about the objects, background, and lighting conditions, and the dimensionality of z can

124 generative models

be much smaller than the dimensionality of x. Using these assumptions, we can define
the following generative model:

pθpxq “
ż

z
pθpx | zq ppzq dz (3.1)

where pθpx | zq is the observation model, θ are the model parameters, and ppzq is a
prior which is assumed to be a fixed parametric distribution. The relationship between
z and x can be highly complex and nonlinear, so we may often want to implement the
observation model using a deep neural network.

Our goal is to estimate the observation model pθpx | zq and posterior model pθpz | xq
based on the available samples x. The observation model enables us to decode any z,
that is a point in the embedding space, into the representation x, and the posterior
model enables us to encode any representation x into the embedding z. The maximum
likelihood estimation of the observation model parameters is as follows:

θML “ argmax
θ

Ex„pdatapxq r pθpxq s

“ argmax
θ

Ex„pdatapxq, z„ppzq r pθpx | zq s
(3.2)

In principle, we can solve this problem by estimating pθpxq using Monte-Carlo sam-
pling for each θ and performing the gradient ascent in the parameter space. More
specifically, we estimate pθpxq by sampling multiple z and integrating over them:

pθpxq «
1

n

n
ÿ

i“1

pθpx | zpiqq, zpiq „ ppzq (3.3)

Unfortunately, this approach does not scale well because the volume of the embed-
ding space grows exponentially as the dimensionality of z increases, and we need an
extremely large number of samples to make the above estimate reliable even for rela-
tively low-dimensional embedding spaces. This approach is also inefficient because, for
many real-world distributions, pθpx | zq « 0 for most z.

3.2.2 Scalable Model Estimation Using ELBO

We can work around the limitations of the basic Monte-Carlo solution by sampling z
not from the unconditional prior distribution, but from a conditional distribution model
qφpz | xq constructed in such a way that it focuses on the regions of high probability,
that are the embeddings that are likely to have generated x. This approach can help
us to decrease the number of embeddings that need to be sampled to estimate pθpxq
reliably – in an extreme case, we can estimate it using only one sample. Assuming
that the embeddings are sampled not from the prior distribution ppzq, but from the
conditional distribution model, we need to make an adjustment based on the ratio of
the corresponding probability density functions1:

pθpxq “ Ez„p r pθpx | zq s “ Ez„q

„

pθpx | zq
ppzq

qφpz | xq

(3.4)

1 The general rule is Ex„p r x s “
ş

x ppxq dx “
ş qpxq
qpxq

x ppxq dx “
ş xppxq
qpxq

qpxq dx “ Ex„q

”

x
ppxq
qpxq

ı

3.2 variational autoencoder 125

At first glance, this approach makes the problem even more complex – we now need
to find both the likelihood-maximizing parameters θ, as stated in expression 3.2, and
optimal parameters φ of the embedding sampling model. But what is the optimality
criteria for φ? We generally want qφpz | xq to approximate the posterior pθpz | xq as
accurately as possible, so that we sample the most likely z for any given x. This objective
can be expressed using the Kullback-Leibler (KL) divergence which is a measure of
dissimilarity between two distributions, defined as follows:

dKL pqpxq || ppxqq “ Ex„q r logqpxq ´ logppxq s (3.5)

Consequently, we can define the following optimization objective that combines the
maximization of the log-evidence logpθpxq and minimization of the KL divergence
between the true posterior and its approximation:

Lpx; θ,φq “ logpθpxq ´ dKL
`

qφpz | xq || pθpz | xq
˘

(3.6)

Since the KL divergence is non-negative, this difference can be viewed as the evidence
lower bound which is commonly abbreviated as ELBO, that is:

logpθpxq ě Lpx; θ,φq (3.7)

Our goal is to maximize the ELBO, so that the optimization problem 3.2 can be
restated as:

θELBO, φELBO “ argmax
θ, φ

Ex, z„q r Lpx; θ,φq s (3.8)

To obtain a computationally tractable expression for ELBO, we need to make a few
more transformations. First, we decompose distribution pθpz | xq using Bayes’ rule:

pθpz | xq “
pθpx | zq ppzq

pθpxq
(3.9)

and rewrite the KL divergence as follows:

dKL
`

qφpz | xq || pθpz | xq
˘

“ Ez„q
“

logqφpz | xq ´ logpθpx | zq ´ logppzq
‰

` logpθpxq
(3.10)

where the last term was moved out of the expectation operator because it does not
depend on z. Next, we insert this into the ELBO definition 3.6 and rearrange the terms
to obtain the following:

Lpx; θ,φq “ Ez„q

„

log
pθpx | zq ppzq
qφpz | xq

“ Ez„q r logpθpx | zq s ´ dKL
`

qφpz | xq || ppzq
˘

(3.11)

This expression is computationally tractable provided that the KL diverge can be
evaluated analytically, which is possible if both qφpz | xq and ppzq are specified as
simple parametric distributions (e.g. normal distributions), and the likelihood can be
reliably estimated using a relatively small number of samples. In particular, we can use
a one-sample likelihood estimate:

Ez„q r logpθpx | zq s « logpθpx | zq, where z „ qφpz | xq (3.12)

126 generative models

The ELBO method provides a generic framework for estimating models with latent
variables in a scalable way. However, we still need to specify the observation model
pθpx | zq and the posterior model qφpz | xq to implement a complete solution.

ELBO and Jensen’s Inequality

It is worth noting that we can obtain the following result by inserting expres-
sions 3.4 and 3.11 into inequality 3.7:

logpθpxq “ log Ez„q

„

pθpx | zq ppzq
qφpz | xq

ě Ez„q

„

log
pθpx | zq ppzq
qφpz | xq

Exactly the same result can be obtained directly from 3.4 using the Jensen’s
inequality which states that for any real-valued random variable x and concave
function ϕ the following is true:

ϕpE rxsq ě E rϕpxqs

This approach is arguably less insightful than the KL divergence analysis we
did previously, but it is very convenient for deriving the ELBOs for arbitrary
models based on their log-evidence.

3.2.3 Normality Assumptions

First, let us assume that the likelihood pθpx | zq is an isotropic Gaussian distribution
with a mean computed from z:

pθpx | zq “ Npfθpzq, c ¨ Iq (3.13)

where fθ is some deterministic function specified by a vector of parameters θ, and c
is a scaling hyperparameter which will be discussed later. We assume that function fθ
is capable of approximating arbitrary complex mappings. Second, we assume that the
prior distribution ppzq is simply a standard normal distribution:

ppzq “ Np0, Iq (3.14)

In other words, we assume a non-informative prior for the latent variables. Finally,
we assume that the approximation qφpz | xq is also an isotropic Gaussian distribution
with the mean and variance computed from x:

qφpz | xq “ Npgφpxq, diagphφpxqqq (3.15)

where gφ and hφ are deterministic functions parametrized by φ. It is worth noting
that gφ and hφ do not necessarily need to share any parameters – the parameter vector
can be just a concatenation of independent parameter groups, that is φ “ pφg,φhq.

The normality assumptions enable us to simplify the ELBO loss 3.11. As we estab-
lished in Section 2.3.1.1, maximization of the negative log-likelihood for normally dis-
tributed variables is equivalent to the minimization of the Euclidean distance, so we
can rewrite the one-sample ELBO loss as follows:

´Lpx; θ,φq “ c ‖x´ fθpzq‖2 ` dKL
`

Npgφpxq, diagphφpxqqq || Np0, Iq
˘

(3.16)

3.2 variational autoencoder 127

where the KL divergence term is computed based on the specifications 3.14 and 3.15,
and z is sampled from distribution 3.15, that is:

z „ Npgφpxq, diagphφpxqqq (3.17)

This loss function is computationally tractable, and we can minimize the right-hand
side of expression 3.16 using the standard stochastic gradient descent (SGD) method.
More concretely, we use the following optimization procedure:

1. We implement functions gφpxq, hφpxq, and fθpzq as neural networks and start
with randomly initialized model parameters θ and φ.

2. At each SGD iteration, we first compute gφpxq and hφpxq, and then sample z
according to 3.17.

3. Next, we compute fθpzq and evaluate the ELBO loss according to expression 3.16.

4. The model parameters are updated based on the loss gradient, and the SGD
iterations repeat until the conversion.

It is easy to recognize that this procedure closely resembles autoencoding – func-
tions gφpxq and hφpxq encode the input into embedding z, and fθpzq performs the
reconstruction. The key difference is that the encoding process is stochastic because the
embedding is sampled, not deterministically computed.

3.2.4 Variational Autoencoder Network

We can implement the encoding and decoding functions of the variational autoencoder
using neural networks, but there are two obstacles in the basic SGD procedure outlined
above that need to be addressed. The first of these is that the encoding requires two
functions, gφpxq and hφpxq, to compute the mean and variance of the embedding
distribution. This can easily be addressed using a two-head network that produces
these two outputs in parallel. Alternatively, we can use only one head that produces
one output vector, and divide this vector into two parts which are interpreted as gφpxq
and hφpxq.

The second issue is that the necessity to sample z from a distribution does not al-
low connecting the encoding and decoding parts into one network that can be trained
using a standard backpropagation algorithm. This issue can be solved by using the
reparametrization trick introduced in Section 2.3.5. More specifically, we can generate
a normally distributed random variable with mean gφpxq and variance hφpxq2 as fol-
lows:

z “ gφpxq ` hφpxq dη, η “ Np0, Iq (3.18)

where d is the element-wise product. The reparametrization trick enables the back-
propagation of errors from the decoding network to encoding layers because the em-
bedding is computed using vector operations based on the independently generated
random components.

The above results enable us to implement the variational autoencoder as a single
neural network that closely resembles a regular stacked autoencoder, as shown in Fig-
ure 3.3. The encoding subnetwork computes gφpxq and hφpxq using two heads, then

128 generative models

the embedding z is produced according to expression 3.18, and the decoding subnet-
work computes fθpzq.

x

x = f (z)

Dense layer

...
...

h (x) g (x)

N(0, I)

z

θ

φφ
ELBO
loss

Figure 3.3: A basic implementation of the variational encoder.

The entire network is trained using the ELBO loss 3.16. In this context, the ELBO loss
can be viewed as a regularization technique – it is a sum of the standard regression
loss and KL divergence term that penalizes the deviation from the normal distribution
ppzq. In expression 3.16, constant c, which corresponds to the variance in the likeli-
hood specification 3.13, essentially controls the balance between these two terms. The
penalization of the deviation from some smooth distribution such as the normal distri-
bution helps to achieve better continuity and completeness of the semantic space, two
desirable properties that were discussed in the previous section.

We illustrate the concepts and capabilities of the variational autoencoder using a
simple example presented in Figure 3.4. We start by generating a dataset of small im-
ages of crosses where the widths of the vertical and horizontal lines are independently
sampled from a uniform distribution. Example images from this dataset are shown in
Figure 3.4 (a).

Next, we specify the encoder as a stack of convolution layers and the decoder as a
stack of upconvolution layers, combine them in a variational autoencoder with a two-
dimensional embedding space, and train it on the input dataset. The trained decoder

3.2 variational autoencoder 129

x1 x2

(a)

-3.0 3.00.0

-3.0

0.0

3.0

(b) (c)

-3.0 3.00.0

qφ(z | x1)

qφ(z | x2)

Figure 3.4: Example of the manifold learning using the variational autoencoder. We visualize the
samples from the input dataset (a), learned embedding space (b), and examples of the
normal posterior distributions conditioned on the inputs (c).

can be used to generate images for arbitrary points in the embedding space, so we
iterate over the rectangular grid in the space and visualize the decoding results for all
points in Figure 3.4 (b). This visualization clearly demonstrates that the autoencoder
captures the generative distribution, so that the dimensions of the embedding space
are aligned with the widths of the horizontal and vertical lines.

Finally, we use the encoder to compute the parameters of the posterior model
qφpz | xq for two input images and visualize these distributions in Figure 3.4 (c).
This figure illustrates how the conditional posterior model improves the efficiency of
sampling compared to the sampling from the unconditional prior ppzq by focusing on
a specific region of the embedding space based on the input x.

130 generative models

We use the variational autoencoder in Recipe R5 (Visual
Search) to learn image embeddings for nearest neighbor
search and Recipe R13 (Anomaly Detection) to detect anoma-
lies in internet of things (IoT) data.

3.2.5 Limitations of the Basic VAE

The VAE provides a promising foundation for generating complex entities such as
images because it is able to learn regular (smooth and continuous) probabilistic models
and sample from them. However, the basic VAE architecture has two limitations:

• The basic VAE can be used to traverse the manifold and sample (generate) entities
at arbitrary points in the semantic space, but it is not particularly useful because
sampling cannot be conditioned on any contextual information or control signal.

• The basic VAE does not provide enough expressiveness for learning transferable
models on large datasets of high-dimensional entities.

In the next section we discuss how the first limitation can be addressed, and then
develop a progression of models with gradually increasing capacity and expressiveness
to learn complex manifolds such as a manifold of high-resolution photographic images.

3.2.6 Conditional Variational Autoencoder

In the regular VAE, we consider a stochastic process ppxq that generates samples x
and assume that each sample is determined or explained by a latent variable z. The
VAE method enables us to estimate the posterior model qφpz | xq and the observation
model pθpx | zq that allow us to compute embeddings for the known observations
and sample observations from the embedding space, respectively. For the sampling
(generation) part, we can pick a point z in the semantic space, but cannot provide any
other inputs.

In some applications, each observation x can be associated with context c. We assume
that this context is known for historical observations, so that the posterior model can
be redefined as qφpz | x, cq and estimated based on pairs px, cq. We also assume
that the context is known during the sampling, so that the observation model can be
redefined as pθpx | z, cq. This assumption essentially means that the context vector c
can be provided as an input to the sampling process, and this enables us to control the
properties of the observation we want to generate. For example, we can learn a model
based on images (observations x) and corresponding categorical class labels (contexts c),
and sample new images based on the specified class. Alternatively, we can learn based
on images and corresponding natural language descriptions, and sample new images

3.2 variational autoencoder 131

based on a description of the desired outcome. We can incorporate these assumptions
into the basic generative model 3.1 used in the regular VAE as follows:

pθpx | cq “
ż

z
pθpx | z, cq pθpz | cq dz (3.19)

Unlike the regular VAE where the prior ppzq is assumed to be a fixed parametric
distribution, we may want to make the conditional distribution pθpz | cq learnable
to capture the guidance provided by the context. All other components of the VAE
formalism can be updated in a similar way leading to the following ELBO (compare
this to specification 3.11):

Lpx, c; θ,φq “ Ez„q r logpθpx | z, cq s ´ dKL
`

qφpz | x, cq || pθpz | cq
˘

(3.20)

This design is known as the conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Similar to the regular VAE, we can assume that the posterior qφpz | x, cq and
observation pθpx | z, cq are the isotropic Gaussian distributions which parameters
are computed using the corresponding neural networks. The network that backs the
posterior qφpz | x, cq is referred to as the encoder or recognition network, and the
network that backs the observation pθpx | z, cq is referred to as the decoder or generation
network.

The distribution pθpz | cq can be learnable using a separate prior network, but it is
also common to assume it to be fixed just as in the regular VAE:

pθpz | cq “ pθpzq “ Np0, Iq (3.21)

Under this assumption, we can rework the regular VAE design presented earlier in
Figure 3.3 into the conditional VAE as shown in Figure 3.5. The model training is per-
formed in a similar manner to the regular VAE, but the context vector c is added to both
the encoder input by concatenating it with x and the decoder input by concatenating it
with the sampled embedding z, as shown in Figure 3.5 (a).

The generation is performed by sampling a point in the semantic space according
to the distribution 3.21, concatenating it with the context vector, and constructing the
representation using the decoder network, as shown in Figure 3.5 (b). The context vector
specifies the region of the manifold from which the representation will be decoded, thus
allowing us to control the properties of the generated representations.

3.2.7 Hierarchical Variational Autoencoder

Let us now turn to the problem of the limited capacity and expressiveness of the basic
VAE. We can attempt to overcome these limitations by stacking multiple distribution
models into a hierarchical structure. To see how this generalization can be performed,
consider a generative model that uses two distinct latent variables z1 and z2 instead of
just one as used in the regular VAE:

pθpxq “
ż

z1

ż

z2
pθpx, z1, z2q dz1 dz2 (3.22)

132 generative models

x

x = f (z, c)

Dense layer

...
...

h (x, c) g (x, c)

N(0, I)

z

θ

φφ
ELBO
loss

c

c

...

z

c

N(0, I)

x = f (z, c)θ

(a) Training (b) Generation

Figure 3.5: A basic implementation of the conditional variation autoencoder.

Under this assumption, we can rewrite the variational approximation 3.4 as follows:

pθpxq “
ż

z1

ż

z2
qφpz1, z2 | xq

pθpx, z1, z2q
qφpz1, z2 | xq

dz1 dz2

“ Ez1,z2„q

„

pθpx, z1, z2q
qφpz1, z2 | xq

 (3.23)

and the corresponding ELBO, analogous to the expression 3.11, as follows:

pθpxq ě Lpx; θ,φq “ Ez1,z2„q

„

log
pθpx, z1, z2q
qφpz1, z2 | xq

(3.24)

These are general expressions, and we are free to choose different factorizations of
the joint distributions pθpx, z1, z2q and qφpz1, z2 | xq to construct specific hierarchi-
cal models. Deep hierarchies are known to be particularly suitable, so we can choose
the following (Markovian) factorization which corresponds to the graphical model pre-
sented in Figure 3.6 (b):

pθpx, z1, z2q “ pθpx | z1q pθpz1 | z2q pθpz2q

qφpz1, z2 | xq “ qφpz1 | xq qφpz2 | z1q
(3.25)

3.3 denoising diffusion probabilistic models 133

x z

p (x | z)

q (z | x)

θ

φ

x z1

p (x | z1)

q (z1 | x)

θ

φ

z2

p (z1 | z2)

q (z2 | z1)

θ

φ

(a) VAE (b) Hierarchical VAE

Figure 3.6: Graphical models for VAE and two-layer hierarchical VAE.

Inserting this factorization into the ELBO expression 3.24, we obtain the following:

Lpx; θ,φq “ Ez1,z2„q

„

log
pθpx | z1q
qφpz1 | xq

` log
pθpz1 | z2q
qφpz2 | z1q

` logpθpz2q

“ Ez1,z2„q r logpθpx | z1q s ´ dKL
`

qφpz1 | xq || pθpx | z1q
˘

´ dKL
`

qφpz2 | z1q || pθpz2q
˘

(3.26)

We can further construct a two-layer VAE network and train it using this form of
ELBO. Similar to the regular (one-layer) VAE, the sampling can be performed by pick-
ing a point in the z2 space, decoding it into a point in z1 space, and finally decoding
the representation x.

The above design can be further generalized to a chain with more than two layers
of latent variables, and the corresponding ELBOs can be derived. In particular, we can
generalize factorizations 3.25 as follows:

pθpx, z1:T q “ pθpx | z1q

«

T´1
ź

t“1

pθpzt | zt`1q

ff

pθpzT q

qφpz1:T | xq “ qφpz1 | xq
T
ź

t“2

qφpzt | zt´1q

(3.27)

where T is the number of layers and the latent variables are numbered in such a way
that z1 is the closest to the data and zT is the most abstract. More elaborated and non-
Markovian factorizations can also be used to construct deep hierarchical autoencoders
[Vahdat and Kautz, 2020; Child, 2021].

3.3 denoising diffusion probabilistic models

Denoising diffusion probabilistic models (DDPMs) were originally developed using
concepts from physics, but their design is ultimately similar to the hierarchical varia-
tional autoencoder discussed in Section 3.2.7 [Sohl-Dickstein et al., 2015; Ho et al., 2020].
At a high level, DDPMs can be viewed as modifications of the hierarchical variational
autoencoder that do not attempt to preserve any information about the input data x
in the topmost latent variable zT during the encoding process, but rather to gradually
destroy all the information and obtain some basic distribution such as the isotropic
Gaussian. Consequently, the decoding process cannot reconstruct the specific input x

134 generative models

from the latent variables alone, but it can sample a representation in the input space.
This approach enables us to radically simplify both the encoder and decoder designs
which, in turn, helps to build stable deep models. More concretely, both the encoding
and decoding processes can be assumed to be Markovian, and the encoding process
might not have any learnable parameters or have only a few.

The second distinctive feature of DDPMs is that the latent variables have the same di-
mensionality as the input. It is common to emphasize this assumption by denoting the
input as x0 and latent variables as x1, . . . , xT . This notation and the design principles
outlined above lead us to the graphical model of a DDPM presented in Figure 3.7.

x0

p (xt-1 | xt)

q(xt | xt-1)

θ

xt-1 xt xT

...

...

...

...

q(x0) q(xt-1) q(xt) q(xT)

Figure 3.7: Graphical model of a DDPM. The sketches under the graphical model illustrate the
concept of transforming the data distribution to a basic non-informative distribution
such as the isotropic Gaussian.

Similar to the regular VAE, the model presented in Figure 3.7 has an encoding dis-
tribution qpxt | xt´1q which, as we have already mentioned, might not have learnable
parameters, and decoding or generative distribution pθpxt´1 | xtq. Given that the in-
put and latent representations have the same dimensionality, it is convenient to view
these distributions as processes, that are the sequences of transformations. We refer to
the encoding part as the forward process that transforms state x0 into state xT , and to
the decoding part as the reverse process that transforms xT into x0. In the next sections,
we develop formal specifications for both of these processes, and then derive the opti-
mization objective for learning their parameters.

We use the denoising diffusion probabilistic models in Recipe
R8 (Synthetic Media) for image generation.

3.3.1 Forward Process

The forward process is defined simply as a Markov chain of length T that gradually
adds Gaussian noise to the data:

qpxt | xt´1q “ Npxt;
a

1´βtxt´1, βtIq (3.28)

3.3 denoising diffusion probabilistic models 135

where t iterates from 1 to T and parameters β1, . . . ,βT are known as a variance
schedule. These parameters can be learned as a part of the training process, but fixed
schedules such as linearly increasing noise work well in practice [Ho et al., 2020]. The
joint posterior distribution of all latent states conditioned on the data is as follows:

qpx1:T | x0q “
T
ź

t“1

qpxt | xt´1q (3.29)

Since the forward process is just an iterative addition of Gaussian noise, all states xt
are Gaussian variables and can be sampled in closed form as follows:

qpxt | x0q “ Npxt;
?
αtxt´1, p1´αtqIq where αt “ 1´βt

αt “

t
ź

s“1

αs
(3.30)

The length of the chain T and variance schedule must be chosen to make the forward
process converge to Gaussian noise, that is:

qpxT | x0q « Np0, Iq or, alternatively, αT « 0 (3.31)

The forward process is also referred to as the diffusion process because it gradually
transforms the data into noise. The forward process is illustrated in Figure 3.8.

−2 0 2

−2

0

2

t = 0
 β = 0.0001
 α = 1.000

−2 0 2

−2

0

2

t = 10
 β = 0.0051
 α = 0.972

−2 0 2

−2

0

2

t = 20
 β = 0.0101
 α = 0.898

−2 0 2

−2

0

2

t = 100
 β = 0.0500
 α = 0.076

Figure 3.8: Example of the forward (diffusion) process. In this example, state vector x represents
multiple points in a two-dimensional space, and it is constructed as a concatenation of
the point coordinates (i.e. n points are represented by a 2n-dimensional vector). The
linear variance schedule is used.

3.3.2 Reverse Process

The reverse process generally aims to undo the transformation performed by the for-
ward process. Assuming that data x0 is known, we can construct the following iterative
process that gradually synthesizes x0 from noise xT „ Np0, Iq using a series of Gaus-
sian transitions:

qpxt´1 | xt, x0q “ Npxt´1; µ̃tpxt, x0q, β̃tIq (3.32)

136 generative models

where

µ̃tpxt, x0q “

a

αt´1βt

1´αt
x0 `

?
αtp1´αt´1q

1´αt
xt

β̃t “
1´αt´1
1´αt

βt

(3.33)

This generation process is illustrated in Figure 3.9 where we use the same x0 and
hyperparameters as in Figure 3.8. It is essentially a time reversal of the forward process.

−2 0 2

−2

0

2

t = 100
 β = 0.0500

−2 0 2

−2

0

2

t = 20
 β = 0.0101

−2 0 2

−2

0

2

t = 10
 β = 0.0051

−2 0 2

−2

0

2

t = 0
 β = 0.0001

Figure 3.9: Realization of the reverse process that corresponds to the forward process in Figure 3.8.

The process that generates x0 based on the known x0 is, of course, not particularly
useful. Instead, we want a process where the mean and covariance are the learnable
functions that capture the data manifold, so that valid representations that live on this
manifold are generated from the initial noise sample xT . We can define such a reverse
process as a Markov chain of length T with learned Gaussian transitions:

pθpxt´1 | xtq “ Npxt´1; µθpxt, tq, Σθpxt, tqq (3.34)

where t iterates from T to 1 and µθpxt, tq is a trainable network that computes xt´1
based on xt and time index t. In principle, Σθpxt, tq can also be a trainable network,
but it is common to use a simpler design where the covariance matrices are simply
computed from the variance schedule as follows [Ho et al., 2020]:

Σθpxt, tq “ σ2t I, where σ2t “ βt (3.35)

Since the reverse process 3.34 is Markovian, it corresponds to the following joint
distribution of the state variables:

pθpx0:T q “ pθpxT q
T
ź

t“1

pθpxt´1 | xtq (3.36)

where pθpxT q “ Np0, Iq. In the next section, we derive the optimization objective for
training network µθpxt, tq using all the assumptions we made about the forward and
reverse processes.

3.3 denoising diffusion probabilistic models 137

3.3.3 Training

Similar to VAE, diffusion models can be trained by maximizing the ELBO. We can use
the definitions of the forward and reverse processes (equations 3.29 and 3.36) to express
the ELBO as follows:

L “ Eq

„

log
pθpx0:T q
qpx1:T | x0q

“ Eq

«

logppxT q `
T
ÿ

t“1

log
pθpxt´1 | xtq
qpxt | xt´1q

ff

“ Eq

«

logppxT q `
T
ÿ

t“2

log
pθpxt´1 | xtq
qpxt | xt´1q

` log
pθpx0 | x1q
qpx1 | x0q

ff

“ Eq

«

logppxT q `
T
ÿ

t“2

log
pθpxt´1 | xtq
qpxt´1 | xt, x0q

qpxt´1 | x0q
qpxt | x0q

` log
pθpx0 | x1q
qpx1 | x0q

ff

(3.37)

In the last transition, we decompose the denominator in the middle term using the
Markov property and Bayes’ rule as follows:

qpxt | xt´1q “ qpxt | xt´1, x0q “
qpxt´1 | xt, x0qqpxt | x0q

qpxt´1 | x0q
(3.38)

Furthermore, we notice that the second factor in the middle term in 3.37 is a tele-
scopic sum that can be reduced as follows:

T
ÿ

t“2

log
qpxt´1 | x0q
qpxt | x0q

“ logqpx1 | x0q ´ logqpx2 | x0q

` logqpx2 | x0q ´ . . .´ logqpxT | x0q

“ logqpx1 | x0q ´ logqpxT | x0q

(3.39)

This enables us to rewrite the ELBO as follows:

L “ Eq

«

log
ppxT q

qpxT | x0q
`

T
ÿ

t“2

log
pθpxt´1 | xtq
qpxt´1 | xt, x0q

` logpθpx0 | x1q

ff

“ Eq

«

´LT ´

T
ÿ

t“2

Lt´1 ` L0

ff

(3.40)

where

LT “ dKL pqpxT | x0q || ppxT qq

Lt´1 “ dKL pqpxt´1 | xt, x0q || pθpxt´1 | xtqq , t “ 2, . . . , T

L0 “ logpθpx0 | x1q

(3.41)

This form of ELBO is computationally tractable because KL divergencies LT and
Lt´1 are comparisons between Gaussians, and can thus be evaluated using closed
form expressions (all arguments of these KL divergencies were already specified in

138 generative models

Sections 3.3.1 and 3.3.2). However, we can make a few more reductions and simplify-
ing assumptions that lead to an even more efficient and convenient form of ELBO and
training algorithm.

First, LT does not have learnable parameters provided that the variance schedule βt
is fixed. Consequently, this term is constant during training and can be ignored.

Second, L0 can be interpreted as a reconstruction term, and it can be estimated using
Monte Carlo sampling. In particular, one can use a one-sample estimate similar to
expression 3.12 in the regular VAE.

Third, Lt´1 can be expressed as the Euclidean distance between the forward poste-
rior mean µ̃tpxt, x0q (expressions 3.32 and 3.33) and mean µθpxt, tq predicted by the
model (expressions 3.34 and 3.35):

Lt´1 “ Eq

„

1

2σ2t
‖µ̃tpxt, x0q ´ µθpxt, tq‖2

` c (3.42)

where c is a constant that does not depend on the learnable parameters, and we
omit it hereafter. We can simplify this expression using the reparametrization trick
introduced in Section 2.3.5. First, we can rewrite the forward sampling expression 3.30

as follows:

xt “
?
αtx0 `

a

1´αtε, where ε „ Np0, Iq (3.43)

Plugging this into expression 3.33, we obtain the following:

µ̃tpxt, x0q “
1
?
αt

ˆ

xt ´
βt

?
1´αt

ε

˙

(3.44)

This means that instead of building network µθpxt, tq that predicts the expected
value of xt´1 based on xt, we can choose to build network εθpxt, tq that predicts the
diffusion reversal component and compute the expected value of xt´1 based on it as
follows:

µθpxt, tq “
1
?
αt

ˆ

xt ´
βt

?
1´αt

εθpxt, tq
˙

(3.45)

Inserting equations 3.43, 3.44, and 3.45 into expression 3.42, we obtain the following:

Lt´1 “ Ex0„q, ε„Np0,Iq

„

β2t
2σ2tαtp1´αtq

∥∥∥ε´ εθp?αtx0 `a

1´αtε, tq
∥∥∥2 (3.46)

This completes the tractable ELBO specification for a denoising diffusion model.
However, it has been shown that the following unweighted version of the loss 3.46

works well for certain applications such as image generation:

LSimple “ Ex0„q, ε„Np0,Iq, t

„ ∥∥∥ε´ εθp?αtx0 `a

1´αtε, tq
∥∥∥2 (3.47)

where t is sampled from a uniform distribution between 1 and T . This expression
approximates L0 when t “ 1 and Lt´1 when t ą 1. We use this simplified version to
formulate a complete training algorithm presented in box 3.1.

3.3 denoising diffusion probabilistic models 139

Algorithm 3.1: DDPM Training

repeat
x0 „ qpx0q

t „ Uniformpt1, . . . , Tuq

ε „ Np0, Iq

Take a gradient descent step with the learning rate γ:

θÐ θ´ γ∇θ

∥∥ε´ εθp?αtx0 `?1´αtε, tq
∥∥2

until convergence

3.3.4 Sampling

Once the model is trained, we can sample from it. In accordance with the reverse
process, we start with noise xT „ Np0, Iq and iteratively sample xt´1 „ pθpxt´1 | xtq
until x0 is obtained. The mean of xt´1 is given by expression 3.45, so the sampling can
be performed as:

xt´1 “
1
?
αt

ˆ

xt ´
βt

?
1´αt

εθpxt, tq
˙

` σtη, η „ Np0, Iq (3.48)

The complete sampling algorithm is presented in box 3.2.

Algorithm 3.2: DDPM Sampling

xT „ Np0, Iq

for t “ T , . . . , 1 do

η „ Np0, Iq if t ą 1, else η “ 0

xt´1 “ 1?
αt

´

xt ´ βt?
1´αt

εθpxt, tq
¯

` σtη

end

return x0

3.3.5 Conditional Diffusion Models

The diffusion models described in the previous sections do not provide the ability
to control the sampling process. In Section 3.2.6, we demonstrated how VAE can be
extended to incorporate the context (conditioning signal) and enable conditional sam-
pling. In this section, we use a similar approach to create conditional diffusion models.

We assume that the data x0 is associated with context c such a class label, image
fragment, or natural text description. The data and context are sampled jointly from
distribution qpx0, cq. The forward process qpx1:T | x0q remains unchanged, but we

140 generative models

modify the reverse process (equations 3.34 and 3.36) to incorporate the context as fol-
lows:

pθpx0:T | cq “ pθpxT q
T
ź

t“1

pθpxt´1 | xt, cq

pθpxt´1 | xt, cq “ Npxt´1; µθpxt, t, cq, Σθpxt, t, cqq

(3.49)

In other words, we add the conditioning signal c to the inputs of the network
µθpxt, tq at each time step. Consequently, the ELBO components Lt´1 and L0 given
by expression 3.41 change to the following:

Lt´1 “ dKL pqpxt´1 | xt, x0q || pθpxt´1 | xt, cqq , t “ 2, . . . , T

L0 “ logpθpx0 | x1, cq
(3.50)

These changes can be further propagated through all algebraic transformations we
did for the regular diffusion models, and contextual versions of the training and sam-
pling algorithms can be formulated.

We use conditional diffusion in Recipe R8 (Synthetic Media)
to control the image generation process.

3.4 large language models

The diffusion models discussed in the previous section provide a powerful and versatile
tool for learning high-dimensional distributions and sampling from them. In theory,
this approach can be used for building both image models (distributions over arrays
of pixels) and language models (distributions over sequences of words or characters).
However, in practice, creating high-capacity diffusion models for domains with discrete
data distributions, such as text, is more challenging than for domains with continuous
signals, like images and audio [Li et al., 2022; Gong et al., 2023].

Fortunately, the sequence modeling methods discussed in Section 2.4, particularly
the transformers, offer a potent alternative to diffusion models in language processing
applications. In this section, we discuss how high-capacity language models can be
constructed using the transformer architecture introduced in Section 2.4.7 and explore
some properties of these models. While the model designs we are going to develop
are somewhat generic and can be applied to any sequences of elements, we choose to
focus explicitly on language modeling and discuss various phenomena that are specific
to the language domain.

3.4 large language models 141

3.4.1 Language Modeling

Let us consider text as a sequence of tokens, where a token can be defined as a word,
subword unit, or an individual character. Assuming a sequence of tokens px1, . . . , xT q,
a language model can be defined as a probability distribution over this sequence:

ppx1, . . . , xT q “
T
ź

t“1

ppxt | x1, . . . , xt´1q (3.51)

Assuming that we have an ideal language model, we can generate texts by iteratively
drawing one token at a time from the distribution conditioned on the context (the initial
input and previously generated tokens):

xt „ ppxt | x1, . . . , xt´1q (3.52)

We can speculate that such an ideal model can be applied to an extremely broad
range of impactful enterprise use cases. For example, we can use such a model to build
a digital commerce or customer support service that answers questions about prod-
ucts; an assistant for software developers that writes code based on a natural language
description of the business logic; a decision support system that reads contracts and
answers questions like “What is the governing law in this contract?”.

However, even limited language models are very useful. First, the ability to generate
tokens or evaluate token probabilities in a given context can be used to solve certain
use cases. For example, a product search service can automatically suggest query com-
pletions like “suit” and “jeans” to a user who typed in “dark blue” or make spelling cor-
rections. Second, language models can be used to produce token and text embeddings
provided that the model is designed according to the principles outlined in Chapter 2.
These embeddings can be used as inputs to downstream models to perform applied
tasks such as sentiment classification.

3.4.2 Foundation Language Models

Language modeling has two important features that enable the creation of reusable
foundation models1 which can be used by the developers of enterprise solutions as off-
the-shelf components. The first one is that a language model defined in expression 3.51

merely estimates the joint probability of tokens in a text and does not assume any
specific task, such as text classification or summarization. The second feature is the
abundance of textual data, including books, web pages, social media posts, and public
code repositories, that can be used for training the foundation models not specific to in-
dividual companies and their data. Consequently, task-agnostic and company-agnostic
foundation language models can be created and distributed as downloadable packages
or cloud services.

As we discussed in Section 2.9, foundation models require pretraining and, optionally,
fine-tuning. Task-agnostic foundation language models are usually pretrained by third
parties, such as cloud service providers and research organizations, on datasets that

1 We introduced the concept of foundation models in Section 1.3 and discussed the general design principles in
Section 2.9.

142 generative models

are not specific to the end users of these models. However, some enterprises opt to pre-
train foundation models from scratch using proprietary datasets. As we discuss in the
next sections, foundation language models are typically pretrained using unsupervised
methods.

A pretrained model can be fine-tuned on task-specific, domain-specific, or company-
specific datasets to improve its quality. As we established in Section 2.9, fine-tuning
can be performed by updating all model parameters, selected layers, or training an
additional layer on top of the frozen pretrained network. We discuss the fine-tuning
strategies in more detail in the next sections after we develop specific model architec-
tures.

3.4.3 Scalable Model Architectures

In principle, a generative language model specified by expression 3.51 can be imple-
mented using any element prediction and sequence-to-sequence method described in
Section 2.4, including convolutional, recurrent, and transformer networks. However,
the unique challenge of the language modeling domain is that the quality of language
models scales over a wide range, following a power-law relationship with the amount
of model parameters, training data, and computational resources [Kaplan et al., 2020].
On one hand, this phenomenon creates an opportunity to train very powerful and ver-
satile foundation models. On the other hand, it necessitates scaling model architectures
and training processes to billions of model parameters and training tokens. From a
scalability perspective, transformers have proven to be very efficient, and transformer-
based architectures have become dominant in language modeling applications. In this
section, we discuss three basic architectures used for building large language models.

3.4.3.1 Encoder-Only Models

The first design option is to use a stack of the standard transformer blocks described
in Section 2.4.7.3. In this architecture, a sequence of input tokens, such as words, is
encoded into embeddings and processed by a stack of transformer blocks to obtain the
output sequence of embeddings, which can be decoded back into tokens. This layout
is outlined in Figure 3.10, where we omit the low-level details, such as the addition of
positional embeddings, layer normalizations, and dense layers inside the transformer
blocks. This architecture is referred to as encoder-only because all input tokens attend
to each other, and, in general, any of them can be used as an embedding for the entire
sequence.

Encoder-only models are usually pretrained in an unsupervised way using a tech-
nique known as masked language modeling. The core idea of masked language modeling
is to corrupt the input sequence and make the model reconstruct (denoise) the cor-
rupted parts. One particular way of implementing this concept is to replace randomly
selected tokens in the input sequence with a special token, typically denoted as [MASK],
and to then train the model to minimize the prediction error for such masked tokens.
For example, the training objective for the masked sequence presented in Figure 3.10 is
to minimize the cross-entropy loss for predicting the token “is”. The input sequence is
also prepended with a special token, typically denoted as [CLS], which stands for clas-

3.4 large language models 143

× n
Transformer

encoder block

Input

Output

Self-attention

[CLS] this product [MASK] good

[CLS] this product is good

Figure 3.10: High-level architecture of an encoder-only model with n transformer blocks stacked
on each other and its pretraining using masked language modeling.

sification. This token is used as an aggregate sequence representation in the fine-tuning
process, which we discuss next.

A pretrained model can be directly used to solve several practical tasks. First, it can
be used to compute text embeddings by feeding the input text into the model and
capturing the output embedding that corresponds to the CLS token or averaging all
output embedding vectors. Text embeddings can be used to compute semantics-aware
distances between texts, which can be used, in particular, for building various search
applications. Second, a pretrained model can estimate the probability distributions over
masked tokens, which can be used for tasks such as autosuggestion and proofreading.
For example, misspellings in a product description “black evening shoes with sleeves” can
be detected by evaluating the input “black evening [MASK] with sleeves” and determining
that the word “shoes” has a very low probability in this context.

Foundation encoder-only models are typically used for tasks such as text classifica-
tion, which requires fine-tuning. Fine-tuning is usually done by adding extra layers
(model head) that transform the CLS output into the classification label or other task-
specific outputs and training the resulting model using a task-specific dataset and loss
function. For instance, a product review sentiment classification model can be created
by adding a dense layer with a softmax mapper on top of the foundation model and
fine-tuning it on a dataset with labeled reviews, as shown in Figure 3.11.

Transformer encoder

Dense
layer

[CLS] this product is good

Positive

Figure 3.11: Fine-tuning an encoder-only model for sentiment analysis.

144 generative models

Foundation Encoder-Only Models

Foundation encoder-only language models, and foundation models in general,
became popular after the release of BERT (Bidirectional Encoder Representa-
tions from Transformers) in 2018 [Devlin et al., 2018]. Two foundation mod-
els pretrained on books and Wikipedia data were made available publicly:
BERTBASE (12 layers of transformer blocks, 768-dimensional token embeddings,
and 110M parameters) and BERTLARGE (24 layers, 1024-dimensional embed-
dings, and 340M parameters).

BERT inspired the development of many other encoder-only models including
DistilBERT [Sanh et al., 2019], RoBERTa [Liu et al., 2019], ALBERT [Lan et al.,
2019], and DeBERTa [He et al., 2020]. The architecture described in this section
mainly follows the original BERT design.

3.4.3.2 Encoder-Decoder Models

The encoder-only models map the input sequence to the output sequence of the same
length, and thus they are not able to generate sequences of arbitrary length. This capa-
bility is important in applications like question answering, text summarization, and ma-
chine translation where the input and output usually have different lengths. This limi-
tation can be addressed using the encoder-decoder approach discussed in Section 2.4.4.

The encoder-decoder approach assumes an encoder that maps the input sequence
to a latent representation and a decoder that produces the output sequence based on
this representation. The encoder part can be implemented using the same approach as
we used in the previous section, that is by stacking multiple transformer blocks. The
decoder part needs to be designed to generate the final output sequence of an arbitrary
length conditioned on the encoder output.

The standard decoder architecture represents a stack of the transformer decoder blocks
[Vaswani et al., 2017]. The transformer decoder block is designed to generate the out-
put sequence in an autoregressive way, so that each output token is conditioned on all
previously generated tokens. At the same time, each output token also needs to be con-
ditioned on the encoder output. These goals are achieved by using two subcomponents,
a causal self-attention layer and a cross-attention layer, as shown on the right-hand side of
Figure 3.12. In this figure, we omit some auxiliary components such as normalization
and skip connections for the sake of readability.

The causal self-attention layer follows the design described in Section 2.4.7.2. The
purpose of this part is to incorporate the previously generated decoder outputs during
the inference. For example, the decoder output yd3 in Figure 3.13 is generated based on
the input sequence xd1 “ [BOS], xd2 “ ye1, and xd3 “ ye2 where [BOS] is a fixed beginning-
of-sequence token. The causal attention is used instead of the full (bidirectional) self-
attention because only the past tokens are known at each step of the autoregressive
inference.

The cross-attention part is a specialized layer that aims to produce the final output
conditioned on the outputs of the encoder and the causal self-attention layer. Recall
that the self-attention mechanism produces the query, key, and value vectors for each
input element, and then combines them to compute the outputs. The cross-attention

3.4 large language models 145

Tr
an

sf
or

m
er

en
co

de
r b

lo
ck

 (×
 n

)

Input

Output

Self-attention Causal self-attention

K, V

x1

Tr
an

sf
or

m
er

de
co

de
r b

lo
ck

 (×
 n

)

Cross-attention

this [X] [Y] goodis

[X] product very good[Y]

x1 x2 x3 xm

y1 y2 y3 ym

x1 x2 x3 xt

y1 y2 y3 yt

Q

e e e e

e e e e

d d d d

d d d d

a

Decoder output

...

...

...

...

Transformer encoder Transformer decoder

[BOS]

Figure 3.12: High-level architecture of an encoder-decoder model and its pretraining using
masked language modeling. We assume that both the encoder and decoder include n
transformer blocks.

layer follows the same approach, but computes queries from the self-attention outputs,
and keys and values from the encoder outputs. We provide a detailed description of
the cross-attention logic in the box below (compare this with the self-attention logic in
Section 2.4.7.1).

Multihead Cross-attention Layer

1. The cross-attention layer has two inputs. The first one is the sequence of
embedding vectors xa1 , . . . , xat produced by the causal self-attention layer.
This input can be represented as tˆdmatrix Xa assuming d-dimensional
embeddings. The second input is the sequence of embeddings ye1, . . . , yem
produced by the encoder. It can be represented as mˆ d matrix Ye.

2. There are H attention heads in total, and each head independently com-
putes the query, key, and value matrices:

Qh “ XaWQ
h ptˆ dk matrixq

Kh “ YeWK
h pmˆ dk matrixq

Vh “ YeWV
h pmˆ dv matrixq

(3.53)

where index h P r1,Hs iterates over the heads, dk and dv are the sizes
of the intermediate representations, WQ

h and WK
h are dˆ dk projection

matrices, and WV
h is a dˆ dv projection matrix.

146 generative models

3. The attention weights are independently computed for each head as fol-
lows:

Ah “ softmax

˜

QhKTh?
dk

¸

¨Vh (3.54)

where the softmax operation is applied to its matrix argument row-wise.
The result is a tˆ dv matrix.

4. The final output is computed by concatenating the outputs of all heads
and applying a linear transformation:

Yd “ rA1 . . . AHs ¨W0 (3.55)

where Y is the output tˆdy matrix that can be interpreted as a sequence
of t vectors, dy is the dimensionality of the output vectors, and W0 is a
dvHˆ dy matrix of learnable parameters.

It is worth noting that each of t rows of Qh is independently convolved with
Kh and then with Vh, so there is no dependency between the queries. This fact
is reflected in Figure 3.12 where each query xat independently cross-attends to
the encoder outputs.

Similar to the encoder-only models, the encoder-decoder models can be pretrained
using masked language modeling. In particular, we can use the masking algorithm
presented in Figure 3.10, but many alternative algorithms with different efficiency and
computational complexity can be constructed [Raffel et al., 2020]. One alternative op-
tion is presented in Figure 3.12 where randomly selected spans (subsequences of one or
more tokens) of the input sequence are replaced with special tokens (shown as [X] and
[Y]), and the target sequence represents the reversion of the masked and unmasked
spans.

A pretrained encoder-decoder model can be fine-tuned to perform specific tasks. Un-
like encoder-only models that are designed to produce a single prediction for one token
or entire input sequence, encoder-decoder models can perform generative tasks such as
text translation or summarization. This enables more advanced fine-tuning strategies
and creation of versatile multi-task models. One particularly powerful strategy is the
text-to-text formatting where the tasks are formulated as natural language instructions
and incorporated into the input sequence [Raffel et al., 2020]. This approach is illus-
trated in Figure 3.13 where the text summarization task is encoded in the text-to-text
format. This strategy does not require any task-specific structural modifications of the
model, and thus the model can be fine-tuned to perform multiple tasks on multiple
task-specific datasets.

3.4 large language models 147

Transformer encoder

summarize: this product has impressive ...

Transformer decoder

product is good

Figure 3.13: Fine-tuning of an encoder-decoder model using the text-to-text format.

Foundation Encoder-Decoder Models

The encoder-decoder family includes BART [Lewis et al., 2019] and T5 [Raffel
et al., 2020] models. The T5 model has been developed by Google, and several
foundation models pretrained on web data and fine-tuned using the text-to-text
approach on multiple task-specific datasets have been released. The smallest of
these models has 60M parameters; the largest has 11B parameters. The descrip-
tion provided in this section mostly follows the T5 architecture.

3.4.3.3 Decoder-Only Models

The third major architectural option is to use only the transformer decoder, that is a
stack of transformer blocks with causal self-attention layers, as shown in Figure 3.14.
The decoder-only models can be pretrained in an unsupervised way using target se-
quences that are copies of the input sequences shifted by one token, as illustrated in
Figure 3.14. Each output token is thus predicted based on the previous tokens in the
sequence because the causal self-attention is used.

× n
Transformer

decoder block

Input

Output

[BOS] this product is good

this product is good [EOS]

Causal self-attention

Figure 3.14: High-level architecture of a decoder-only model with n transformer blocks stacked
on each other and its pretraining. The [BOS] and [EOS] tokens stand for beginning-of-
sequence and end-of-sequence, respectively.

148 generative models

The inference is performed in an autoregressive way: the decoder starts with some
initial input sequence (context), predicts the next token, appends to the input sequence,
and iterates until the end-of-sequence token is generated. This makes the decoder-only
models as versatile as the encoder-decoder ones.

The decoder-only models can be fine-tuned using the same techniques as we used
for encoder-only and encoder-decoder ones. In particular, text-to-text formatting can
be used to train multi-task decoders.

Foundation Decoder-Only Models

The development of decoder-only models has been spearheaded by OpenAI
which created GPT [Radford et al., 2018], GPT-2 [Radford et al., 2019], and
GPT-3 [Brown et al., 2020] models based on this approach. The GPT models
demonstrated the exceptional performance of decoder-only models in text gen-
eration, multi-task learning, and language understanding. Even more impor-
tantly, models and services created by OpenAI demonstrated the feasibility of
large language models for a broad range of enterprise applications.

The success of GPT models inspired the development of multiple decoder-only
models including PaLM [Chowdhery et al., 2022] by Google, LLaMA [Touvron
et al., 2023a] by Meta, and XGen [Nijkamp et al., 2023] by SalesForce. Some
of these models were scaled up to more than 100 transformer layers and 500B
parameters.

3.4.4 Properties of Large Language Models

The model architectures described in the previous section enable the creation of large
language models (LLMs) that can scale to hundreds of billions of parameters and be
trained on datasets with trillions of tokens. Such models, when properly pretrained and
fine-tuned, exhibit remarkable properties that make them applicable to a wide variety
of enterprise use cases. In this section, we discuss the most prominent properties of
LLMs, as well as their limitations, in more detail.

We use LLMs in Recipe R7 (Knowledge Management) to per-
form various information retrieval, data summarization, and
reasoning tasks.

3.4.4.1 Consistent Text Generation

The first phenomenon exhibited by LLMs pretrained on large generic datasets, such
as web pages and books, is the ability to generate consistent text. A basic example in
Figure 3.15 illustrates how a pretrained (but not fine-tuned) LLM generates text based

3.4 large language models 149

on the context set by the input sequence. In this example, the model “understands” that
the input sequence is the beginning of a review of fictional running shoes and generates
a reasonable-sounding continuation. However, the generated text is merely an imitation
that can contain arbitrary factual and logical errors, and the pretrained model needs to
be modified and extended in several ways to make the generative capability useful in
practice.

In this review, I compare new Nike Stellar running shoes with

my current favorite, the Nike Lunar. As you’ll see, the Stellar have some
similar elements to the Lunar 3 but they also have some elements that stand
out on their own. I actually tried on the Lunar 3 for a couple 5km run but
the fit and the materials made it more of a training or casual shoe than a
dedicated racing

Input

Generated
text

Figure 3.15: Example of text generation using a pretrained LLM. This and the following examples
are created using the OpenLLaMA 7B model [Geng and Liu, 2023].

The text generation capability is not necessarily limited to natural language. For
example, LLMs are often pretrained on datasets that include code repositories, which
enables code generation in various programming languages. This allows one to use
LLMs as a development and integration tool. We explore such use cases in Recipe
R7 (Knowledge Management).

3.4.4.2 Unsupervised Multi-task Learning

The second notable property of pretrained LLMs is the ability to perform various tasks
without being explicitly trained or fine-tuned for these specific tasks. This property is
illustrated in Figure 3.16 where the model input consists of a natural language task
description (instruction), argument (text to be summarized), and prompt that sets the
context for text generation. In this particular example, the model successfully performs
text summarization but makes a factual mistake by reporting the year 2020 instead of
2023, which is mentioned in the input text – limited understanding of the input text is
characteristic for LLMs.

Write a short title for the following text:
Apple Inc's market value on Friday breached the $3 trillion mark for the
first time since January last year, lifted by signs of improving inflation
and bets that the iPhone maker will successfully expand into new markets.
Apple has surged 48% so far in 2023 in a rally by several of Wall Street's
most valuable companies, fueled by bets that the Fed is nearing the end of
its campaign of interest rate hikes, and by optimism about the potential
for artificial intelligence.
Title:

The Apple Inc stock market value crosses $3 trillion for the 1st time since
Jan. 2020

Input

Generated
text

Figure 3.16: Example of text summarization using a pretrained LLM. The text to be summarized
is an excerpt from Reuters News.

150 generative models

Pretrained LLMs can perform a broad range of tasks such as text summarization,
language translation, reading comprehension, and closed-book question answering, if
provided with properly engineered inputs. This ability can be explained to a certain ex-
tent by the fact that generic datasets include many naturally occurring demonstrations
of these tasks, such as social media posts with titles, scientific articles with abstracts,
and dialogs with questions and answers [Radford et al., 2019]. However, the quality of
results achieved on such tasks by raw pretrained models is relatively low, and, as we
discuss later, instruction fine-tuning is usually leveraged to improve both the quality
and usability.

3.4.4.3 Zero-shot and Few-shot Learning

The fundamental ability of a pretrained LLM to perform various tasks can be opera-
tionalized in several different ways. The most straightforward approach is to provide
the model with only the task specification, as we did in the example in Figure 3.16. This
approach is referred to as zero-shot learning because the model has never been trained
on or exposed to instances of this particular task (except, perhaps, naturally occurring
instances in the pretraining data).

The ability to perform a given task in a zero-shot fashion is the best possible out-
come from the transfer learning perspective: the model correctly performs a previously
unseen task without any training instances or other task-specific modifications. If a pre-
trained model cannot perform a certain task in a zero-shot fashion, one can consider
fine-tuning it on datasets consisting of task input and output examples. This is a heavy-
weight process that requires significant time, computational resources, and typically
hundreds or thousands of samples.

The middle ground between these two options can be achieved using in-context learn-
ing introduced in Section 2.9.2. In in-context learning, the regular model input is aug-
mented with the information that enables the model to learn how to perform the task
correctly. In the case of LLMs, this concept can be implemented by including a lim-
ited number of examples (demonstrations) in the input. We illustrate this approach in
Figure 3.17 using an example. In this example, the model can correctly perform zero-
shot text classification, but we make it change the output format by providing several
examples that specify the desired result.

This approach to in-context learning is known as few-shot learning. The ability of
LLMs to learn from in-context examples helps overcome the limitations of both zero-
shot learning and fine-tuning. On the one hand, it enables more precise and efficient
task specification compared to abstract instructions. On the other hand, it requires far
fewer samples and computational resources compared to fine-tuning.

3.4.4.4 Elements of Common Sense and Mathematical Reasoning

One of the most impressive phenomena exhibited by LLMs is the ability to perform
tasks that require a certain level of common sense or mathematical reasoning. This
property is illustrated in Figure 3.18 where the model understands the semantics of
the activity described in the input and performs a basic arithmetic task. Although the
reasoning capabilities achieved by LLMs are generally insufficient for performing real-

3.4 large language models 151

Review: "This evening dress is very cool." Sentiment: Positive review
Review: "The quality of the fabric is horrible." Sentiment: Negative review
Review: "It is a great deal for the price." Sentiment: Positive review
Review: "I had many issues with this product." Sentiment: Negative review
Review: "These shoes are not durable and quickly fall apart." Sentiment:

Negative review

Classify the sentiment expressed in the following review:
"These shoes are not durable and quickly fall apart."
Sentiment:

Negative

Input

Generated
text

Input

Generated
text

Zero-shot classification

Few-shot classification

Figure 3.17: Examples of zero-shot and few-shot text classification using a pretrained LLM.

world enterprise decision-making tasks, they implicitly help to solve tasks such as code
generation and information summarization which require a certain level of reasoning.

There were only two boxes in the warehouse. Three more boxes were delivered
yesterday. The total number of boxes in the warehouse now is

five.

Input

Generated
text

Figure 3.18: Example of mathematical reasoning exhibited by a pretrained LLM.

3.4.4.5 Limitations

Despite the powerful and unique capabilities outlined in the previous sections, the
practical adoption of LLMs is associated with multiple challenges. The most notable
issues include the following:

hallucinations LLMs tend to generate responses that may seem plausible, syntac-
tically and semantically correct, but which contain severe factual errors, made-up
facts, or are in some other way disconnected from reality. This phenomenon is
commonly referred to as hallucinations. Hallucinatory behavior arises for several
reasons such as the tendency of neural networks to generalize (rather than memo-
rize) the facts in the training data, incompleteness and obsoleteness of these data,
and difficulties with training the model to correctly handle uncertain situations.
For example, a pretrained LLM is fundamentally unable to correctly answer ques-
tions like “What time is it now?” without accessing external data in real time.

152 generative models

The process of integrating LLMs with sources of information that are use-case
specific, up-to-date, and not available as a part of the LLM’s training data is
known as grounding. The ability of an LLM to generate responses that do not
contain factual errors is often evaluated using groundedness metrics.

limited context The transformer-based architecture assumes a fixed maximum
length of the input sequence (context length). It is generally difficult to increase
the size of the context beyond several thousand tokens because the compu-
tational complexity of self-attention grows exponentially with the sequence
length, and the quality of short sequences starts to degrade. However, in many
applications, we need the model to perform tasks such as summarization and
question answering on large amounts of input data, such as technical or legal
documentation. This problem can be addressed by using divide-and-conquer
techniques or making scalability improvements in the self-attention architecture
[Ding et al., 2023].

safety The responses generated by LLMs can include harmful or biased content (e.g.,
promote violence, racial stereotypes, or conspiracy theories). The risks associated
with unsafe content generation are particularly high when LLMs are distributed
as foundation models or cloud services and used to build a broad range of appli-
cations that are not known in advance to the model developers.

We discuss how some of these issues can be addressed in Recipe R7 (Knowledge
Management). More generally, evaluating the quality of LLMs has many aspects and
represents a major challenge in both research and practical applications. Comprehen-
sive benchmarks and crowdsourcing are used to evaluate response metrics like sensi-
bleness, specificity, and interestingness on various tasks.

3.4.5 Instruction Fine-tuning

The models obtained using unsupervised pretraining require the input sequence to be
constructed in such a way that a meaningful response can be generated as a natural con-
tinuation of this sequence. In practice, this approach is often inconvenient because one
usually wants to interact with an LLM by asking questions or providing instructions.

This limitation can be addressed by fine-tuning the pretrained model on datasets
phrased as instructions such as closed-book question answering, multiple-choice ques-
tion answering, and code generation [Longpre et al., 2023]. Examples of such tasks are
provided in Figure 3.19. This process is commonly referred to as instruction fine-tuning,
and it helps to improve model usability, performance, and safety on a wide variety of
tasks [Chung et al., 2022].

The quality and usability of LLMs can also be improved by fine-tuning on dialog-
style examples and domain-specific examples. In general, the quality of the fine-tuning
data has a major impact on the quality of the resulting LLM, making the fine-tuning
process one of the most important and resource-consuming steps in LLM development
[Touvron et al., 2023b].

3.4 large language models 153

- The coal powder mixes with hot
air, which helps the coal burn more
efficiently, and the mixture moves
to the furnace
- The burning coal heats water in a
boiler, creating steam
- Steam released from the boiler
powers an engine called a turbine,
transforming heat energy from burn-
ing coal into mechanical energy that
spins the turbine engine
- The spinning turbine is used to
power a generator, a machine that
turns mechanical energy into elec-
tric energy
- This happens when magnets inside a
copper coil in the generator spin
- A condenser cools the steam moving
through the turbine
- As the steam is condensed, it
turns back into water
- The water returns to the boiler,
and the cycle begins again

What might be the first step of the
process?

A machine called a pulverizer grinds
the coal into a fine powder

Input

Output

Is this product review positive?

Title: The Strange case of Dr.Jekyll
and Mr.Hyde starring Jack Palance

Review: This DVD came quickly to me
and having seen the old version on
VHS many years ago I was delighted
with the new DVD release. I had
thought I would never be able to see
it again but Amazon certainly
surprised me by having it available.
The quality was quite good and the
condition of the DVD was excellent.
The story is timeless.

Answer:
OPTIONS: +No +Yes

Answer:

Yes

Figure 3.19: Two examples of instruction fine-tuning tasks [Longpre et al., 2023].

3.4.6 Model Chains

The in-context learning capabilities of LLMs enable us to chain multiple LLM invo-
cations so that the outputs of the earlier invocations are used as inputs to subsequent
invocations. This is a very powerful method that can be used to create complex systems
with advanced cognitive capabilities such as memory, planning, and interactive com-
munications with the environment. In this section, we discuss several design patterns
that leverage invocation chains and examples of problems that can be solved using
these patterns.

3.4.6.1 Chains with Memory

The language model architectures described in the previous sections are stateless in the
sense that their output is conditioned only on the input. This becomes a limitation in
applications that require repeatedly interacting with the environment or the user and
remembering the interaction history. The most typical example of such applications is
conversational systems (chatbots) where each response needs to be generated in the
context of the previous conversation.

This limitation can be addressed by integrating an LLM with a memory buffer that
accumulates the interaction history and including this history into each model input.
This approach is illustrated in Figure 3.20 where the history of a dialog is accumulated
in a memory buffer, and the model input at each dialog turn is created by concatenating
the latest user input, conversation history, and special instructions that set a proper

154 generative models

context for sequence generation. In this example, the conversation history enables the
model to recognize that the word “its” in the second question refers to Toyota and
provide a correct answer.

What’s the world’s largest
automaker by revenue?

The world's largest auto-
maker by revenue is Toyota
Motor Corporation.

Input 1

Generated
text 1Where its headquarters is

located?

Toyota Motor Corporation is
headquartered in Toyota
City, Aichi, Japan.

Input 2

Generated
text 2

You are a chatbot having a conver-
sation with a human.

Human: What’s the world’s largest
automaker by revenue?
Chatbot:

The world's largest automaker by
revenue is Toyota Motor Corpora-
tion.

You are a chatbot having a conver-
sation with a human.

Human: What’s the world’s largest
automaker by revenue?
Chatbot: The world's largest
automaker by revenue is Toyota
Motor Corporation.
Human: Where its headquarters is
located?
Chatbot:

Toyota Motor Corporation is head-
quartered in Toyota City, Aichi,
Japan.

(a) User interface (b) Model inputs and outputs

Figure 3.20: Implementing a conversational system using chained LLM invocation with a memory
buffer.

3.4.6.2 Agents

The reasoning and in-context learning capabilities provided by LLMs can be leveraged
to integrate them with external tools. Integrations with tools provide a powerful way
to overcome the fundamental limitations of LLMs such as a lack of grounding and
computation skills.

The use of external tools is illustrated in Figure 3.21. LLMs generally have limited
abilities to perform arithmetic operations, especially with large numbers, and are prone
to providing wrong answers (hallucinating) when such operations are required. How-
ever, an LLM can be instructed to delegate arithmetic operations to an external calcula-
tor routine. The example provided in Figure 3.21 illustrates only the basic conversion of
the user input into the expression that can be evaluated by a calculator, but one can cre-
ate complex chains where the LLM implicitly invokes various tools and post-processes
their responses to create the final output.

LLM-based systems that use external tools are referred to as agents. In a broader
sense, we can define an agent as an LLM chain that interacts with some environment
by taking actions and observing the outcomes of these actions. The agents can also

3.5 summary 155

Your goal is to evalute the expression provided by a user. You can use an
external calculator that evaluates numerical expressions. The calculator
can be invoked by entering "CALCULATOR(EXPR)" where EXPR is the expression
you want to evaluate.

Input: What is three times five?
Output: CALCULATOR(3*5)

Input: What is ten plus eight minus five?
Output:

CALCULATOR(10+8-5)

Input

Generated
text

Figure 3.21: Example of integrating an LLM with an external calculator tool.

benefit from using memory buffers and performing multistep reasoning and planning
activities. For example, an agent can receive a question from a user, invoke an external
search tool to retrieve relevant up-to-date information needed to answer this question,
criticize the retrieved information by asking itself a question like "Is this information
sufficient to answer the question?", search for more details if needed, and formulate the
final answer. The generic architecture of an LLM-based agent that uses tools, memory,
and planning components is outlined in Figure 3.22.

Memory

Action

Tools PlanningAgent

Reflection

Self-criticism

Task decomposition

Search

Calculator

Code interpreter

......

Figure 3.22: Conceptual architecture of an LLM-based agent [Weng, 2023].

We create LLM agents that interact with external databases,
search engines, and APIs in Recipe R7 (Knowledge Man-
agement). Agents are also closely related to control models
which we discuss in Chapter 4.

3.5 summary

• Generative modeling is concerned with learning data distributions and sampling
new instances from them.

156 generative models

• In deep generative modeling, we usually learn distribution models that allow
sampling of latent variables (embeddings) conditioned on the given data and,
conversely, sample data conditioned on the given latent variables.

• A variational autoencoder is a fundamental method for learning distribution
models conditioned on the latent variables. An implementation of a variational
autoencoder usually includes the encoder and decoder networks which are
trained jointly, and the decoder part can be used separately for generating new
data instances.

• The basic variational autoencoder design can be extended with the conditioning
signal (context) to control the generation process. The expressiveness of the au-
toencoder can be increased by stacking multiple layers of latent variables.

• Denoising diffusion probabilistic models are similar to a hierarchical variational
autoencoder, but make several restrictive assumptions about the encoding and de-
coding processes. These assumptions enable training of deep high-capacity mod-
els that are suitable for learning complex distributions such as the distribution of
high-resolution photographic images.

• Similar to the variational autoencoder, the generation process in the diffusion
models can be controlled using the conditioning signal.

• Models for learning distributions over sequences of tokens and generating new
sequences can be created using transformers. This approach can be applied in
language modeling and time series analysis.

• The most common transformer-based architectures for language modeling in-
clude encoder-only, encoder-decoder, and decoder-only. These architectures can
be used to create large language models using unsupervised pretraining and
fine-tuning. Such models can be applied to a broad range of tasks such as text
classification, question answering, and arithmetic reasoning.

• Multiple LLM invocations can be chained together and integrated with external
components such as memory buffers and information retrieval services to create
applied solutions like chatbots and knowledge management systems.

4

C O N T R O L M O D E L S

Many enterprise AI problems can be described as control problems: there is a system,
process, or entity that needs to be operated or managed, and we have to develop an
algorithm that makes decisions on actions or interventions that need to be taken and
learns from the received feedback. The methods discussed in the previous chapters
address only the learning part of the problem, and then only in the sense of building
a model that approximates the statistical properties of the underlying process or entity
based on available data. We did not develop any methodology for optimization of
possible actions based on such a model, nor did we specify how the feedback data
needs to be collected to ensure correctness of the model.

In this chapter, we focus on the decision-making aspect of AI solutions and study the
relationship between models and actions. We first discuss several basic techniques that
can be used to make decisions based on model outputs, and then develop a more com-
prehensive toolkit for learning control policies through interactions with a controlled
system or environment.

4.1 basic decision-making techniques

Assuming that we can build a valid statistical model of some process or entity based on
the already-available data, we can plug it into an optimization algorithm that evaluates
alternative scenarios and determines the optimal action. The optimization algorithm
generally needs to incorporate business objectives, constraints, and other considera-
tions, so the exact design of the decision-making procedure depends heavily on a spe-
cific use case and application. However, most solutions employ the following generic
techniques that are worth discussing at a high level to establish a frame of reference:

ranking As we discussed in Chapter 2, statistical models are usually built to esti-
mate hidden properties or future states of processes or entities. This estimate is
often computed using a chain of contracting transformations that produces in-
termediate representations of the entity (embeddings) and, finally, outputs scores
that describe the required property or state. The embeddings allow us to evaluate
distances between the entities, rank entities based on the distance to some refer-
ence point, and make the final decision by choosing the most similar items. For

157

158 control models

example, a visual search service can rank images in the search result list based
on their distance to the reference image (query) in the embedding space. We can
express this logic more formally for the case of selecting the most optimal entity
xopt as

xopt “ argmin
x

d pzpxq, zpx0qq (4.1)

where x are the candidate entities, x0 is the reference point, z is the embedding
function, and d is the distance function. For selecting a set of multiple entities
Xopt, the decision rule can be expressed as

Xopt “ tx : d pzpxq, zpx0qq ă Tu (4.2)

where T is the distance threshold parameter which can also be a subject of opti-
mization.

The alternative strategy is to rank items based on the scores or probability esti-
mates that are designed to gauge the goodness (utility) of an entity for a certain
objective. These scores and estimates can be produced by regression and classifi-
cation models, and the final decisions can be made by choosing entities with the
highest or lowest scores. For example, an offer-targeting system can send special
offers only to customers with a high attrition risk score. We can express this type
of decision rule for the case of one entity as follows:

xopt “ argmax
x

ypxq (4.3)

where y is the function implemented by the model, and higher values of the score
are assumed to be preferable. In some applications, we might need to balance
between multiple objectives, and the goodness of a given entity for each of the
objectives is gauged using a separate score. The final decision is then made to
achieve a desirable trade-off between the objectives. All three ranking scenarios
are illustrated in Figure 4.1.

action evaluation The ranking methods described above assume that the under-
lying model estimates the distribution of the goodness score ypxq based on the
known state x. This solution can be extended to explicitly account for potential
actions and interventions, so that multiple goodness scores conditioned on possi-
ble actions a are evaluated, and the final decision is made by selecting the action
with the maximum score:

aopt “ argmax
a

ypx, aq (4.4)

This approach can be used for both discrete and continuous action spaces. For
example, an offer-targeting system can evaluate the probability of redemption for
several discrete offer types for each consumer and create a personalized offer-
to-consumer mapping to maximize the number of redemptions. Alternatively,
the system can evaluate the probability of redemption based on the discount
percentage, which can be a continuous variable, and determine the optimal value
for each customer.

cost-benefit analysis Although the ranking and evaluation processes can some-
times use models that directly estimate some meaningful business metric such

4.1 basic decision-making techniques 159

y1
(better)

Candidate
entities

Decision

y
(better)

z 1

z2

One
objective

Multiple
objectives

Similarity in
semantic space

x

Model

x

Score (y)

Model1

x

y1

Model

x

Model2

y2

Decision
Decision

Referencey 2
(b

et
te

r

)

Embedding (z)

Figure 4.1: Ranking entities using scores and embeddings.

as a profit or loss, we did not assume that the model output ypxq incorporates
all business considerations associated with actions and decisions. In our exam-
ple of the offer-targeting system, the final decisions should be made based not
only on the offer redemption probabilities, but also on the offer costs, redemp-
tion revenues, and other factors that quantify the bottom line business value. In
applications that require performing such cost-benefit analysis, it is common to
build an econometric model m that estimates the actual business outcomes such
as revenues and profits based on the outputs of the underlying statistical models,
and to rank possible actions according to these estimates. This can be expressed
as the following extension of the action evaluation task:

aopt “ argmax
a

mpypx, aqq (4.5)

mathematical programming The above methods assume that we can enumerate
and evaluate all possible actions. This can usually be done for small discrete ac-
tion sets and low-dimensional continuous action spaces that can be traversed and
evaluated using, for example, grid search. Many enterprise applications, however,

160 control models

require controlling multiple interdependent parameters, so that each action can
be represented by a vector of continuous or discrete variables that can be the sub-
jects for various constraints. For example, a price optimization system might need
to set prices for hundreds of related products, multiple time intervals, and under
complex inventory and replenishment constraints. The system can use statistical
models to evaluate specific pricing plans by estimating the expected profits or
revenues, but it cannot evaluate all possible plans. This challenge can often be
alleviated by transferring the optimization task to some standard mathematical
programming problem such as linear programming or integer programming that
can be solved using off-the-shelf optimization algorithms and software.

The four strategies outlined above can be viewed as basic guidelines for designing
decision-making and decision-support layers on top of statistical models. In practice,
these layers often combine mathematical optimization and various heuristics for han-
dling edge cases, incorporating domain knowledge, and enforcing business policies. We
will discuss these aspects in greater detail in the next chapters where we develop use
case-specific solutions. However, the framework described above has several fundamen-
tal limitations that make it inapplicable or highly inefficient in certain environments.
We discuss these issues in the next section, and then develop a completely different
framework that can be used as an alternative.

4.2 learning based on interactions

The decision-making techniques described in the previous section require valid and
accurate models of entities and processes to be available. We described a toolkit for
building such models in Chapter 2, but we made several assumptions to simplify the
integrations and interactions with the environment:

no dependency on actions The input samples are collected by some external pro-
cess that ensures the completeness and correctness of the data to learn from. This
process and the data it collects do not depend on actions taken by the control
algorithm.

instructions For the supervised methods, the target labels are specified by an exter-
nal process that knows the correct answer, so that the learning process is guided
by explicit instructions.

stationarity The environment is relatively static, and the drift of the statistical pat-
terns over time can be addressed using basic methods such as regular model
retraining over a sliding time window.

The above assumptions do not always hold true in real enterprise environments,
and control algorithms generally need to address the following challenges that can be
viewed as an alternative set of assumptions:

dependency on actions The information to learn from comes as a response to
actions and its completeness and distribution depend on the actions taken by
the algorithm. It is the responsibility of the algorithm to perform a correct and
efficient exploration of the environment.

4.3 reinforcement learning : bandit case 161

evaluation The environment provides the feedback information about the gains and
losses produced by the actions, but it does not tell which action was the optimal
or correct one.

non-stationarity Historical data might not be available, can be incomplete, or be-
come invalid because of changes in the properties of the environment. The control
algorithm needs to collect the data dynamically and account for the drift of the
environment properties.

In the next sections, we discuss how to build a control algorithm, commonly referred
to as an agent, that explores the environment having only limited prior knowledge,
learns a model that relates actions with outcomes, and produces a control policy that
can be used to determine the optimal action in a given state of the environment. The
area of machine learning that studies this category of problems is known as reinforce-
ment learning.

4.3 reinforcement learning : bandit case

Assuming an environment with limited availability or validity of historical data, we
might not be able to reliably estimate the value of possible actions at the beginning
of the optimization process, and efficient data collection through interactions with the
environment becomes a critical task. In this section, we examine the most basic formu-
lation of this problem.

We consider the setup where the control algorithm (agent) needs to choose one action
at P A at every time step t from a discrete set A of k possible actions. The chosen action
is then applied to the environment, and the algorithm observes the real-valued reward
rt which quantifies the value or loss resulting from the action. The environment is
specified by a collection of reward distributions pp1prq, . . . ,pkprqq, so that each action
is associated with a dedicated distribution, and the reward at time step t is sampled
from the distribution that corresponds to action at:

rt „ patprq (4.6)

Such an environment is called a stochastic bandit by an analogy with a slot machine. It
is essential that the rewards at different time steps are assumed to be independent, so
that the reward at time step t does not depend on the actions taken before t. However,
the reward distributions can be static or can change over time.

We further assume that the reward distributions are initially unknown to the agent,
but it can learn some action selection rule for time step t, known as the control policy,
based on the observed history a0, r0, . . . ,at´1, rt´1. The goal of the agent is to learn
the policy that maximizes the cumulative reward, also referred to as return, collected
over T time steps:

R “

T
ÿ

t“0

rt (4.7)

This problem statement is known as a multi-armed bandit problem. This formulation
underscores the need to explore the environment in order to learn the dependency
between the actions and rewards, and to do it efficiently to quickly converge to the

162 control models

return-maximizing policy. At the same time, the multi-armed bandit setup assumes
that the agent receives no information about the actions and environment except the
action identities and rewards. This is an oversimplification compared to many real-
world enterprise problems, but we focus on this formulation for now and discuss how
to incorporate additional information into the algorithm later in this book.

The agent can make return-maximizing decisions based on the estimates of the mean
reward for each possible action which is referred to as the acton value:

Qpaq “ E rrt | at “ as (4.8)

where at is the action at time t, rt is the reward at time t, and Qpaq is the value
of action a. The value estimates can then guide the optimal action selection. The main
challenge is how to balance the exploration of the environment that requires trying dif-
ferent actions to estimate the corresponding reward distributions and exploitation of
these learnings through selecting the return-optimal actions. These two objectives are
clearly in conflict because the number of time steps is limited, and every step used for
exploration generally reduces the return. Meanwhile, the excessive focus on exploita-
tion reduces the accuracy of the value estimates and suboptimal action selection. We
spend the next sections discussing several possible solutions for this problem.

4.3.1 Greedy Policies

The agent can estimate the value of action a at time step t by averaging the rewards it
has already received through taking this action:

Qtpaq “

řt´1
τ“0 rτ ¨ Ipaτ “ aq
řt´1
τ“0 Ipaτ “ aq

(4.9)

where Ip¨q is the indicator function returning the value 1 if its argument is true and
0 otherwise. If action a was not taken before step t and the denominator is thus zero,
then some default value can be used for the estimate.

Provided the estimate 4.9, we can consider always taking the action with the maxi-
mum expected value:

at “ argmax
a

Qtpaq (4.10)

This approach is known as a greedy policy. If the same maximum value estimate is
attained by more than one action, the agent can break the tie arbitrarily, for example,
selecting one of these actions at random. The greedy policy can achieve good or even
optimal results in certain scenarios, but it fails to explore the environment properly in
more realistic settings. For example, the greedy policy can be optimal when the rewards
are stationary and have zero variance, so the agent sticks to the optimal action right
after all alternatives are evaluated once, and this can be ensured by setting sufficiently
high default values for Qtpaq. However, if the rewards have relatively high variance
or just drift over time, the greedy approach is likely to focus on incorrect actions and

4.3 reinforcement learning : bandit case 163

deliver suboptimal results. This problem can be addressed by randomizing the policy
so that a random action is chosen with a relatively small probability ε:

at “

$

’

&

’

%

argmax
a

Qtpaq, with probability 1´ ε

random action, with probability ε
(4.11)

This solution, known as ε-greedy policy, allows control of the bandwidth used for en-
vironment exploration through the hyperparameter ε. This simple approach is efficient
and is widely used in practice, but it does not necessarily achieve the maximum pos-
sible returns and requires the determination of a good value for the exploration rate ε
which is a separate problem that needs to be solved. In the next sections, we consider
two alternatives that can help to address these concerns.

4.3.2 Upper Confidence Bound Policy

The ε-greedy algorithm accounts for potential uncertainty in value estimatesQtpaq and
continuously explores the environment using randomly chosen actions to reduce this
uncertainty. The level of uncertainty, however, can be different for different actions and
thus choosing the exploring action at random might not be optimal. We can attempt
to improve the performance of the algorithm by factoring in the variance of the value
estimates.

Let us consider the situation when the agent has the highest value estimate for action
aj at time t. Can the agent be certain that aj is really optimal? It can be the case when
the value estimate for aj is larger than the estimates for other actions by a margin that
is proportional to the variances of these estimates:

Qtpajq `Btpajq ě Qtpaiq `Btpaiq for all i ‰ j (4.12)

where Btpaq defines the upper bounds of the intervals where the true action values
are located with a sufficiently high probability. If the agent has a reliable estimate for aj
with small Btpajq, but other actions are not sufficiently explored so that Btpaiq is high
and the condition 4.12 does not hold true, then it makes sense to explore the alternative
actions further to become more confident that aj is indeed optimal. This consideration
leads to the following action policy that can be contrasted to equation 4.11:

at “ argmax
a

rQtpaq `Btpaqs (4.13)

To estimate bounds Btpaq, we can use Hoeffding’s inequality. It states that, given n
independent random variables x1, . . . , xn bounded by the interval r0, 1s, the probability
that their sum x “

ř

xi deviates from its true mean by more than ε is limited by the
following bound:

ppE rxs ą x` εq ď exp
´

´2nε2
¯

(4.14)

Applying this result to the action value estimates, we get the following:

ppQpaq ą Qtpaq `Btpaqq ď exp
´

´2naB
2
t paq

¯

(4.15)

164 control models

where Qpaq is the true action value and na is the number of times action a was
executed by time t. Denoting the probability on the left-hand side of 4.15 as p and
solving for Btpaq, we get the following expression:

Btpaq “

d

´ lnp
2na

(4.16)

In order to evaluate 4.16, we can add a requirement that the probability of the action
value falling outside of the boundary must decrease sharply as the number of time
steps t grows. One convenient choice is to require that p ď t´4 so that the probability
drops very sharply. This leads to the following expression for the boundary:

exp
´

´2naB
2
t paq

¯

ď t´4 (4.17)

which we can solve for Btpaq obtaining a new version of the expression 4.16 that can
be fully evaluated for given t and na:

Btpaq “

d

2 ln t
na

(4.18)

Inserting this into the conceptual equation 4.13, we obtain the final rule for action
selection:

at “ argmax
a

«

Qtpaq `

d

2 ln t
na

ff

(4.19)

This solution is known as the upper confidence bound (UCB) algorithm. It generally out-
performs the ε-greedy approach because of its more differentiated and efficient explo-
ration, but its customization or extension to environments that are more complex than
the basic multi-armed bandits problem is also more challenging. For this reason, the
ε-greedy policy is commonly used as an exploration method in many general-purpose
reinforcement learning algorithms and practical solutions.

We develop a dynamic content personalization system based
on the UCB algorithm in Recipe R3 (Dynamic Personaliza-
tion).

4.3.3 Thompson Sampling

The greedy and UCB algorithms do not make any specific assumptions about the dis-
tribution of rewards, nor do they estimate these distributions based on the collected
feedback. In many practical applications, however, we can build a specific model of the
environment and rewards, and then infer the parameters of such a model in a Bayesian
way, leveraging the prior knowledge about the problem structure.

4.3 reinforcement learning : bandit case 165

Let us start by implementing this idea under the assumption that the rewards are
Bernoulli distributed. Suppose we have a discrete set of k possible actions, and the
i-th action produces a reward of one with probability θi and a reward of zero with
probability 1´ θi:

rpaiq „ Bernoullipθiq (4.20)

This model can, for example, be used to describe an online ad optimization system
with a pool of k ads and a credit paid each time the user clicks on the displayed ad
and no credit paid when the user does not click. In this model, action values Qpaiq
are equal to the corresponding θi. We can further make a convenient assumption that
these action values are beta-distributed, so that the value distribution for the i-th action
can be expressed as follows:

θi „ Betapαi,βiq (4.21)

where α and β are the distribution parameters. The beta-Bernoulli model is a stan-
dard choice for this type of problem because the beta distribution is a conjugate prior
for the Bernoulli likelihood: when the prior distribution for θ is a beta distribution, and
we observe the evidence where each sample is a Bernoulli variable with parameter θ,
the posterior distribution for θ given the evidence is also beta. More specifically, if we
start with the prior distribution 4.21, take action ai, and observe reward r P t0, 1u, then
the posterior distribution for θi is also beta and its parameters are updated as follows:

pαi,βiq Ð pαi ` r, βi ` 1´ rq (4.22)

This expression is the update rule for model parameters that can be applied after
each action. Assuming that the actions are taken according to the greedy policy based
on the action value estimates, we can formulate a complete policy learning algorithm
presented in box 4.1. Note that we estimate the action values using the fact that the
mean of the beta distribution is given by the following expression over its parameters:

E rθis “
αi

αi `βi
(4.23)

Algorithm 4.1 is basically a parametric version of the basic greedy policy. It enables us
to specify a reward distribution model and learn its parameters in a Bayesian way, but
it inherits all the limitations of the greedy approach including suboptimal exploration.

The alternative approach, known as Thompson sampling, alleviates the limitations of
the greedy approach by changing how the action values θi are estimated at each time
step. Instead of computing them deterministically based on the distribution of the pa-
rameters, the algorithm samples them from the distribution, as shown in box 4.2. The
value estimation procedure is the only difference between algorithms 4.1 and 4.2; all
other steps are identical.

Similar to the UCB algorithm, Thompson sampling does smart exploration of the
environment, accounting for the uncertainty of the reward estimates. The algorithm
tends to select either well-explored actions with large mean rewards or actions with
high-variance reward distributions that frequently generate large θ samples. The latter
can be the case for either underexplored actions or environments with inconsistent or
unstable rewards.

166 control models

Algorithm 4.1: Greedy algorithm for the Bernoulli bandit case

parameters:
pα1, . . . ,αkq, pβ1, . . . ,βkq – priors

for t “ 0, 1, 2, . . . do
Estimate the action values:
for i “ 1, . . . ,K do

θi “ αi{pαi `βiq

end

Choose the action index that corresponds to the maximum value:

i “ argmax
i

θi

Execute the action with index i and observe reward r

Update the model parameters:

αi “ αi ` r

βi “ βi ` 1´ r

end

Generally, we can use an arbitrary value evaluation model instead of the beta-
Bernoulli model. The main steps are the same as in algorithm 4.2. Some distribution is
used to sample the parameters needed to evaluate the values for all actions. The action
with the maximum value estimate is executed, and the model is updated. It is also not
necessary to explicitly estimate values for each of k possible actions as in algorithm 4.2.
We can just build a stochastic model of the environment, update its parameters in a
Bayesian way based on the observations, and sample the expected future states from
this model for different actions to determine the best action. In other words, we can
use the model to sample a scenario that is likely to occur, and custom logic can be used
to estimate the value provided that this scenario realizes.

We use Thompson sampling to develop an algorithmic price
management system in Recipe R11 (Dynamic Pricing).

4.3.4 Non-stationary Environments

All three algorithms we discussed previously (greedy, UCB, and Thompson sampling)
estimate action values based on the observed reward samples and assume the station-

4.3 reinforcement learning : bandit case 167

Algorithm 4.2: Thompson sampling for the Bernoulli bandit case

parameters:
pα1, . . . ,αkq, pβ1, . . . ,βkq – priors

for t “ 0, 1, 2, . . . do
Estimate the action values:
for i “ 1, . . . ,K do

Sample θi „ betapαi,βiq
end

Choose the action index that corresponds to the maximum value:

i “ argmax
i

θi

Execute the action with index i and observe reward r

Update the model parameters:

αi “ αi ` r

βi “ βi ` 1´ r

end

arity of the reward distributions. This assumption does not hold true in many practical
settings, and we generally need to extend these algorithms with a mechanism that
allows the purging of obsolete observations in a controllable way.

The greedy and UCB policies estimate action valuesQtpaq by averaging the observed
rewards in accordance with formula 4.9. To simplify the notation, let us focus on one
particular action a for which we have n reward samples, and rewrite the expression for
its action value in a recursive form:

Qn`1 “
1

n

n
ÿ

i“1

ri

“
1

n

«

rn `

n´1
ÿ

i“1

ri

ff

“
1

n

«

rn ` pn´ 1q
1

n´ 1

n´1
ÿ

i“1

ri

ff

“
1

n
rrn ` pn´ 1qQns

“
1

n
rrn `nQn ´Qns

“ Qn `
1

n
rrn ´Qns

(4.24)

168 control models

The last expression can be viewed as an incremental update rule. At each step, we
shift the estimate by one n-th of the difference between the observed and previously
estimated values. This suggests that the update step of 1

n can be replaced with an
arbitrary step α leading to the following:

Qn`1 “ Qn `α rrn ´Qns

“ αrn ` p1´αqQn

“ αrn ` p1´αq rα rn´1 ` p1´αqQn´1s

“ αrn ` p1´αqα rn´1 ` p1´αq
2Qn´1

“ α

n
ÿ

i“1

p1´αqn´i ri ` p1´αq
nQ1

(4.25)

We can see that the value estimate is the exponentially weighted moving average
of the observed rewards ri. We can control the degree of weighting decay using the
coefficient α, and decrease the contribution of the old samples in rapidly changing
environments by making 1´ α small enough. We can use this approach to create a
non-stationary version of Thompson sampling, and we use it in the next section as well
to develop more advanced reinforcement learning methods.

4.4 reinforcement learning : general case

The practical usage of the algorithms designed for the basic multi-armed bandit prob-
lem is limited in two ways. First, the environment is assumed to be a black box, and
the algorithms do not provide any capabilities to incorporate the information either
about the current state of the environment, or about properties of the actions. This is
a major limitation because many enterprise use cases allow for providing the agent
with meaningful information about the context in which the decision needs to be made.
The second limitation is that the decisions and rewards at different time steps are as-
sumed to be independent which is also not true in many practical settings because
each action changes the state of the environment and, consequently, alters the context
for the next decision. In this section, we discuss a more generic problem formulation
and corresponding algorithms that help to overcome both limitations.

4.4.1 Markov Decision Process

We consider an agent that interacts with the environment in discrete steps. The internal
state of the environment at time t is fully specified by structure sft, and the agent
observes it as a complete or partial projection st. We call this projection an observed
state and denote the space of such states as S. The agent then chooses action at P A
and applies it to the environment. The environment responds with feedback rt which
is assumed to be a real value. We also assume that this value can be interpreted as the
utility of the action for the agent, and thus call it a reward. The state of the environment
then changes to sft`1 and the cycle is repeated. These concepts are summarized in
Figure 4.2 where spaces S and A are assumed to be discrete for the sake of illustration.

4.4 reinforcement learning : general case 169

Agent Environment

action at

state st
reward rt

a0, r0
s0

s1

s2

s3

a1, r1 a2, r2

t=0 t=1 t=2 t=3

S

A

Figure 4.2: The main concepts of the Markov decision process.

The environment is assumed to be stochastic, so that the next state and reward are
sampled from the distribution conditioned on the previous states and actions:

sft`1, rt`1 „ p
´

sft`1, rt`1 | psft, atq, . . . , ps
f
0, a0q

¯

(4.26)

This distribution fully specifies how the transitions between the states happen in the
environment, and we refer to it as a transition function. We can make the transition
function more practical and suitable for the analysis and evaluation by assuming that
the next state and reward depend only on the current state and action:

sft`1, rt`1 „ p
´

sft`1, rt`1 | sft, at
¯

(4.27)

With this assumption, known as a Markov property, the setup described above is called
a Markov decision process (MDP). For virtually all practical purposes, the Markov prop-
erty assumption does not limit the expressiveness of the model because we can design
the state structure to be self-contained.

The Markov decision process is a powerful concept that can be applied to a broad
range of problems. As we will discuss later in this book, it can be used to model how
marketing actions influence customer behavior, how inventory movement decisions
affect product availability in different locations, and how price changes impact profits
and revenues.

Thus far, we have set the scene in which the agent makes decisions and takes ac-
tions, but we also need to specify the agent’s objectives to make the problem statement

170 control models

complete. Let us assume that the agent interacts with the environment for T time steps
starting at state sf0 and observes the following sequence of states, actions, and rewards:

τ “ ps0,a0, r0q, . . . , psT ,aT , rT q (4.28)

This sequence is called a trajectory. Each step in the trajectory can be described us-
ing a tuple that consists of the initial state, action, reward, and the next state, that is
pst,at, rt, st`1q, and we refer to such tuples as transitions. We define the return of the
trajectory as a weighted sum of rewards

Rpτq “

T
ÿ

t“0

γtrt (4.29)

where γ P r0, 1s is a parameter, called the discount factor. The objective of the agent
can then be defined as the expected return over the distribution of trajectories:

Jpτq “ Eτ r Rpτq s “ Eτ

«

T
ÿ

t“0

γtrt

ff

(4.30)

The discount factor is an important concept that controls the balance between short-
term and long-term rewards. If the discount factor is set to 0, the agent that stands at
the beginning of the trajectory and contemplates how to maximize the return can focus
exclusively on the return r0 to decide on the first action. If the discount factor is set to
1, the agent needs to focus on the entire sequence of actions because the return is the
equally weighted sum of all T rewards, and thus each action needs to be optimized in
a multistep context. We refer to the problem statements where the immediate reward
dominates as myopic optimization, and problems where the multistep goals dominate
as strategic optimization. The multi-armed bandits discussed in the previous section
can be viewed as solutions for the myopic case.

The choice of the discount factor for a particular problem can incorporate both busi-
ness and technical consideration. On the business side, one should take into account
the design of rewards and ultimate business objectives. On the technical side, the op-
timization for long-term returns is not always tractable in complex environments, and
refocusing on shorter-term objectives can help the agent to make progress.

4.4.2 Policies and Value Functions

The goal of the agent in the MDP is to learn and exploit the mapping between states
and actions that maximize the return. We refer to this mapping as a policy and define
it as a stochastic function from which actions can be sampled given the current state:

a „ πpa | sq (4.31)

In order to evaluate how good or bad a given policy is, we need to link it to the
objective. We do so by defining the action-value function for policy π as follows:

Qπps,aq “ Es0“s, a0“a, τ„π r Rpτq s (4.32)

The action-value function evaluates the value of state s and action a assuming that
the agent starts to operate at state s, chooses the first action to be a, and then continues

4.4 reinforcement learning : general case 171

to operate under the policy π which is considered to be fixed. We also define the value
function of a state marginalizing the action-value function by possible actions:

Vπpsq “ Es0“s, τ„π r Rpτq s “ Ea„πpsq r Q
πps,aq s (4.33)

We now have to answer two questions. The first is how the agent can evaluate the
above functions for a given policy, and the second is how the policy can be optimized
provided that the value functions are available. In the next section, we discuss how
these two problems can be solved provided that the transition function 4.27 of the
environment is known, and then we focus on methods that can learn value functions
directly from interactions with the environment.

4.4.3 Policy Optimization Using Dynamic Programming

Let us assume that the transition function 4.27 of the environment is known, and the
number of states and actions is small enough to be explicitly enumerated. This enables
us to recursively express the value of some state at time t as a weighted sum of values
of states to which we can potentially transition by the next time step t` 1:

Vπpsq “ Est“s, π r Rt s

“ Est“s, π r rt`1 ` γRt`1 s

“
ÿ

a

πpa | sq
ÿ

s1, r
pps 1, r | s,aq

`

r` γEst`1“s1, π r Rt`1 s
˘

“
ÿ

a

πpa | sq
ÿ

s1, r
pps 1, r | s,aq

`

r` γVπps 1q
˘

(4.34)

where Rt is a shortcut for the return after time step t:

Rt “

T
ÿ

i“t`1

γi´t´1ri (4.35)

Equation 4.34, known as the Bellman equation, efficiently reduces the evaluation prob-
lem of a given time length to subproblems of shorter time length. It is the foundation of
a whole family of algorithms, referred to as dynamic programming algorithms, for solv-
ing MDP problems with known transition functions. We discuss below one particular
strategy for evaluating and improving action policies using the dynamic programming
approach.

Assuming a discrete set S of states, the Bellman equation can be viewed as a system
of |S| equations in |S| unknowns Vπpsq. This system can be solved analytically, but an
iterative solution is usually more practical. We can start with arbitrary initial values
Vπ0 psq for all states, and then iteratively update them as follows:

Vπk`1psq Ð
ÿ

a

πpa | sq
ÿ

s1, r
pps 1, r | s,aq

`

r` γVπk ps
1q
˘

(4.36)

At each iteration, we update all states and then repeat the process until the conver-
gence. The convergence condition can be, for example, to stop when all the changes in
the value estimates are sufficiently small:

max
s

ˇ

ˇ Vπk`1psq ´ V
π
k psq

ˇ

ˇ ă threshold (4.37)

172 control models

Algorithm 4.36 is known as iterative policy evaluation. It provides a practical way for
assessing the state values under a given policy, and we can use this capability as a basis
for comparing policies to each other and making policy improvements.

The second question that we need to answer is how a given policy πpa | sq can be
improved or proved to be optimal provided that the corresponding value functions
Vπpsq can be estimated as described above. We can evaluate the value of any action at
any state, using the Bellman equation as follows:

Qπps,aq “ Est“s, at“a, π r rt`1 ` γV
πpst`1q s

“
ÿ

s1, r
pps 1, r | s,aq

`

r` γVπps 1q
˘ (4.38)

This enables us to compare the initial policy with alternatives that take a different
action in a particular state, and make improvements if a better option is available. One
simple alternative is to follow a greedy approach and modify the old policy so that it
takes the action that seems best according to the value estimate:

πpa | sq Ð

$

’

&

’

%

1, if a “ argmax
a

Qπps,aq

0, otherwise
(4.39)

If several actions have equal value estimates, the tie can be broken by giving some
non-zero probability to each of them. Performing the update 4.39 for all states, we either
obtain a better policy, or confirm that the current policy is optimal by finding that no
modifications were done or that the modifications resulted in an equivalent policy that
is as good as the current one. This process is known as policy improvement.

The policy evaluation and policy improvement processes have symmetrical inputs
and outputs: the evaluation requires some policy as an input and produces the value
function as an output. The improvement requires the value function as an input and
produces a new policy as an output. The improvement process cannot generally pro-
duce an optimal policy in one pass because it is tied to the value function evaluated un-
der some suboptimal policy, but the evaluation and improvement steps can be chained
together and applied iteratively. The combined process created this way is known as
policy iteration, and its overall layout is shown in Figure 4.3. We start with arbitrary pol-
icy π0, estimate the corresponding value function using dynamic programming which
iteratively cycles over all states refining the estimates using rule 4.36, execute policy
improvement for all states using rule 4.39, and then repeat this two-step process until
convergence to the optimal policy π˚.

The dynamic programming approach is essentially an optimization algorithm that
can find an optimal sequence of actions provided the specification of the environment
(transition function) and observability of the full environment state needed to eval-
uate this specification. Its computational complexity also grows with the number of
states, imposing certain limitations on the dimensionality of the problems it can be ap-
plied to. In the enterprise AI context, this makes dynamic programming applicable to
the environments for which we can build good mathematical models such as supply
chains, but more dynamic problems and problems with limited observability such as
personalization require different tools. Reinforcement learning, which can be defined
as a collection of methods for approximate solving of MDP problems in settings where

4.4 reinforcement learning : general case 173

Evaluation Improvement

π0 Vπ0

Vπ01

Vπ02...

Vπ0
k+1

π0

π1

π1 Evaluation
Vπ1

... π*

S S

Figure 4.3: The policy iteration process.

dynamic programming is not applicable or computationally intractable, offers many
useful techniques and components that can be applied to a wide range of enterprise
problems. We spend the next few sections discussing the main categories of reinforce-
ment learning algorithms and shaping out the toolkit for solving specific use cases later
in the book.

4.4.4 Value-based Methods

The policy improvement process discussed in the previous section demonstrated one
particular way of doing policy optimization using value functions. More generally, the
agent can construct a policy using either Vπpsq or Qπps,aq:

• If both the value function Vπpsq and the transition function are available, the
agent can enumerate all possible actions in the current state s, compute the next
state s 1 or distribution of states assuming a certain action is taken, evaluate the
corresponding Vπps 1q, and then choose the action with the maximum expected
return E rr` Vπps 1qs. This approach works well for deterministic environments
where we can compute the next state for each possible action. The game of chess
is the classic example of such an environment. In enterprise applications, some
manufacturing and supply chain problems can be handled using this approach.

• If action-value function Qπps,aq is available, the agent can directly evaluate all
possible actions in the current state and choose the optimal one. This does not
require knowing the transition function of the environment, and generally makes
Qπps,aq preferable over Vπpsq.

Since value functions make policy construction and optimization relatively straight-
forward, there is a wide class of reinforcement learning algorithms that compute or es-
timate these functions explicitly. These algorithms are collectively known as value-based
methods. If the transition function of the environment is known, the value functions can
be computed, for example, using dynamic programming. If the transition function is
not known to the agent, it can attempt to sample transitions from the environment and
learn an approximation of the value function using statistical methods.

174 control models

When the agent needs to learn the value functions from samples, Vπpsq has the
advantage of requiring less data than Qπps,aq. The agent generally needs to collect
enough samples to cover the space of state-action combinations SˆA to learn Qπps,aq,
but it is enough to cover just the space of states S to learn Vπpsq. However, the consider-
ations discussed at the beginning of this section typically dominate over this argument,
and most value-based algorithms use Qπps,aq or some of its variations.

In principle, we can use any supervised learning model, either linear or nonlinear,
to approximate Vπpsq and Qπps,aq. Since deep neural networks provide flexible and
generic approximators, it is natural to consider them for this purpose, and the reinforce-
ment learning algorithms that use deep learning approximators have indeed proved
themselves to be very efficient in practice. This category of algorithms is generally
known as deep reinforcement learning. We discuss several fundamental methods from
this group in the next sections, and use them as a foundation for developing more
specialized solutions in other parts of the book. However, the agent is more than just
a value function approximator, and we need to develop a framework that combines
environment sampling, function learning, and policy optimization into one seamless
algorithm. In the next section, we build such a framework using the ideas from dy-
namic programming.

4.4.4.1 Monte Carlo Sampling

Let us assume that we have a generic approximator Qπφps,aq specified by a vector of
parameters φ that can be used to learn a value function based on training samples,
each of which includes a state-action pair and target value label collected under some
policy π:

t pps,aq, Qπps,aqq u train−−−Ñ Qπφps,aq (4.40)

To build a complete agent, we also need to specify how to sample the data needed
to train the approximator and how to construct the action policy provided that the
approximator has been trained. One possible approach is as follows:

1. Start with some, perhaps random, initial policy π. Sample a number of trajectories
τ1, . . . , τn from the real environment or a simulator of the environment.

2. Group all trajectories according to their initial state s and the first action taken
by the agent a. For each group, estimate the target Q-value label as the average
return in the group:

Qπtarps,aq “
1

ms,a

ÿ

τi

Rpτiq (4.41)

where ms,a is the number of trajectories in a group, and τi iterates over these
trajectories.

3. Optimize the approximator parameters φ that minimize the prediction error for
the Q-values, that is the following loss function:

Lpφq “
ÿ

s,a

´

Qπtarps,aq ´Qπφps,aq
¯2

(4.42)

4.4 reinforcement learning : general case 175

4. Construct a new policy using the greedy or ε-greedy approach based on the value
function approximation Qπφps,aq.

This approach is called Monte Carlo sampling because it estimates the value function
simply as the empirical mean of returns. The disadvantage of the Monte Carlo approach
is its low sample efficiency: we need to collect multiple complete trajectories for each
possible combination of a state and action to estimate the target value 4.41.

4.4.4.2 Temporal Difference Learning

We can overcome some of the limitations of Monte Carlo sampling by learning based on
individual transitions rather than on complete trajectories. This approach is enabled by
the recursive nature of the value function that allows it to be expressed in terms of a sin-
gle transition ps,a, r, s 1q. To see it more clearly, let us rewrite the Bellman equation 4.34

as follows:

Qπps,aq “ Es1,r„pps1,r | s,aq

”

r` γEa1„πps1q
“

Qπps 1,a 1q
‰

ı

(4.43)

The Bellman equation can be viewed as an update rule that produces a new estimate
Qπps,aq based on the previous estimates Qπps 1,a 1q using the expectations that can be
evaluated using individual transitions. To turn this concept into a concrete algorithm,
we need to specify how exactly the outer and inner expectations in expression 4.43 are
evaluated.

The outer expectation generally requires to be integrated over the distribution of the
state-action pairs. If the transition function is unknown, this can be done by calculating
the average over multiple transition samples. In particular, we can choose to update
the value estimate on every new transition. If the environment is deterministic, this
approach is perfectly accurate. If the environment is stochastic, the estimation using
just one sample is noisy, but it allows for instant updates and reduces expression 4.43

to the following:

Qπtarps,aq “ r` γEa1„πps1q
“

Qπps 1,a 1q
‰

(4.44)

The inner expectation, that corresponds to Q-value target labels, generally requires to
be integrated over the policy. However, this can be done explicitly because the policy is
known, and there are several alternatives that work well in practice. The main options
include the following:

q-learning The inner expectation over the policy can be approximated by the maxi-
mum value over all actions that lead to state s 1:

Qπtar:QLps,aq “ r` γmax
a
Qπps 1,aq (4.45)

This approach is known as Q-learning. It picks the value-maximizing action in-
stead of the action that was actually taken by the policy π, and thus it produces
Q-values that correspond to the optimal (greedy) policy instead of Q-values for
policy π. This creates an additional force that steers the learning process in the
direction of the optimal policy. Q-learning has good theoretical properties and is
widely used in practice as a foundation for many deep reinforcement learning
algorithms.

176 control models

sarsa The second alternative is to approximate the expectation by the value that cor-
responds to the actually taken action a 1:

Qπtar:SARSAps,aq “ r` γQπps 1,a 1q (4.46)

This approach is known as SARSA, the acronym derived from the tuple of
variables ps,a, r, s 1,a 1q required for its evaluation. SARSA can be viewed as
a single-sample approximation of the inner expectation, consistent with the
single-sample approximation of the outer expectation we used to obtain the
generic template 4.44 for the value function.

expected sarsa The third alternative is to explicitly evaluate the expectation over
the policy:

Qπtar:ESARSAps,aq “ r` γ
ÿ

a1

πpa 1 | s 1qQπps 1,a 1q (4.47)

This solution is known as expected SARSA because it can be viewed as an exten-
sion of the SARSA estimate. The expected SARSA algorithm is the most accurate
approximation of the concept 4.44 from the three options we just discussed.

Since the target value labels in expressions 4.45–4.47 are computed based on the next-
step state s 1 and action a 1, the approximation error given by expression 4.42 is called
the temporal difference error, and the whole family of algorithms that use the Bellman
decomposition for value function estimation, including Q-learning and SARSA, are
also referred to as temporal difference learning.

The target value label estimated using one of the above methods can be used to
compute the approximation error for Qπφps,aq and then update the approximator in a
similar manner to what was done in the Monte Carlo sampling. This process is sum-
marized in algorithm 4.3 which can be viewed as a generic template for implementing
temporal difference learning algorithms, including Q-learning and SARSA. For the sake
of clarity, we assume an approximator that can be updated using gradient descent, but
any other supervised learning algorithm can be used.

The concepts described above provide a solid foundation for creating value-based
reinforcement learning algorithms, but most concrete algorithms make additional im-
provements to increase computational stability and performance. In the next sections,
we review two Q-learning algorithms that are commonly used in enterprise applica-
tions, but we first have to discuss one more important aspect of temporal difference
learning.

4.4.4.3 On-policy vs Off-policy Learning

A careful examination of the Q-value expressions 4.45–4.47 reveals one important fact
about the usage of the transition samples. In the case of SARSA, the target labels in
expression 4.46 are computed using the actual action a 1 taken by the current policy π.
This means that the transition samples are tied to the policy they were collected under,
and they are valid only until we modify the policy. In other words, we cannot reuse the
collected samples across multiple steps in algorithm 4.3, and n transitions collected at
each step have to be discarded at the end of the step. In the case of Q-learning, the target
labels in expression 4.45 do not account for the actual action, and thus the samples can

4.4 reinforcement learning : general case 177

Algorithm 4.3: Temporal Difference Learning

parameters and initialization:
α – learning rate

ε – policy construction parameter

φ – approximator parameters

Qπtarps,aq – Q-learning, SARSA, or expected SARSA

for step “ 1, 2, . . . do
Construct an ε-greedy policy based on Qπφps,aq:

πφpa | sq “

$

’

&

’

%

1´ ε, if a “ argmax
a

Qπφps,aq

ε{pk´ 1q, otherwise

where k is the total number of actions allowed in the state

Collect n transitions psi,ai, ri, s 1i,a
1
iq under πφ

for i “ 1, . . . ,n do
Calculate labels yi using Qπtarpsi,aiq

end

Calculate the loss based on the temporal difference error:

Lpφq “
1

n

ÿ

i

´

yi ´Q
π
φpsi,aiq

¯2

Update the approximator parameters:

φ “ φ´α∇φLpφq

end

be reused across updates. In other words, the target labels in Q-learning depend on
the destination state s 1 of the transition, but do not make assumptions on how we got
to it. It could happen under a policy that took action a 1i or another policy that took
a 1j, or even against the intent of the policy but because of a random fluctuation in the
environment.

The algorithms that can utilize only the data generated under the current policy,
like SARSA, are called on-policy algorithms, and the algorithms that separate policy
learning from the action policy, like Q-learning, are known as off-policy algorithms. The
ability to reuse samples across multiple updates makes off-policy learning significantly
more sample-efficient than on-policy learning. We will see later that this property has
far-reaching consequences that influence the design of the algorithms.

178 control models

4.4.4.4 Fitted Q Iteration (FQI)

We previously stated that reinforcement learning aims at solving the problem of strate-
gic (multiple steps ahead) action optimization through online learning in interactive
environments. Many reinforcement learning algorithms are designed to solve these
two parts, strategic optimization and online learning, simultaneously, but we can con-
sider solving each of these problems individually. Multi-armed bandits, for example,
solve online learning but not strategic optimization. In this section, we consider a ver-
sion of Q-learning that does the opposite – it solves the strategic optimization problem
under the assumption that the data is already collected and there are no interactions
with the environment. This algorithm, known as fitted Q iteration (FQI), can be viewed
as a generalization of supervised learning, and it could be very handy when we need to
learn how to optimize sequences of action strategically based on historical data [Ernst
et al., 2005]. FQI can also be viewed as Q-learning stripped to its bare essentials, so it
is useful for illustration purposes as well.

Let us start with the input depicted in Figure 4.4. We assume that we have a number
of trajectories that are prerecorded under some action policy (either sequentially or in
parallel), and the goal is to learn the value function from this data.

sn-2 sn-1 sn

Wall-clock time

an-1

rn-1
an-2

rn-2

s0 s1 s2 s3 s4

a0

r0
a1

r1
a2

r2
a3

r3
a4

r4

τ1:

τm:

...

...

... ...

Figure 4.4: An example of the input data for the FQI algorithm.

We can apply the Q-learning concepts to this setup by following the main steps of
the template algorithm 4.3:

1. Start by cutting the trajectories into individual transitions and labeling them with
the immediate rewards that are interpreted as the initial approximations of the
target Q-values:

ps0, a0q : y0 “ r0

ps1, a1q : y1 “ r1

¨ ¨ ¨

psn´1, an´1q : yn´1 “ rn´1

(4.48)

4.4 reinforcement learning : general case 179

2. Fit a supervised model Qφ to predict the immediate reward. This means to find
the model parameters vector φ1 that minimize the loss

Lpφ1q “
1

n

n´1
ÿ

i“0

`

yi ´Qφ1psi,aiq
˘2 (4.49)

3. Update the training labels using the Q-learning rule 4.45:

y0 Ð r0 ` γmax
a
Qφ1ps1,aq

y1 Ð r1 ` γmax
a
Qφ1ps2,aq

¨ ¨ ¨

yn´1 Ð rn´1 ` γmax
a
Qφ1psn,aq

(4.50)

4. Fit the next model Qφ2 to predict the new labels using the same error func-
tion 4.49. The model is now capable of predicting the sum of rewards for two
steps ahead. Repeat the process updating the training labels at each iteration as
follows:

iteration k : yi Ð ri ` γmax
a
Qφk´1psi`1,aq (4.51)

This produces a sequence of models Qφk where each subsequent model predicts
the rewards for a longer time horizon. The stopping condition can be set based on
the discount factor (stop when γk is small) or convergence to some fixed value.

The above algorithm produces value model Qφps,aq that can further be used to
construct the action policy. For example, we can do it using the greedy or ε-greedy
approach. We can think of FQI as a generalization of regular supervised learning that
is typically used to train models for predicting one-step-ahead outcomes based on the
current state. This extension basically propagates the cumulative reward backwards
from the later transitions to the earlier ones to capture the strategic context.

The FQI algorithm, in principle, can use any supervised model as a value function
approximator. In practice, neural networks are often a good choice for FQI, as well as
for many other reinforcement learning algorithms. The FQI algorithm with a neural
approximator is called neural fitted Q and commonly abbreviated as NFQ [Riedmiller,
2005].

We use FQI to develop a next best action model for marketing
applications in Recipe R4 (Next Best Action).

4.4.4.5 Deep Q-Networks (DQN)

The second Q-learning algorithm we consider is Deep Q-Networks (DQN) [Mnih et al.,
2015]. It is one of the most versatile and commonly used deep reinforcement learning

180 control models

methods. DQN can be viewed as a version of the temporal difference learning algo-
rithm 4.3 with three important customizations:

deep neural approximator The DQN algorithm uses a deep neural network for
Q-value approximation. The specific network architecture, however, is not pre-
scribed by the DQN algorithm itself, and it is highly dependent on a specific
problem and designs of the state and action spaces. For example, DQN can use
basic fully connected networks for problems with low-dimensional states and ad-
vanced computer vision network architectures to learn policies for video game
playing based directly on the game’s screenshots.

replay buffer Algorithm 4.3 uses each transition only once to update the approxi-
mator parameters which is not optimal from several standpoints. First, this basic
approach is sample-inefficient when the parameters are updated using stochastic
gradient descent because the update is done iteratively, and we capture only a
fraction of the information carried by the loss function at each step. (This fraction
is determined by the learning rate α.) Ideally, the transitions need to be reused
in multiple updates. Second, each update in algorithm 4.3 is done using a batch
of transitions that are collected sequentially, so these transitions are highly corre-
lated in most practical settings. This impacts the stability of the updates because
the variance between the batches can be high. These considerations are gener-
ally valid for any approximator, but become particularly prominent for complex
high-capacity models such as deep neural networks.

The above problems can be mitigated by storing transitions in a relatively large
buffer and randomly sampling batches needed for stochastic gradient descent
from there. The size of the buffer needs to be limited and fine-tuned to ensure
an adequate rotation of transitions, so that new samples are continuously added
and obsolete samples are similarly removed. This solution, called a replay buffer,
helps with both the reuse and decorrelation of samples.

Note that the replay buffer is a suitable solution for off-policy methods, but not for
on-policy methods, so it cannot be viewed as a generic extension of the template
algorithm 4.3.

target networks The second limitation that compromises the computational stabil-
ity of algorithm 4.3 is the tight coupling between target labels Qπtar and the value
approximatorQπφ. At every step, the target labels are computed using the current
value approximator, and then the approximator is immediately updated to track
the difference between the estimates and target, that is Qπtar ´Q

π
φ. This causes

the training targets to move at every step, so that Qπtarps,aq can be different for
the same pair of ps,aq at adjacent time steps, destabilizing the learning process.

This problem can be mitigated by maintaining two copies of the approximator.
One copy – let us keep the notation Qπφ for it, emphasizing that it is specified
by the set of parameters φ – is continuously updated and used to construct the
policy, just like it is used in algorithm 4.3. The second copy, called the target
network, is used to calculate the target labels. The target network is specified by
another set of parametersφtar, and thus we denote it asQπφtar

. The target network
is not updated at every time step, but it is periodically refreshed by replacing
φtar by φ. In other words, the target network Qπφtar

is replaced by a copy of
the policy network Qπφ every q time steps. The update frequency q needs to be
fine-tuned for each application: larger networks and more complex environments

4.4 reinforcement learning : general case 181

generally require more steps to align with new targets, smaller networks and
simpler environments can do it faster.

The above modifications are collected together in algorithm 4.4. The layout is simi-
lar to the generic temporal difference learning algorithm, but the use of deep neural
networks enables the learning of complex value functions on high-dimensional inputs,
and the replay buffer and target networks support this by improving the computa-
tional stability. The DQN algorithm can be further improved using more advanced
buffer management and Q-values estimation techniques that can be used separately or
jointly [Hessel et al., 2017].

Algorithm 4.4: DQN

parameters and initialization:
φ – parameters of the policy network Qπφ
φtar – parameters of the policy network Qπφtar

α – learning rate

q – frequency of target updates

Initialize φtar “ φ

for step “ 1, 2, . . . do
Construct an ε-greedy policy πφ based on Qπφps,aq

Collect n transitions under πφ and add to the buffer

Update the policy network:
Sample a batch of nb transitions from the buffer

Calculate target Q-values for each sample in the batch:

yi “ ri ` γmax
a1

Qπφtar
ps 1,a 1q

where the initial condition is defined by setting Qπφtar
ps,aq “ 0 for last

states of the trajectories

Calculate the loss:

Lpφq “
1

nb

ÿ

i

´

yi ´Q
π
φpsi,aiq

¯2

Update the policy network parameters:

φ “ φ´α∇φLpφq

If the step number is divisible by q:
Update the target network: φtar Ð φ

end

182 control models

We use DQN to develop a personalization agent in
Recipe R4 (Next Best Action) and price management agent
in Recipe R10 (Price and Promotion Optimization).

4.4.5 Policy-based Methods

The core idea of the value-based methods discussed in the previous section is to esti-
mate the expected values of potential actions and then construct the policy based on
these estimates. The disadvantage of this approach is that the policies are constructed
from Q-values in a heuristic way, such as the ε-greedy rule, and it creates certain inef-
ficiencies. The alternative approach is to learn the policy function directly, so that the
gap between the value estimates and policy construction is eliminated. To learn the
policy directly, we can parametrize the policy by a vector of learnable parameters θ as
follows:

πθpa | sq “ ppat “ a | st “ s, θt “ θq (4.52)

Similar to the value function, we can use an arbitrary supervised model, such as a
deep neural network, to approximate the policy function and optimize its parameters
using a standard training algorithm such as stochastic gradient descent. The policy-
based approach overcomes some limitations of value-based learning, providing the
following advantages:

more action types Most value-based methods assume discrete low-cardinality ac-
tion spaces. In Q-learning, for example, we search for the value-maximizing ac-
tion by iterating over all possible actions and evaluating them individually. This
approach becomes intractable for high-cardinality action spaces and continuous
action spaces. Some value-based methods work around this issue by using spe-
cial value functions that can be maximized analytically (for example, a quadratic
function [Gu et al., 2016]), but the policy-based solutions are generally more flex-
ible.

more expressive policies In the value-based methods, the expressiveness of the
policy is limited by the algorithm one uses to construct it from Q-values. For ex-
ample, an ε-greedy policy focuses only on the action with the maximum Q-value,
so it cannot express a complex probability distribution over actions. The ε-greedy
policy cannot converge to a deterministic policy either, because the exploration
factor ε is fixed. Alternative solutions exist, such as mapping of Q-values to action
probabilities using softmax, but such simple mappings do not allow the expres-
sion of arbitrary stochastic policies. The direct optimization of the policy function
addresses this problem in a more flexible way.

At the same time, the direct optimization of the policy function imposes certain
limitations that make the basic policy-based methods sample inefficient. In the next
section, we develop a concrete policy-based algorithm and investigate its limitations in
more detail.

4.4 reinforcement learning : general case 183

4.4.5.1 REINFORCE

The classic implementation of the policy-based learning approach is the REINFORCE
algorithm [Williams, 1992]. The core idea of REINFORCE is to explicitly evaluate the
gradient of the policy function πθ with respect to its parameters θ and then perform
the gradient ascent on these parameters to maximize the expected return.

Recall that the objective of the agent is to maximize the expected return over the
distribution of trajectories:

Jpπθq “ Eτ„πθ
r Rpτq s “ Eτ„πθ

«

T
ÿ

t“0

γtrt

ff

(4.53)

The agent can maximize the objective by performing the gradient ascent in the space
of the policy parameters using the following parameter update rule:

θÐ θ`α ¨∇θJpπθq (4.54)

where α is the learning rate and ∇θJpπθq is the policy gradient. The evaluation of the
policy gradient is a nontrivial problem, but we can obtain the closed-form expression
for it. Let us start with the observation that one needs to integrate over the distribution
of actions and states that depend on the policy parameters θ in order to evaluate the
policy gradient:

∇θJpπθq “ ∇θEτ„πθ
r Rpτq s (4.55)

This task can be viewed as an instance of a more general problem where we have
distribution ppx | θq and are looking to estimate the gradient with respect to θ of the
expectation of some function fpxq:

∇θEx„ppx | θq r fpxq s (4.56)

We can reduce the above expression as follows:

∇θEx„ppx | θq r fpxq s

“ ∇θ

ż

fpxqppx | θq dx

“

ż

∇θpfpxqppx | θqq dx

“

ż

fpxq∇θppx | θq ` ppx | θq∇θfpxq dx pchain ruleq

“

ż

fpxq∇θppx | θq dx p∇θfpxq “ 0q

“

ż

fpxqppx | θq
∇θppx | θq

ppx | θq
dx

´

ˆ
ppx|θq
ppx|θq

¯

“

ż

fpxqppx | θq∇θ logppx | θq dx
´

B log x “ Bx
x

¯

“ Ex r fpxq∇θ logppx | θq s

This result allows us to reduce the original expression 4.55 as follows:

∇θJpπθq “ Eτ„πθ
r Rpτq∇θ logppτ | θq s (4.57)

184 control models

Finally, we leverage the Markov property of MDP to expand the probability of the
trajectory into a product of transition probabilities (or, alternatively, the sum of log-
probabilities) obtaining the final expression for the gradient:

∇θJpπθq “ Eτ„πθ

«

T
ÿ

t“0

Rtpτq ¨∇θ logπθpat | stq

ff

(4.58)

where Rt stands for the return after the time step t:

Rtpτq “

T
ÿ

i“t

γi´tri (4.59)

Expressions 4.54 and 4.58 are sufficient to build an agent that optimizes the policy
based on the observed trajectories, but we need to specify how the expectation over the
trajectories is evaluated. One possible way is to estimate the expectation using just one
trajectory sample, similar to how we solved a similar problem in SARSA. This leads to
the algorithm presented in listing 4.5. For the sake of concreteness, we assume that the
policy function πθ is implemented using a deep neural network, although other types
of approximators can be used.

Algorithm 4.5: REINFORCE

parameters and initialization:
α – learning rate
θ – parameters of the policy network πθ

for step “ 1, 2, . . . do
Sample trajectory τ “ s0,a0, r0, . . . , sT ,aT , rT under πθ

Compute the policy gradient:

∇θJpπθq “

T
ÿ

t“0

Rtpτq ¨∇θ logπθpat | stq

Update the network parameters:

θ “ θ`α∇θJpπθq

end

Historically, the REINFORCE algorithm was the first implementation of the policy
gradient approach, and it has several major shortcomings that motivated the develop-
ment of more advanced methods. The first major limitation is that the policy gradient
depends on the actual actions in the trajectory. This means that REINFORCE is an
on-policy algorithm, and the transitions collected to evaluate the policy gradient need
to be discarded after each parameter update, making the algorithm sample-inefficient.
We will discuss one possible way of addressing this issue in Section 4.5.1. The second
problem is that each gradient evaluation needs to directly compute the returns from
step t till the end of the trajectory, which implies that a complete trajectory needs to

4.4 reinforcement learning : general case 185

be collected for each evaluation. In this sense, REINFORCE is a Monte Carlo method
just like the Monte Carlo value function learning introduced in Section 4.4.4.1. Conse-
quently, the policy gradient estimate has a high variance. This issue can be mitigated
using parametric value approximators, similar to what we did in temporal difference
learning. We expand this idea in the next section.

4.4.6 Combined Methods

We have seen that the policy gradient approach has certain advantages over the value-
based methods because it potentially supports a wider range of action spaces and policy
functions. At the same time, the basic implementations of the policy gradient such as
REINFORCE estimate the return directly from trajectory samples (expressions 4.58)
similar to Monte Carlo sampling in the value-based approach. This leads to the same
shortcomings, namely, the low sample efficiency and high variance of the estimate.

In light of the above, we can pose the following question: is it possible to improve
the sample-efficiency and computational stability of the basic policy gradient algorithm
using the techniques that we previously developed for DQN and other value-based
methods? The answer to this question is affirmative, and, moreover, it turns out that
the policy-based and value-based methods can be combined in a natural and beneficial
way, producing a whole family of high-performance algorithms. In this section, we
first discuss a generic framework that demonstrates the approach, and then develop a
concrete algorithm that combines policy gradient with DQN.

4.4.6.1 Actor-Critic Approach

Let us start by reviewing the policy gradient solution developed in the previous section.
We have shown that the policy function can be optimized by performing a gradient
ascent in the space of parameters in the direction of the maximum return which was
defined as follows:

∇θJpπθq “ ∇θEτ„πθ
r Rpτq s (4.60)

The REINFORCE algorithm evaluates this gradient using complete trajectories τ as

∇θJpπθq “ Eτ„πθ
r Rpτq ¨∇θ logppτ | θq s (4.61)

The disadvantage of this approach is the high variance of the return estimate Rpτq.
We can attempt to decrease the variance using a value approximator instead of a single-
sample estimate, similar to what we did in the value-based methods. This leads to
the following expression that can be evaluated using individual transitions instead of
complete trajectories:

∇θJpπθq “ Es„ρπ,a„πθ

”

Qπθ

φ ps,aq ¨∇θ logπθpa | sq
ı

(4.62)

where ρπpsq is the state distribution under policy π. This design involves two learn-
able functions. The first one is the policy function πθ specified by its vector of param-
eters θ, and it is referred to as the actor. The second function is the value function Qφ

186 control models

specified by another vector of parameters φ, and it is referred to as the critic. Conse-
quently, the methods that follow this design approach are collectively known as actor-
critic algorithms. The basic implementation of the actor-critic algorithm is presented in
listing 4.6 where the expectation over states and actions in expression 4.62 is estimated
based on a single sample. The actor-related part is similar to REINFORCE, and the
critic-related part corresponds to the temporal difference algorithm.

Algorithm 4.6: Basic Actor-Critic

parameters and initialization:
θ – parameters of the actor network πθ
φ – parameters of the critic network Qφ

αθ, αφ – learning rates

for step “ 1, 2, . . . do
Sample transition s,a, r, s 1,a 1 under policy πθ

Update the actor:
Compute the policy gradient:

∇θJpπθq “ Q
πθ

φ ps,aq ¨∇θ logπθpa | sq

Update the actor network parameters:

θ “ θ`αθ∇θJpπθq

Update the critic:
Calculate the target value:

y “ r` γQπθ

φ ps 1,a 1q

Compute the loss for the critic based on the temporal difference error:

Lpφq “
´

y´Qπθ

φ ps,aq
¯2

Update the critic network parameters:

φ “ φ´αφ∇φLpφq

end

Since the gradient 4.62 is used to update the parameters of the actor function, the
critic can be viewed as a component that generates the reinforcement signal for the
actor by moderating (amplifying or de-amplifying) the gradient, depending on the
assessment of the expected value. This is advantageous because the signal produced by
the critic is generally less noisy and less sparse than the raw rewards used in the policy
gradient algorithms. The density and smoothness of this estimate can be controlled by
the design and hyperparameters of the value function.

4.4 reinforcement learning : general case 187

The actor-critic architecture imposes several challenges as well. First, it requires at
least two approximators that need to operate in concert, which creates additional chal-
lenges and requires the use of specialized stabilization techniques. Second, the basic
implementation of actor-critic has two parts that require on-policy learning mode. The
first part is the policy gradient that still relies on the assumption that the transitions
are sampled under the action policy πθ. This prevents experience bufferization and
repay limiting the sample efficiency. The second part is the critic that is updated using
single-sample target value estimates that depend on the actual actions a 1, similar to
SARSA. The alternative is to use Q-learning estimates that do not depend on the actual
actions, but this would constrain us to discrete action spaces, eliminating an important
advantage of the policy gradient. These limitations can be addressed in several different
ways, and we discuss one particular solution in the next section.

4.4.6.2 Deep Deterministic Policy Gradient (DDPG)

We can attempt to improve the sample efficiency of the basic actor-critic algorithm by
developing a version that works in the off-policy mode and, ideally, use advanced Q-
learning algorithms such as DQN to implement the critic. This requires solving the two
problems outlined in the previous section:

actor side First, we need to evaluate the gradient of policy πθpa | sq based on tran-
sitions collected under another policy βpa | sq ‰ πθpa | sq. We call β a behavior
policy.

critic side Second, we need to figure out how to compute target Q-values for both
continuous and discrete action spaces.

One possible way to address these problems is to replace a stochastic policy πθpa | sq
by a deterministic policy πθpsq. This assumption leads to the following simplifications:

actor side When we assume a stochastic policy, the objective function in the on-
policy mode is as follows:

Jpπθq “ Es„ρπ,a„πθ
r πθpa | sq Qπps,aq s (4.63)

and its gradient is given by expression 4.62. In the off-policy mode, the objective
transforms into

Jβpπθq “ Es„ρβ,a„β r πθpa | sq Qπps,aq s (4.64)

where ρβ is the state distribution under behavior policy β. The evaluation of the
gradient becomes more complex in this case, but the deterministic policy assump-
tion eliminates the integration over the action space resulting in the following
computationally tractable expression:

∇θJβpπθq “ Es„ρβ r ∇θQ
πps, πθpsqq s (4.65)

critic side On the critic side, the deterministic policy assumption results in the fol-
lowing expression for the target values:

y “ r` γQπθ

φ ps 1, πθps 1qq (4.66)

This eliminates the dependency on the actual action a 1 enabling us to use the
off-policy value learning methods for the critic.

188 control models

The above results allow us to build actor-critic solutions on top of robust off-policy
algorithms. For example, we can use DQN as a foundation and build a complete actor-
critic algorithm around it. One specific implementation of this approach, known as deep
deterministic policy gradient (DDPG) is presented in box 4.7 [Silver et al., 2014; Lillicrap
et al., 2015].

Algorithm 4.7: DDPG

parameters and initialization:
φ, φtar – parameters of the critic networks Qπφ
θ, θtar – parameters of the actor networks πθ
α – target update rate

for step “ 1, 2, . . . do
Construct a policy that select actions as πθpsq ` ε where ε is a noise
component that ensures exploration

Collect transitions under the constructed policy and add them to the buffer

Update the network parameters:
Sample a batch of transitions B “ tpsi,ai, ri, s 1iqu from the buffer

Calculate target Q-values for each sample in the batch:

yi “ ri ` γQ
π
φtar
ps 1i, πθtarps

1
iqq

Update critic network parameters φ using

∇φLpφq “ ∇θ
1

|B|

ÿ

i

´

yi ´Q
π
φpsi,aiq

¯2

Update actor network parameters θ using

∇θJpπθq “ ∇θ
1

|B|

ÿ

i

Qπφpsi, πθpsiqq

Update the target networks:
φtar Ð αφtar ` p1´αqφ

θtar Ð αθtar ` p1´αqθ

end

The overall layout of DDPG is similar to DQN, and it relies heavily on the two main
stabilization techniques introduced in DQN, target networks and experience replay.
Both actor and critic are represented by two network instances, so that one network is
continuously updated and the other is used to calculate target Q-values. For both actor
and critic, the target values and losses needed for parameter updates are computed
based on the transitions sampled from the buffer.

4.5 counterfactual policy evaluation 189

At the same time, there are several differences between DQN and DDPG. First, DDPG
constructs the policy by adding noise to the output of the actor network instead of
using the ε-greedy logic. This modification is needed to support continuous action
spaces. Second, DDPG gradually updates the target networks at every step instead of
doing infrequent but complete replacements. Finally, the target values for the critic are
calculated using the determinist policy estimate 4.66 instead of regular Q-values.

We use DDPG to develop a supply chain management agent
in Recipe R12 (Inventory Optimization).

4.5 counterfactual policy evaluation

In the previous sections, we assumed that the control policies are learned through
continuous interaction with the environment. We also discussed that some algorithms,
such as SARSA, require all interactions to be performed strictly under the latest version
of the continuously updated policy, and some algorithms, such as DQN, can reuse
transitions collected under old versions of the policy. We referred to these two groups
as on-policy and off-policy learning, respectively.

In enterprise applications, however, we can rarely assume that the agent can freely
interact with the real environment. For example, inconsistent or random exploratory
actions can lead to customer dissatisfaction in marketing applications, revenue losses in
price management applications, and safety risks in production operations. This creates
a need for a framework that allows us to evaluate new policies to ensure their quality
before they are deployed to production and learn new control policies based on the
interactions collected under some limited-risk policy. In other words, we are seeking to
answer the following two questions:

• Assuming that we have data collected under a fixed behavior policy β, how do
we evaluate the performance of some other policy π?

• How to learn a new policy π based on the interactions collected under a given
behavior policy β?

The first question is known as the counterfactual policy evaluation (CPE) problem be-
cause we aim to evaluate a hypothetical result that could have happened had the actual
behavior policy been replaced with the alternative policy. This problem can be viewed
as a generalization of the treatment analysis problem discussed in Section 2.8.2. The
second question can be viewed as a generic formulation of the basic off-policy learning
capability introduced in Section 4.4.4.3, and we refer to it as the off-policy policy learning
problem. We develop a generic method that can be applied to these two problems in the
next section, and then discuss more specialized techniques that can be used in certain
applications.

190 control models

4.5.1 Importance Sampling

Let us assume that we have collected a number of trajectories under a known behavior
policy β, and we want to evaluate the state value function Vπpsq for some policy π
based on these trajectories. We also assume that every action taken under π is also
taken with non-zero probability under β:

for any a, s : πpa | sq ą 0 ñ βpa | sq ą 0 (4.67)

The value function for the action policy is defined as the expected return over the
trajectories produced under this policy. This function can easily be estimated for β by
averaging the returns of the collected trajectories. Since the distribution of trajectories
generated under π is different from β, we can attempt to estimate the value function
for π as a weighted average of the collected returns, where the weights are computed
based on the ratio of trajectory probabilities under the behavior and evaluated policies.
This approach is known as importance sampling.

Importance sampling requires the evaluation of the ratios of trajectory probabilities,
so we can start by expressing the probability of generating a specific trajectory τ “
pst,at, st`1, . . . , sT q starting at state st and taking actions according to policy π is as
follows:

ppτ | st; a „ πq “
T´1
ź

j“t

πpaj | sjq ppsj`1 | sj, ajq (4.68)

where ppsj`1 | sj, ajq is the transition function of the environment. The ratio of
trajectory probabilities under π and β, called the importance sampling ratio, can then be
estimated as follows for an arbitrary segment of the trajectory:

ρt:T´1pτq “

śT´1
j“t πpaj | sjq ppsj`1 | sj, ajq

śT´1
j“t βpaj | sjq ppsj`1 | sj, ajq

“

T´1
ź

j“t

πpaj | sjq
βpaj | sjq

(4.69)

This means that the importance sampling ratio does not depend on the transition
function of the environment, but only on the ratio of the action probabilities under
two policies. In the next two sections, we show how the regular policy evaluation and
learning algorithms can be modified to operate in the off-policy mode provided that
the importance sampling weights can be estimated.

4.5.1.1 Evaluation

Assuming that we have collected trajectories τ1, . . . , τn under the behavior policy β,
we can estimate the importance sampling ratio for each of them using expression 4.69,
and we can then estimate the expected return for policy π as follows:

Vπ “ Eτ„π r Rpτq s “
1

n

n
ÿ

i“1

ρ0:Ti´1pτiq ¨ Rpτiq (4.70)

4.5 counterfactual policy evaluation 191

where Rpτiq, Ti, and ρpτiq are the observed return, duration, and importance sam-
pling ratio for trajectory τi, respectively. This estimator is unbiased, but its variance can
be very high when π and β are substantially different from each other. The high vari-
ance of the estimate is one of the biggest challenges in importance sampling, and many
advanced variants of the basic procedure described in this section were developed to
mitigate this issue.

We can use the same approach to obtain other standard value functions for π. For
example, we can break down the value estimate by state obtaining the state value
function:

Vπpsq “
1

n

n
ÿ

i“1

ρtipsq:Ti´1pτiq ¨ Rtipsqpτiq (4.71)

where tipsq is the first time that the state s was observed in trajectory τi, and
Rtipsqpτiq is the return of the trajectory τi after the time step tipsq. These estimates
can be used to evaluate multiple policies π and compare them to each other, as well
as validate that new (candidate) policies are better than the baseline policy β used
in production. However, it is worth emphasizing that the behavior policy β must be
known in order to evaluate the importance-sampling weights, and this often represents
a challenge in real-world enterprise applications.

4.5.1.2 Learning

The importance-sampling weights can be used not only to rebalance the returns in the
value function estimates as we did in the previous section, but also to adapt on-policy
learning algorithms to off-policy policy learning. Let us consider REINFORCE, a typi-
cal on-policy learning algorithm, as an example. The regular version of the algorithm
optimizes the parameters of the policy function πθ to maximize the following objective,
as discussed in Section 4.4.5.1:

Jpπθq “ Eτ„πθ
r Rpτq s (4.72)

Assuming that the trajectories are sampled under behavior policy β, we can define
the off-policy learning objective as

Jpπθq “ Eτ„β r ρpτq ¨ Rpτq s (4.73)

where ρpτq is the importance sampling ratio for policies β and πθ evaluated over
the entire trajectory τ. Computing the policy gradient for this objective as described in
Section 4.4.5.1, we obtain the following:

∇θJpπθq “ Eτ„β

«

T
ÿ

t“0

ρ0:t´1pτq ¨ Rtpτq ¨∇θ logπθpat | stq

ff

(4.74)

This is a modified version of expression 4.58 which can be plugged into the REIN-
FORCE algorithm 4.5 transforming it into an off-policy policy learning method. The
same approach can be used to modify other on-policy algorithms such as SARSA.

The importance sampling technique and its advanced versions enable one to log
trajectories collected under a certain baseline policy, as well as the probability distri-
butions over the possible actions at every step, and then replay these logs against an

192 control models

arbitrary off-policy learning algorithm to learn a new policy. We apply this approach
to some enterprise use cases later in this book.

We use importance sampling for policy learning and evalua-
tion in Recipe R4 (Next Best Action).

4.5.2 Action Rejection Sampling

Importance sampling provides a generic framework for off-policy policy learning and
evaluation that can be applied to a wide range of problems. In many environments,
however, we can use simpler and more robust evaluation procedures provided that cer-
tain simplifying assumptions hold. In this section, we describe an alternative evaluation
method that can be used in many bandit-case environments [Li et al., 2010].

In the bandit case, we assume that the state of the environment at each time step
is independent from the previous state and, consequently, each trajectory represents a
sequence of independently drawn transition tuples pst,at, rtq. Let is us further assume
that we initially gather the trajectories in such an environment under a policy that
chooses an action at each time step uniformly at random:

βpa | sq “ Uniformpa1, . . . ,akq (4.75)

where k is the total number of possible actions. Assuming that we have a trajectory
τ collected under β and deterministic candidate policy πpsq that needs to be evaluated,
we can iterate over τ rejecting all transitions where policies β and π do not match and
accumulate rewards for all transitions where the policies do match, as summarized in
algorithm 4.8.

Algorithm 4.8: Action Rejection Sampling

inputs:
ps0,a0, r0, . . . , sT ,aT , rT q – trajectory collected under β

π – policy to be evaluated

R “ 0, n “ 0
for t “ 0, 1, . . . , T do

if πpstq “ at do
R “ R` rt
n “ n` 1

end
end

return R/n (Estimated return under policy π)

4.6 summary 193

This approach produces an unbiased estimate of the return under policy π because
the probability of obtaining a certain trajectory by fast-forwarding through unmatched
transitions is the same as the probability of obtaining this trajectory by playing policy
π against the actual environment. Both assumptions introduced earlier (bandit environ-
ment and equiprobability of actions under the behavior policy) are essential for ensur-
ing such an equivalence between the simple log replay performed by algorithm 4.8 and
real policy execution.

We use the action rejection method to evaluate contextual
bandits in R3 (Dynamic Personalization).

4.6 summary

• Basic decision-automation techniques include entity ranking, action evaluation,
and cost-benefit analysis. Problems that require optimizing multiple interdepen-
dent variables can be approached using mathematical programming methods.

• The basic representation and mapping learning methods might not be applica-
ble in highly dynamic environments and environments that require active explo-
ration. These scenarios are addressed in reinforcement learning.

• Environments where the response distributions at different time steps can be
assumed to be independent are known as stochastic bandits. The optimal control
policies for such environments can be learned using bandit algorithms.

• Stateful environments that can be modeled using a Markov decision process re-
quire strategic action optimization. The main categories of policy control learning
algorithms for such environments include value-based, policy-based, and com-
bined methods.

• In enterprise environments, off-policy learning and evaluation based on the ob-
servational data play an important role. One of the most generic frameworks for
this category of problems is importance sampling.

Part II
C U S T O M E R I N T E L L I G E N C E

Customer analytics and personalization are among the most important areas of en-
terprise AI because digital touchpoints and modern communication channels provide
numerous opportunities for improving customer experience, as well as business out-
comes, using data-driven methods. Moreover, it is well known that the demographics,
interests, intents, and expectations of customers can be extremely diverse, and thus
customer experiences that are supposed to fit everyone’s needs may not do so, which
makes personalization a mission-critical capability for many businesses. Customer ex-
perience engineering is also associated with a wide range of expenses including adver-
tising, offers and promotions, and customer support and retention. These costs can also
be subjects of the data-driven optimization.

In this part, we look at the methods that leverage customer data, both behavioral such
as clickstream, and static such as demographics, to optimize customer experiences and
learn compact representations of a customer that can be used by marketing analysts
and downstream transactional systems. Later in this book, we will discuss methods
that combine customer data with other pieces of information including content and
product data, to improve the quality and efficiency of personalization.

Recipe

1

P R O P E N S I T Y M O D E L I N G

Customer Intent Prediction for Experience Personalization

One of the most common problems in marketing data science is the estimation of the
probability of an individual customer performing a certain action such as a website
visit, in-store purchase, or account cancellation. In many applications, the action of in-
terest is directly observable, and we are interested in predicting that such an action will
recur in the future based on what we currently know about the customer. For example,
an online retailer typically maintains a database with customer profiles as well as or-
ders, and they can attempt to build a model that predicts the probability of a purchase
based on a profile. In other applications, however, the action of interest may not be
observed directly, and we would be interested to estimate the likelihood that a given
customer is currently performing a certain activity or has performed it in the past. A
typical example is fraud detection where the fraudulent act might not be observed ex-
plicitly but can be revealed using a risk scoring model trained on manually flagged past
cases of fraud. Once the probabilities of actions (commonly referred to as propensities)
are estimated, a personalization system or marketing operations team can decide on the
optimal action for each customer. For example, it could be a personalized offer chosen
based on the propensity to purchase a certain brand, a retention package offered based
on the probability to cancel the service subscription, or an account blocking based on
the fraud risk score.

The problem of propensity scoring outlined above is fairly broad, and there are many
specific problem statements in existence that differ in assumptions about the environ-
ment, possible actions that can be taken based on the predicted scores, and downstream
operationalization processes. For example, we can assume that the environment is rel-
atively static and patterns learned based on historical data are generally valid for pre-
dictions, or we can assume that historical data is becoming obsolete very quickly and
so the system needs to learn online. For another example, one can make a decision
on whether or not to provide a customer with a retention offer based on the basic un-
conditional probability of account cancellation. Alternatively, one might be looking to

197

198 propensity modeling

make this decision based on how this probability changes depending on different offer
types and how these change over time, so that both the offer type and timing can be
personalized. In this recipe, we focus on a relatively basic setup where the environment
is assumed to be static and we are looking to estimate unconditional probabilities of
actions or events. We will come back to the alternative problem statements in other
recipes later in this book.

r1.1 business problem

We start with the analysis of the typical model inputs, desired outputs, and marketing
use cases that can be improved using such a model. This analysis will help to properly
define the technical design goals and constraints in the next section.

In most B2C industries, including retail, digital media, and telecom, the company
can record customer actions and the history of interactions with a customer at the
level of individual events such as clicks, purchases, or phone calls. We can also assume
that each event can be encoded as a vector of categorical or real-valued features such
as an event timestamp, event type, user’s geo location, transaction total, and so on.
Consequently, an event history of length m can be represented as a kˆm matrix where
k is the size of the event vector. In many cases, the company also maintains customer
account (profile) records that include demographics, preferences, and other non-event
data that can be used as additional inputs which can also be encoded as a vector. This
layout is depicted in the upper part of Figure R1.1. We can attempt to get several
insights based on this input as discussed in the next sections.

Current
time

Interaction events
(clicks, calls, purchases, etc.)

Future
event

Event
attribution

weight
Event

probability

Time

Propensity modelProfile data

Event
feature
vectors

0.0

1.0

0.0

1.0

k

m

Figure R1.1: The main inputs and outputs of the event-level propensity model.

R1.1 business problem 199

r1.1.1 Scoring

One of the central goals of propensity modeling is to estimate the probability of a
certain outcome such a purchase or click based on the above inputs. This generally
requires collecting a number of customer profiles with event histories, attributing each
profile with a target label which can be a binary or real-valued variable, training a
classification or regression model that approximates the dependency between the in-
put history and the target label, and then scoring profiles for which the outcomes are
not yet known. Once the scores are computed, one can operationalize them in many
different ways depending on a specific use case. For example, consider the problem of
optimal distribution of special offers to customers. We can build a propensity model
that estimates the probability of the offer redemption using historical campaign data,
and then, assuming that each offer is associated with some cost C and potentially drives
incremental revenue R when redeemed, the expected incremental profit for customer u
will be

profitpuq “ ppredemption | uq ˆ pR´Cq

´ p1´ ppredemption | uqq ˆC
(R1.1)

where the first term represents the expected gain from the redemption event and the
second term represents the loss associated with an ignored offer. This estimate enables
us to make a targeting decision with regard to individual customers and determine
the optimal number of customers to be targeted to maximize the sum of incremental
per-customer profits, that is the return on investment (ROI).

In practice, it is common to build multiple propensity models that are focused on
different aspects of customer experience. For example, Booking.com, an online travel
agency, reported that its customer-facing applications are backed by more than a hun-
dred models that estimate various user propensities such as the likelihood to change
the traveling dates, travel with family or alone, and travel for leisure or for business.
These scores are then used to optimize various suggestions, tooltips, and messages in
the user interface [Bernardi et al., 2019].

We should also take note that, among all propensity modeling use cases, there is
an important category of applications where the length of the event history is a major
constraint. Examples include customer churn prediction and fraud detection where it
is preferable to identify risks at early stages, in-session personalization and recommen-
dations that rely only on a handful of clicks collected in the current web session, and
market segments like luxury goods where customers make relatively few transactions.
The ability to make an accurate prediction based on short event sequences is a major
design goal in such cases.

r1.1.2 Event Attribution

The second important problem that we choose to address in this recipe is the quantita-
tive analysis of the event history itself and the understanding of what drives customers
to certain outcomes. For instance, a telecom company might be interested to not only
identify customers who are likely to cancel their subscriptions, but also to understand
event patterns that are typical for such customers, in order to design retention pack-
ages. This generally requires assigning attribution weights to all events in the history,

200 propensity modeling

as illustrated in Figure R1.2. The attribution weight vectors can then be clustered to
determine typical patterns, or aggregated by marketing channels or other criteria to
analyze what drives customers to certain outcomes.

Web. Browse: /women/women-coats
Web. PDP: /shop/product/9176332

Web. PDP: /shop/product/9176332?r=917
Web. PDP: /shop/product/9176584

Web. Login. Auth: AUTH_PASS
Web. Browse: /my-bag

Web. Browse: /checkout
Web. Checkout. Payment:PAY_CREDIT

Web. Browse: /women
Call. Request: DELIVERY_STATUS

Mobile. Browse: /women/women-coats
Mobile. Browse: /shop/product/919376

Mobile. Login. Auth: AUTH_G_SSO
Mobile. Browse: /my_bag

Mobile. Browse: /checkout
Mobile. Checkout. Payment: PAY_CREDIT

Web. PDP: /shop/product/9134453
Web. PDP: /shop/product/9110090

Call. Request: RETURN
Web. PDP: /shop/product/9160002

Web. Login. Auth: AUTH_PASS

Web. Browse: /women/women-coats
Web. PDP: /shop/product/9176332
Web. PDP: /shop/product/9176332?r=917
Web. PDP: /shop/product/9176584
Web. Login. Auth: AUTH_PASS
Web. Browse: /my-bag
Web. Browse: /checkout
Web. Checkout. Payment:PAY_CREDIT
Web. Browse: /women
Call. Request: DELIVERY_STATUS
Mobile. Browse: /women/women-coats
Mobile. Browse: /shop/product/919376
Mobile. Login. Auth: AUTH_G_SSO
Mobile. Browse: /my_bag
Mobile. Browse: /checkout
Mobile. Checkout. Payment: PAY_CREDIT
Web. PDP: /shop/product/9134453
Web. PDP: /shop/product/9110090
Call. Request: RETURN
Web. PDP: /shop/product/9160002
Web. Login. Auth: AUTH_PASS

Figure R1.2: An example of visualization for web events attribution weights. The darker color cor-
responds to the bigger contribution, so that Call. Request: DELIVERY_STATUS event
appears to be a precursor for Call. Request: RETURN event.

The two outputs described above, that is the probability of a certain outcome and
the contribution of various events and other factors into this outcome, correspond to
the lower part of Figure R1.1. Note that, in terms of the scenario planning framework,
the goals we set basically correspond to the analysis and forecasting of customer tra-
jectories which we chose to be represented as event histories. We discuss how one can
achieve these goals using machine learning methods in the next section.

r1.2 solution options

Customer data usually represent a mix of attributes such as the age, gender, payment
plan, and event sequences. This suggests two modeling approaches. The first one is to
aggregate the event sequences into a fixed set of features, concatenate it with the cus-
tomer attributes, and then build a vector-input model using the designs discussed in
section 2.3. The second option is to focus on the analysis of event sequences and use se-
quential model architectures described in section 2.4. We discuss these two approaches
separately in the next two sections.

r1.3 models with aggregated features

One of the most basic techniques for propensity scoring is so-called look-alike modeling
with aggregated features. This approach is based on the assumption that the future be-
havior of a customer who needs to be scored is likely to follow the behavioral patterns
of customers who were in a similar state at some time in the past. The typical design of
such a look-alike model is illustrated in Figure R1.3, and the implementation process
usually includes the following steps:

R1.3 models with aggregated features 201

• First, we have to specify the target label based on the outcome that we are wanting
to predict. It can be a click on a banner, a purchase, account cancellation, or an
aggregated metric such as the total customer spend over the next three months.

• Second, we need to engineer customer features. The feature vector can include
account data (age, location, or payment method), and aggregated features derived
from the event history. Examples of aggregated features include total spend over
a certain period of time, frequency of purchases or clicks, time since the last
purchase, as well as the breakdown of these aggregates by product categories,
marketing channels, and time intervals. Each customer is thus mapped to a fixed-
length vector because the number of features does not depend on the length of
the event history.

• Third, we have to collect a number of representative customer records, compute
the target label and features for each record, and fit a model that estimates the
training label based on features. This is illustrated in the upper part of Figure R1.3:
assuming that each customer is represented by a vector x of k features, and we
have n training samples, the input of the model training process will be an nˆ k
design matrix and n-dimensional vector of target labels y. Depending on the
target label, we can either fit a regression model fr that estimates a real-valued
target such as the purchase total as

y “ frpxq (R1.2)

or a classification model fc that estimates the probability of a binary outcome
such as a conversion event as

ppy “ 1q “ 1´ ppy “ 0q “ fcpxq (R1.3)

or otherwise a multinomial classification model fmc that produces a tuple that
specifies the distribution of probabilities over several classes of possible outcomes
c1, . . . , cl:

pppy “ c1q, . . . , ppy “ clqq “ fmcpxq (R1.4)

The fitting process, of course, includes multiple sub-steps including feature selec-
tion, algorithm selection, hyperparameter tuning, validation, and diagnostics.

• Finally, the model can be evaluated for new customers, as shown in the lower
part of Figure R1.3. The input vector will typically be computed on the time
interval with the same length as for the training, but with an offset so that its
end matches the scoring time. Note that the time intervals used for computing
features and training labels are not necessarily adjacent as we might need to
include a time buffer that is required to take a marketing action. For example, we
might be interested to identify customers who are likely to churn in two months
to treat them with a retention package, but not customers who are likely to churn
in less than a month which leaves no time for treatment.

The common implementation choices for look-alike modeling include traditional ma-
chine learning methods such as linear regression, logistic regression, gradient boosted
decision trees, and neural networks with vector inputs. However, regardless of the
model type, the basic approach described above has several important limitations:

202 propensity modeling

Cu
st

om
er

s
(n

)

Aggregated features (k) Target labels

xn

x1
x2

yn

y1
y2

Event histories and
profile data

Outcomes and
buiness objectives

Model
training

time

Model
scoring

time

x y

Training

Scoring

Time

... ...

Figure R1.3: A typical layout of the input data for look-alike model training and scoring.

event aggregation. One of the main disadvantages of the traditional look-alike
model design is that the information about individual events and their temporal
structure can be lost in aggregation. Theoretically speaking, it is always possi-
ble to design an aggregation schema that preserves all the information that is
essential for accurate prediction and attribution, but it is not always achievable in
practice.

engineering effort. The feature engineering effort for look-alike modeling can be
considerable for several reasons. First, event histories are often available in the
form of application logs or other sources with volatile, fragmented, and poorly
documented data schemas, and one needs to understand the semantics of these
data to engineer meaningful features. Second, even if the event-level data is read-
ily accessible, designing a good information-preserving aggregation strategy is
usually a nontrivial problem.

explainability. A look-alike model is typically a standard classification or regres-
sion model, so one can typically use standard techniques such as Shapley values
to explain how exactly the prediction depends on the input features. This, how-
ever, does not necessarily help to understand the event patterns and evolution of
the customer behavior over time because the input features are aggregated.

These limitations can only be addressed to a certain extent within a framework with
aggregated features, which can be more or less critical depending on a specific appli-
cation. However, we can attempt to develop an alternative framework that allows us
to efficiently model and analyze event sequences whenever it is necessary. We explore
this approach in the next section.

R1.4 event sequence modeling 203

r1.4 event sequence modeling

One of the standard solutions for sequence modeling is recurrent neural networks
(RNNs) introduced in Section 2.4.4. The RNN approach offers several benefits including
a large collection of models developed in the context of natural language processing
and other applications, ability to handle variable-size input structures, higher accu-
racy compared to the models with aggregated inputs, and advanced interpretability
features.

r1.4.1 Scoring

One of the most basic RNN-based designs for propensity scoring is shown in Fig-
ure R1.4. It is a pure long short-term memory (LSTM) network that consumes a k-
dimensional event vector at each step. So the training set is a kˆmˆ n tensor where
m is the maximum length of the event history and n is the number of samples. The
output is produced based on the final state of the LSTM cell using a dense layer. The
hidden state vector h can be viewed as a low-dimensional embedding of the customer
which evolves over time as the customer history grows.

Event
features

(k)

History
samples (n)Events in history (m)

LSTM LSTMLSTM

1 x q

���

h1

1 x 1

ŷ

1 x k

[1]

Layer
output shape

[m x k]

Dense layer

hm

x1 xm

Figure R1.4: The design of a basic event-level propensity model using LSTM. The size q of the
hidden state vector is a hyperparameter of the model.

204 propensity modeling

The LSTM-based propensity model helps to reduce the engineering effort because
feature engineering for individual events is generally easier than for the entire cus-
tomer history. It can also achieve higher accuracy than aggregated-input models be-
cause of proper handling of temporal event patterns. In particular, it can outperform
aggregated-input models on short event histories. This can be useful in applications
where it is important to detect certain behavioral traits at early stages. For example,
in customer churn prevention, a service provider is generally interested to identify
high-risk customers at as early a stage as possible to start handling them accordingly.
Another important example is session-based recommendations where the majority of
event sequences can be as short as 2-3 events. In such settings, advanced collaborative
filtering methods such as factor models might not be applicable, and more basic meth-
ods, such as nearest neighbors, are not especially accurate, but RNN-based models can
perform reasonably well [Hidasi et al., 2015]. Because of these benefits, RNN-based ar-
chitectures were tested by many technology companies including Netflix, Google, and
Snap with generally positive results [Hidasi et al., 2015; Wu et al., 2017; Yang et al.,
2018].

r1.4.2 Event Attribution

Although the basic LSTM architecture is able to learn the event patterns efficiently, it
does not provide convenient tools for event attribution analysis. One possible approach
is to analyze the dynamics of the hidden state vector. Since the hidden state is basically
a customer embedding that can capture the semantics of customer behavior, it can
potentially provide nontrivial insights into the evolution of the customer state and
correlate these with the events [Lang and Rettenmeier, 2017]. The shortcoming of this
approach is that LSTM does not provide any guarantees with regard to the orientation
or semantic meaning of the dimensions of the hidden state, so this type of analysis can
be involved and complicated.

A more robust solution can be created by using the attention mechanism introduced
in Section 2.4.6. The attention mechanism can help to improve the accuracy of the
model, and it also enables event attribution by producing the attention weights. The
detailed design of a propensity model with an attention layer is shown in Figure R1.5.
This design closely follows the description provided in Section 2.4.6. The intermediate
outputs of the LSTM cells h are mapped to the scalar attention weights a, and the
history vector s is computed as a weighted sum of all intermediate outputs. Note that
the history vector s produced by the top layer of the model can be augmented with
profile features, thanks to the flexibility of neural networks that allow the concatenation
of multiple inputs.

The attention layer can be used to produce a vector of m attention weights for any
event history. These vectors then can be used in several different ways. First, individual
vectors can be analyzed in isolation to understand what drove a particular customer
to a particular state or outcome. Second, weight vectors can be averaged by customer
cohorts to analyze typical event patterns and differences between the cohorts. Finally,
one can attempt to cluster customers in the space of weight vectors to determine cohorts
based on the event patterns. We demonstrate the first two techniques in action in the
next section, and come back to the third idea in Recipe R2 (Customer Feature Learning).

R1.5 prototype 205

LSTM

1 x q

softmax

1 x 1

1 x q

repeat

LSTM

History
samples (n)Events in history (m)

ŷ

���

Attention layer

1 x 1

softmax

1 x 1

1 x q

repeat
1 x 1

1 x q
[m x q]

[m]

[m]

[m x q]

[m x q]

[q]

[1]

Layer
output
shape

[m x k]

Event
features

(k)

Customer features
can be appended

���

���

���

���

���

n
m

Attribution weights

Dense layers

x1 xm

h1 hm

a1 am

s

Figure R1.5: The design of a propensity model using LSTM with an attention layer.

r1.5 prototype

The complete reference implementation for this section is
available at https://bit.ly/3EmKfg9

https://bit.ly/3EmKfg9

206 propensity modeling

In this section, we implement a basic prototype of the LSTM-based propensity model
according to the blueprint we developed in the previous section. We aim to demonstrate
the mechanics of the model in a clear and illustrative way, so we use a toy setup that
allows us to examine every detail but avoids the complexities and controversies of real-
world datasets. Model testing in a more realistic setup with real-world data is, of course,
also important, and we get to this in the next section.

We are going to prototype a basic workflow presented in Figure R1.6 that consists
of a simple data generator, model training and validation steps, and analysis of the
attention weights computed using the model. The main outputs of this workflow are
the propensity model that can be used for scoring of new event histories and attention
weights that can be used for the history analysis, so it addresses the main business
goals we posed at the beginning of this recipe.

Event histories

Train/validation
split

Model training

Model validationAttention weights

Attention weights
clustering

Figure R1.6: The implementation plan for the prototype.

We start by generating a dataset of event histories with a simple pattern. The struc-
ture of this data is shown in Figure R1.7. Each event history is a sequence of 20 events,
and each event is represented by just one real value. The histories are labeled as either
positive or negative. In both positive and negative samples, the event values follow a
smooth sine pattern, but two randomly chosen samples around 12th and 16th positions
are amplified in positive samples, as clearly visible in Figure R1.7. We then add white
Gaussian noise, so the pattern becomes less apparent but is still recognizable, as shown
in Figure R1.8. We generate a balanced dataset of 10,000 event histories (samples) with
half of them being positives and the other half negatives.

The event values, including the ones amplified in the positive samples, are zero-
centered, so the average history in both positive and negative cohorts is a zero line as
shown in Figure R1.9. Consequently, we cannot differentiate between the cohorts based
on the mean event values.

The next step is to specify and train the model. We implement LSTM with an atten-
tion mechanism according to the architecture shown in Figure R1.5, and then use 75%
of the samples for training, and 25% for validation. The ROC curve for the fitted model

R1.5 prototype 207

0 2 4 6 8 10 12 14 16 18
Time

0
4
8

12
16
20
24
28

H
is

to
ry

 ID

Positive samples

0 2 4 6 8 10 12 14 16 18
Time

Negatie samples

−3

−2

−1

0

1

2

3

Figure R1.7: A sample of the input data for the prototype model before adding noise.

0 2 4 6 8 10 12 14 16 18
Time

0
4
8

12
16
20
24
28

H
is

to
ry

 ID

Positive samples

0 2 4 6 8 10 12 14 16 18
Time

Negatie samples

−3

−2

−1

0

1

2

3

Figure R1.8: A sample of the input data for the prototype model after adding noise.

is shown in Figure R1.10, and it is a reasonable result providing a relatively high level
of noise and illustrative purpose of this prototype.

At every model evaluation for a given input sequence of events, the attention weights
are computed internally, and their values can be captured and analyzed. For example,
Figure R1.11 shows a plot of attention weights for one of the event histories. We can
see that the attention weights peak between the 12th and 16th positions because this
is where the differentiators between the positive and negative samples are located. Av-
eraging the attention weights by cohorts, we see that this pattern is persistent, and
the positive cohort has a distinctive signature in the space of the attention weights, as
shown in Figure R1.12. Note that the model puts the emphasis on the end of the event

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8

Ev
en

t

Mean positive
Mean negative

Figure R1.9: Event values averaged by positive and negative cohorts.

208 propensity modeling

0.0 0.2 0.4 0.6 0.8 1.0
Fall-out (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Receiver Operating Characteristic (ROC)

AUC = 0.864

Figure R1.10: The ROC curve for the prototype model.

history in both positive and negative cohorts because the presence and the absence of
the amplified event samples are both informative.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

At
te

nt
io

n
w

ei
gh

t Attention weights

Figure R1.11: An example of attention weights for a specific event history.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time

0.04

0.05

0.06

0.07

0.08

0.09

At
te

nt
io

n
w

ei
gh

t

Postive weight profile
Negative weight profile

Figure R1.12: Attention weights averaged by positive and negative cohorts.

A more practical and generic way of analyzing the space of attention weights is clus-
tering. For instance, computing attention vectors for all event histories and projecting

R1.6 case study 209

these vectors onto a two-dimensional plane using t-SNE, we observe the separation of
positive and negative cohorts, as illustrated in Figure R1.13. This result is not particu-
larly useful because the target labels have to be known in advance to train the model,
but it can be useful in real-world settings where positive and negative cohorts have so-
phisticated internal structures. For example, a telecom company that uses this approach
to build a churn model can attempt to cluster the churned customers in the space of at-
tention weights and analyze typical patterns such as frequent calls to customer support,
multiple billing plan changes, and usage of certain services.

−20 0 20
−40

−30

−20

−10

0

10

20

30

40
Positive
Negative

Figure R1.13: Event histories in the space of attention vectors.

The prototype developed above demonstrates how to prepare the inputs and process
the outputs of the event-level propensity model. In practice, a propensity scoring solu-
tion usually includes many more steps such as the comparison with baseline models
and hyperparameter tuning. We discuss some aspects of this broader scope in the next
section.

r1.6 case study

The complete reference implementation for this section is
available at https://bit.ly/3LbI2rJ

Let us now evaluate the event-level propensity model in a more realistic setup. We
choose to use a larger dataset with a realistic feature layout created based on statistics
collected from a digital media company that sells its services on a subscription basis.
The dataset includes about 9,000 user profiles with basic demographic and subscrip-
tion features. For each user, daily usage statistics that include the number of viewed
and previewed media items, as well as in-application time, are available, and the total

https://bit.ly/3LbI2rJ

210 propensity modeling

number of daily usage records is about 2.3M. The short samples of the profile and log
tables are provided below.

User profiles: 8979 rows x 7 columns
+-------+-----------+-------+----------+--------------+------------+-----------+
| uid | location | age | gender | reg_channel | reg_date | outcome |
|-------+-----------+-------+----------+--------------+------------+-----------|
0	15	17	female	3	2014-10-21	1
1	13	40	female	9	2006-05-26	0
2	14	23	male	9	2007-03-25	1
3	1	19	female	3	2014-11-02	1
4	1	0	nan	9	2014-11-08	1
5	21	21	male	9	2007-10-12	1
6	1	0	nan	7	2014-04-16	1
7	5	0	nan	9	2013-02-06	1
8	13	18	female	9	2013-02-06	0
9	5	29	male	9	2013-02-12	1
+-------+-----------+-------+----------+--------------+------------+-----------+

Usage logs: 2324214 rows x 5 columns
+-------+------------+---------+------------+------------+
| uid | date | views | previews | duration |
|-------+------------+---------+------------+------------|
1	2015-02-18	5	2	209
1	2015-04-12	12	3	376
1	2015-06-01	4	2	136
1	2015-07-22	12	17	562
1	2015-09-12	40	8	1021
1	2015-11-02	46	17	1261
1	2015-12-22	18	6	539
1	2016-02-11	5	9	238
1	2016-04-01	20	6	559
1	2016-05-23	6	0	197
+-------+------------+---------+------------+------------+

The semantic meaning of the profile fields is as follows:

• uid – user ID

• location – user location (city or region)

• age – user age

• gender – user gender

• reg_channel – user’s registration channel

• reg_date – user’s registration date

• outcome – a binary flag that indicates whether the user took a specific action of
interest or not

The fields in the usage logs table have the following meaning:

• date – activity record date

• views – how many media items the user has consumed

• previews – how many media items the user has previewed

• duration – how much time the user spent in the application

The dataset is balanced, and it contains approximately the same number of customers
who did and did not take the action of interest. We use this dataset to develop and com-
pare two models that predict the outcome label. The first model is based on aggregated
features, and we use it as a baseline. The second model is based on the architecture we

R1.6 case study 211

used in the prototype. Consequently, we have two modeling pipelines as shown in the
implementation plan in Figure R1.14.

User profiles

Train/validation
split

LSTM modelBaseline model

Model selection
and validation

Hyperparameter
tuning

Aggregation

Train/validation
split

Join

Partial aggregation

Hyperparameter
tuning

Usage logs

Model selection
and validation

Figure R1.14: The implementation plan for the outcome prediction example.

In the baseline pipeline, we aggregate logs computing the total number of views,
previews, and total duration for each user. These aggregated metrics are then combined
with the profile features. The baseline model represents a stack of three dense layers,
and the sizes of these layers are optimized using the hyperparameter search. Finally,
the result is validated using the hold-out samples.

In the LSTM pipeline, the aggregation step is optional – the usage logs can be con-
sumed by the model directly. However, in this particular dataset, the average length of
the event history is about 260 events with the longest one coming close to 800 events, so
we chose to partly aggregate daily records into weekly buckets. The second difference
is that the LSTM model has two separate inputs; events and profiles, that have differ-
ent shapes and are processed by separate network towers. The events are processed by
LSTM, while the profiles are processed by a single dense layer. The outputs are then
concatenated and passed through several dense layers on the top of the model.

The validation results for the baseline and LSTM models are shown in Figure R1.15.
The LSTM model outperforms the baseline in this setup, although the baseline can also
be improved with a more elaborate feature design. For example, one can replace the
total number of views and previews with several more granular aggregates such as the
totals for the last month, quarter, and year. In practice, however, both aggregated and
sequential approaches are valid and important, and one should evaluate both of them
when solving a specific problem.

212 propensity modeling

0.0 0.2 0.4 0.6 0.8 1.0
Fall-out (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Receiver Operating Characteristic (ROC)

AUC (Baseline) = 0.729
AUC (LSTM) = 0.783

Figure R1.15: The ROC curves for the baseline and LSTM models on the media subscriptions
dataset.

Both models provide basic introspection capabilities such as feature importance anal-
ysis, but LSTM can be enhanced with the attention layer to analyze event patterns
using the techniques we discussed in the previous section. The feature engineering
process is generally simpler and more straightforward for sequential models, although
both approaches require thoughtful consideration in that regard. For example, one can
consider rescaling daily metrics into weekly metrics to avoid very long sequences that
might not be handled well by LSTMs because of the signal decay.

r1.7 extensions and variations

We conclude this recipe with a brief discussion of additional topics related to the ef-
ficiency and practical usage of the sequential propensity scoring methods that were
developed in the previous sections.

r1.7.1 Advanced Sequential Models

In this recipe, we demonstrated that sequential models can provide certain advantages
over the models with aggregated features both in terms of accuracy and interpretability.
We used the LSTM-based design as an example, but a broader range of sequential
architectures, including transformers introduced in Section 2.4.7, can be applied to the
propensity scoring and other customer analytics problems. We will continue to develop
solutions using other types of sequential models in the next recipes.

R1.7 extensions and variations 213

We discuss transformer-based customer behavior models in
Recipe R6 (Product Recommendations).

r1.7.2 Convolutional Models

Customer behavior models inspired by traditional NLP architectures such as RNNs
and transformers are a good choice for many applications, but they are not the only
option. A powerful alternative solution is convolutional neural networks (CNNs). It
is indeed convenient to visualize event sequences as rows of pixels, as we did in Fig-
ure R1.6, or two-dimensional bitmaps in case the events are vectors, and then to use
a one-dimensional or two-dimensional convolutional network to process such bitmaps.
This approach makes sense because event sequences would normally have spatial pat-
terns both along the time axis and along the event dimensions.

r1.7.3 Target Label Design

Every propensity model requires the design of a training label, and the design of this
label is the key to getting meaningful business results. In this recipe, we assumed rela-
tively basic labels constructed using individual events such as conversions or clicks. In
practice, the design of the target labels can be far more complex to incorporate imme-
diate, strategic, engagement, and monetary considerations to ensure that the model ad-
dresses the right business goals. Consequently, the problem of the label design should
be studied in a broader context that includes the formalization of business objectives,
model operationalization, and marketing actions optimization. We discuss these topics
more thoroughly in the next recipes.

We discuss the relationship between business objectives, la-
bels, and action in Recipe R4 (Next Best Action) where we
develop a framework that not only estimates the propensi-
ties, but prescribes marketing actions.

r1.7.4 Operationalization

The design of the target label is not the only customization one needs to make in
order to build an end-to-end solution for a specific business problem using propensity
modeling. The solution development process for most problems includes exploratory
data analysis, creation of auxiliary models for data preparation, creation of one or

214 propensity modeling

several propensity models, reconciliation and operationalization of the scoring results,
and efficiency measurements. The design of such a process depends heavily on the
business problem, data availability, and other factors, so it is challenging to specify a
framework or template that fits all problems and situations. In the next recipes, we will
discuss more operationalization techniques and examples in the context of specific use
cases.

r1.8 summary

• Propensity scoring is the approach to customer analytics and personalization
problems that are based on estimating the probability of a given customer behav-
ing in a certain way. Typical use cases include the propensity to click, conversion,
fraud, and churn.

• Operationalization of propensity models requires the design of training labels
that reflect the business objective, creating a model that allows estimation of the
propensities, and analyzing the event attribution weights.

• The traditional approach to propensity modeling is to aggregate individual events
from the customer history and to fit a generic linear or nonlinear approximator.

• More specialized models that process event sequences can outperform models
with aggregated inputs. In particular, RNNs offer a comprehensive toolkit for
this type of modeling and they are commonly used in practice.

• Event-level models can help to reduce the feature engineering effort, improve the
overall accuracy, and detect high-propensity customers in the early stages of their
journeys.

• RNN models offer advanced capabilities for event-level analysis of customer be-
havior. An example of such capabilities is the attention mechanism that can be
used to analyze individual event histories and identify typical patterns by clus-
tering the space of attention weights.

Recipe

2

C U S T O M E R F E AT U R E L E A R N I N G

Learning Representations for Customer Analytics and Personalization

Many marketing analytics and personalization problems, including propensity mod-
eling, product recommendations, and customer segmentation require engineering a
representation of a customer that properly captures demographic and behavioral traits.
These representations need to be useful for computing similarities between customers,
informationally complete to be consumed as inputs by downstream models, and, ide-
ally, semantically interpretable.

In Recipe R1 (Propensity Modeling) we discussed several approaches for creating cus-
tomer representations. One of the options was the manual engineering of aggregated
features. The second alternative was to use the hidden state vector of the LSTM-based
model as a customer embedding that compactly represents the event history, preserv-
ing the information about the chronological order of the events. In this recipe, we study
how to create useful customer representations and representations of other related en-
tities, in greater detail.

We use the term Customer2Vec to refer to the class of methods and algorithms that
help to create compact customer representations, but the synonymous terms User2Vec
and Client2Vec are also common in the industry. The same nomenclature is often used
for other entities, and we will discuss Item2Vec and Session2Vec problems in this recipe
as well.

r2.1 business problem

The customer representation problem can be viewed from several different perspectives.
The first of these is the complexity of feature engineering and the level of effort associ-
ated with it. Feature engineering for customer entities can be relatively straightforward
in most basic environments where each customer is represented by just a few attributes
such as age, location, or registration date. Many companies, however, have access to a

215

216 customer feature learning

much broader range of customer data including transaction histories, clickstream logs,
and social connection graphs. Unlike the basic demographic attributes which typically
have a clear structure and semantic meaning, these alternative datasets can be unstruc-
tured and noisy which makes representation engineering more challenging.

For instance, consider the clickstream data that is available as a web server log where
each event is represented by a timestamp, event type, and multiple pairs of event at-
tribute names and values as shown below:

1607008 | web_thumb_click | prod_id:8330 | page:3 ...

The semantics of the attribute fields might not be properly documented, can be
changed at the developer’s discretion, and complex semantic dependencies can exist
between the events. These factors make it challenging to manually engineer behavioral
features based on such logs without information losses. The problem becomes even
more complicated if we attempt to incorporate product metadata replacing product
identifiers in the above log with a collection of product attributes and their values. The
information about product categories and styles the customer interacted with and the
sequence of interactions can improve the customer feature vector, but combining all
these pieces with minimal information losses is a challenge.

The second aspect of the representation engineering problem is that we might need
to create embeddings not only for customers, but for other entities such as web ses-
sions, products, and even individual product attributes. For example, a personalization
or recommendation system might need to make a decision based on the current web
session if the user is anonymous or the quality of personalization depends largely on
the current usage context and micromoment [Arora and Warrier, 2016]. This requires
compiling a semantic representation of a session that summarizes the real-time con-
text that informs personalization decisions. Another typical use case is the inclusion
of new products for which behavioral data are not yet available, into personalized rec-
ommendations. This problem, commonly referred to as the cold start problem, can be
approached in several different ways, one of which is to compute embeddings for indi-
vidual product attributes and features based on behavioral data, and then to synthesize
embeddings for new products according to their attributes and features. These exam-
ples suggest that one can benefit from developing a flexible and generic embedding
learning toolkit that can be applied to the entities and data sources that are typical in
marketing operations.

The third and final perspective on the customer representation problem is how em-
beddings are used and what functional flows can be improved using representation
learning algorithms. One canonical use case is customer segmentation which generally
requires the specification of a customer representation space and then performing clus-
tering in this space. More broadly, embeddings can be consumed by a wide range of
personalization and recommendation models as inputs. This versatility makes repre-
sentation learning an important problem that can substantially simplify and improve
many marketing intelligence workflows.

We summarize the above considerations in Figure R2.1 that depicts how data sources,
different types of embeddings, and downstream models are related.

R2.2 solution options 217

Demographics

Representation
learning / engineering

Propensity and
recommendation models

Segmentation and
analytics

Event logs

Product attributes

Connection graphs

Customer
embeddings

Product
embeddings

Session
embeddings

Execution systems

Figure R2.1: The role of representation learning in the context of customer analytics and personal-
ization.

r2.2 solution options

Customer embedding learning is an instance of the representation learning problem
discussed in Section 2.6, so we have a broad range of standard methods at our dis-
posal. Assuming that the input data are sequences of interaction events, which is one
of the most common use cases, we can apply the methods typically used in NLP to
learn element embeddings from sequences. Customer analytics and NLP indeed have
a lot in common because both disciplines deal with sequences of tokens (events and
words, respectively) with complex semantic relationships. More specifically, it is easy
to recognize that entities like customers, sessions, and orders can be thought of as texts
comprised of event-words or product-words. The same approach can be used to learn
customer embeddings from more specialized types of data such as financial transaction
graphs.

We can also extend the unsupervised representation learning methods with a guid-
ance signal to create embeddings that are discriminative with regard to certain cus-
tomer properties, such as the affinity to a marketing channel. We refer to such methods
as semi-supervised. Finally, we can extract embeddings from the supervised propensity
models developed in Recipe R1 (Propensity Modeling).

218 customer feature learning

r2.3 learning from event sequences

In this section, we entertain the idea of learning customer embeddings using NLP-
related models starting with relatively basic methods and gradually moving on to
more advanced designs. We use Word2Vec model and its variants to demonstrate the
approach, but other methods for learning element embeddings from sequences can be
applied as well.

r2.3.1 Learning Product Embeddings

As an introductory example, consider a database of customer orders in which each
order normally includes multiple products (e.g. a grocery business). We can inter-
pret each order as a sentence and each product as a word and apply the standard
Word2Vec model introduced in Section 2.6.3 to learn product embeddings, as shown in
Figure R2.2.

Order ID	Product ID (order-text)
43532422 | "121774 78433 324400 980034 896953 988832 6092335..."
64432223 | "234437 855620 7002533 621333 564222 89770 2312757..."

Word2Vec

Product
embeddings

Figure R2.2: The basic Item2Vec model.

This class of models, known as Item2Vec [Barkan and Koenigstein, 2016], can pro-
duce useful product embeddings that capture purchasing or browsing patterns and
reveal the affinity between products that are perceived or used in similar ways by cus-
tomers. We discuss the usage of embeddings produced in this way comprehensively
in the next sections, and demonstrate that these embeddings are often aligned with
canonical product categorizations, such as music genres (in the case of media products)
or departments (in the case of a department store).

r2.3.2 Mixing Behavioral and Content Features

The beauty of the Word2Vec approach is that the basic solution described in the previ-
ous section can be extended in many ways to incorporate multiple heterogeneous data
sources. For example, one can incorporate content data by replacing product IDs with
product attributes [Arora and Warrier, 2016]. In this way, orders or web sessions can be

R2.3 learning from event sequences 219

represented as flat sequences of product attributes and attribute embeddings can then
be learned, as illustrated in Figure R2.3.

12345 123.123.123.123 "Urchin Store"
[26/Aug/2003:11:43:02 -0700] 192.73 "San
Diego" "CA" 92101 "US" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1;)"
"utma=171060324.2734232095.
1061444425.1061444425.1061444763.2"
....

Session log

Order ID	Attribute ID (order-text)
43532422 | "COLOR_GRAY SIZE_XL BRAND_ZARA COLOR_CYAN FABRIC_COTTON ..."
64432223 | "BRAND_GUESS STYPE_SLEEVELESS OCCASION_PARTY BRAND_TOMMYHILFIGER ..."

Attribute
embeddings

Product ID	Attribute
6653222 | COLOR_GRAY
6653222 | SIZE_XL
6653222 | BRAND_ZARA
4311274 | COLOR_CYAN
4311274 | FABRIC_COTTON
4311274 | BRAND_PUMA
....

Product attributes

Product
embeddings

Session
embeddings

User
embeddings

Word2Vec

Figure R2.3: An Item2Vec model with product attributes.

This approach blends behavioral data efficiently with product data, capturing both
purchasing patterns and attribute-based product similarities. The obtained attribute
embeddings can be rolled up into product embeddings, then session embeddings, and
finally customer embeddings. This rolling-up process can usually be done through
simple averaging. For example, a product embedding can be computed as the average
of the embeddings of all its attributes.

The above approach can be extended to incorporate even less-structured content data.
For example, one can replace product attributes with human-readable textual product
descriptions (lists of words instead of lists of attributes) if structured attributes are
not available or not informative enough, and embeddings can be learned using the
same off-the-shelf Word2Vec algorithm [Stiebellehner et al., 2017]. Surprisingly, one

220 customer feature learning

can obtain good results this way without dealing with complex feature engineering
or fragile relevancy tuning, which are required by traditional hybrid recommendation
algorithms.

The embeddings learned using the Item2Vec methods discussed in this and previous
sections can be useful in several applications, including the following:

item-to-item recommendations Product embeddings computed using Item2Vec
allow for measuring distances between products in the semantic space, and this
can be used to build an item-to-item recommender system [Phi et al., 2016].

user-to-item recommendations Embedding roll-up enables the computing of
customer embeddings, which in turn enables user-to-item recommendations or
similar personalization use cases [Phi et al., 2016; Arora and Warrier, 2016].

contextual recommendations Consider the following scenario: a customer who
visits an online fashion store might be shopping in several different modes or con-
texts. They might be looking for a specific product, a specific style, or a certain
combination of products, such as socks and shoes. Understanding this context
is essential for a personalization system. This can be done by computing session
embeddings and then measuring the distance between the session and personal-
izable items, such as products, in the semantic space.

automated feature engineering Item2Vec models learn embeddings in an un-
supervised way from data that is easy to engineer (e.g. sequences of product IDs),
which makes them a good feature extraction component that can be integrated
with downstream customer models. We develop this idea further in the following
sections.

analytics and segmentation Similar to the recommendation and propensity
modeling use cases, products and customers can be analyzed and segmented
more efficiently in embedding spaces than in spaces of manually engineered
features. We explore this idea more thoroughly in Section R2.7 where we build
prototypes.

r2.3.3 Learning Customer Embeddings

The Item2Vec models described in the previous sections can produce customer embed-
dings using roll-ups, but this is not the only approach. Another natural solution is to
use Doc2Vec instead of Word2Vec.

Word2Vec learns from plain sequences of tokens and uses the notion of a sentence
only to reset the learning context. It does not support any hierarchical relationships,
such as product Ñ order Ñ customer. This is clearly a limitation because the distribu-
tion of events in a customer journey depends not only on the global event patterns but
also on the context of a specific customer. In the NLP world, an equivalent problem is
the learning of sentence embeddings, as opposed to word embeddings. One of the stan-
dard solutions for this problem is Doc2Vec, which directly generates sentence embed-
dings. We can adapt Doc2Vec to learn customer embeddings from customer-sentences.
The difference between these two approaches can be clarified as follows:

R2.3 learning from event sequences 221

• Word2Vec is based on the idea that word representation should be good enough
to predict surrounding words (e.g. "the cat sat on the" predicts "mat"). This makes
sense for product representations as well (e.g. "wine cheese" predicts "grapes").

• Doc2Vec is based on the idea that a sentence (document) representation should
be good enough to predict words in the sentence. For example, "the most im-
portant Ñ thing" may be the best prediction on average, but "the most impor-
tant Ñ feature" may be the best prediction for a text on machine learning. Simi-
larly, a good customer embedding should predict future events for that specific
customer. Customer embeddings obtained by averaging the product embeddings
associated with customer interaction history do not necessarily achieve this goal.

The Doc2Vec approach to learning customer embeddings is illustrated in Figure R2.4
[Phi et al., 2016; Zolna and Romanski, 2016]. The main difference between this schema
and the designs we presented in the previous steps is that the algorithm outputs em-
beddings for customers (sentences), not products (words). This category of models is
commonly referred to as User2Vec, Client2Vec, or Customer2Vec.

Doc2Vec

Customer
embeddings

Customer ID	Product ID (customer-text)
456770422 | "456322 879043 324454", "435532 998549 635223 236522", ...
114200098 | "766300 354332 988999 790890", "334222 890032 888550 553221", ...

Figure R2.4: The basic Customer2Vec model.

r2.3.4 Learning Embeddings from Logs

We have seen that the sequential modeling approach allows one to blend behavioral
and content data in various ways as well as to produce embeddings for different levels
of aggregation, such as attributes, products, and customers. These embeddings can
then be absorbed as features by downstream models such conversion propensity or
price sensitivity scoring models. In some cases, the quality of embeddings can be high
enough to completely eliminate manually engineered features and replace them with
embeddings that are automatically generated by Item2Vec or Customer2Vec algorithms
[Seleznev et al., 2018].

We can, however, develop even more advanced and autonomous Customer2Vec so-
lutions by recognizing that the customer-as-a-text paradigm not only helps to leverage
NLP methods for customer analytics purposes, but can also be taken literally because
customer data often originates in application logs which are basically semi-structured
texts. For example, consider a website or mobile application that continuously logs

222 customer feature learning

events with a timestamp, event type (e.g. click or view), event attribute (e.g. page ID
and click coordinates), and other fields. Consider also a data scientist who is tasked
with engineering features for some models out of these log files. In practice, this task
can be quite challenging because one needs to study log samples thoroughly, under-
stand the semantics of fields, learn how multiple related events can be stitched together,
examine corner cases, and so on. However, one can approach the problem from a differ-
ent angle: event names and attributes can be automatically concatenated into discrete
tokens, which can be grouped into customer-sentences, and then Customer2Vec can
be applied [Seleznev et al., 2018]. This approach is illustrated in Figure R2.5 where
the tokens are obtained by concatenating the event names, attributes, and values. This
example demonstrates how the Customer2Vec approach can reduce the engineering
effort and simplify the operationalization of customer analytics solutions.

timestamp | event_name | {attribute:value, ...}
Oct 11 21:17:07 UTC 2019 | web_thumb_click | {prod_id:8330, search_page:3, ..}
...

Application log

Customer ID	Customer-text
73773336 | "web_thum_click__prod_8330 web_thum_click__search_page_3 ..."
19216420 | "web_pdp_scroll__prod_20098 web_pdp_promo_yes web_pdp_recommenda..."

Word2Vec or Doc2Vec

Customer
embeddings

Figure R2.5: Unsupervised customer embedding learning from application logs using Cus-
tomer2Vec model.

r2.4 learning from graphs , texts , and images

We have seen in the previous sections that the Customer2Vec concept is flexible enough
to extract informative signals from behavioral, content, structured, and unstructured
data. In this section, we briefly discuss how the Customer2Vec toolkit can be extended
to incorporate graphs, texts, and images into the analysis.

The need to incorporate graphical data often appears in financial institutions such
as banks that work with a large number of very different customers, including individ-
uals, companies from various industries, and public services. The financial institution
observes transactions between these entities and can build a graph in which nodes

R2.5 semi-supervised methods 223

represent entities and edges correspond to transactions and interactions. We can ob-
tain valuable insights about the needs of individual entities, their operational efficiency,
and roles in the global value chain by examining the topology of this graph. For exam-
ple, a manufacturer that transacts with a large number of international suppliers and
carriers has different needs compared to a manufacturer that interact with just a few
suppliers and carriers. Embeddings that capture such signals can be used to segment
entities, recommend relevant financial services, and perform other customer analytics
and relationship management activities.

We can learn customer embeddings based on interaction graphs using Node2Vec,
a generic algorithm for learning node embeddings introduced in Section 2.7.2.3.
Node2Vec maps each node in the graph to a sequence of related nodes by randomly
traversing the graph outward from the given node, and then learns dense sequence
embeddings using the regular Word2Vec algorithm. Applied to transaction graphs and
financial entities, this procedure naturally captures common interaction patterns and
produces meaningful entity embeddings [Barbour, 2020]. The embeddings produced
by Node2Vec can be concatenated with embeddings produced by other Customer2Vec
models and consumed by downstream processes. The graph-based approach can, of
course, be used in many applications besides the financial sector. For example, product
recommendations can be made based on the graph of interactions between customers
and products [Eksombatchai et al., 2018; Ying et al., 2018]. We elaborate on this topic
in Recipe R6 (Product Recommendations).

The need to incorporate texts, images, and videos into customer and item embed-
dings often arises in content-rich applications such as retail and media services. In
many cases, content data can be easily mapped to dense embeddings using pretrained
language and computer vision models available from public repositories. In particu-
lar, we will discuss the mapping of product images in Recipe R5 (Visual Search) and
the mapping of textual product descriptions in Recipe R6 (Product Recommendations).
This approach works well when we need to extract generic topics from texts and im-
ages, and make them available for the downstream analysis or models. For example,
we can expect that images of shoes will be well separated from the images of dresses
in the embedding space produced using off-the-shelf computer vision models. This ap-
proach, however, does not necessarily work in applications that require embeddings to
be aligned with domain-specific objectives. In such cases, we can train networks in a
supervised way to map customers or items to vectors where the domain-specific classes
or metric levels become well separable, and use these vectors as embeddings. We will
discuss such methods in detail in Recipes R5 and R6 as well.

r2.5 semi-supervised methods

Our next step is to further develop the idea of automated embedding generation for
downstream models. The methods described in the previous sections partly solve this
task, but the limitation is that Word2Vec and Doc2Vec are unsupervised methods that
provide no guarantees regarding the predictive power of the produced embeddings. We
can attempt to ensure certain guarantees by combining unsupervised representation
learning with supervised learning that provides additional guidance and orients the
embedding space.

224 customer feature learning

One possible way to implement this idea is shown in Figure R2.6 [Seleznev et al.,
2018]. On the left-hand side, there is a standard Word2Vec model (continuous bag of
words version) that consumes the context, which consists of one-hot encoded tokens
(products, events, etc.). Then, it maps them to embeddings using the embedding matrix
W, passes through the nonlinear hidden layer, and unfolds the hidden vector into token
probabilities using the output matrix and, finally, softmax operation. The output is
the predicted token based on the input context. On the right-hand side is a regular
supervised model that predicts one or several business metrics of interest, such as
conversions, based on the same customer texts. This model can be viewed as a simulator
of the downstream models that are supposed to consume the customer embeddings.
The left and right networks are structurally independent but trained simultaneously –
the embedding weights are shared or copied between the networks after each training
epoch.

Customer-texts

softmax

1 1 1

1

Word2Vec (CBOW)

1×v

h×v

1×h

v×h

1×v

1×v1×v

Customer-text

More layers
(global average

pooling or LSTM)

Target
metric 1

Target
metric m...

Supervised model
with multiple
classificators

Dense
layer

w1, ..., wk

z1, ..., zk

zi
Embedding

matrix W

Hidden
layer

Output
matrix

Output layer
(one hot)

Input layer
(one hot)

Embedding
layer

Dense
layer

Figure R2.6: Guided training of the Customer2Vec model. In the graphics, v is the size of the
input vocabulary (number of distinct tokens), h is the dimensionality of customer
embeddings, m is the number of guiding metrics, and k is the number of tokens in
one customer history. Consequently, matrix W consists of v embedding vectors z, and
both Word2Vec and the supervised model use it to map each input token w to the
corresponding embedding.

This guided learning helps to align the semantic space with the business metrics and
improve the predictive power of embeddings. We can also draw some parallels between
this approach and LSTM-based propensity model discussed in Recipe R1 (Propensity

R2.6 autoencoding methods 225

Modeling). In the case of guided Word2Vec, we start with an unsupervised method
but enhance it with supervised guidance. In the case of LSTM, we start with a super-
vised model but extract embeddings from the hidden layer or attention layer. Thus,
both models can be viewed as hybrids. Moreover, one can use a multi-output LSTM
model that predicts several metrics based on the same hidden layer [Zolna and Roman-
ski, 2016], which makes the LSTM schema even more similar to the guided Word2Vec
model described above.

r2.6 autoencoding methods

We used Word2Vec and Doc2Vec models in the previous sections to demonstrate how
item and customer embeddings can be learned from the interaction data, but we can
apply other representation learning methods as well. This can be illustrated with the
autoencoder-based Customer2Vec model which can be viewed as an alternative to the
Word2Vec approach [Baldassini and Serrano, 2018; Seleznev et al., 2018].

The input of the model is an aggregated fixed-length customer representation, which
can be a vector of manually engineered features or a bag-of-words vector produced
from the customer-text. This input is encoded into a low-dimensional representation
using one or several neural layers, and the original input is then reconstructed from
this condensed representation. The network is trained to minimize the reconstruction
error, and the low-dimensional representation is interpreted as a customer embedding.
Optionally, the model can be extended with guiding metrics so that the overall loss
function is a weighted sum of the reconstruction loss and guides losses, as shown in
Figure R2.7.

x - customer profile
(bag-of-words or features)

x̂

Encoder

Decoder

Embedding

(dense
 layers)

Target
metric 1

Target
metric m

...

Guide (optional)(dense
 layers)

More layers

More layers

Figure R2.7: An autoencoder-based Customer2Vec model.

In practice, this approach may or may not provide advantages compared to
Word2Vec, depending on the input data and use case, but in general, it is a competitive
alternative.

226 customer feature learning

r2.7 prototype

The complete reference implementation for this section is
available at https://bit.ly/3L8o6pB

In this section, we develop a prototype that demonstrates how event histories can
be processed using Word2Vec and Doc2Vec models to capture sequential patterns. We
consider a toy model of an online apparel store that sells two categories of products:
hats and dresses. Each category is represented by two products, so we have 4 products
in total (2 hats and 2 dresses). Next, we assume two classes of customers:

class a The ‘category’ shoppers who come to buy either a hat or a dress. They tend to
browse only one category during one session, but can switch to another category
in a different session.

class b The ‘look’ shoppers who come to buy both a hat and a dress. They tend to
browse products from both categories in every session.

These two classes of shoppers are specified using two simple Markov chains shown
in Figure R2.8.

Dress 1

Dress 2

Hat 1

Hat 2

0.1

0.1

0.1

0.1

0.9

0.9

0.8

0.8

0.1

0.1

Dress 1

Dress 2

Hat 1

Hat 2

0.1

0.1

0.1

0.1

0.9

0.9

0.4

0.4

0.5

0.5

Customer model A Customer model B

Figure R2.8: Two customer models used for data generation. The models are structurally identical,
but have different cross-category transition probabilities.

It is easy to check that both models generate product sequences where all four prod-
ucts are equiprobable. We can do it analytically by checking that the flat distribution
over products is in fact the stationary distribution for both chains. The stationary dis-
tribution π for a Markov chain with transition matrix P satisfies the condition π “ πP,
and this indeed holds for the first model and flat π:

»

—

—

–

Hat 1 0.25

Hat 2 0.25

Dress 1 0.25

Dress 2 0.25

fi

ffi

ffi

fl

T

“

»

—

—

–

0.25

0.25

0.25

0.25

fi

ffi

ffi

fl

T »

—

—

–

Hat 1 Hat 2 Dress 1 Dress 2

0.1 0.9 0.0 0.0
0.4 0.1 0.5 0.0
0.0 0.0 0.1 0.9
0.5 0.0 0.4 0.1

fi

ffi

ffi

fl

https://bit.ly/3L8o6pB

R2.8 case study 227

The same is true for the second model. For the purpose of prototyping, we generate
10,000 browsing histories for each of two models, and each history is a sequence of
50 products. We also assume that each event history corresponds to exactly one cus-
tomer, so that the history representation and customer representation are synonymous.
First, we merge the generated histories together to produce a corpus of 20,000 history-
sentences, and feed them into the Word2Vec model to compute embeddings for the
products. Examples of embedding vectors are as follows:

Hat 1 Ñ [1.80 2.10 0.44 -1.99]

Hat 2 Ñ [1.11 2.14 1.94 -1.47]

Dress 1 Ñ [-0.97 -1.52 -1.56 2.65]

Dress 2 Ñ [-0.50 -3.05 -0.51 1.65]

We can see that the model properly captures category semantics, so that the embed-
dings for dresses are alike and the embeddings for hats are alike, while dresses and
hats are dissimilar.

The second step is to develop a Doc2Vec model that produces customer embeddings.
As we discussed above, product frequencies are the same for both models, so one can-
not tell which customer model produced a given sequence based solely on the product
frequency metrics. Consequently, we want customer embeddings produced by Doc2Vec
to be more useful than the basic product frequency histograms, so that we can deter-
mine the customer class based on the embedding. To demonstrate how two customer
classes separate in the semantic space, we feed the corpus of history-sentences into
the Doc2Vec model that produces an embedding for each history, randomly subsample
4,000 embeddings, and project them onto a two-dimensional plane using singular value
decomposition (SVD). An example result is shown Figure R2.9 where the embedding
projections are color coded according to the true customer classes. These true classes
are not visible to the Doc2Vec model, but the model manages to separate two cohorts
of customers reasonably well, based on the sequential event patterns.

r2.8 case study

The complete reference implementation for this section is
available at https://bit.ly/3Z44VTW

Our next step is to test the ideas we discussed earlier on a bigger and more realistic
dataset. We use a dataset created based on online grocery transaction data. This dataset
consists of about 3 million transactions (orders) that collectively include about 50 thou-
sand products (items). Each order is a collection of items that were sequentially added
to an online shopping cart and thus each order line is attributed with the sequence
number, as shown in the example below.

https://bit.ly/3Z44VTW

228 customer feature learning

4 2 0 2 4

0.4

0.6

0.8

1.0

1.2

True class
A
B

Figure R2.9: Customer embeddings projected onto a two-dimensional plane using truncated SVD.

Customer orders: 31433254 rows x 3 columns
+------------+-----------+-------------------+
| order_id | item_id | add_to_cart_seq |
+------------+-----------+-------------------|
431534	198	1
431534	12427	2
431534	10258	3
431534	25133	4
431534	10326	5
473747	198	1
473747	12427	2
+------------+-----------+-------------------+

The second part of the dataset is the item metadata which includes human-readable
item descriptions and mappings to the grocery store departments, as illustrated in the
following sample.

Items: 49220 rows x 3 columns
+--------------+--------------------------------+---------------+
| product_id | product_name | department |
+--------------+--------------------------------+---------------|
26225	Artificially Flavored Candi...	snacks
11391	Lavander & Aloe Lotion	missing
24737	Organic Micro Broccoli Spro...	produce
19383	Soup, 99% Fat Free New Engl...	canned goods
6440	100% Organic Tarragon	pantry
17358	Crossovers Maple Syrup Blen...	dairy eggs
30246	Micellar Makeup Remover Wip...	personal care
38666	Wheat Hot Dog Rolls	bakery
7812	Salisbury Steak Home Style ...	frozen
3822	Green Magic Chia Squeeze	snacks
+--------------+--------------------------------+---------------+

We create order-sentences concatenating the corresponding item IDs, and then feed
the corpus of such sentences into the Word2Vec model to learn item embeddings. The
quality of the obtained embeddings can be assessed in several ways. One basic valida-

R2.9 summary 229

tion is to review the nearest neighbors in the semantic space for individual products.
Consider the following two examples where the first product in each table is the start-
ing point, and its nearest neighbors are listed under it sorted by the distance:

+--------------------------------------+------------+
| product | similarity |
+--------------------------------------+------------|
> Bag of Organic Bananas	1.000
Organic Banana	0.744
Banana	0.720
Organic D’Anjou Pears	0.524
Organic Bosc Pear	0.487
Organic Raspberries	0.485
Organic Green Seedless Grapes	0.466
Organic Large Extra Fancy Fuji Apple	0.464
+--------------------------------------+------------+

+----------------------------------+-------------+
| product | similarity |
+----------------------------------+-------------|
> Organic Lowfat 1% Milk	1.000
Organic Reduced Fat Milk	0.863
Organic Homestyle Waffles	0.653
Organic Yokids Lemonade	0.624
Organic Mini Homestyle Waffles	0.620
Organic Whole Milk	0.613
Medium Cheddar Cheese Block	0.606
Organic Whole String Cheese	0.597
+----------------------------------+-------------+

These examples confirm that the embeddings capture the semantics of product cat-
egories. We can take one more step in this direction, and make a projection of all
embeddings onto a two-dimensional plane using t-SNE to visualize the structure of the
semantic space. In Figure R2.10, this projection is color coded using the ground truth
department labels. These labels are not exposed to the Word2Vec model in any way,
but we can see that the semantic space is aligned with them in the sense that the items
that belong to the same department tend to cluster in the semantic space as well.

The clusters in Figure R2.10 do not perfectly match the department labels, but this
is not the goal – the embeddings produced by Item2Vec and Customer2Vec modes are
expected to capture behavioral patterns, not just reproduce the canonical categorization.
However, it is expected that the behavioral patterns are partly aligned with the basic
attributes.

r2.9 summary

• Most personalization models and customer analytics processes require customer
and product representations as inputs. These representations can be engineered
manually or learned using statistical models.

• Customer and item representations often need to be engineered based on event
sequences or semi-structured data such as web server logs. This problem can be
efficiently tackled using sequential models that can be adapted to wide range of
text-like inputs.

• Word2Vec and Doc2Vec models are powerful tools for learning customer, item,
and session representations based on event sequences such as store transactions,

230 customer feature learning

40 30 20 10 0 10 20 30 40

30

20

10

0

10

20

30

Department
beverages
snacks
dairy eggs
produce
pantry
breakfast
household
deli
frozen
meat seafood

international
personal care
bakery
canned goods
dry goods pasta
alcohol
babies
missing
other
pets
bulk

Figure R2.10: An example of the semantic space for online grocery items. The 200-dimensional em-
beddings computed by a Word2Vec model are projected onto a plane using t-SNE.

online orders, and raw application logs. These models can be extended to incor-
porate product attributes and customer demographic fields.

• Training of unsupervised Word2Vec and Doc2Vec models can be guided using
target labels created based on the business metrics of interest. This helps to pro-
duce embeddings that properly capture the information needed for predicting
the business metrics.

• Supervised neural networks provide an alternative to guided Word2Vec. One
network can be used to produce embeddings for multiple entities (e.g. customers
and products), and it is often possible to extract embedding vectors at different
points (layers) of the network depending on features and entities of interest.

• The quality of embeddings can be assessed using their predictive power when
they are used as inputs to the downstream classification or regression models,
analysis of the nearest neighbors in the semantic space, and clustering.

• Embeddings produced by Customer2Vec, Item2Vec, and Session2Vec models can
be used in customer analytics, in-session personalization, product recommenda-
tions, and promotion targeting applications.

Recipe

3

D Y N A M I C P E R S O N A L I Z AT I O N

Recommending Products, Offers, and Content Using Contextual Bandits

The customer analytics and personalization methods discussed in the previous recipes,
as well as many other traditional methods, assume the availability of historical data
for model training and relative stationarity of the environment. This is so that the
trained models will remain valid for the time period needed for their operationalization.
These assumptions are acceptable for many use cases provided that we implement
appropriate experiment planning, model quality checking, and retraining processes.
This will ensure model correctness and proper control and mitigation of the issues
related to nonstationarity. In certain scenarios, however, it is challenging or impractical
to adapt traditional methods because the environment is highly dynamic, and various
overheads and efforts associated with model retraining and other adjustments become
prohibitively high. In this section, we explore alternative solution approaches that are
designed from the ground up to operate in dynamic settings and to do it as efficiently
as possible.

r3.1 business problem

We consider an online recommendation system that has a collection of k items such as
products, ads, or banners. We assume that the system operates in discrete time, so it
receives a request for a recommendation from user ut at time step t, determines the
recommended item at, and presents it to the user. We also assume that the recommen-
dation system has access to the database of user and item profiles that are represented
by feature vectors u and a, respectively, and can be used to optimize the recommenda-
tion decision. This environment is depicted in Figure R3.1.

Once the recommended item is presented to the user, the system observes reward rt.
The reward is usually designed based on the business metrics of interest. For example,
we can attempt to maximize the click-through rate. In this case, we can use the reward

231

232 dynamic personalization

value of one each time the user clicks on the recommended item, and zero otherwise.
In more complex scenarios, such as product recommendations on a retail website, the
reward can incorporate monetary metrics such as the order total or customer lifetime
value estimates. The overall performance of the system is measured as the sum of
rewards, also known as return, over a certain number of time steps across all users. We
also use the term impression to refer to one item exposure to a user, so the number of
time steps is equal to the number of impressions in this setup.

Recommendation
model

Items...

Online
systemUser ut

a1 ak Users

u

at

ut

at

New items New users

a

rt

Figure R3.1: The main components of the dynamic recommendation environment.

This environment generally allows the use of personalization methods that rely on
historical data, such as propensity scoring from Recipe R1 (Propensity Modeling) or rec-
ommendation models from Recipe R6 (Product Recommendations), to score the items
and select the optimal one. However, the problem changes significantly if we add the
requirement that the system needs to operate in a constantly changing environment.
More specifically, let us assume that new items and users are added at a relatively high
rate, and the old items and users fade away. A typical example of such settings is a
newsfeed recommendation system where news stories are constantly added and then
gradually become obsolete. Another example of this problem is an online retailer that
runs many short-term promotional campaigns in parallel, so the collection of promo-
tional banners that are shown to users on the website is frequently updated.

The assumption about the continuously changing collection of items and inflow of
new users means that the system should use the profile data whenever possible, but
it should also handle the situation efficiently when item profile, user profile, or both,
are missing or potentially obsolete. The latter case, that is, making recommendations
based on incomplete profile data, is known as the cold start problem. In the next section,
we discuss several solution options that address these challenges.

r3.2 solution options

Dynamic content personalization requires solving several problems including cold-start
optimization, personalization using known user and item features, and offline perfor-
mance evaluation. In the next sections, we begin by building a non-personalized content

R3.3 context-free recommendations 233

optimization engine that efficiently solves the cold-start problem using multi-armed
bandits. We then extend this engine with personalization capabilities.

r3.3 context-free recommendations

Let us first consider an extreme scenario where neither item nor user profiles are
available. The system starts to process recommendation requests having a collection
of k items, but there is no historical data, no item or user features, and all users are
new. We cannot personalize recommendations in this case, at least until the same users
start to return, but we can attempt to optimize the overall click-through rate in a non-
personalized way. This setup is also known as context-free optimization because all rec-
ommendation requests are identical and do not include any contextual information
such as user features.

One of the most basic solutions for the context-free optimization problem is to ran-
domly split the traffic into k streams, returning item ai to all requests in stream i until
enough rewards are collected to determine the best-performing item in a statistically
correct way. After this, switch all requests to that item to maximize the mean reward
over the entire user population. This approach is illustrated in Figure R3.2 (a) where
we refer to the split testing phase as exploration, and the reward optimization phase as
exploitation.

...a1 ak ...a1 ak

UCB

ut ut

a1
a2

...

ak

a1
a2

...

Exploration
Exploitation

ak

(a) (b)

Random

Time

Tr
affi

c
sh

ar
e

Time

Figure R3.2: Design options for context-free recommendations in a dynamic environment using
split testing (a) and multi-armed bandit algorithm (b). In the traffic share graphs,
item ak is assumed to be optimal in terms of a click-through rate, and the hatched
area corresponds to the total number of recommendation responses with this item.

An alternative solution can be implemented using multi-armed bandits introduced
in Section 4.3. In the multi-armed bandits formulation, we consider each item a as

234 dynamic personalization

an action, dynamically estimating item values Qtpaq at each time step, making recom-
mendations balancing between exploration and exploitation based on these estimates,
and gradually converging to the return-maximizing routing policy. This formulation
allows us to use a wide range of bandit algorithms, including the ε-greedy and UCB
algorithms. The bandit approach is illustrated in Figure R3.2 (b). From the theoreti-
cal standpoint, multi-armed bandits achieve better returns compared to two-step split
testing described above, but both methods are widely used in practice, and the choice
between the two depends on several considerations:

• Split testing explicitly aims to produce statistically significant value estimates for
each item. Multi-armed bandits do similar estimates internally, but the goal is to
rank items by their performance rather than by measuring the absolute values.
Consequently, split testing is often preferred in experiments where the results
need to be analyzed or multiple metrics need to be tracked. This can be the case,
for example, in testing of new product designs where the goal is to measure the
performance of each design and explain the results, not only to determine the
best-performing option.

• The multi-armed bandits approach is preferred when efficiency and automation
are the primary goals. For example, limited-time offers and other short-term cam-
paigns can be difficult to optimize using split testing, but multi-armed bandits can
produce good results. Multi-armed bandits may also be preferable in low-traffic
scenarios where split testing requires too much time to produce statistically sig-
nificant estimates, and in scenarios where split testing is prohibitively inefficient
because of the high costs of lost opportunities (e.g. luxury products).

• Split testing and multi-armed bandits can also be viewed as two different points
on the trade-off line between value estimation and optimization: split testing
tends to produce statistically significant estimates faster but achieves relatively
low returns; multi-armed bandits tend to produce relatively high returns but
take more time steps to determine the best item with statistical significance.

r3.4 contextual recommendations

We next consider the scenario where the recommendation context with user and item
features is available. In a static environment, the standard solution is to build a model
that estimates the expected reward prpu, aq as a function of the context, that is the con-
catenation of the user and item feature vectors, to score all items using this model, and
to recommend the item with the maximum score. This approach, entertained further
in Recipe R6 (Product Recommendations), assumes that the model is trained on the
historical data, deployed to production where a new batch of interactions is collected,
and then the model is retrained. In a dynamic environment, this approach faces several
headwinds:

• If the historical data is not available, we need to either make random recom-
mendations until a sufficient batch of samples is collected or to develop an aux-
iliary recommendation algorithm, for example rule-based, as an alternative to
completely random recommendations. If the training data were collected under a
nonrandom recommendation algorithm, we might need to account for selection
biases as discussed in Section 2.8.2.

R3.4 contextual recommendations 235

• The two main categories of recommendation algorithms, collaborative filtering
and content-based filtering, require behavioral data. In classic content filtering,
user profiles need to include past interactions with the items, so that a new item
is recommended based on its similarity to past items. However, the similarity
metric can be computed purely on the item’s content attributes. In collaborative
filtering, both user and item profiles need to include interaction data. Conse-
quently, many standard algorithms cannot handle new users or items efficiently
even if we manage to train the models on historical data.

In this section, we discuss how these problems can be approached by extending the
basic UCB algorithm with contextual signals.

r3.4.1 UCB with Warm Start

We can improve the handling of new items and users by combining a multi-armed
bandit algorithm with a recommendation model. One possible implementation of this
idea is to estimate the user-specific item value as a sum of two components. The first
of these is the context-free (non-personalized) action value Qtpaq which we used in
the previous section. The second component is the personalized estimate of the reward
prtpu, aq at time t produced using a static recommendation model. Consequently, the
user-adjusted item value function is as follows:

Qt,upaq “ Qtpaq `prtpu, aq (R3.1)

The final recommendation is then made using ε-greedy and UCB logic [Li et al., 2010].
In other words, we modify the standard context-free algorithm by shifting the context-
free value estimateQtpaq towards the user-specific bias prt. This design, known as multi-
armed bandit with warm start, is contrasted with the static recommendation algorithms
in Figure R3.3. The user profile generally includes both demographic and behavioral
features, and the item profile includes content attributes and behavioral features, so
the estimate prt can be more or less accurate depending on what data is available. The
advantage of this approach is that potentially inaccurate reward estimates for new
users and items produced by the model, as well as obsolete estimates in non-stationary
environments, are corrected using a context-free algorithm.

The warm start design is an intermediate solution that heuristically combines the
advantages of personalized and context-free methods. Our next step is to develop a
contextual multi-armed bandit that seamlessly integrates the personalization model
with the control logic of a bandit algorithm.

r3.4.2 LinUCB

In this section, we develop a contextual version of the UCB algorithm. The basic idea
is to use a supervised model that can be incrementally updated at every time step to
estimate item value Qtpaq and its upper confidence bound Btpaq based on the context
that includes both item and user profiles. We then plug these estimates into the UCB
algorithm, as illustrated in Figure R3.4. Compared to the basic designs presented in
Figure R3.3, this approach eliminates the separation of the contextual and context-free
parts and enables end-to-end incremental updates.

236 dynamic personalization

...a1 ak

(ut, at) rtˆ

{ut, at, rt}

Execution

Batch update

Incremental update

(a) (b)

UCB

Qt,u(a)

Qt(a)

+

(ut, at) rtˆ

ut, at, rt

Batch update

Figure R3.3: Contextual recommendations in a dynamic environment (a) using static recommen-
dation algorithms and (b) UCB with warm start.

...a1 ak

(ut, at) Qt,u(a) + Bt,u(a)

UCB

ut, at, rt

Incremental update

Figure R3.4: Contextual recommendations in a dynamic environment using LinUCB.

One of the main challenges of implementing the above concept is the estimation
of the confidence bound. To make this problem tractable, we assume that the item
value is a linear function of the context. Denoting the context for item a at time t as
xt,a “ put, atq, we can express this assumption as

Qpaq “ E rrt,a | xt,as “ xTt,aθ
˚
a (R3.2)

where θ˚a is the unknown coefficient vector associated with item a. Let us also as-
sume that context vector xt,a has d dimensions, and we have accumulated m samples
for item a at time step t. We can then define a mˆd design matrix Da whose rows cor-

R3.4 contextual recommendations 237

respond to m observed context vectors, and m-dimensional vector ra whose elements
correspond to m observed rewards rt,a for item a. The model coefficients can then be
estimated using ridge regression as

pθa “ A´1a DTara (R3.3)

where Aa “ DTaDa ` Id, and Id is the dˆ d identity matrix. As shown in the box at
the end of this section, the upper confidence bound for the item value can be estimated
as

Btpaq “ p1`αq

b

xTt,aA´1a xt,a (R3.4)

where α is a constant, calculated based on the desired confidence level. The item
selection rule in the UCB algorithm then becomes:

at “ argmax
a

ˆ

xTt,apθa ` p1`αq
b

xTt,aA´1a xt,a

˙

(R3.5)

This solution is known as LinUCB [Li et al., 2010]. The complete algorithm that
includes the incremental model update, regression parameters estimate, and item se-
lection is presented in listing R3.1.

Algorithm R3.1: LinUCB

for t “ 1, 2, . . . do
Compute context vectors xt,a for all items

for a in a1, . . . ,ak do
if a is new do

Aa “ Id
ra “ 0

end
pθa “ A´1a ra

end

at “ argmax
a

´

xTt,apθa `α
b

xTt,aA´1a xt,a
¯

Recommend item at and observe reward rt

Update the model:
Aat “ Aat ` xt,atxTt,at
rat “ rat ` rtxt,at

end

LinUCB is known to be a relatively simple yet efficient solution for dynamic use
cases such as newsfeed personalization. The linearity assumption allows for a closed-
form expression for the UCB rule, but this does not necessarily limit the expressiveness
of the model because the features in xt,a can include nonlinear transformations. We

238 dynamic personalization

conclude this section with a proof for the upper confidence bound estimate R3.4 [Chu
et al., 2011].

Estimating the Upper Confidence Bound in LinUCB

Let us consider the reward estimation error for item a at time t, and decompose
it using the notation we introduced earlier, omitting subscripts a and t for the
sake of clarity:

pr´ xTθ˚ “ xT pθ´ xTθ˚

“ xTA´1DT r´ xTA´1pDTD` Idqθ˚

“ xTA´1DT r´ xTA´1pθ˚ `DTDθ˚q

“ xTA´1DT pr´Dθ˚q ´ xTA´1θ˚

(R3.6)

Assuming that the coefficients are normalized so that ‖θ˚‖ ď 1, the magnitude
of the error is then limited by the following:

ˇ

ˇ

ˇ

pr´ xTθ˚
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
xTA´1DT pr´Dθ˚q

ˇ

ˇ

ˇ
`

∥∥∥A´1x
∥∥∥ (R3.7)

The first term on the right-hand side of the above inequality corresponds to the
error variance, and the second term is a nonrandom error bias. We can estimate
the first term using Azuma’s inequality, which states that for a sequence of
finite random variables y1,y2, . . . such that

| yi ´ yi´1 | ď qi and E ryi | y1, . . . ,yi´1s “ yi´1 (R3.8)

the probability that the i-th element diverges from the starting point by more
than ε is bounded by the following:

pp| yi ´ y0 | ě εq ď 2 exp

˜

´ε2

2
ři
j“1 q

2
j

¸

(R3.9)

Assuming that the samples in matrix D are statistically independent, we have
E rr´Dθ˚s “ 0 and thus we can apply Azuma’s inequality to the first term
of the error, interpreting the vector of m error values as a sequence of random
variables. Let us denote

s “
a

xTA´1x (R3.10)

and then apply Azuma’s inequality, setting the threshold to αs where α is a
constant:

p
´ˇ

ˇ

ˇ
xTA´1DT pr´Dθ˚q

ˇ

ˇ

ˇ
ě αs

¯

ď 2 exp

˜

´
2α2s2∥∥DA´1x

∥∥2
¸

ď 2 exp
´

´2α2
¯

(R3.11)

R3.5 evaluation and bootstrapping 239

We do the last transition in the above using the following bound:

s2 “ xTA´1x

“ xTA´1
´

DTD` Id
¯

A´1x

ě xTA´1DTDA´1x

“

∥∥∥DA´1x
∥∥∥2

(R3.12)

Let us now denote the probability of the first error term exceeding the threshold
as δ and solve R3.11 for α:

δ “ 2 exp
´

´2α2
¯

ñ α “

c

1

2
ln
2

δ
(R3.13)

Consequently, we can guarantee the following bound for the first error term in
expression R3.7 with probability at least 1´ δ:

ˇ

ˇ

ˇ
xTA´1DT pr´Dθ˚q

ˇ

ˇ

ˇ
ď αs (R3.14)

The second term in expression R3.7 can be bounded as follows:∥∥∥A´1x
∥∥∥ “b

xTA´1IdA´1x

ď

b

xTA´1
`

DTD` Id
˘

A´1x

“

a

xTA´1x “ s

(R3.15)

Inserting bounds R3.14 and R3.15 into expression R3.7, we get the overall error
bound that holds true with probability 1´ δ:

ˇ

ˇ

ˇ

pr´ xTθ˚
ˇ

ˇ

ˇ
ď p1`αqs (R3.16)

This corresponds to bound R3.4 which we used earlier in the discussion of the
LinUCB algorithm.

r3.5 evaluation and bootstrapping

Conceptually, the goal of LinUCB is to provide a plug-and-play personalization com-
ponent that can learn efficiently from experience without pretraining on historical data
or other prior knowledge. In practice, it is often unacceptable to deploy a freshly ini-
tialized agent directly to production and allow it to explore the environment doing
random actions. We need a framework that allows for full or partial pretraining and
preproduction performance evaluation.

One possible solution is to develop a simulator of the environment, so the agent can
connect to it, receive simulated contexts, make recommendations, and observe simu-
lated feedback. This can be used either to pretrain the agent and meaningfully initial-

240 dynamic personalization

ize its coefficients θ or evaluate the agent’s performance to get some guarantees before
it is deployed to production. The main problem with this approach is the high level
of effort associated with the development and maintenance of the simulator, which
can erase the benefits of the reinforcement learning approach. The second challenge
is that the simulator is usually implemented using some standard recommendation or
propensity scoring model trained in a batch mode. This model can be better or worse
than LinUCB, but it is likely to introduce its own bias. In practice, however, an auxil-
iary model or simulator can be a reasonable solution for bootstrapping a reinforcement
learning agent.

The second possible solution is to use the counterfactual evaluation methods dis-
cussed in Section 4.5. This approach generally allows for evaluation of the agent’s
performance using a sample of historical data, but it requires the context information
and action distributions to be properly logged. In practice, counterfactual evaluation
is often an appropriate tool for validating the algorithm during the development and
while doing preproduction quality checks. We implement a basic yet practical solution
for counterfactual evaluation of the LinUCB agent in the next section, and continue
to discuss this topic in Recipe R4 (Next Best Action) in the context of a more generic
reinforcement learning solution.

r3.6 prototype

The complete reference implementation for this section is
available at https://bit.ly/3EoB5Qw

We develop a prototype of a LinUCB-based recommendation system using a simple
simulator of an online store. Consider an online apparel store that sells raincoats and
polo shirts, and 70 percent of its customers come from Seattle and the remaining 30

percent from Miami. All customers have to register by entering their age before they can
see personalized offers, and their ages are uniformly distributed in the range between
18 and 80 years. Once a customer registers, the recommendation system shows either
a raincoat or polo shirt (polo) offer, and the customer may or may not accept it. Each
conversion (acceptance of a recommendation) is associated with a reward of one, so the
expected reward value is numerically equal to the conversion probability.

We choose to use the following formula in the customer simulator to calculate the
offer acceptance probability:

ppconversionq “ 0.4´ 0.3ˆ L

` 0.00125ˆA

´ 0.25ˆ R

` 0.6ˆ Lˆ R

(R3.17)

where L is the location variable, equal to 0 for Seattle and 1 for Miami, A is age
in years, and R is the recommended item equal to 0 for a raincoat and 1 for a polo.
The following table shows conversion probabilities computed using formula R3.17 for

https://bit.ly/3EoB5Qw

R3.6 prototype 241

several typical profiles suggesting that customers from Seattle are likely to respond to
raincoat recommendations, while customers from Miami are more likely to respond to
polo offers:

+--------------+---------+-----------------------+-------------------------+
| location (L) | age (A) | recommended item (R) | conversion probability |
|--------------+---------+-----------------------+-------------------------|
Seattle (0)	20	Polo (1)	0.175
Seattle (0)	20	Raincoat (0)	0.425
Seattle (0)	60	Polo (1)	0.225
Seattle (0)	60	Raincoat (0)	0.475
Miami (1)	20	Polo (1)	0.475
Miami (1)	20	Raincoat (0)	0.125
Miami (1)	60	Polo (1)	0.525
Miami (1)	60	Raincoat (0)	0.175
+--------------+---------+-----------------------+-------------------------+

We next implement the basic UCB agent described in Section 4.3.2 and the LinUCB
agent specified in algorithm R3.1. For LinUCB, we use a four-dimensional context vec-
tor that includes the basic variables L, A and R specified above, and the interaction
variable Lˆ R. Note that we have to add the interaction term because the dependency
specified by formula R3.17 is nonlinear in the basic variables. Consequently, LinUCB is
not able to learn an accurate model of the environment without auxiliary variables in
the context. This illustrates the trade-off between the simplicity and expressiveness of
LinUCB.

The performance of agents is evaluated using two strategies: direct comparison with
the ground truth and counterfactual evaluation. For direct comparison, we connect a
freshly initialized agent to the simulator. We then process 200 sequential recommen-
dation requests recording the item recommended by the agent and the optimal item
(ground truth) that maximizes the conversion probability R3.17 given the context at
each time step. We repeat the process 500 times, estimate the accuracy of recommenda-
tions for each time step as the fraction of the agent’s recommendations that matched
the ground truth, and plot this metric in Figure R3.5 for both UCB and LinUCB.

0 25 50 75 100 125 150 175 200
Time step

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

UCB
LinUCB

Figure R3.5: Average accuracy of UCB and LinUCB agents.

The UCB agent performs better than a random guess because it learns and exploits
the global bias toward raincoats due to the majority of customers coming from Seat-
tle. However, LinUCB achieves much better accuracy by leveraging the contextual in-
formation. We can also record the conversion rates for both algorithms, as shown in
Figure R3.6. This confirms that LinUCB also outperforms UCB in terms of the primary
performance metric.

242 dynamic personalization

0 25 50 75 100 125 150 175 200
Time step

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Co

nv
er

si
on

 ra
te

UCB 0.346
LinUCB 0.413

Figure R3.6: Average conversion rates of UCB and LinUCB agents. The width of the shaded areas
is two standard deviations.

The last feature we implement in the prototype is the counterfactual evaluation. First,
we connect a random or context-free UCB agent to the environment and collect sam-
ples that include context vectors, agent’s actions, and rewards. The random agent rec-
ommends raincoats and polos with equal probabilities. Second, we use the collected
samples to evaluate LinUCB performance using the algorithm from Section 4.5, and
compare the estimated conversion rate for LinUCB with the simulation result presented
in Figure R3.6. The estimates agree with the simulation results for samples collected
both under a random and UCB policies, despite the UCB policy not satisfying the as-
sumption about the uniform probability distribution over the items which we made in
Section 4.5. (As we discussed earlier, UCB is biased toward the raincoats.)

r3.7 summary

• Traditional personalization methods such as look-alike modeling and collabora-
tive filtering can be difficult to adapt to non-stationary environments or environ-
ments with high turnover of the content and users. The latter problem is known
as the cold start problem.

• We can use multi-armed bandit algorithms to dynamically learn average popu-
larities of different items and exploit this knowledge to maximize click-through
rates or similar performance metrics. The advantage of this approach over the
more basic methods such as A/B testing is a near-optimal balance between the
number of impressions spent on environment exploration and the number of
impressions exploited to earn rewards.

• The shortcoming of the basic multi-armed bandit algorithms is their inability to
use the contextual information such as user and item profile features to person-
alize the recommendations. For this reason these algorithms are referred to as
context-free.

• There are heuristics to combine the context-free bandits with personalization
models trained in a batch mode.

• The UCB algorithm can be extended to calculate the action values, as well as its
upper confidence bound, as a function of the context vector that can include user,
item, and session features.

R3.7 summary 243

• The LinUCB algorithm makes an assumption that the action value function is
linear in the context variables. This allows us to compute the upper confidence
bound in a closed form. The nonlinear dependencies can be incorporated using
proper feature design techniques.

• LinUCB is designed to operate in cold-start settings without pretraining, but it
is often unacceptable to deploy a freshly initialized agent to production. The
agent can be pretrained or evaluated using an environment simulator. The second
option is to use counterfactual evaluation methods to ensure some performance
guarantees.

Recipe

4

N E X T B E S T A C T I O N

Optimizing Marketing Actions Strategically Using Reinforcement Learning

In Recipes R1 (Propensity Modeling) and R2 (Customer Feature Learning) we discussed
how to estimate the propensity of a customer to a certain behavior. The models and
techniques developed in these recipes predict the expected outcome, but they do not
prescribe how this outcome can be improved using interventions such as advertise-
ments or special offers. In practice, marketers and personalization systems can take
specific actions based on the predictive scores using various heuristics, and this ap-
proach is generally feasible for environments with a relatively small number of scores
and possible actions. However, the process can become unmanageable as the ecosystem
of scoring models and marketing treatments evolves and becomes more sophisticated.

In Recipe R3 (Dynamic Personalization), we took a step towards a prescriptive solu-
tion by developing an agent that not only learns the affinities between users and items,
but also takes actions on its own. This solution is useful in environments that require
autonomous decision-making, but it does not, of course, take into account all the con-
siderations that a human marketer would when planning a personalization strategy
or campaign. In this recipe, we examine the decision-making process more thoroughly
and develop a more comprehensive prescriptive framework that helps a marketer or
personalization system to take optimal actions.

r4.1 business problem

We consider a marketing communications environment where a company interacts
with their customers via one or several digital or physical touchpoints. We generally
assume that the company can link individual interactions to customer identities by
using loyalty cards, online account logins, and other mechanisms. However, we do
not make any specific assumptions about the quality and efficiency of the identity
resolution process so some customer profiles may be incomplete or inaccurate. For

245

246 next best action

each interaction, the company chooses an action from the space of actions supported
by a given touchpoint or chooses to take no action. Examples of actions include sending
an email or mobile push notification, showing a special offer or recommendation on a
website, or printing a coupon using an in-store printer. Some of these actions can be
initiated by the company and executed at any time, whilst other actions can be taken
only in certain situations in response to specific customer actions.

In parallel with the marketing interactions, the customer transacts with the company
or interacts with products or services provided by the company. In many cases, these
transactions and interactions are tightly coupled and synchronized with marketing
actions. For example, a grocery store customer can get a discount coupon at checkout,
that is at the end of one transaction, and redeem it by scanning the bar code during
the next checkout, that is at the end of another transaction. In other cases, transactions
and marketing actions run as two parallel flows. For example, a video game publisher
could give away in-game perks to players, but track and optimize monthly-average
engagement metrics instead of tracking how players interact with the perks. In either
case, the business value of transactions or engagement needs to be quantified and
eventually linked to the marketing actions to enable action optimization.

The environment described above is depicted in Figure R4.1. We assume that the
interactions are occurring in discrete steps and denote a customer or user who interacts
with the company time step t as ut, marketing action as at, and the portion of the
business value derived from or attributed to this interaction as rt. We refer to these
discrete portions of the value as rewards. We also assume that the actions are determined
by a programmatic agent that has access to feature vectors u and a that represent
the user and their action, respectively. These vectors can include manually designed
aggregated features, event sequences, or features produced by upstream models such
as Customer2Vec. We also assume that the user vector u can incorporate contextual
information such as channel, touchpoint, or session features.

Agent

Actions...

Marketing
touchpointsUser ut

a1 ak Users

u

at

ut

at

a

rtProduct or
service

Figure R4.1: The main components of the environment with automated optimization of marketing
communications or customer experiences.

The environment presented in Figure R4.1 is structurally similar to the setup we
used in Recipe R3 (Dynamic Personalization), but the problem we want to solve is
substantially different. We elaborate on the main aspects of the problem statement in
the next few sections.

R4.1 business problem 247

r4.1.1 Objectives and Reward Design

A marketer needs to quantify the business value derived from the interactions with a
customer in order to apply data-driven methods. The design of the value metrics is
generally a complex problem that involves many considerations.

First, marketing activities are typically planned and executed in the context of a
specific business objective, and this objective is the primary consideration for designing
the reward metric in the framework we introduced above. The most typical top-level
business objectives include the following:

acquisition A marketing activity or campaign can be designed to target prospects
rather than existing customers to drive new customer acquisitions. In this case,
the reward metric can be set based on some activation event such as a registration,
first conversion, or response.

growth The company can target existing customers aiming to increase product con-
sumption through up-sell, cross-sell, or subscription upgrades. For such an ac-
tivity, the reward metric can be set proportional to some measure of product
consumption or consumption uplift.

retention The company can target customers who are at risk of churn, aiming to
change their decision using retention offers or service improvements. The reward
can be designed based on the account cancellation events or product consumption
metrics.

reactivation Finally, the company can target customers who have already churned,
aiming to re-engage with them. The reward can be set based on the reactivation
event such as a purchase.

The business objective alone, however, does not provide all the information needed
to design the reward metrics and optimize actions. Two companies that seek the same
business objective may approach the problem very differently, depending on their fi-
nancial targets, product life cycle stage, and other factors. From the reward design
perspective, many of these factors can be translated into the following considerations:

engagement vs monetization The reward metrics are often defined using rela-
tively straightforward engagement metrics such as the number of clicks or online
sessions per week. In some cases, this approach accurately captures the true goals
of the company. For example, a social network can be focused on maximizing the
frequency of user sessions, and optimize user notifications accordingly. At the end
of the day, most social networks will be looking to maximize their profits that typ-
ically come from advertising, but the connection between user notifications and
advertising profits can be so sophisticated that these two problems might need to
be solved separately, by different teams, and at different stages of the company’s
business life cycle.

In other cases, the company might be looking to optimize a monetary metric such
as profit, but use an engagement metric as a reasonable proxy. For example, it is
common to optimize product recommendations and other elements of the user
interface based on engagement metrics such as click-through rates, although the
ultimate goal may be to increase conversions or order totals.

248 next best action

Finally, the reward can explicitly incorporate monetary metrics. This is often the
case for optimizing marketing actions associated with significant costs such as
discounts or retention packages. In such cases, the reward can be defined using
customer lifetime value, that is the expenditure over a long period of time, or the
lifetime value uplift.

short-term vs long-term Both engagement and monetary metrics can be mea-
sured as immediate responses to the actions. For instance, it is common to mea-
sure the performance of online services such as product recommendations in
terms of click-through rates and order totals. The immediate responses are rela-
tively easy to track and optimize for, but these metrics are generally disconnected
from the macro-level objectives of the company. In order to align with the macro-
level goals, the reward is often measured over a period of time that can span
months or even years. For example, a supermarket chain can design an offer per-
sonalization system to target customers who are likely to switch from a 6-pack to
a 12-pack of soda for at least 3 months in response to the offer, but not customers
who are likely to buy the 12-pack just once.

myopic vs strategic Regardless of the time frame used for reward calculation
(short-term or long-term), we can optimize each action in isolation or jointly
optimize a sequence of actions. We refer to the former approach as myopic
optimization, and to the latter approach as strategic optimization. The rationale
behind strategic optimization is that the company is often interested in building
strong customer relationships through multiple interactions, and thus each
action should be considered in a strategic context that includes both previous
and subsequent actions. This approach is more complex, but it is also more
expressive because an action that is not optimal in terms of the immediate
reward can be a gateway to a sequence of interactions with the optimal total
gain.

The considerations discussed above, particularly the last one, suggest that we should
look for a method that strategically optimizes sequences of actions with the goal of
maximizing the return, that is the sum of rewards gained at individual interactions.
This concept is illustrated in Figure R4.2. Individual rewards can, in turn, be defined
based on engagement or monetary metrics which are, in turn, defined according to the
business objective.

The concept of strategic optimization can be illustrated by the following example. In
retail, particularly in the grocery and CPG sectors, it is common to do multistage pro-
motion campaigns that are known to trigger more persistent and longer-term changes
in customer shopping habits compared to one-off campaigns. A retailer can start by
distributing personalized messages to customers announcing a promotional campaign.
Each message states that a customer needs to buy at least k units of some product to
unlock a discount coupon for the next purchase. This incentivizes customers to pur-
chase the required number of units to deliver incremental profits. The discount coupon
typically also includes some condition such as buy-k-get-one-free to create an addi-
tional stretch during the second purchase. The entire campaign flow is shown in Fig-
ure R4.3 where we emphasized that the sequence of actions aims to drive the customer
along a certain route, preventing lost sales. All targeting and thresholding parameters
in this setup are interrelated, requiring a strategic approach to optimization. Strategic

R4.1 business problem 249

Cumulative
value

Time

R

Initial
state

Final
state

a1 a2

r2

r1

Figure R4.2: Strategic decision-making in marketing communications and customer experience
management. R stands for the total return, that is the sum of rewards rt.

optimization is relevant for many other industries that rely on long-term customer rela-
tionships, such as telecom, video games, social networks, and retail financial services.

Conditional offer
announcement

Purchase k
or more units

No purhase or
purchase less

than k units

Time

Ad

Offer

Purchase k or more
units with the offer

Figure R4.3: An example of a multistage campaign with several related actions.

r4.1.2 Action Design

A programmatic agent that manages marketing communications or customer experi-
ences generally needs to make several types of decisions. First, the agent needs to
assign messages, pieces of content, or offers to customers. In traditional marketing
campaigns, the agent starts with a specific message or offer and determines the opti-
mal audience to be targeted with this message. In many online scenarios, the agent
starts with a specific user or session and determines the optimal banner, offer, or prod-
uct recommendation to be presented to the given user in the given context. Both cases
require the agent to evaluate possible pairs of user and action to determine the opti-
mal action based on the evaluated score. If the number of actions is relatively small
and each action is somewhat unique, an action can be represented by just its identifier
at, and the agent would prescribe a specific offer or message to the execution system
(touchpoint). Alternatively, an action can be a categorical or continuous variable such
as the product brand, offer type, or offer amount. In this case, the agent prescribes the
criteria that can be converted into the actual offer or message by the execution system.

250 next best action

The action design can incorporate more types of decisions such as which commu-
nication channel to use or what discount depth to offer. This can be modeled using
either a one-dimensional action space where each element at is a cross-product of sev-
eral different decisions (e.g. the action space includes all possible combinations of offer
types and channels) or multidimensional action spaces where at is a vector. This topic
is discussed more thoroughly later in this section.

The second category of decisions is related to the timing of communications: the
agent generally needs to determine the optimal time for each action. For example, the
end of the purchasing cycle of a given customer is often the optimal time to recommend
a consumable product. The timing aspect is often incorporated into the above frame-
work by adding a no-action element to the action space so the agent can choose not to
intervene at any time step. The user state vector ut should also include time-related or
time-normalized features such as the time since last visit, to enable the agent to learn
and use the optimal action cadence.

r4.1.3 Modeling and Experimentation

The problem of strategic action optimization as outlined above can be regarded as a
modeling problem where we need to analyze available data, develop a model that cap-
tures how various actions influence the behavior of customers in various states, and
use this model for decision-making. Although this approach is generally feasible, it re-
quires a comprehensive dataset that covers all relevant actions and customer states. This
basically means that one needs to test all actions or, at least, action types thoroughly
in production, to collect data needed for modeling. The behavioral patterns captured
in this data need to stay actual for the period of time required for operationalization.
This approach also assumes that someone needs to design and build a model that is
sophisticated enough to capture the complexity of customer behavior.

The alternative approach is to view action optimization as an experimentation prob-
lem. In this case, we can start without prior data, run multiple experiments to determine
the best-performing actions, and then keep experimenting on an ongoing basis to ac-
commodate any possible changes in the environment. The shortcomings of pure exper-
imentation include the inability to generalize from the limited number of observations
(the agent basically needs to test all possible actions for each user), and degradation of
the customer experience and business performance due to continuous random testing.

We ideally want to combine the modeling and experimentation paradigms into one
solution. This solution should operate in the previously unexplored environment in a
similar way to an experimentation agent, but provide powerful generalization capabili-
ties similar to traditional modeling. Achieving this flexibility, as well as performing the
strategic decision planning we discussed earlier, are the two main goals of this recipe.

r4.2 solution options

The objectives described in the previous section can partly be achieved using the
propensity modeling framework introduced in Recipe R1 (Propensity Modeling). We
spend the next two sections discussing how this framework can be enhanced with
strategic and prescriptive features. However, these methods do not solve the next best

R4.3 advanced score design 251

action problem in a complete and consistent way. A more comprehensive solution can
be created using the reinforcement learning approach which we discuss in the follow-
ing sections.

r4.3 advanced score design

Propensity modeling requires specifying the propensity score, and the design of this
score is critically important for building a successful model and getting meaningful
business results. In Recipe R1 (Propensity Modeling), we used the scores constructed
based on simple engagement metrics and events, but the monetary objectives and strate-
gic considerations discussed in the previous sections can also be incorporated into the
score design.

As an example, let us consider a company that builds a propensity model for online
promotion targeting. For each individual customer, the company can either take no ac-
tion, which we denote as a0, or display a promotion, which we denote as a1. The most
basic solution is to use historical data from previous campaigns to identify customers
with a high unconditional propensity to convert, that is to learn the mapping between
customer feature vector u and the following score:

scorepuq “ ppe | uq (R4.1)

where e stands for the conversion event. This is feasible practically but it is a limited
solution that can be improved in many ways. One possible improvement is to focus
not on the probability of conversion, but on the total profit derived from the converted
customer over a certain future time period, so the score is constructed to estimate the
following value:

scorepuq “ ppe | uq ˆ LTVpuq ´C (R4.2)

where LTVpuq is the expected revenue over a certain time period (e. g. six months) that
can be estimated using some other model or rule, and C is the promotion cost.

The second common improvement is to focus on customers with the largest differ-
ence between the conversion probability, provided that they are offered with a promo-
tion and the conversion probability without a promotion:

scorepuq “ ppe | u, a1q ´ ppe | u, a0q (R4.3)

This approach is called uplift modeling, and it aims to reduce promotional costs by ex-
cluding customers who are likely to convert without a treatment. We can also combine
uplift modeling with the LTV estimates to build a model that maximizes the LTV uplift
which can be even more useful from the business perspective:

scorepuq “ pppe | u, a1q ´ ppe | u, a0qq ˆ LTVpuq (R4.4)

The relationship between the above scores and time windows used to compute the
corresponding training labels is shown in Figure R4.4. The label design techniques
help put the modeling process into the context of long-term business objectives, but
they do not provide a generic framework for strategic optimization and prescriptive
action recommendations.

252 next best action

Profile Outcome

Unconditional propensity:

Expected LTV:

LTV uplift:

Click/purchase

Long-term spend

Long-term spend uplift

u

Training
time

Figure R4.4: Aggregation windows used to compute target labels for myopic, strategic, and mon-
etary objectives.

r4.4 conditional propensities

We can consider extending the basic propensity scoring framework to support more
than two actions and more than one time interval by chaining multiple propensity
models together. One way to implement this idea is to build an array of models that
score the long-term value of a user conditional on them taking action ai at step t:

Mti : scoreput, aiq “ LTVput | at “ aiq (R4.5)

where Mti is a dedicated model for time step t and action ai. The overall layout of
this solution is shown in Figure R4.5.

The model layer for the first step enables the evaluation of the value scores for each
action allowed in this state. This layer can be viewed as a prescriptive model that can not
only estimate the propensities or LTVs, but recommend the value-maximizing action.
The subsequent actions can then be optimized using the next model layers.

The practical implementation of the above concept can be challenging for two reasons.
First, the expression R4.5 assumes that the profile vector ut includes the information
about the actions related to the given user prior to step t to capture the impact of
these actions. Second, it also assumes that the LTV is evaluated over the distribution
of all subsequent actions to account for the particular communication strategy that we
use. These two assumptions are challenging because a large number of possible action
sequences include both the past and future interactions, requiring an impractically
large number of samples to fit the LTV model. The problem is further aggravated by
the fact that this design does not provide any experimentation capabilities that could
assist with collecting the needed samples efficiently.

r4.5 reinforcement learning

We can overcome the limitations of the naïve approach described above by recognizing
that the problem can be formulated as a Markov decision process (MDP) introduced

R4.5 reinforcement learning 253

Current
time

Time

Profile

Action 1 Action 2 Action 3

M11
Profile

Profile
M12

M13

M21

M22

M23

M31

M32

M33

Value

Value

Value

Figure R4.5: Chained propensity models for the next best action optimization.

in Section 4.4.1. In fact, we already used the MDP terminology quite extensively when
defining the business problem and the environment. We stated that the marketing au-
tomation agent interacts with a user in discrete steps, taking action at bounded to
some discrete or continuous space at each step and receiving a reward rt after each
interaction. We also stated that the sum of rewards amounts to the total return that can,
in particular, be equal to LTV, and that the agent aims to maximize it.

To complete the MDP formulation, we need to define the state st in a way that
satisfies the Markov property, incorporating all the information that conditions the
transition to the next state and the amount of the reward. The state vector can be
constructed based on the user vector and should generally incorporate the history of
past actions related to this user either as individual events or as aggregated features.
The contextual information can be incorporated into both the state and action vectors.
For example, the information about the channel (e.g. touchpoint or device type) can be
incorporated into the state when the agent responds to the user request as is the case
in a recommender system, but it needs to be incorporated into the action when the
agent chooses the channel as is the case in a notification campaign. Finally, we assume
that the user behavior and all environmental factors are incorporated into transition
function ppst`1, rt | st,atq which is unknown to the agent.

The MDP formulation of the next best action problem is illustrated by an example
in Figure R4.6. This is a toy example with five discrete states, each of which has some
semantic meaning. For example, all users who made only one purchase are considered
to be in the one timer state. In practice, states are typically multidimensional real-valued
vectors, although it is generally possible to analyze their semantic meaning using clus-
tering or other statistical tools.

254 next best action

One
timer

Multi
product

Repeater

Loyal
customer

Churner

Expected

return

User state
t = 0

User state
t = 1

User state
t = 2

User state
t = 3

s0

a0

r0
s1

Figure R4.6: The next best action problem represented as a Markov decision process.

The main advantage of the MDP approach is that it unlocks the opportunity to apply
a wide range of reinforcement learning algorithms to the next best action problem. The
reinforcement learning algorithms, in turn, have several major advantages, such as the
ability to produce prescriptive policies that can be integrated with the environment as
self-contained decision-automation components. It is particularly important that many
reinforcement learning frameworks provide environment exploration, policy optimiza-
tion, and counterfactual evaluation capabilities out of the box, and this functionality
can often be used without substantial modifications of the framework itself.

r4.6 prototype

The complete reference implementation for this section is
available at https://bit.ly/3PlV1tj

In this section, we develop a simple prototype that demonstrates how the reinforce-
ment learning approach can be applied to the action optimization problem. We use the
Fitted Q Iteration (FQI) algorithm from Section 4.4.4.4 to achieve strategic optimization,
but skip over the exploration and operationalization aspects, which will be addressed
later on in this recipe. Although the FQI approach is relatively simple, it can deliver
substantial improvements compared to myopic optimization [Theocharous et al., 2015].

The overall layout of the prototype is shown in R4.7. We start with developing an
environment simulator that can generate user trajectories with multistep interactions,
learn the action value function from these data using FQI, analyze how the value es-
timates are distributed across the users, construct the ε-greedy policy, and evaluate it
using counterfactual methods.

https://bit.ly/3PlV1tj

R4.6 prototype 255

Environment
simulator

Trajectories

Fitted Q Iteration

Action value
function Visualization

Policy

Contrafactual
policy evaluation

Train/validation
split

Figure R4.7: The implementation plan for the FQI-based prototype of strategic action optimiza-
tion.

We develop a simulator of a digital commerce environment where users visit the
website, make purchases, and receive special offers. We assume that at any time step a
user can either take no action, visit the website without a purchase, or make a purchase.
The default probabilities of these events are 0.90, 0.08, and 0.02, respectively, for all
users. We also assume that the agent that manages the communications with the user
can either make one of three available offers or make no offer at any time step, so we
have a discrete action space with four elements. We denote the available offer options
as a1, a2, and a3. The agent we use to generate the input data makes exactly three
offers to each user during the simulation time frame and draws these offers at random
from the set of available options. For example, if, for some user, we make an offer a1
and then, any time later, offer a3, this user becomes more likely to make a purchase.
That user’s event probability distribution changes to 0.70 for no action, 0.08 for a visit,
and 0.22 for a purchase. Any other combination of offers does not change the event
probabilities.

A data sample generated using the above logic is visualized in Figure R4.8. The
upper plate of the figure represents a matrix where each row corresponds to one user
and each column corresponds to a time step. The lower plate shows the agent’s actions,
that is offers, for each customer. The agent distributes the offers in three waves that can
be thought of as promotional campaigns, but the distribution times are randomized
and thus differ across all users. We generate training and test sets comprised of 1000

users each.

256 next best action

Time

No activity Visit Purchase

No action a1 a2 a3

0 20 40 60 80

0

10

20

30

40

U
se

r I
D

100
50

0 20 40 60 80

0

10

20

30

40

U
se

r I
D

100
50

Figure R4.8: A data sample with user trajectories and corresponding actions. The trajectories have
a fixed length of 100 time steps, a subset of 50 users is shown.

FQI learns the action value function based on transition samples, so we cut each
trajectory into a set of transitions as shown in Figure R4.9. The state vector st of a
user at the moment of t-th action includes four features: the number of visits since the
beginning of the trajectory up until the time of the action, and three time steps that
correspond to the first exposures to offers a1, a2, and a3, respectively. If the user has
not yet been exposed to some of the offers, the corresponding time step features are
set to null. The reward rt is calculated as the total number of purchases between the
time of the offer at and the next offer. Transition samples obtained from all users are
combined into one unordered set that is used for FQI training.

R4.6 prototype 257

0 20 40 60 80

u

s0 s1r0 s2r1 s3r2

T = { (s0, a0, r0, s1), (s1, a1, r1, s2), (s2, a2, r2, s3) }

a0 a1 a2

100

Figure R4.9: Cutting the trajectories into transitions.

Once the trajectories are disjoined into individual transitions, we can apply a stan-
dard FQI implementation with an arbitrary approximator such as a random forest or
neural network. The output of the FQI algorithm is the action value function Qpst,atq
that estimates the expected sum of rewards after taking action at in state st. We can an-
alyze and validate the value function by plotting all states in the training or test set and
color coding each state sample s according to the maximum value maxaQpst,aq achiev-
able from this state. We have mentioned earlier that the states are four-dimensional vec-
tors, so we project them onto a two-dimensional plane using t-SNE which also helps to
cluster similar states together as apparent from Figure R4.10 where such a projection
is presented. The tuples on the left-hand side of the figure are examples of the state
vector features that represent the times of the first exposure to each of the three offer
options. For example, the first user in the first segment was provided with offer a1 at
time step 28 and offer a2 at time step 52, but did not get offer a3 by the time the state
was recorded. We can make several observations from this plot that are consistent with
the design of the simulator:

• The users who got offer a3 at early stages of the trajectory (Segment 3) have the
lowest value. This agrees with the ground truth because getting a3 before a1
precludes the increase in the purchase probability.

• The users who received offer a1 or a1 followed by a2 (Segments 1 and 2) have
higher value because the agent is on track to unlock the correct combination of
offers.

• The users who received offers a1 during the first campaign and a3 during the
second campaign have the highest value.

The second way to visualize the value function is to plot the same state points but to
color code them according to the prescribed actions, that is argmaxaQpst,aq, instead
of the value magnitude. This visualization is presented in Figure R4.11. The model
correctly recommends offer a3 to segments 1 and 2 because it would immediately
boost the probability of a purchase. Offer a1 is recommended for segment 4 as the

258 next best action

−60 −40 −20 0 20 40 60
−80

−60

−40

−20

0

20

40

60

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Segment 1
(28, 52, –)
(22, 54, –)
(22, 54, –)
(21, 48, –)
(21, 48, –)

Segment 2
(27, –, –)
(27, –, –)
(27, –, –)
(25, –, –)
(26, –, –)

Segment 3
(–, –, 24)
(–, –, 24)
(–, –, 25)
(–, –, 22)
(–, –, 25)

Segment 4
(–, 24, –)
(–, 24, –)
(–, 28, –)
(–, 26, –)
(–, 26, –)

Segment 5
(27, –, 54)
(24, –, 47)
(35, –, 39)
(35, –, 39)
(29, –, 45)

Figure R4.10: Value estimates for individual states. The color coding corresponds to the value
magnitude.

right first step, and it is also recommended for segments 3 and 5 as a default action,
but these segments are already finalized so the action choice is irrelevant.

The action value function produced by FQI can be used to construct an offer opti-
mization policy that can be further integrated with the marketing automation software
or online services. In practice, it is generally preferable and often required to evalu-
ate the efficiency of the constructed policy before it is deployed in production. This
can be done using the counterfactual evaluation methods discussed in Section 4.5. The
training and test dataset were collected under a completely random baseline policy,
and, assuming that this fact is known, we can use the importance sampling algorithm
to evaluate the new policy. Let us illustrate this by defining the new policy using the
ε-greedy approach as

πpa | sq “

$

’

&

’

%

1´ ε, if a “ argmax
a

Qps,aq

ε{pk´ 1q, otherwise
(R4.6)

where k is the cardinality of the action space. Our baseline policy is known to be

βpa | sq “ 1{k (R4.7)

R4.7 case study 259

−60 −40 −20 0 20 40 60
−80

−60

−40

−20

0

20

40

60

a1 a2 a3

Figure R4.11: Value-maximizing actions for individual states.

so we can estimate the return of a new policy based on a trajectory generated under
the baseline policy as:

pRπ “ Rβ
ź

t

πpat | stq
βpat | stq

(R4.8)

where st and at are the states and actions of the trajectory and Rβ is the observed re-
turn of the trajectory. Averaging this estimate over a set of trajectories, we can evaluate
the overall expected performance of a policy. This approach can be used, for instance,
to answer the question of how the return depends on the policy parameter ε. The evalu-
ation results for different values of ε are presented in Figure R4.12, and this plot agrees
with the intuition that the policy performance degrades as the degree of experimenta-
tion increases.

Importance sampling and other counterfactual evaluation methods are the main tool
for doing safety checks before a new policy is deployed in production. We discuss the
role of policy evaluation in the context of an end-to-end reinforcement learning solution
later in this recipe.

r4.7 case study

We have seen in the previous section that FQI solves some parts of the next best action
problem; namely, strategic optimization and prescriptive action recommendations. The
prototype that we have developed, however, demonstrates only a subset of capabilities
that can be enabled by the reinforcement learning approach. In this section, we walk

260 next best action

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Epsilon

10

20

30

40

50

60

Re
tu

rn

Figure R4.12: Counterfactual policy evaluation using importance sampling for different values of
ε in the range from 0 to 2/3.

through a real-world case study on the development of a reinforcement learning so-
lution focusing on the system engineering and productization aspects. The approach
discussed below is conceptually similar to the user experience optimization solution
developed by Facebook for its social network platform [Gauci et al., 2019] and the
optimization solution developed by Starbucks for its loyalty mobile app [Sokolowsky,
2019].

r4.7.1 Business Problem

We now consider the case of a company that develops video games and mobile appli-
cations. The company aims to improve user engagement and in-game monetization by
means of personalized offers that are shown in the feeds of the mobile apps or in-game
shops. Examples of such offers include game upgrades, virtual currency packs, and
special deals in loyalty mobile apps.

From the business perspective, the objectives of the company closely match the frame-
work we developed in the previous sections. Most applications created by the company
assume long-term and intense interactions with each user, so the strategic optimiza-
tion of the user engagement and experience is one of the main priorities. This goal
naturally translates into the strategic optimization of promotion sequences using the
Markov decision process formulation. The collections of offers are also frequently up-
dated, making the cold start problem and dynamic experimentation relevant as well.

r4.7.2 Solution Architecture

From the engineering standpoint, the company seeks to automate the offer optimization
process and to reduce the development and maintenance effort as much as possible. In
general, the reinforcement learning approach has a very high potential for automation
because the agent can learn from interactions with the environment requiring no pre-

R4.7 case study 261

training. Moreover, we do not necessarily need to design a custom agent specifically for
the offer personalization problem. It is possible to use an off-the-shelf implementation
of some standard reinforcement learning algorithm. In light of this, it can be appeal-
ing to integrate the agent directly into the production environment, so it can execute
the offer personalization decisions in real time and learn instantly from the feedback.
Unfortunately it is challenging to implement and operate such a solution in practice
because it provides no way to modify, retrain, or evaluate the agent separately from the
production environment.

We can address the above problem by decoupling the agent from the application’s
backend services or video game servers as shown in Figure R4.13. In this architecture,
the transactional applications are required to log the user interaction events in a certain
format that includes the customer journey ID, sequence number of the event within this
journey, state vector associated with the event, action taken by the agent, probabilities
of other possible actions, and the reward. These logs are then used to iteratively train
the agent:

• We start by collecting logs under the initial policy which can be random or rule-
based.

• The logged states, actions, and rewards are used to train an arbitrary off-policy
reinforcement learning algorithm: the log is replayed event by event simulating
the actual interaction with the environment.

• The logged action probabilities are used for the counterfactual evaluation of the
policy produced using the training process.

• If the evaluation results meet the quality and safety criteria, the new version of
the policy is deployed to production, and the training cycle repeats.

Application

Log Personalization
platform

Policy learning
(DQN)

Policy
evaluation

Targeting
server

- Trajectory ID
- Event sequence number
- State vector (s)
- Action (a)
- Action probabilities (π(a | s))
- Reward (r)

PolicyActions

Events

Evaluation
results

Figure R4.13: A high-level architecture of a reinforcement learning-based personalization platform
and its integrations.

The design depicted in Figure R4.13 was implemented as a generic platform using
off-the-shelf components. The platform supports several reinforcement learning algo-

262 next best action

rithms that are borrowed from open-source libraries without modifications, and it is
easy to switch between the algorithms. The platform also supports several methods
for counterfactual evaluation, and provides generic interfaces for the analysis of the
evaluation results. Finally, the targeting server depicted in Figure R4.13 is used as a
generic deployment container for the trained policies that are exported from the plat-
form as binary artifacts. The server processes offer personalization requests from the
transactional applications, block certain policy decisions based on the business rules,
and manage the A/B testing logic.

The solution described above takes a fundamentally different perspective on rein-
forcement learning compared to the basic FQI-based prototype. It uses reinforcement
learning not just as an algorithm for the value function estimation, but as an end-to-
end optimization machine that packages together exploration, learning, and evaluation
capabilities. This platform is also generic, and, in principle, can be applied to arbitrary
optimization problems in any domain, not only to personalization. Such versatility is
one of the main advantages of reinforcement learning compared to the traditional data
science methods such as propensity modeling.

r4.7.3 Algorithms

In principle, the platform can use any off-policy reinforcement learning algorithm. In
practice, DQN proved itself to be a reasonable choice from the standpoints of perfor-
mance and stability. One of the disadvantages of the DQN-based approach is that it
requires the action space to be discrete and relatively small, so that all actions can be
explicitly enumerated. In personalization applications, this assumption can sometimes
be limiting because the number of available promotions or promotion-placement com-
binations can be relatively high. This problem can be alleviated by using actor-critic
algorithms that support continuous action spaces, as we discussed in Section 4.4.6.1.

r4.7.4 Design of Actions, States, and Rewards

The reinforcement learning platform generally provides a high level of automation, but
it still requires designing the action, states, and rewards as a part of the integration
effort. In this section, we take a closer look at these details.

In the video games developed by the company, users can be presented with both
individual offers and sets of offers to choose from, and the reinforcement learning
platform supports both cases. For the sake of illustration, we focus on the case when
the user is presented with one offer at a time. An example timeline that illustrates this
scenario is shown in Figure R4.14. The agent makes the offer decisions sequentially, so
that the user is first offered option a1 and then the agent waits until the offer is either
accepted (event ac1) or expires. The minimum time between the offers is limited to nr
days, and the agent switches to the inactive mode if the offer is accepted sooner. Once
the offer is accepted or expires, the agent switches to the active mode, generates the
next offer a2, and the cycle repeats.

The action design can also be impacted by the cost of actions for the company. In this
particular case, the offers such as in-game upgrades and virtual currency packs have
the monetary cost of zero to the video game publisher, and this can result in learning

R4.8 summary 263

Interactions with
the application

Interactions with
promotions

ns daysnr days

a1 a1 a2 a2 a3

s1 s2 s3

r1 r2

c c

In-application spend events

Inactive
mode

Sessions

Active
mode

Active
mode

Active
mode

Inactive
mode

Figure R4.14: The design of the states (s), actions (a), and rewards (r).

a policy that abuses the incentives. The platform described above mitigates this issue
by including a no-action element into the action set, monitoring the uplift delivered by
offers compared to the no-offer baseline, and imposing penalties that prevent the agent
from learning an abusive policy. The uplift can be managed more directly for offers that
are associated with non-zero monetary costs by factoring these costs into the reward
design.

The platform supports several reward calculation methods including in-app revenue,
virtual currency spend, and binary rewards (reward of one if the offer is accepted and
zero otherwise). In all these cases, the reward is calculated based on time windows
of nr days after the action, and, consequently, the reward values are obtained with a
delay of nr days. To create a complete log that can be consumed by the reinforcement
learning platform, the log records that are produced at the time of actions are stored in
a buffer and later joined with the corresponding rewards.

The state features include a number of engagement metrics such as the duration of
sessions, calendar and user demographic features. The engagement features are calcu-
lated over the fixed time window of ns days before the action, as shown in Figure R4.14.

r4.8 summary

• Next best action solutions aim to prescribe marketing actions that deliver long-
term customer engagement improvements.

• The main design considerations for next best action systems include business ob-
jectives such as customer acquisition or retention, engagement and monetization
metrics, and the balance between myopic and strategic objectives.

• The additional considerations for the next best action solution design include
dynamic experimentation capabilities and reduction of the engineering and oper-
ationalization effort.

• Strategic and prescriptive optimization can be partly achieved using propensity
modeling. A more generic solution is provided by reinforcement learning where
customer journeys are represented as Markov decision processes.

264 next best action

• The basic propensity modeling can be extended into a strategic optimization so-
lution using Fitted Q Iteration.

• The reinforcement learning and counterfactual evaluation algorithms can be pack-
aged into a generic platform that can be used for a wide range of enterprise appli-
cations including marketing and personalization. This approach helps to create
highly automated solutions that provide strategic optimization, dynamic experi-
mentation, and that reduce the engineering effort.

Part III
C O N T E N T I N T E L L I G E N C E

The methods developed in the previous part aim to improve the customer experience
and the efficiency of marketing communications. This is achieved by extracting useful
traits from customer behavior data, evaluating the impact of possible actions such as
promotions and advertisements based on these traits, and executing or recommending
the actions that appear to be optimal. At the same time, we considered the actions, con-
tent assets, and other elements of the customer experience mainly as black boxes, so
that each action or asset was represented by a discrete token or vector of arbitrary fea-
tures. In many marketing applications, however, actions and content assets are complex
entities represented as collections of attributes, texts, or images.

This part of the book focuses on discovering relevant information in large collections
of mixed content and creating new content using AI methods. We start with customer-
facing use cases and develop visual search and product recommendation services that
demonstrate how content data can be leveraged and combined with behavioral data
to create advanced product discovery and personalization capabilities. Next, we turn
to internal enterprise operations and discuss how unstructured data such as natural
language documents can be processed and queried in knowledge management systems.
Finally, we discuss methods for the creation of automated content, which also aims at
improving the efficiency of internal operations.

Recipe

5

V I S U A L S E A R C H

Searching for Similar Items Using Custom-built Semantic Spaces

Many retailers and consumer goods manufacturers have large product catalogs that
include hundreds of thousands or even millions of items. The business performance
of their digital commerce systems depends directly on how efficiently customers can
navigate through such catalogs and search for relevant items, so the quality of product
discovery services is critically important.

The problem of product discovery can be approached from several different angles.
One large group of methods is associated with text retrieval where a customer enters a
query string, and products are matched and ranked based on the similarity between the
query and the product’s description and attributes. This approach works well for many
applications, but it also has several major shortcomings. First, it can be difficult or im-
possible to create meaningful and unambiguous attributes and descriptions for certain
categories of products. For example, art posters can have attributes such as style and
dominating color, but this basic categorization is not sufficient for searching posters in
large catalogs. Attempts to create more sophisticated categorizations are likely to fail
because each person describes style and aesthetics in a different way. Second, some ap-
plications require searching for specific items that cannot be described unambiguously
using attributes or words. For example, a customer might be looking to replace a bro-
ken porcelain saucer from an old dinnerware set, and the search criteria is a specific
pattern that cannot be precisely specified in words or attributes. Third, some products
have a complex system of attributes that requires the customer to know special ter-
minology or perform precise measurements. For example, searching for a particular
screw requires specifying multiple attributes such as head type, tip type, length, and
pitch which can be a challenging problem for the average consumer. Finally, the quality
of keyword search is determined by the quality of product descriptions and attributes,
and setting these attributes accurately is often a challenging problem in itself.

The above challenges cannot be resolved within a framework that uses only product
descriptions and attributes, and we need to incorporate additional sources of informa-

267

268 visual search

tion about both products and the customer’s search intention to address them. It is
quite clear that product images are the most appropriate source of such information
for all of the above use cases. In this recipe, we discuss how to build product discov-
ery services that leverage product images to work around the limitations of the text
retrieval approaches. It is also worth noting that although we focus on the product dis-
covery use cases for the sake of specificity, the methods we develop are very generic
and can be used in a wide range of applications that require assessing image similarity.
For example, the same approaches are used in security systems for facial identification
that requires matching a given image to one in an existing database of faces.

r5.1 business problem

We focus on the problem of building a service for searching items in a catalog of images
based on a query image (reference image) provided by a user. At a conceptual level,
we want this service to evaluate some similarity measure between the query image and
each of the catalog images, to rank catalog images based on this measure, and return
the most similar items to the user. In more technical terms, this means that we need to
construct a semantic space where the Euclidean distance between two points is a proper
measure of similarity, map both the catalog and query images to points (embeddings)
in this space, and then search for nearest neighbors of the query image, as illustrated
in Figure R5.1. A list of these nearest neighbors sorted by the distance to the query is
the search result.

Query
image

Image
catalog

Embedding
space

Nearest
neighbor

search

Figure R5.1: The concept of visual search.

In the above framework, the central problem is how to define the image similarity
measure or, alternatively, construct the embedding space. The design of the similarity
measure is heavily influenced by the business use case which can be illustrated by the
following examples:

• An online retailer that sells art prints and posters might use artistic style as a
measure of similarity or, at least, one of the major signals for constructing the
similarity function. For example, we can expect that the search results for a pencil
drawing query image are mainly pencil drawings as well.

• An online retailer that sells shoes might want to use domain-specific attributes
such as the heel height as dimensions of the semantic space. This retailer might

R5.2 solution options 269

also provide different search options such as search by color or heel height, and
each of these options requires its own similarity function.

• A retailer that sells fasteners might want to identify one specific item that ex-
actly matches the reference image provided by the customer. The exact match is
defined based on domain-specific attributes such as the head type of a screw.

The second important group of problems that need to be addressed in many applica-
tions of visual search is related to the quality and complex structure of the images. For
example, a customer can take a picture of a person wearing a shirt they like and use
this picture as a query image in a visual search service of an online apparel store. This
image is likely to include not only the shirt, but also a background, other garments the
person wears, and other objects. In order to search for the shirt efficiently, it needs to
be located in the image, separated from other objects, and mapped to an embedding.
We refer to this task as localization.

In the next sections, we develop a toolkit for implementing several different similarity
measures and we also discuss localization methods. This toolkit, however, demonstrates
only a few major capabilities that can be implemented in a visual search service, and
many other techniques can be used to improve the quality of the search results’ ranking,
as well as the ability to process images with complex structures.

r5.2 solution options

The architecture of a visual search engine usually includes two major parts. The first
part is an indexer that preprocesses catalog images, computes image embeddings, and
creates an embedding index that can be used to search efficiently to find nearest neigh-
bors for a given point in the embedding space in near real time. The second part is a
query engine that preprocesses the query image, computes its embedding vector, and
then looks up its nearest neighbors in the index. Since both the catalog and the query
images need to be mapped to the same embedding space, the indexing and query
processing pipelines generally use the same preprocessing and embedding models, al-
though these pipelines are not necessarily identical.

We start by examining several design options for the query processing pipeline which
are depicted in Figure R5.2. The first stage of the pipeline is the image preprocessing.
In some applications such as an art poster search, the user explicitly searches for im-
ages similar to the query image, not for physical objects present in the image, so the
preprocessing can be limited to a few basic operations such as brightness normaliza-
tion. In many applications, however, the user searches for objects similar to the object
depicted in the query image, and this object needs to be identified and isolated from
the background. This problem can be approached in several different ways depending
on the assumptions we can make about the number and semantic structure of objects
in the image, and we discuss these options in Section R5.6.

Once the query image has been preprocessed, it needs to be mapped to a representa-
tion in a semantic space that can further be used for the nearest neighbors search. As
we discussed in the previous section, the semantic space needs to be custom designed
for every specific application, but there are several basic methods that we can use as
starting points:

270 visual search

Query
image

Localization
model

Isolated
object

Pretrained
classification

model

Query image
embedding

Nearest neighbor
search

Search results

Fine-tuning

Unsupervised
model

Query
attributes

Attribute-based
search

Domain-specific
classification

model

Domain-specific
classification

model

Figure R5.2: Several design options for the query processing pipeline.

• One option is to use standard image classification models trained on generic im-
age classification datasets. Such pretrained models are readily available in public
repositories, and newly developed state-of-the-art solutions are constantly added.
Although these models are usually pretrained on datasets with fairly generic

R5.3 search by image style 271

classes such as “snail" and “ice cream", the image embeddings computed by cer-
tain layers of such models efficiently capture the information about the artistic
style of the image and generic semantic features of the depicted objects. This phe-
nomenon can be leveraged to compute useful similarity measures in the spaces
constructed based on such embeddings. We discuss this strategy and build a cor-
responding prototype in Section R5.3.

• The second alternative is to train a domain-specific image classification model
using a dataset with domain-specific labels. For example, an apparel retailer can
create a dataset with labels such as “long sleeve dress" and “high heel sandals"
and use it to train a custom classification model. This model can then be used
in exactly the same way as pretrained models. We can tap into certain layers to
extract image embeddings and use them to compute similarity measures. This ap-
proach, however, allows for aligning the embedding space with the dimensions
prescribed by the domain-specific labels, and thus produces more relevant simi-
larity measures.

In many cases, the domain-specific model is not designed and trained from
scratch, but obtained by retraining all or certain layers of a generic pretrained
model. This process, commonly referred to as fine-tuning, reuses the ability of a
pretrained model to extract meaningful semantic features from the image, and
thus dramatically reduces the number of domain-specific samples that need to be
created for training. We build a prototype for this approach in Section R5.4.

• The third option is to produce embeddings using representation learning models
as discussed in Chapter 3. This approach can be used when the embeddings do
not need to be discriminative with regard to specific classes of objects. We create
a prototype of such a solution in Section R5.5.

• Finally, one or several domain-specific classification models can be used to map
the query image to a set of attributes. In the above example of the apparel retailer,
classification models can be used to explicitly estimate attributes such as product
category, sleeve length, and heel height. These attributes can then be used to filter
the product catalog or find the exact match.

The high-level design for these three options is shown in Figure R5.2. The design
of an indexing pipeline generally matches the query pipeline. In the embedding-based
approaches, the same pretrained or domain-specific models are used to compute em-
beddings for all images in the catalog, although certain preprocessing steps such as
object localization might be excluded or configured differently. In the attribute-based
approach, the attributes usually come directly from the catalog data, although com-
puter vision models are sometimes used to enrich or validate the attributes [Pakho-
mova, 2017].

In the next sections, we discuss how to implement components for embedding com-
putation and object localization, and create several prototypes that can be used jointly
or separately to build a visual search service.

r5.3 search by image style

The first scenario we consider is searching by image style. We assume a catalog of art
posters, pencil drawings, paintings, or other items of that kind, and users who search

272 visual search

for items that are similar to the reference image in terms of artistic style. For example,
we expect the service to return mostly cubist paintings for a query image in cubist style,
and distinguish between the styles shown in Figure R5.3.

Cubist
painting

Impressionist
painting

Botanical
illustration

Figure R5.3: Examples of artistic styles we want the visual search service to be able to distinguish.

On the one hand, this is a challenging scenario because we need to define a measure
of similarity for artistic styles. This problem obviously does not have a single unam-
biguous solution, but we can attempt to develop an approximation that is of practical
use. On the other hand, we can assume that both catalog and query images contain
only the artwork, so that no complex preprocessing and object localization is required.

r5.3.1 Style Embeddings

The artistic style can, to a certain extent, be characterized in terms of low-level image
features such as the sharpness of edges and outlines, length of brushstrokes, and color
intensity. We can attempt to build a model that extracts such style-related features from
an image producing the corresponding embedding vector, and then measure the style
similarity between two images by computing the distance between these embeddings.

In Section 2.5, we discussed that convolutional networks is a default choice for build-
ing image classification models, and a typical network architecture represents a deep
stack of convolutional and pooling layers. We also discussed that most architectures
start with an input of a relatively large dimensionality in terms of height and width,
but only three channels (red, green, and blue). The dimensionality is then gradually
decreased using pooling and the number of channels is simultaneously increased us-
ing convolution layers with multiple filters. Consequently, the input pixels are first
mapped to a stack of smaller matrices, commonly referred to as feature maps, where
each element is a convolution of multiple pixels, and these maps therefore capture the
microstructure of the image. These feature maps are further transformed into progres-
sively smaller maps by the downstream layers, and their elements thus capture the
presence of more complex and spatially larger patterns in the image. We can expect
that feature maps at certain stages of this process will capture the level of details that
corresponds to the human perception of the artistic style, and we can then attempt to
create style embeddings by fetching and post-processing certain feature maps from a
regular image classification model.

R5.3 search by image style 273

The strategy outlined above can be directly implemented using off-the-shelf image
classification models. For purposes of illustration, let us create a specific design based
on the VGG19 model.

VGG Models

The VGG architecture was developed in 2014 by the Visual Geometry Group
(VGG) at Oxford University [Simonyan and Zisserman, 2014]. The original pa-
per describes several model configurations with different numbers of layers.
The smallest configuration, known as VGG11, has 11 layers and 133 million pa-
rameters in total, and the largest configuration, known as VGG19, has 19 layers
and 144 million parameters. These configurations achieve different trade-offs
between the accuracy and computational complexity.

The architecture of the VGG19 model is presented in Figure R5.4. The entire
model is created using only four building blocks: convolution layers with 3 ˆ

3 filters, max pooling layers with pool size 2 ˆ 2, dense layers, and a softmax
mapper. The input of the model is a 224 ˆ 224 image with three channels.
This input is processed by two convolution layers with 64 filters which produce
64 feature maps of size 224 ˆ 224. These maps are then reduced using the
pooling layer producing a 112ˆ 112 output, and this output is processed by two
convolution layers with 128 filters. The output is then processed by three more
blocks that consist of pooling and convolution layers which finally produce a
stack of 512 small 7 ˆ 7 feature maps, as shown in Figure R5.4. This stack
is processed by two dense layers, each of which produces 4096-dimensional
vectors, and then by the third dense layer that produces a 1000-dimensional
vector. The final output is obtained by normalizing this vector into a vector of
class probabilities using softmax. This reference design assumes that the model
is trained on a dataset with 1000 classes, but an arbitrary number of classes can
be supported by changing the dimensionality of the top dense layers.

VGG was the state-of-the-art architecture for image classification when it was
introduced, but it was quickly surpassed by more advanced models that achieve
both better accuracy and lower computational complexity with a smaller num-
ber of parameters. We choose to use the VGG model for the style embedding
problem because it has relatively simple architecture which allows it to extract
style-related embeddings in a relatively straightforward way. Most newer mod-
els that outperform VGG have more sophisticated architectures which makes
this task more complex.

Assuming that we have a VGG19 model that was pretrained on an arbitrary, but suf-
ficiently large and comprehensive image classification dataset, we can use it to extract
style-related features for any given image and then construct a style embedding. A
specific algorithm could be as follows:

1. The first step is to perform model inference for a given image and to capture the
outputs (feature maps) produced by certain layers of the network. It is typical
to use the first convolution layers from the third to the fifth lowest stages of the
network, as shown on the right-hand side of Figure R5.4. We can control how the

274 visual search

224 × 224 × 3

224 × 224 × 64

112 × 112 × 128

56 × 56 × 256 G

G
G

1 × 86016

Style
embedding

128 × 128

64 × 64

256 ×256

Convolution layer
(3 × 3 kernel)

Pooling layer
(max)

Dense layer Softmax

28 × 28 × 512

14 × 14 × 512

7 × 7 × 512
1 × 1 × 4096
1 × 1 × 4096
1 × 1 × 1000
1 × 1 × 1000

Figure R5.4: The architecture of the VGG19 model and corresponding style embeddings. Block G
denotes the computation of the Gram matrix.

style is defined by changing the composition of layers. As discussed previously,
the lower layers capture mainly small details, whereas the upper layers capture
larger patterns, so we can, for instance, put more emphasis on brushstrokes by
upweighting the lower layers.

2. The feature maps computed in the previous step can be post-processed to amplify
the style-related signals. One possible way to achieve this is to compute the Gram
matrices of the extracted feature maps [Gatys et al., 2016]. In linear algebra, the
Gram matrix of a set of vectors x1, . . . , xn is defined as a matrix of pairwise dot
products whose entries are given by

gij “ xi ¨ xj 1 ď i, j ď n (R5.1)

The concept of the Gram matrix can be useful for extracting style-related signals
because correlation patterns between the feature maps are known to be consis-
tent with the visual styles. However, we need to extend the basic definition of
the Gram matrix to support multiple channels. Assuming that the output x of a
convolution layer is a batch of c feature maps (channels) each of which is a nˆm
matrix, we can define its Gram matrix as follows:

gij “
1

n ¨m

ÿ

p,q
xpqi ¨ xpqj (R5.2)

indexes 1 ď i, j ď c iterate over channels, and indexes 1 ď p ď n and 1 ď q ď m
iterate over the feature map height and width, respectively. In other words, the

R5.3 search by image style 275

Gram matrix is a cˆ c matrix whose elements are the correlations between the
feature maps (channels).

3. The final style embedding is obtained by reshaping all Gram matrices computed
in the previous step into flat vectors and concatenating them as shown in Fig-
ure R5.4. Assuming that we selected three outputs with 64, 128, and 256 channels,
respectively, the style vector will have 86016 dimensions (64ˆ64 + 128ˆ128 +
256ˆ256).

Once the embeddings are computed, the style-based similarity between two images
can then be evaluated as the cosine distance between their embedding vectors. We
prototype this design in the next section.

r5.3.2 Prototype

The complete reference implementation for this section is
available at https://bit.ly/3PmN2MA

We consider a toy example of an art seller who has a collection of 32 cubist and im-
pressionist paintings and wants to build a visual search service that enables customers
to search for artworks based on the reference image. A subset of the collection is pre-
sented in Figure R5.5. We assume that this collection is unlabeled, so that the images
are not explicitly tagged as “cubist" or “impressionist".

Figure R5.5: Examples of images used for style search.

Our first step is to download the VGG19 model pretrained on the ImageNet dataset
from a public repository. Although this model is trained on a dataset that has nothing

https://bit.ly/3PmN2MA

276 visual search

to do with artworks, it produces meaningful feature maps for a wide range of imagery
including photographs, drawings, and paintings. A pretrained model is an excellent
solution for our scenario because it helps us to avoid building a large custom dataset
needed for training a high-capacity model such as VGG19.

ImageNet and ILSVRC Datasets

ImageNet is a large public image database created primarily for computer vi-
sion and deep learning research [Deng et al., 2009]. It includes more than 14

million hand-annotated images categorized into more than 22,000 classes.

A subset of the ImageNet database with about 1.2 million images and 1,000

classes that was created for the annual ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) became a standard benchmark for image classification
problems. The reference design of the VGG19 model presented in the previous
section has a top layer with 1,000 classes because it is supposed to be trained
and evaluated on the ILSVRC dataset.

The second step is to compute the style embeddings according to the algorithm
described in the previous section. We perform the inference for all images in the collec-
tion, capture the outputs of the intermediate layers, compute the corresponding Gram
matrices, and concatenate them into the style embedding vectors. We can analyze the
embedding space by projecting these vectors to a two-dimensional plane using t-SNE,
as shown in Figure R5.6. This visualization makes it apparent that images of different
styles, namely cubist and impressionist, become linearly separable in the embedding
space, which indicates that the embeddings we have constructed properly capture the
human perception of the artistic style.

The last step is to implement the actual image search in the space of style embed-
dings. In this small example, we can simply iterate over all artworks in the collection,
compute cosine distances between an artwork’s embedding and query image embed-
ding, and return its nearest neighbors. Examples of top search results for two query
images are presented in Figure R5.7. We can see that the service performs well, return-
ing the artworks that match the style of the query. In real-world environments, catalogs
can include hundreds of thousands of images, and we cannot usually compute cosine
distances to all catalog images in real time. This challenge is usually solved by building
special indexes that allow rapid searches for nearest neighbors of a given embedding.

r5.4 search in a custom semantic space

The artistic style of an image can usually be recognized based on low-level image fea-
tures such as sharpness of brushstrokes. These features are normally amplified at cer-
tain layers of generic image classification models, and we can build a reasonably good
style search service using only a pretrained model. In many visual search applications,
however, we need to use a customized similarity measure that is aligned with business
goals and domain-specific requirements. We cannot usually specify this measure ex-
plicitly as a formula or rule, but we can provide examples of images that we consider
to be similar or dissimilar. Such a dataset can then be used to learn a mapping to an

R5.4 search in a custom semantic space 277

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.4

0.6

0.8

1.0

Impressionism

Cubism

Figure R5.6: The two-dimensional projection of style embeddings.

Query:

Top
search
results:

Query:

Top
search
results:

Figure R5.7: Searching for nearest neighbors in the style space.

278 visual search

embedding space where the images that are considered to be similar are clustered to-
gether, and images considered dissimilar are separated. In this section, we discuss how
to implement this idea.

r5.4.1 Custom Images Embeddings and Attributes

A model trained on some generic dataset such as ImageNet learns a mapping to an
embedding space where the classes of this dataset are linearly separable and then nor-
malizes them into class probabilities using softmax. Consequently, the output of the
top layer of the network is a good embedding for evaluating the similarity in terms of
the classes of the training dataset. For instance, the top layer of a VGG network that is
trained on the ImageNet dataset produces embeddings where ImageNext classes such
as “banana" and “screw" are well separated, so that the distance between two images
of a banana tends to be small, and the distance between the images of a banana and
a screw tends to be large. This is generally aligned with what one would expect from
a visual search service, but it is usually not sufficient for real-world applications. For
example, a retailer that sells screws might need an embedding space where different
types of screws are well separated.

In principle, we can solve the above problem by creating a large custom dataset of
screw images labeled with head type, tip type, and other domain-specific attributes,
and training a standard image classification model on this dataset from scratch. This
approach, however, is impractical because millions of instances might be required for
training a large network such as VGG or its successors. A more practical solution is
to use the transfer learning methods discussed in Section 2.9. More concretely, we can
start with a foundation model pretrained on a generic dataset such as ImageNet to
produce intermediate feature maps and fine-tune its top layers to map these maps to
the final domain-specific space.

The details of the transfer learning process for an image classification model are
shown in Figure R5.8. We start with a pretrained model that can be used to produce
image embeddings by capturing the outputs of the top layer of the network, as shown
on the left-hand side of the figure. In the case where the model is pretrained on Ima-
geNet, the embedding vector has 1,000 dimensions because there are 1,000 classes in
ImageNet. The second step is to create a custom dataset of images with domain-specific
labels, and to replace the pretrained top layers with a custom layer or stack of layers
that produce embeddings and final outputs of the required dimensionality. For exam-
ple, we might create a dataset with 10 different screw-head types and replace the top
layer with a dense layer that produces a 10-dimensional output vector. This vector can
then be used as an embedding and input to the softmax layer that produces the class
labels. If we want the dimensionality of the embedding to be different from the num-
ber of classes, we can use a stack of two dense layers. For example, the first layer can
produce a 100-dimensional vector that can be used as an embedding, and the second
layer can map it to a vector with 10 dimensions to match the number of classes.

Subsequent to the structural adjustments, the network is retrained to align the output
space with the semantic dimensions specified in the custom dataset. As discussed in
Section 2.9, one can choose to train only the top (modified) layer, fine-tune selected
middle layers, or fine-tune the entire network. A general schema encompassing these

R5.4 search in a custom semantic space 279

Pretrained
model

Top
layer

softmax

Class
probabilities

Image

softmax

Class
probabilities

Image

Image
embedding

Domain-specific
image embedding

Hex Flat Cap

...

Custom dataset

Freeze

Fine-tune

Redesing
and train

Banana Screw Bee

...

ImageNet

Figure R5.8: Model fine-tuning using a domain-specific dataset.

options is demonstrated in the right-hand side of Figure R5.8. Training of the non-
frozen layers can be performed using a standard gradient descent algorithm.

The outlined process offers flexibility and can be adapted based on the available
data, computational resources, and the specific domain. At one end of the spectrum,
we can use the pretrained model as-is to generate image embeddings, which is a viable
solution when the target domain is similar to the domain the model was pretrained
on. This approach might also be the only choice when custom datasets are unavailable.
At the other end, fine-tuning all layers or training the entire network from scratch
is a suitable approach for highly specific domains, provided comprehensive custom
datasets are accessible.

The fine-tuned models can be used in several different ways. One option is to build
multiple classification models or one multihead model to estimate various domain-
specific attributes and then use these attributes to filter the catalog. This may be a good
solution for complex items and search applications that require the exact match [Isaev,
2019]. For example, a mobile application provided by a hardware shop can estimate

280 visual search

attributes such as head type, tip type, length, and pitch, based on a picture of a screw,
as illustrated in Figure R5.9, and search for exactly the same product or close substitutes.
The second option is to capture image embeddings at the top layer of the classifier, and
use them to perform nearest neighbor search similar to what we did in the solution for
a style-based search.

Head type Tip type Length Pitch

Hex Flat Round

Pan Oval Filister

Cheese Button Cap

Flat point Chamfer point

DOG point BP point

DOG point Sharp point

Figure R5.9: An example of attribute inference.

The design of the loss function used in the training process can be different for the
above two strategies. If the goal is to build a regular classification model, then a regular
loss function such as the categorical cross-entropy loss can be used. If the goal is to
produce embeddings for nearest neighbor search, one should use custom losses for
representation learning as discussed in Appendix A.3, although regular loss functions
can also produce meaningful but less optimal results.

r5.4.2 Prototype

The complete reference implementation for this section is
available at https://bit.ly/45UYcO9

In this section, our goal is to implement a visual search service with a domain-specific
image similarity measure. We approach this problem by fine-tuning a large image clas-
sification network to make it produce domain-specific image embeddings, and then
evaluate image similarities as cosine distances between these embedding vectors.

We consider the case of a clothing retailer that is looking to build a visual search
service that distinguishes clearly between clothing categories. Some of these categories,
such as t-shirts, long sleeve shirts, and dresses might not be easily distinguishable for

https://bit.ly/45UYcO9

R5.4 search in a custom semantic space 281

a model pretrained on a generic dataset, and fine-tuning is needed to produce high
quality embeddings. For the prototyping purposes, we prepare a dataset that contains
about 2,700 clothing images of five classes: t-shirts, shoes, long sleeves, dresses, and
hats [Grigoriev, 2020]. Examples of these images with the corresponding class labels
are presented in Figure R5.10. We further split this dataset into training and test parts
(75% and 25%, respectively).

T-Shirt Longsleeve Longsleeve T-Shirt Longsleeve Shoes

T-Shirt T-Shirt Shoes T-Shirt Hat T-Shirt

Hat T-Shirt Hat Shoes Shoes T-Shirt

Longsleeve Longsleeve Longsleeve T-Shirt Longsleeve Longsleeve

Figure R5.10: Examples of apparel images and their class labels.

Next, we use an EfficientNet-B0 model pretrained on the ImageNet dataset as a base-
line. The topmost convolutional layer of the EfficientNet-B0 network produces an out-
put with 1280 channels, each of which is a 7ˆ7 feature map, and this output is then fed
into the classifier. We remove the classifier for ImageNet, and replace it with a stack of
two dense layers followed by softmax. The first layer produces a 32-dimensional vector
which we can use as an embedding, and the second layer maps it to a 5-dimensional
vector that matches the number of classes in our custom dataset.

We then freeze all layers of the network except the two newly added dense layers
on the top, and train it using a regular categorical cross-entropy loss function on the
training part of our dataset. The trained model has relatively high accuracy, and we
can use it to predict clothing categories based on the image. Examples of predictions
for some images from the test dataset are shown in Figure R5.11.

282 visual search

EfficientNet Models

The EfficientNet architecture was proposed by Google Research in 2019 [Tan
and Le, 2019]. EfficientNet was designed with a goal to optimize computa-
tional complexity and size of models, while achieving state-of-the-art accuracy
on the standard benchmarks. The original paper describes eight configurations
that provide different trade-offs between accuracy and complexity. The smallest
configuration, referred to as EfficientNet-B0, has 5.3 million parameters, and the
biggest, EfficientNet-B7, has 66 million parameters. All EfficientNet models, in-
cluding EfficientNet-B0, achieve substantially higher accuracy than the VGG19

network despite having far fewer trainable parameters.

Dress: 0.00%
Hat: 0.00%
Longsleeve: 0.00%
Shoes: 100.00%
T-Shirt: 0.00%

Dress: 0.00%
Hat: 100.00%
Longsleeve: 0.00%
Shoes: 0.00%
T-Shirt: 0.00%

Dress: 0.01%
Hat: 0.00%
Longsleeve: 0.27%
Shoes: 0.00%
T-Shirt: 99.72%

Dress: 99.90%
Hat: 0.00%
Longsleeve: 0.00%
Shoes: 0.00%
T-Shirt: 0.10%

Dress: 0.00%
Hat: 100.00%
Longsleeve: 0.00%
Shoes: 0.00%
T-Shirt: 0.00%

Dress: 0.04%
Hat: 0.00%
Longsleeve: 99.96%
Shoes: 0.00%
T-Shirt: 0.00%

Dress: 1.07%
Hat: 0.00%
Longsleeve: 98.92%
Shoes: 0.00%
T-Shirt: 0.01%

Dress: 0.00%
Hat: 0.00%
Longsleeve: 0.01%
Shoes: 0.00%
T-Shirt: 99.99%

Dress: 59.99%
Hat: 0.61%
Longsleeve: 9.67%
Shoes: 3.68%
T-Shirt: 26.05%

Dress: 0.00%
Hat: 100.00%
Longsleeve: 0.00%
Shoes: 0.00%
T-Shirt: 0.00%

Dress: 0.00%
Hat: 0.02%
Longsleeve: 0.00%
Shoes: 99.98%
T-Shirt: 0.00%

Dress: 58.03%
Hat: 0.00%
Longsleeve: 0.04%
Shoes: 0.00%
T-Shirt: 41.93%

Dress: 0.01%
Hat: 0.00%
Longsleeve: 0.00%
Shoes: 0.00%
T-Shirt: 99.99%

Dress: 0.00%
Hat: 0.00%
Longsleeve: 0.10%
Shoes: 0.00%
T-Shirt: 99.90%

Dress: 0.00%
Hat: 0.00%
Longsleeve: 0.00%
Shoes: 100.00%
T-Shirt: 0.00%

Dress: 2.45%
Hat: 0.00%
Longsleeve: 91.82%
Shoes: 0.01%
T-Shirt: 5.71%

Dress: 98.56%
Hat: 0.00%
Longsleeve: 0.00%
Shoes: 0.00%
T-Shirt: 1.44%

Dress: 0.00%
Hat: 0.00%
Longsleeve: 0.00%
Shoes: 100.00%
T-Shirt: 0.00%

Dress: 0.02%
Hat: 0.00%
Longsleeve: 99.98%
Shoes: 0.00%
T-Shirt: 0.00%

Dress: 0.03%
Hat: 0.00%
Longsleeve: 99.73%
Shoes: 0.00%
T-Shirt: 0.24%

Figure R5.11: Class probabilities for some of the test images.

As we discussed previously, this fine-tuned network can either be used to explicitly
predict the clothing categories that can be used as filters, or the outputs of its top layers
can be used for nearest neighbor search. In the former case, the quality of the model can

R5.4 search in a custom semantic space 283

be assessed using accuracy metrics. In the latter case, we need to evaluate the quality of
the embedding space. One of most basic ways of assessing the embeddings is to inspect
their low-dimensional projection and analyze how well the classes are separated and
how well our domain-specific notion of similarity is approximated by the Euclidean
distance. So we compute 32-dimensional embeddings for all images in the test dataset
using the fine-tuned model, project these vectors on a two-dimensional plane using
t-SNE, and visualize the result in Figure R5.12. The clothing classes are clearly sepa-
rated in this space, and the distances are aligned with the intuition that dresses, long
sleeves, and t-shirts are close to each other, but shoes and hats are somewhat isolated
from them.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

T-Shirt
Shoes
Longsleeve
Dress
Hat

Figure R5.12: Visualization of the t-SNE projection of the clothing image embeddings. Each cluster
of embeddings is annotated with a few image examples.

284 visual search

r5.5 unsupervised embedding learning

The complete reference implementation for this section is
available at https://bit.ly/45RFQxu

Embedding learning using supervised models offers many advantages including the
high discriminative power of the produced embeddings regarding the domain classes,
the ability to leverage pretrained models, and the flexibility to customize the distance
metric to track style, object class, or some other characteristic. These capabilities result
in the supervised approach being commonly used in practice, generally allowing good
results to be achieved in a wide range of applications. The supervised approach, how-
ever, requires either that images in a given application are consistent with the dataset
used for model pretraining or that a labeled custom dataset trains an application-
specific model. These requirements might be impracticable for certain applications,
particularly ones with highly specialized types of imagery such as that from indus-
trial sensors or satellites. In some of these applications, unsupervised representation
learning methods can be considered as alternatives to the supervised approach.

The unsupervised feature learning from a collection of images is a challenging prob-
lem, and we can expect the unsupervised methods to produce embeddings of a lower
quality than the supervised ones. However, we can achieve reasonably good results us-
ing advanced representation learning methods discussed in Chapter 3. In this section,
we build a prototype that demonstrates how the variational autoencoder introduced in
Section 3.2 can be applied to the visual search tasks.

We use the Fashion-MNIST dataset that contains clothing images of 10 different
classes, as shown in Figure R5.13. We do not need the class labels to train the au-
toencoder model, so we do the basic preprocessing and prepare a dataset that contains
only 60,000 unlabeled grayscale images.

Fashion-MNIST Dataset

Fashion-MNIST is a dataset of clothing images open-sourced by a fashion re-
tailer Zalando in 2017 [Xiao et al., 2017]. The dataset consists of small 28 ˆ 28

grayscale images, each of which is associated with a label from 10 classes such
as “dress" or “sandal". The dataset includes 60,000 training images and 10,000

test images.

We then implement a variational autoencoder with the encoding subnetwork that
consists of two stacked convolution layers and a decoding subnetwork that consists of
two upconvolution layers. The encoding and decoding subnetworks have symmetrical
(mirrored) layer parameters in terms of filter sizes and strides, as shown in Figure R5.14.
The overall architecture is similar to the reference design in Figure 3.3, except that the
dense layers are replaced with two-dimensional convolution layers. The autoencoder is
then trained using the ELBO loss.

https://bit.ly/45RFQxu

R5.5 unsupervised embedding learning 285

T-shirt/top

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

Figure R5.13: Example images from the Fashion-MNIST dataset.

28 × 28 × 1

14 × 14 × 32

7 × 7 × 64

4 × 1

7 × 7 × 64

14 × 14 × 32

28 × 28 × 1

2 × 1

Dense

Upconvolution
(3 × 3 kernel,
2 × 2 stride)

Convolution
(3 × 3 kernel,
2 × 2 stride)

Sampling

Figure R5.14: Architecture of the variational autoencoder for learning two-dimensional embed-
dings for the Fashion-MNIST images.

We configure the model in a way that embeddings are two-dimensional, that is they
are drawn from the bivariate normal distribution. This greatly facilitates the visualiza-
tion of the manifold. We can simply traverse a two-dimensional grid spanned over the
semantic space, and decode each point into an image of the same size as the training
images. The result of such a visualization is shown in Figure R5.15. This inspection
confirms that the variational autoencoder has learned a regular continuous embedding

286 visual search

space that is aligned with the image classes, although the training process did not have
access to the ground truth labels. It is also evident that the decoder is able to recon-
struct the original images quite accurately, although each image is represented using
only two real numbers.

Figure R5.15: The manifold learned using the variational autoencoder based on the Fashion-
MNIST dataset. We use a two-dimensional semantic space to simplify the visual-
ization, and pick 100 points from this space using a square 10 ˆ 10 grid centered
around the origin. Each point is then decoded into a 28 ˆ 28 image.

The trained model can be used to map images to embeddings and perform searches
in the embedding space. Since we use the variational autoencoder, the encoding net-
work produces two two-dimensional vectors which are interpreted as the mean and
variance vectors of the bivariate normal distribution. Consequently, we compute the
mean vectors for each image in the collection to create the search index. A search re-
quest is carried out by computing the mean vector for the query image and looking
up the nearest neighbors in the index. Example search results for a couple of query
images are presented in Figure R5.16. We can see that the solution is able to produce
meaningful results that are aligned with our intuitive expectations, but it is generally
more prone to issues and artifacts than supervised solutions.

r5.6 object localization and segmentation

The visual search solutions developed in the previous two sections compute embed-
dings for entire images on the assumption that each image contains only the object
of interest such as an artwork or garment on a smooth background. The networks we

R5.6 object localization and segmentation 287

Query: Top search results:

Query: Top search results:

Figure R5.16: Searching for nearest neighbors in the embedding space produced the autoencoder.

used to compute the embeddings tend to amplify the characteristic features of objects
in the feature maps they produce, so the network can to some extent separate objects
from the background. This capability, however, might not be sufficient for producing
proper embeddings based on images with noisy backgrounds or containing multiple
objects. In such cases, we might need to use special techniques to locate and separate
the objects that can further be used as inputs for the visual search pipeline.

The problem of object localization and separation can be approached in several differ-
ent ways depending on assumptions we make about the structure of the query image.
In the field of computer vision, there are four standard problem formulations and,
consequently, four types of solutions that we can potentially use for our purposes:

object localization If we can assume that only one instance of the object of inter-
est is present in the image, and our goal is to separate it from the background,
we can attempt to build a model that estimates the coordinates and size of the
object. More specifically, the model can output the tuple pc, x, y, w, hq where
c is the object class, x and y are the coordinates of the center point of the ob-
ject, and w and h are the width and height of the object. The rectangle specified
by the coordinates, width, and height is commonly referred to as a bounding box.
This approach, illustrated in Figure R5.17 (a), can be used to roughly separate
the object from the background, but this separation is imperfect for objects with
a non-rectangular shape or a diagonal orientation.

object detection If we cannot make an assumption that the image contains only
one object instance, we might need to build a model that produces a set of labeled
bounding boxes as shown in Figure R5.17 (b). This is a far more complex task than
the localization of a single object.

semantic segmentation Since the bounding box approach does not provide a per-
fect solution for separating objects from their background, we can attempt to
build a model that assigns a class label to individual pixels of the image, as illus-
trated in Figure R5.17 (c). The output of such a model is a matrix of the same size
as the input image, and each element of this matrix is a class label. The objects
can then be separated from the background by selecting pixels of the same class.
The limitation of this approach is that the model does not differentiate between

288 visual search

object instances. If the image contains multiple overlapping or non-overlapping
instances of the same class, all objects will be lumped together in a single mask.

instance segmentation Finally, we can attempt to combine object detection with
semantic segmentation and build a model that produces pixel-level masks for
individual objects in the image, as shown in Figure R5.17 (d).

In this section, we focus on the semantic segmentation approach and build a model
for separating objects from their background. This solution works well for many vi-
sual search applications, except ones that deal with complex multi-object input images
which require instance segmentation.

Shoe
Shirt
Background

Shoe 1

Shoe 2

Shirt 1

Shoe 1 Shoe 2

Shirt 1

Shoe

(a) Classification with
localization

(c) Semantic
segmentation

(b) Object
detection

(d) Instance
segmentation

Figure R5.17: The four main problem formulations related to the localization task.

r5.6.1 Semantic Segmentation

The problem of semantic segmentation requires building a model that assigns a class
label to each pixel of the input image. Conceptually, this means that we need to build
a network that consumes n ˆm image and produces n ˆm ˆ k tensor where k is
the number of classes. The values of this tensor should be softmax-normalized along
the last dimension, so it can be interpreted as an nˆm matrix of k-dimensional class

R5.6 object localization and segmentation 289

probability vectors. This network can then be trained using a dataset where the training
labels are nˆm matrices of ground truth pixel-level class annotations, as illustrated
in Figure R5.18. This setup has a lot of similarities with a regular image classification
problem, but evaluation metrics, loss function, and network design need to be adapted
to deal with matrices of class labels instead of a single label.

Network

softmax

Loss

n × m × 3 n × m × k

Training
instance

Ground
truth
label

n × m

Figure R5.18: Training of a semantic segmentation network.

r5.6.1.1 Evaluation Metrics

Since the segmentation model produces an array of class probability vectors that can be
compared element-wise to the corresponding pixel-level class labels, the network can be
trained using a standard classification loss function such as categorical cross-entropy. In
the context of segmentation tasks, this evaluation metric is commonly referred to as the
pixel accuracy. Pixel accuracy, however, can be misleading when classes are imbalanced.
For example, about 90% of the image presented in Figure R5.17 (a) is background, and
only 10% of the image area is an object (shoe). Consequently, a baseline model that
annotates all pixels of the image as background would reach the classification accuracy
of about 90% in this case.

The above problem can be minimized by measuring the percent overlap between the
ground truth and predicted masks. This metric is known as the intersection over union
(IoU) or the Jaccard index. For each individual class, the mask can be represented simply
as a set of pixel positions that are labeled with this class, and the IoU metric can be
defined as the number of pixels in common between the ground truth and predicted
masks divided by the total number of distinct pixel positions present in both masks:

IoU “
| Ground truthX Predicted |
| Ground truthY Predicted |

(R5.3)

In the above example of the shoe image, the IoU score of the constant-output baseline
model that annotates all pixels as background will be 0% = 0%/10% for the shoe class
and 10% = 10%/100% for the background class. The IoU is calculated for each class
separately and then averaged over all classes to provide the total IoU score.

290 visual search

r5.6.1.2 Network Design

The network design for segmentation can employ the standard U-Net architecture intro-
duced in Section 2.5.4.2. The input image is first processed by a contracting subnetwork
(encoder) to produce a large number of relatively small feature maps, and these feature
maps are then upscaled by an expanding subnetwork (decoder) to produce the output
that matches the size of the input image but has only k channels that are interpreted as
class probabilities.

r5.6.2 Prototype

The complete reference implementation for this section is
available at https://bit.ly/45REJOr

In this section, we build a prototype of a semantic segmentation network using the
U-Net architecture. This type of solution is typically used in visual search applications
to remove the background and isolate the query object, so that more accurate similarity
measures can be computed. This solution can also be used to separate different classes
of objects (e.g. clothes and shoes in a fashion image) to search for them separately.

We use a clothing co-parsing (CCP) dataset that includes more than a thousand fash-
ion images with pixel-level annotations [Yang et al., 2013]. The original dataset contains
59 object classes, but for the sake of simplicity, we remap the annotations to just four
classes: background, clothes, skin, and hair. Several example images and the corre-
sponding pixel-level annotations (segmentation masks) are presented in Figure R5.19.
We further split the preprocessed dataset into train and test subsets.

Next, we train the U-Net model from scratch using only 750 instances from the
training set. Although this is a very limited dataset, we can obtain a reasonably good
solution using these data alone without pretraining. However, we have to use standard
data augmentation techniques to achieve acceptable results.

Finally, we evaluate the trained network on the test dataset. A few examples of in-
put images and the corresponding predicted and ground truth segmentation masks are
presented in Figure R5.20. The predicted masks can then be used to separate clothing
objects and compute embeddings for visual search. This basic prototype can be fur-
ther improved by increasing the number of clothing classes and separating individual
garments instead of lumping all clothing objects together into a single mask.

r5.7 summary

• Visual search services enable users to retrieve relevant entities from a collection
based on the query image.

• The relevancy is approximated by a similarity measure which can be evaluated as
a distance in an embedding space or distance between vectors of numerical and

https://bit.ly/45REJOr

R5.7 summary 291

0

100

200

300

Image

0 100 200

0

100

200

300

Mask

0 100 200 0 100 200 0 100 200

Background Clothes Skin Hair

Figure R5.19: Examples of fashion images and corresponding annotations.

categorical attributes inferred from images. In both cases, the distance measure
needs to be designed based on a particular domain and application.

• The embedding space can be constructed based on feature maps produced by
computer vision models. It is common to use the output of the top layer of the
model as an image embedding vector, but it is also common to assemble embed-
ding vectors using outputs of multiple intermediate layers or their transforma-
tions.

• In some applications, it is sufficient to use feature maps that describe the small-
scale structure of the image. Such feature maps can be obtained using general-
purpose models pretrained on common computer vision datasets.

• Some applications need to differentiate properly between domain-specific classes
or use a custom measure of similarity. A custom similarity measure can rarely be
specified explicitly, but we can learn a custom embedding function by training a
new model or fine-tuning a pretrained model on domain-specific examples.

• The fine-tuning process aims to adapt a model trained on one domain to another
domain. Some parameters of a pretrained model can be frozen, some parameters
can be updated by the gradient descent, and parameters of newly added layers
need to be learned from scratch.

• Unsupervised embedding learning can be used as an alternative to supervised
methods in certain applications. It is generally challenging to obtain consistent
results with unsupervised methods even using powerful methods such as varia-
tional autoencoders.

292 visual search

0

100

200

300

Image

0

100

200

300

Predicted

0 100 200

0

100

200

300

Ground truth

0 100 200 0 100 200 0 100 200

Background Clothes Skin Hair

Figure R5.20: Evaluation of the U-Net model: examples of input images, predicted masks, and
ground truth masks.

• Images that contain multiple objects or large background areas need to locate and
separate objects of interest before embeddings can be computed. This can be done
using object localization, object detection, semantic segmentation, or instance seg-
mentation models depending on the assumptions about the image structure.

• Semantic segmentation models can produce pixel-level masks for individual
classes of objects. Such models can be implemented using convolutional
autoencoders.

Recipe

6

P R O D U C T R E C O M M E N D AT I O N S

Recommending Products Based on Textual, Visual, and Graph Data

In Recipe R5 (Visual Search), we discussed the problem of searching for the most rel-
evant items based on a query image provided by a user. We assumed that the query
image is the only source of information about the search intent of the user, and no other
information is available about the user and the context of their search. Consequently,
we used various image similarity measures as proxy measures of relevancy, and relied
on content data (images) to identify relevant items. Furthermore, we have developed
a comprehensive toolkit for user experience personalization based on behavioral and
demographic information in Recipes R1–R4. Unlike search services, these methods use
the similarity of behavioral patterns as a proxy measure of relevancy, and do not re-
quire either content data to be available, or search intent to be explicitly expressed as a
query.

In this section, we explore how these two groups of methods can be combined, so that
the resulting service can leverage both behavioral and content data to provide users
with the most relevant recommendations on items such as products, offers, articles,
or videos. We also discuss how such hybrid solutions can operate on a large scale,
handling millions of items, billions of personalization requests, and newly registered
users.

r6.1 business problem

We consider the case of a digital service that creates a personalized user experience
by selecting one or several items from a collection of available items. For example,
a digital commerce platform can provide a user with a short list of recommended
products, selecting them from the full catalog. A streaming service can recommend
the next movie to watch by selecting it from a comprehensive movie database, and a
media platform can personalize newsfeeds by selecting the most relevant stories from

293

294 product recommendations

all available news. This functionality is particularly important in applications where the
number of available items is very large, often in the millions, and users might not be
able to discover relevant products or content without a service that recommends items
to them automatically.

The development of an industrial recommendation system requires incorporating
multiple considerations including the business use case, end user representation, data
availability, performance goals, and evaluation strategy. In the next section, we discuss
the recommendation environment at a high level, and then delve deeper into the indi-
vidual aspects of the problem.

r6.1.1 High-level Environment Overview

We assume that the service has access to user profiles that can include static attributes
such as demographic data, account preferences, and history of events, as illustrated in
Figure R6.1. We further assume that some of these events such as product page views,
purchases, and submissions of customer ratings can be associated with specific items.
Consequently, each user can be linked to a set of items they interacted with, and, con-
versely, each item can be linked to a set of users. We also assume that each interaction
between a user and an item contains enough information to compute one or several
feedback variables that characterize the intensity of the interaction. The feedback vari-
ables can be unary (e.g. purchase or no purchase), binary (e.g. like or dislike), ordinal
(e.g. customer rating from 1 to 5), or continuous (e.g. time on a product page).

Demographics
(dense features)

Interactions with items
(sparse features)

Time

Other events

()

Current
session

User and
context

Items

Attributes
Description
Reviews
Images
Feedback

Objective

Recommendation
engine

Outcome

Recommended
items

Recommendation
request

1.
2.
3.
...

Figure R6.1: Main inputs and outputs of a recommendation engine.

The number of interaction events for an individual user can vary greatly depending
on whether we can track the user’s identity across multiple interaction sessions or not.
For example, an online service can personalize recommendations for logged-in users
based on the events in their current and previous sessions, but recommendations for

R6.1 business problem 295

unknown users might need to be personalized based only on their current session. The
number of events associated with each item can also vary depending on the popular-
ity and novelty of the item. In practice, the fraction of user-item pairs for which any
feedback information is available is typically very small compared to the total number
of possible user-item pairs. This property is commonly referred to as sparsity of the
feedback data.

The second major source of the information that can be leveraged by a recommen-
dation service is the item data. This generally includes categorical and numerical item
attributes, human-readable descriptions, customer reviews, images, and videos. We do
not make any specific assumptions about the format, availability, and quality of the
item data, and expect the recommendation engine to be able of digesting any mix of
structured features, texts, and images. In practice, the item data are often noisy, and the
ability to reconcile the information from multiple heterogeneous sources is an impor-
tant requirement of a recommendation engine. For instance, a retailer can consolidate
product data feeds from hundreds of suppliers, merchandisers, and content writers,
and the final result may include various inconsistencies in attribute values due to dif-
ferences in nomenclatures, as well as inconsistencies between attributes and product
images.

A recommendation engine leverages the user and item information to create an or-
dered list of recommended items, these items are presented to the user, and the engine
observes the outcome. The outcome can include interaction events for individual items
from the recommended list and additional metrics that can be used to evaluate the
quality of recommendations. The interaction events, in turn, are assumed to be asso-
ciated with the feedback variables. These events are then added to the event histories
of the corresponding users and items, and can be leveraged by the engine to improve
subsequent recommendation decisions.

r6.1.2 Environment Types

The environment specification provided in the previous section is fairly generic, and it
is challenging to design a recommendation engine that supports all mentioned types of
input and feedback data in one step. In order to facilitate the design process and break
it into a sequence of simpler tasks, we will distinguish between several particular cases
of the environment. First, we can categorize the environments based on the feedback
type:

continuous/ordinal feedback In some applications, we are interested in pre-
dicting the strength of the customer feedback on items that we can possibly
recommend. For example, an online video-sharing service might need to pre-
dict watching times for recommended videos to differentiate between truly rel-
evant recommendations and clickbait videos. Movie recommendation services
often aim to predict ordinal user ratings given to the movies.

unary feedback In many other applications, we might need to identify only the
items a given user is likely to interact with. In this case, the feedback variable can
be considered unary – the user either interacts with a specific item or does not.
We also do not need the event records to contain any feedback data explicitly; the

296 product recommendations

presence of an event for a certain pair of user and item is interpreted as feedback
of 1, and absence is interpreted as 0.

The second important characteristic of the environment that influences the design of
the recommendation engine is the type and availability of the user and item data. We
will distinguish between the following scenarios:

only feedback One of the most basic options is to assume that we do not have
any content or user information and observe only event tuples pu, v,guv, tq that
consist of the user identifier u, item identifier v, feedback variable guv, and times-
tamp t. In this scenario, we can make recommendations only by capturing interac-
tion patterns that are common across the users. This setup is commonly referred
to as collaborative filtering.

feedback and content The second option is to assume that we have access to both
feedback data and item content data, so that each observation can be represented
as pu, xv,guv, tq where xv is a structure that represents item features such as
human-readable descriptions, product attributes, and images. In this case, user
interaction histories can be analyzed individually, and recommendations can be
made based on item features that are typical for a given user. The analysis of
interaction patterns that are common across the users is optional. We refer to the
problem of making recommendations based predominantly on the item data as
content-based filtering.

feedback , content, and user The most general setup includes the feedback, con-
tent, and user data, so that observations pxu, xv,guv, tq include both user features
xu and item features xv. We call this setup a hybrid recommendation environment.

In this recipe, we aim to develop solutions that can work efficiently in hybrid envi-
ronments, but we will design them in stages, starting with simpler content-based and
collaborative filtering formulations and then add hybrid capabilities on top.

r6.1.3 Evaluation and Optimization Metrics

The primary goal of a recommendation engine is to achieve the best possible outcomes,
and the design of recommendation models is driven by the metrics that we choose for
measuring the quality of the outcomes. The design of such metrics is an important part
of the environment specification, and we dedicate this section to a discussion of how
the quality of recommendations can be evaluated based on historical data and how the
actual outcomes can be evaluated in production.

The environment model described in the previous sections does not assume that a
user had been provided with recommendations at any time before the current session.
Consequently, the user-item interactions recorded in the event history did not necessar-
ily occur in response to past recommendations, but rather occurred naturally as a part
of a normal user activity such as website browsing. This means that a recommenda-
tion engine cannot establish a direct link between the actions (recommendations) and
outcomes, but can only optimize some proxy measure that gauges the relevancy of
recommendations to the user or expected business outcome. Since this proxy measure
cannot be used to reliably evaluate the true impact of recommendations, the develop-
ment of a recommendation solution usually includes the following steps:

R6.1 business problem 297

• The first step is to specify a set of proxy metrics for training a recommendation
model offline based on the available historical data. This set usually includes a
primary metric that is used as a loss function, and multiple secondary metrics that
are used to evaluate the quality of recommendations from different perspectives.

• The second step is to establish one or several baselines that can be compared
to the newly developed solution, both offline using the metrics defined in the
previous step and online using A/B testing in production. One of the commonly
used baselines is a simple algorithm called most popular items. It ranks all items by
the number of purchases, views, clicks, or some other statistics, and recommends
the same top items to all users without any personalization. In many real-world
projects, new recommendation algorithms are developed to replace legacy solu-
tions, and thus legacy systems or models are used as baselines.

• The new solution is developed and evaluated offline using the previously defined
metrics and baselines.

• Finally, the new solution is compared to the baselines in production using A/B
testing. The metrics collected during the online evaluation may be substantially
different from the metrics used for offline evaluation.

The design of both offline and online metrics can vary significantly depending on
the application, business goals, and available data. In the next two sections, we discuss
several common techniques that can be used as starting points for building a specific
solution.

r6.1.3.1 Offline Evaluation: Basic Metrics

The final output of a recommendation engine is an ordered list of items. This output
is typically obtained by scoring all candidate items and ranking them according to the
scores. The scoring model, in turn, is usually trained to estimate one of the feedback
variables such as a customer rating, time on a product page, or probability of a click
on a specific item. Consequently, we can evaluate the quality of a recommendation
model either by comparing the individual feedback predictions to the ground truth or
by comparing the entire lists of recommendations to the ground truth. Let us examine
these two options separately.

The accuracy of individual feedback predictions is typically evaluated using regular
regression and classification metrics. Assuming that we have a dataset that consists of
pui, vi, gi, tiq tuples where ui is a user, vi is an item, gi is a feedback value, and ti
is a timestamp of the corresponding interaction event, we first split this dataset into
training and test sets. This can be done at random, but it is also common to group
all samples by user, sort each group by timestamp, and use all-but-latest samples for
training, holding the latest samples in each group for testing, as shown in Figure R6.2.

The recommendation model can then be trained and evaluated using losses and
metrics that match the type of the feedback variable:

continuous feedback Assuming that we use a continuous or ordinal feedback
variable such as a video watch time or customer rating, the model can be trained
and evaluated using regular regression loss functions and metrics. For example,

298 product recommendations

Training set

Time
...

Test set

(ui, vi, gi, ti)

u1

...u2

...u3 ...

Figure R6.2: Creating training and test sets for model development and offline evaluation.

we can use the MSE loss and evaluate the accuracy of the model on the training
set in terms of MSE as

MSE “
1

|T |

ÿ

iPT

ppgi ´ giq
2

(R6.1)

where T is the test set, and pgi is the predicted feedback value for the i-th sample.

unary feedback In the case of a unary feedback variable such as a ‘click’ or ‘like’
flag, the problem reduces to a multinomial classification problem; the model
needs to predict item vi based on user ui for each sample. The output of such
a model is a probability vector pp1, . . . , pmq where m is the total number of
items, j-th entry corresponds to the probability of interaction with item vj, and
all entries add up to one. In this case, the model can be trained using a regular
classification loss such as a categorical cross-entropy and evaluated using standard
classification metrics such as the area under curve (AUC)1.

The two options described above can be viewed as two different frameworks for
building recommendation models, and we discuss how to use each of them later in this
recipe.

The point metrics such as MSE and AUC help to evaluate the accuracy of scores
that are used to rank the items, but not the integral quality of the recommendations
eventually presented to the user. This integral quality can be assessed by comparing
the list of recommended items to the ground truth, that is an ordered list of items that
are assumed to be relevant for a given user. One possible way of creating such a list is
to select the most recent items from the user’s interaction history and rank them in the
same order as they were interacted with, as shown in Figure R6.3. In other words, we
assume the interaction order to be a proxy for relevancy, so that the user interacts with
the most relevant items first.

Assuming that we have a ground truth list V “ pv1, . . . , vnq and a recommended
list V 1k “ pv

1
1, . . . , v 1kq for individual users, we can evaluate the quality of recommen-

dations using the standard ranking metrics described in Appendix B.4 including the
hit ratio, mean average precision (MAP), and discounted cumulative gain (DCG) [He et al.,
2015].

The list-wise measures like MAP and NDCG are not directly differentiable, so they
cannot be used straightforwardly as loss functions. A number of loss functions exist

1 See Appendices A and B for a detailed discussion of the loss functions and evaluation metrics.

R6.1 business problem 299

Training set

Time
...

Test set

v1 v2 vn

Rankv1 v2 vk

Recommendations:
...

...

‘ ‘ ‘

V

Vk‘

Figure R6.3: Creating a test set for offline evaluation of ranking metrics.

that aim to approximate MAP and NDCG [Lan et al., 2014], but it is more common to
train recommendation models using point losses like MSE and to use list-wise metrics
only for the evaluation of the results.

r6.1.3.2 Offline Evaluation: Advanced Techniques

All metrics discussed in the previous section evaluate how well a recommendation
model captures the interaction and feedback patterns and predicts the future interac-
tions between users and items. Although this capability is essential for producing rele-
vant recommendations, the reliance on regular patterns tends to constrain the diversity
of recommendations and the ability to provide the user with non-trivial suggestions.
This aspect can be monitored using specialized metrics such as diversity (average dis-
tance between recommended items in some semantic space), serendipity (percentage
of recommended items that do not coincide with recommendations produced by some
simple baseline algorithm), and catalog coverage (percentage of items that are never
recommended to any users).

In most practical applications, however, the generic quantitative metrics are not suf-
ficient to adequately assess the quality of recommendations, and domain-specific and
subjective tests play an important role in the model development process. For example,
a developer of a movie recommendation service should preferably pick several typical
user profiles such as fans of the Marvel universe or comedy fans, and assess the quality
of recommendations using domain-specific rules, focus group, or manual subjective
checks.

r6.1.3.3 Online Evaluation

The models developed and evaluated offline are then compared to the baselines using
A/B testing in production. The online evaluation metrics are usually designed to track
the actual business gains, and the uplifts in the click-through rate and conversion rate
are the most common choices. These metrics are consistent with model training using
unary feedback labels as discussed in the previous section.

The second aspect of online evaluation is the tracking of performance metrics such
as the latency (response time) and throughput. These metrics are particularly impor-

300 product recommendations

tant for the near real-time scenarios where the latency has a major impact on the user
experience. Performance considerations can significantly influence the design of a rec-
ommendation engine, and we discuss these implications in detail in the next section.

r6.2 solution options

In the environment specification presented in Section R6.1.1, we outlined a number
of challenges that need to be addressed in the design of a recommendation engine
including the scalability by the number of users and items, sparsity and noisiness of
the feedback data, diversity of the user and item data, and complexity of behavioral
patterns. We then discussed several quality metrics and loss measures that can guide
the design, training, and evaluation of a recommendation model. In this section, we
aim to combine these two perspectives into one framework and develop several specific
solutions using deep learning methods.

r6.2.1 System Architecture

Scalability and latency requirements are the main factors that shape the system archi-
tecture of recommendation engines. Many recommendation algorithms perform well
on a small scale, but fail in environments with millions of items, strict latency con-
straints, and sparse feedback data. One common approach that helps to alleviate these
challenges is precomputed recommendations: the engine can create recommendation
lists for all known users in the background, save them to the operational database (in-
dex), and fetch individual lists in real time to serve recommendation requests. This
solution can help to work around latency constraints in certain applications. However,
it has major disadvantages such as the inability to incorporate the real-time context
and anonymous users, as well as high computational loads associated with regular
recomputing of recommendations for the entire customer base.

The basic solution with fully precomputed recommendations can be improved using
a two-layer architecture that uses one model or algorithm to retrieve a few hundreds
or thousands of candidate items from the catalog. The second model would then rank
these candidates to produce the final recommendation list with tens of items, as shown
in Figure R6.4. These two models can have similar designs, but would use different
input features and parameters to achieve different trade-offs between performance and
quality. The two-layer architecture helps to manage the balance between the real-time
and background computations more efficiently. For example, the candidate retrieval al-
gorithm can rely heavily on precomputed values and human-defined rules, meanwhile
the ranking algorithm can perform scoring in real time to account for the current con-
text and in-session user actions. The methods that we develop in the next sections can
be used to build both the candidate retrieval and ranking algorithms.

The second advantage of the two-layer architecture is the modularity. In many envi-
ronments, recommendations are shown to the user in multiple contexts, each of which
can be associated with unique business requirements and constraints. For example, an
online retailer can display recommendations on the landing page, catalog pages, prod-
uct pages, as well as send recommendations in emails. The two-layer architecture helps
to handle this complexity because the candidate retrieval layer can include multiple rec-

R6.2 solution options 301

Candidate
retrieval RankingAll

items
Recommended
items

User and
context

~106 ~104 ~101

Additional
items

Figure R6.4: The two-layer architecture recommendation service.

ommendation algorithms, and the ranking layer can include multiple use case-specific
services that mix the outputs of the retrieval algorithms and perform the final ranking
of the candidate items. This way, the two-layer approach helps to reuse the recommen-
dation algorithms across multiple use cases and customize business logic for each use
case.

r6.2.2 Model Architecture

Let us now develop several basic design principles that can be used to create scalable
and robust retrieval and ranking models. As we discussed in Section R6.1.1, a recom-
mendation model can be built to predict different types of feedback variables including
continuous and unary. We consider these two cases separately starting with the contin-
uous feedback.

r6.2.2.1 Continuous Feedback

Assuming a continuous feedback variable, we can build an arbitrary regression model
f that estimates the feedback guv for user u and item v based on their feature vectors
xu and xv, respectively:

pguv “ fpxu, xvq (R6.2)

This model can then be used to score all items for a given user, and create a recom-
mendation list by selecting items with the highest scores. The main shortcoming with
this approach is high computational complexity because the number of scoring opera-
tions grows linearly with the number of items in the catalog, and each scoring requires
evaluating the model.

We can attempt to improve the computational efficiency of the above approach by
embedding users and items into a semantic space where the feedback can be estimated
based on the distances between the embedding vectors. Assuming that we can precom-
pute the embeddings efficiently, this approach offers two major benefits: first, we can
replace the evaluation of arbitrary models with the basic vector operations; and second,
we can replace the exhaustive scoring of all items by the nearest neighbor search in the
embedding space, which can be done efficiently using specialized indexing techniques
[Liu et al., 2004].

To better understand the embedding-based approach, let us first consider a simplified
scenario where we have only the feedback variables and item embeddings. The item

302 product recommendations

embeddings are assumed to be computed based on the content data such as attributes,
human-readable descriptions, and images. Let us assume that we make recommen-
dations to user u, and this user has already interacted with a set of items vu1 , . . . , vun
producing the corresponding feedback variables guv1 , . . . , guvn . We then can estimate
the expected feedback for arbitrary item v as a weighted average of known feedbacks
using the distances in the semantic space as weights:

pguv “

n
ÿ

j“1

ˆ

1´
1

2

∥∥∥zvuj ´ zv
∥∥∥2˙ ¨ guvj (R6.3)

where zv is the embedding of item v, and the embeddings are assumed to be nor-
malized so that zT z “ 1. In other words, the contribution of item vuj into the feedback
estimate for item v is proportional to its proximity to v in the embedding space.

We can further simplify this expression using the following identity that works for
any pair of normalized vectors p and q such that pTp “ qTq “ 1:

1

2
‖p´ q‖2 “ 1

2

´

pTp` qTq´ 2pTq
¯

“ 1´ pTq (R6.4)

Consequently, we can rewrite the feedback estimate using the dot product similarity
instead of the Euclidean distance1:

pguv “

n
ÿ

j“1

zTvuj ¨ zv ¨ guvj (R6.5)

This approach, commonly referred to as the item-based approach, allows us to replace
the evaluation of an arbitrary regression model with the dot product, but still provides
the flexibility to incorporate arbitrary item data. In particular, we can implement pure
content-based filtering by computing embeddings z for each item independently based
on its content such as attributes, texts, and images. Alternatively, we can implement
pure collaborative filtering by constructing item embeddings based on the common
behavioral patterns across the users. However, this simplistic solution has several short-
comings related to the limited generalization ability of a simple weighted sum model.
In particular, it works only for users with sufficiently large interaction histories so that
the sum in expression R6.5 can be evaluated, and this sum is sensitive to outliers in the
feedback data.

A more general solution can be obtained by mapping both users and items to the
same semantic space and estimating the expected feedback using the distance between
user and item embeddings. Using the reverse relationship between the distance and
dot product given in expression R6.4, we can estimate the expected feedback as

pguv “ zTu ¨ zv (R6.6)

where zu and zv are the user and item embeddings, respectively. This design is
often referred to as the feedback factorization because the feedback is decomposed into
a product of embeddings. It is worth noting that expression R6.5 can also be interpreted

1 See Section 2.3.7 for a more general discussion of the entity interaction models.

R6.2 solution options 303

as a product of item and user embeddings. We can make this fact more apparent by
rewriting the expression as follows:

pguv “ zTv ¨
n
ÿ

j“1

zvuj ¨ guvj (R6.7)

It can be seen that the sum on the right-hand side can be interpreted as a user embed-
ding which is computed as a weighted average of the corresponding item embeddings.

The general factorization solution R6.6 resolves several shortcomings of the item-
based solution R6.5. First, common behavioral patterns and feedbacks of the given
user are captured in the user embedding, eliminating the direct dependency on the
individual feedback values and thus making the solution more robust to noises and
data sparsity. Second, user embeddings enable us to incorporate arbitrary user data
including event history and profile attributes. Finally, the top items to be recommended
to the given user can be identified using the nearest neighbor search. (We need to
find the nearest neighbors of zu among all item embeddings zv.) The item-based and
feedback factorization designs are compared side by side in Figure R6.5.

Items associated
with the user (vj)

Item space

User and
context

User
embedding (zu)

Unified space

User and
context

Candidate item (zv) Candidate item (zv)

(a) Item-based (b) Factorization

u

Figure R6.5: Comparison of the item-based and factorization designs.

The three approaches described above can be used to achieve different trade-offs be-
tween precomputing and real-time contextualization. The real-time scoring using an
arbitrary regression model can incorporate real-time user, context, and item data at the
expense of high computational complexity. In the two-layer architecture that was intro-
duced in the previous section, this approach is most suitable for the ranking stage. The
content-based similarity scoring can be used in applications with limited or highly dy-
namic user data where it may be challenging to precompute user embeddings, whereas
it may be easier to map a user, session, or context to a collection of items. In particular,
this approach can be used to produce non-personalized recommendations based, for
example, on the currently browsed page or product. Finally, the feedback factorization

304 product recommendations

approach allows us to reduce the recommendation problem to real-time nearest neigh-
bor search, but this requires both user and item embeddings to be precomputed. In the
two-layer architecture, both retrieval and ranking models can leverage the factorization
concepts.

r6.2.2.2 Unary Feedback

The three design options given by expressions R6.2, R6.5, and R6.6 can be adapted to the
case of the unary feedback. We can do this consistently by reformulating the feedback
prediction problems into interaction prediction. For example, the most general solution
that matches expressions R6.2 can be obtained by building a classification model f that
estimates interaction probabilities for individual items based on a user feature vector:

ppu1, . . . , pumq “ fpxuq (R6.8)

where puj is the probability that user u will interact with item vj, all puj sum up
to one, and m is the total number of items. In this design, the user feature vector is
assumed to incorporate the interaction history including features of the items that the
user interacted with. The recommended list can then be created by selecting items with
the highest interaction probabilities.

The item-based solution analogous to expression R6.5 can be obtained by evaluating
the similarity scores in the semantic space based on the historical interactions of the
user, and using these scores as unnormalized interaction probabilities. More specifically,
we can evaluate the following score for each item in the catalog, and create the final
recommended list by selecting the items with the highest scores:

sui “
ÿ

j

zTvuj ¨ zvi , i “ 1, . . . ,m (R6.9)

Finally, the general factorization solution is identical to expression R6.6 except that
the product of embeddings is interpreted as unnormalized interaction probability, not
the feedback estimate:

sui “ zTu ¨ zvi , i “ 1, . . . ,m (R6.10)

Similar to the continuous feedback case, the recommended list can be created by
locating the nearest neighbors of the user embedding zu among all items.

The above designs provide a high-level idea of how recommendations can be created
using regression and classification models, and scalability and robustness can be im-
proved by reducing the problem to vector operations in semantic spaces. However, this
is just a conceptual framework that does not specify how the appropriate embeddings
can be computed and what model architectures should be used. We build specific so-
lutions that address these questions in the next sections, starting with relatively basic
methods and gradually increasing the complexity.

R6.3 feedback prediction models 305

r6.3 feedback prediction models

Our first step is to design a recommendation model that predicts the continuous feed-
back and ranks the items accordingly. We start by developing a solution for the pure
collaborative filtering problem introduced in Section R6.1.2, and then extend it to the
hybrid setup.

r6.3.1 Basic Factorization

The complete reference implementation for this section is
available at https://bit.ly/3YXFhjD

In the pure collaborative filtering problem, we observe tuples pu, v,guv, tq where u
is the user identifier, v is the item identifier, guv is the corresponding feedback, and t
is the observation timestamp. For the sake of simplicity, let us ignore the timestamps,
and assume that the input dataset is merely a collection of tuples pu, v,guvq where
the feedback is continuous. We further assume that the feedbacks are known only for
a small subset of all possible user-item pairs, and our goal is to build a model that
predicts the feedback guv for an arbitrary pair of user u and item v.

The most straightforward solution is to map user and item identifiers to one-hot vec-
tors, concatenate them, and fit an arbitrary regression model to approximate common
user-item interaction patterns. The shortcoming of this approach is that the number of
input features grows linearly with the number of users and items making the problem
intractable for many standard regression methods. We can work around this issue by
learning dense embeddings instead of sparse one-hot encodings, and estimating the
feedback as a product of embeddings based on the result R6.6. The user and item em-
beddings zu and zv can be learned using the embedding lookup approach, so that we
start with random vectors and update them using stochastic gradient descent (SGD)
to minimize the feedback prediction error. More specifically, we can set the goal of
minimizing the prediction MSE over the training samples [Koren et al., 2009]:

MSE “
ÿ

pu,vq

´

guv ´ zTuzv
¯2
` λ ‖zu‖2 ` λ ‖zv‖2 (R6.11)

where pu, vq iterate over all tuples in the training set, and λ is a regularization coeffi-
cient. Calculating the gradients over zu and zv, we obtain the following update rules:

zu Ð zu `αpεuvzv ´ λzuq

zv Ð zv `αpεuvzu ´ λzvq
(R6.12)

where α is the learning rate, and εuv is the feedback prediction error. The complete
SGD algorithm that learns user and item embeddings is presented in box R6.1. In
practice, we can run this procedure on a regular basis to catch up with the ongoing

https://bit.ly/3YXFhjD

306 product recommendations

feedback data and, as we discussed earlier, index the user and item embeddings in a
data structure that supports efficient nearest neighbor search. The recommendations
for a given user can then be precomputed or computed in near real time by finding
nearest neighbors of the user’s embedding among all item embeddings.

Algorithm R6.1: Factorization Using SGD

parameters:
k – embedding dimensionality
n – total number of users
m – total number of items
t – number of training iterations
α – learning rate
λ – regularization coefficient

initialization:
zu1 , . . . , zun – random k-dimensional user embeddings
zv1 , . . . , zvm – random k-dimensional item embeddings

for i “ 1, 2, . . . , t do
Randomly sample pu, v, guvq from the training dataset

εuv “ guv ´ zTuzv
zu Ð zu `αpεuvzv ´ λzuq

zv Ð zv `αpεuvzu ´ λzvq
end

Let us consider a small numerical example that illustrates the factorization solution.
We use a dataset with 10 users and 10 items presented in Figure R6.6 as a matrix. Each
row of this matrix corresponds to a user, each column corresponds to an item, and the
elements are the feedback values on a scale from 1 to 5. The feedback values are known
only for a subset of user-item pairs, and our goal is to predict (impute) the unknown
feedbacks. For the sake of illustration, the dataset is constructed in a way that there are
two categories of items (bakery products and fruits) and two cohorts of users (bakery-
lovers and fruit-lovers) that strongly correlate, so that bakery-lovers provide strong
positive feedback on the bakery products, and fruit-lovers provide positive feedback
on fruits. This pattern is visible in Figure R6.6.

We use algorithm R6.1 to compute two-dimensional user and item embeddings based
on the known feedback values, and then predict the missed values to obtain a complete
feedback matrix presented in Figure R6.7. We can see that the embeddings correctly
capture the four-block structure assumed in the input matrix.

The factorization approach is highly robust to sparse and noisy data, has relatively
low computational complexity, and can be horizontally scaled using distributed ver-
sions of the SGD algorithm. These properties make factorization-based recommenda-
tion models widely popular in enterprise applications, and many extensions of the
basic procedure R6.1 exist, that enhance accuracy, incorporate additional data sources,
and improve computational properties.

R6.3 feedback prediction models 307

Bakery-lovers

Fruit-lovers

Bakery
products

Fruits

Items

U
se

rs

5.0 3.0 4.0 2.0 1.0

4.0 4.0 4.0 1.0 2.0 3.0

5.0 4.0 5.0 2.0 3.0 4.0

5.0 5.0 3.0 1.0 3.0 2.0 1.0

3.0 5.0 5.0 5.0 1.0 2.0 2.0

1.0 2.0 2.0 4.0 5.0 4.0

2.0 1.0 1.0 5.0 5.0 3.0

2.0 3.0 1.0 1.0 4.0 5.0

3.0 1.0 1.0 4.0 5.0 5.0 3.0

2.0 2.0 2.0 5.0 4.0 5.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.0

Figure R6.6: An example of an interaction matrix.

3.0 5.0 3.0 3.7 4.0 0.7 2.0 1.9 1.0 1.5

4.0 5.0 4.2 4.0 4.0 1.0 1.7 2.0 3.0 1.9

5.0 4.0 5.0 4.0 3.8 2.0 3.0 3.7 4.0 2.9

3.3 4.3 5.0 5.0 3.0 0.7 1.0 3.0 2.0 1.0

3.0 5.0 5.0 4.4 5.0 0.6 1.0 2.0 2.1 2.0

1.0 1.7 2.0 1.1 2.0 4.0 4.1 5.0 3.9 4.0

1.8 2.0 1.0 1.0 1.3 5.0 5.0 4.1 3.0 3.6

2.0 1.8 3.0 1.0 1.0 3.8 4.0 4.2 4.0 5.0

3.0 1.0 1.0 0.9 1.4 4.0 4.2 5.0 5.0 3.0

2.0 2.0 2.1 1.4 2.0 4.0 5.0 4.0 5.0 3.8

Items

U
se

rs

Figure R6.7: A reconstruction of the matrix from Figure R6.6 using the embeddings computed
with the SGD algorithm. We use two-dimensional embeddings for both users and
items.

r6.3.2 Neural Collaborative Filtering

Although the factorization design is powerful, it does not provide an extensible frame-
work that can be used to incorporate arbitrary data or change the semantics of the em-
bedding space. Any such extensions of the basic algorithm need to manually redesign
the optimization problem and solve it using general mathematical methods such as

308 product recommendations

SGD. In this section, we explore how a more flexible and comprehensive framework
can be created by establishing a link between factorization and neural networks.

We can start with an observation that the factorization algorithm developed in the
previous section can be implemented as a simple neural network presented in Fig-
ure R6.8 (a). This network consists of two standard embedding lookup units and a
linear dot product layer that outputs the feedback estimate. Assuming that the network
is trained using some variant of the SGD algorithm, the process is essentially equiva-
lent to algorithm R6.1. Once the network is trained, the user and item embeddings can
be extracted from the lookup units and used as we discussed previously. In particular,
we can apply this solution to the example in Figure R6.6 and impute the missing feed-
back values obtaining a result similar to what is presented in Figure R6.7. Alternatively,
the trained network can be evaluated directly to estimate the feedback for a specific
user-item pair.

u v

Embedding
lookup

Embedding
lookup

zu zv

Dot
product

g

u v

Embedding
lookup

Embedding
lookup

zu zv

(a) Factorization network (a) Deep network

Dense
layers

...

g

Figure R6.8: Feedback factorization using neural networks.

This perspective provides a much more flexible and comprehensive framework than
the original factorization approach. First, we can arbitrarily change the capacity of the
model by replacing the dot product layer with more complex designs, as illustrated in
the example in Figure R6.8 (b). The neural network models for solving the collaborative
filtering problem are collectively referred to as neural collaborating filtering (NCF) mod-
els. Second, the neural approach enables us to incorporate arbitrary data and signals,
as well as to build complex architectures that use multiple subnetworks (towers) to pro-
cess different types of data. We use these techniques to create a hybrid recommender
in the next section.

R6.3 feedback prediction models 309

r6.3.3 Case Study

The complete reference implementation for this section is
available at https://bit.ly/3PoBhFI

In this section, we build an NCF-based movie recommendation model using the
MovieLens 20M dataset (see the box below for more details about the MovieLens
datasets). This dataset includes three tables. The first one contains ratings for user-
movie pairs and the corresponding timestamps:

Ratings: 20000263 rows x 4 columns
+-----------+-----------+----------+-------------+
| user_id | item_id | rating | timestamp |
+-----------+-----------+----------+-------------|
1	2	3.5	1112486...
1	29	3.5	1112484...
1	112	3.5	1094785...
1	151	4	1094785...
1	223	4	1112485...
+-----------+-----------+----------+-------------+

MovieLens Datasets

MovieLens is a movie recommendation website run by GroupLens, a research
lab at the University of Minnesota [Harper and Konstan, 2015]. GroupLens
Research has collected and made available several datasets from the MovieLens
site. These datasets have similar structures containing movie ratings, movie
tags or genres, and user attributes, but they differ in size providing from 100K
to 25M movie ratings. MovieLens datasets are among the most commonly used
benchmarks for recommendation systems.

In this section, we use the MovieLens 20M dataset that contains 20,000,263

ratings for 27,278 movies created by 138,493 users, as well as 465,564 movie
tags. All users selected to be included in this dataset had rated at least 20

movies.

The second table contains movie titles and genres, and each movie can be associated
with more than one genre:

Movies: 27278 rows x 3 columns
+-----------+--------------------------+--------------------------------+
| item_id | title | genres |
+-----------+--------------------------+--------------------------------|
1	Toy Story (1995)	Adventure	Animation	Childre...
2	Jumanji (1995)	Adventure	Children	Fantasy
3	Grumpier Old Men (1995)	Comedy	Romance	
4	Waiting to Exhale (1995)	Comedy	Drama	Romance
5	Father of the Bride ...	Comedy		
6	Heat (1995)	Action	Crime	Thriller
+-----------+--------------------------+--------------------------------+

https://bit.ly/3PoBhFI

310 product recommendations

Finally, the third table contains movie tags created by the users and the correspond-
ing timestamps:

Tags: 465564 rows x 4 columns
+-----------+-----------+------------------+-------------+
| user_id | item_id | tag | timestamp |
+-----------+-----------+------------------+-------------|
18	4141	Mark Waters	1240597180
65	208	dark hero	1368150078
65	353	dark hero	1368150079
65	521	noir thriller	1368149983
65	592	dark hero	1368150078
65	668	bollywood	1368149876
65	898	screwball comedy	1368150160
+-----------+-----------+------------------+-------------+

We preprocess the original dataset, removing movies with a small number of tags
and concatenating all tags for each movie into a whitespace-separated string. This pre-
processed dataset is then split into training and test sets, and we use them to train and
evaluate two NCF models. The first one is a basic factorization network that follows the
architecture presented in Figure R6.8 (a). This model is trained using only the rating
data, and tag strings are ignored.

The second model is a hybrid solution that uses both the rating and tag data. This
model extends the basic factorization network with a third tower that processes the tag
data, as shown in Figure R6.9. The tag processing tower uses a pretrained language
model from a public repository to map each tag string to a 384-dimensional embed-
ding vector. The language model is based on the transformer design discussed in Sec-
tion 2.4.7, and it interprets each tag string as a sentence. The embedding produced by
the language model is resized using a dense layer to match the size of the identifier-
based item embedding produced using the lookup table, and these two vectors are
summed to create the hybrid item embedding. Finally, the movie rating is estimated
using the dot product unit just as in the basic factorization network.

The rating estimation error achieved by the hybrid model is lower than the error
achieved by the basic factorization model with the same dimensionality of user and
item embeddings. In many real-world settings, hybrid solutions achieve considerable
improvement over models that use only behavioral or content data.

r6.4 interaction prediction models

The networks developed in the previous sections are designed to estimate continuous
feedback. In the case of unary feedback, we can reduce the recommendation problem
to the interaction prediction problem. The recommendation model needs to identify
items with the highest probability of being interacted with by the user. We have pre-
viously established that, in a general case, this approach can be implemented using
a classification model that estimates the probability vector for the entire collection of
items (expression R6.8). In particular, this estimate can be computed efficiently using
the factorization design (expression R6.10). In this section, we discuss the details of the
factorization-based approach using a recommendation system developed by YouTube
as an illustrative example [Covington et al., 2016].

The solution developed by YouTube follows the two-tier architecture introduced in
Section R6.2.1. It thus includes two parts: a candidate generation model that suggests

R6.4 interaction prediction models 311

u v

Embedding
lookup

Embedding
lookup

vtags

Sentence
embedding

Dense
layer

zu zv

Linear
layer

g

1×8 1×8

1×8

1×384

Pretrained
model

Figure R6.9: A hybrid NCF network for movie recommendations.

hundreds of recommendations for each user and a ranking model that selects a few
of the most relevant candidates. The models have similar architectures, and we focus
on the candidate generation part for the sake of specificity. The candidate generation
model is a classification model that estimates the probability that user u will watch
video vi at time t, as follows:

ppwatch video vi at time t | uq “
exppzTvizuq

ř

jPV exppzTvjzuq
(R6.13)

where V is the corpus of videos, zv is the embedding of video v, and zu is the
embedding of the user at time t. Thus, learning user and video embeddings is at the
core of the problem. This learning is done using the architecture shown in Figure R6.10.

The network consumes several inputs. The first is the user’s watching history. This
is a variable-length sequence pv1, . . . , vt´1q of watched video IDs, each of which
is mapped to a dense video watching embedding. Then, the embeddings are simply
averaged into one fixed-length watching history embedding. The second input is the
user’s search history. Search queries are tokenized into unigrams and bigrams and
then mapped to dense search token embeddings, which are also averaged to create a
search history embedding. Finally, demographic and geolocation features are added.
The resulting vectors are concatenated and passed through a basic four-layer network
to produce user embeddings, zu. Finally, user embeddings are normalized into class
probabilities (i.e. the probabilities of individual videos) using softmax, and this out-
put is used to train the network using the actual video watches vt as targets. More
specifically, the multinomial distribution over videos v is computed as

ppvq “ softmaxpzTuWq (R6.14)

312 product recommendations

Video watch history

v1 v2 vt-1

... Embedded
video
watches

...
Embedded

search tokens
(bag-of-words)

...

average

Embedding
indexUser

embeddings (zu)

User
demographic

features

Geo
location
features

Video
embeddings (zv)

Dense
layers

Class (video)
probabilities

Equivalent to
collaborative filtering

softmax

average

MAP baseline
(watches only)

MAP +56.5%
(watches and searches)

MAP +100.6%
(all fetures)

p1 pm

Figure R6.10: An example of the item prediction model that incorporates behavior history, search
query history, demographic, and content details. The network uses the softmax trick
to produce user and item embeddings.

where zu is a d-dimensional user embedding produced by the previous layers, and
W is dˆm matrix of learnable parameters, m is the total number of videos (classes),
and ppvq is represented as an m-dimensional stochastic vector. This equation matches
expression R6.13 assuming that the j-th column of matrix W is interpreted as video
embeddings zvj . In other words, the design trick R6.14 ensures that each element of
the probability vector ppvq is decomposed into a product of two vectors that are as-
sociated with a specific user and specific video, and can thus be interpreted as user
and item embeddings. Consequently, the network presented in Figure R6.10 is capable
of learning both user and item embeddings. These embeddings can then be saved to
the operational index and used for real-time generation of the video recommendation
candidates in accordance with equation R6.13.

R6.5 sequence models 313

Note that if one removes all inputs but watching history and all network layers but
one dense layer, then the resulting network will be similar to the basic collaborative
filtering. YouTube reported that adding search embeddings improves accuracy by 56.5%
compared to watching history only, and the complete set of features delivers close to
100.6% improvement.

r6.5 sequence models

The fundamental limitation of the solutions developed in the previous sections is the
reliance on the aggregated features, so that the order of the interaction events is ig-
nored. In many real-world applications, however, the order and timing of events is
important for understanding and predicting user behavior. For example, it may be typ-
ical for users to purchase accessories soon after buying a smartphone, but purchasing
accessories before or long after buying a smartphone may be less common. The order
and timing of events is particularly important in applications with short interaction his-
tories. The most common example is session-based recommendations where the user
interaction history is limited to the current web session [Liu et al., 2018].

We can attempt to improve the quality of recommendations by capturing the evolu-
tion of users’ interests over time and the dynamic context in which the recommenda-
tions are made using sequence models. We already used this approach to solve several
customer analytics problems in Recipes R1 (Propensity Modeling) and R2 (Customer
Feature Learning), and we explore how these ideas can be applied to the product recom-
mendation problem in this section. The sequence-aware recommendation models are
particularly efficient for use in cases with limited user histories such as session-based
recommendations, but they can also be used as a generic alternative to the factorization
models discussed in the previous sections.

r6.5.1 Behavior Sequence Transformer

Since the recommendation problem can usually be reduced to regression or classifi-
cation tasks using the techniques introduced earlier, we can apply a wide range of
standard sequence models including RNNs and transformers to predict the feedback
variables and score items. In this section, we discuss a transformer-based solution called
behavior sequence transformer (BST) that was adopted by companies such as Alibaba and
Scribd [Kang and McAuley, 2018; Chen et al., 2019; Mistry, 2021].

The transformer is a generic component that can be used to build different types
of recommendation models. So, for the sake of specificity, we start with examining
one particular design for the unary feedback prediction and then discuss its alterna-
tives and variations [Chen et al., 2019]. The high-level model architecture is shown in
Figure R6.11.

This model is designed to estimate the probability that user u with interaction his-
tory pv1, . . . , vnq will interact with a given item vn`1. We create the input for the
transformer block by mapping each item in the interaction history, as well as the eval-
uated item vn`1, to an embedding, and adding a position embedding as we discussed
in Section 2.4.7. This sequence of embeddings is then processed by a stack of standard
transformer blocks, and the outputs’ vectors are concatenated to each other, as well

314 product recommendations

...

concatenationTransformer block

Transformer block

...

...

+

Item ID

Position

++ + ++

Dense
layers

...

p(vn+1)

sigmoid

User and
context features

v1 v2 vn vn+1

Embedding
lookup units

concatenation

Candidate item

...

...

Figure R6.11: The architecture of the behavior sequence transformer.

as to additional user and context features. The output of the concatenation operations
is then processed by a stack of dense layers with a sigmoid mapping on the top to
produce the final interaction probability estimate ppvn`1q.

The model is trained as a binary classification model using a dataset where each
sample consists of the input structure x that comprises the interaction sequence
pv1, . . . , vn`1q along with other user and context features, and target label y P t0, 1u
that is equal to one when the user interacted with item vn`1 and is zero otherwise.
Consequently, the training can be guided using the binary cross-entropy loss function:

LpDq “ ´
ÿ

px,yqPD

py logppxq ` p1´ yq logp1´ ppxqqq (R6.15)

R6.5 sequence models 315

where D is the training set and ppxq is the estimated probability of the interaction
with the last item in the sequence comprised in x. The recommendations for a user with
interaction history pv1, . . . , vnq are then produced by evaluating multiple candidate
items vn`1 and selecting the items with the highest probability scores.

The original BST network estimates the interaction probabilities for individual can-
didate items specified as a part of the model input. This is, however, only one possible
option, and we can use any of the sequence-to-value and sequence-to-sequence designs
discussed in Section 2.4. In particular, we can simply switch from unary to continuous
feedback values by replacing the sigmoid head in the above model with a linear layer.
We can also switch from individual item scoring to the item prediction layout intro-
duced in the previous section by replacing the sigmoid head with a softmax head and
removing the candidate item from the inputs. The resulting model will output the vec-
tor of probabilities for all candidate items based on the input sequence pv1, . . . , vnq.

r6.5.2 Case Study

The complete reference implementation for this section is
available at https://bit.ly/3L6FM4V

We conclude the discussion of the behavior sequence transformer with a demon-
stration of how this design can be applied to the MovieLens 1M dataset. This dataset
consists of three tables: users, movies, and ratings. The user table includes user ID and
several demographic features such as sex, age group, and occupation. The movie table
includes movie ID, title, and genre tags. There are eighteen genre tags such as drama
and western in total, and each movie can be associated with multiple genres. Finally,
the ratings table includes about one million records, each of which consists of a user
ID, movie ID, an integer rating value from 1 to 5, and a timestamp.

The BST model requires user-item interactions to be represented as event sequences,
so we start with reshaping the original dataset into sequences of movie IDs and cor-
responding ratings. For each user, we choose to generate multiple samples with event
sequences of a fixed length using a sliding window that moves along the complete
event history. This process is illustrated in the lower part of Figure R6.12 where we use
a sliding window of size four and a stride of two. We then map each movie ID in the
sequence to an embedding vector, concatenate this with the corresponding genre flags,
add position embeddings, and multiply the result by the corresponding rating to incor-
porate the feedback level. The resulting sequence of embeddings is then processed by
the transformer block. The outputs of the transformer are concatenated with the user
feature embeddings and mapped to the final target movie rating estimate using the
dense layers.

This prototype demonstrates how the sequential modeling approach can be applied
to a relatively complex dataset that includes user features, item attributes, and ratings.
The solution can be further improved by using more advanced sequential models such
as bidirectional transformers [Sun et al., 2019].

https://bit.ly/3L6FM4V

316 product recommendations

User ID Movie IDs
and ratings

Target
movie ID

Sex Age
group

Occupation

1 (432, 5), (654, 5), (900, 4), (344, 5)

1 (900, 4), (344, 5), (484, 4), (291, 3)

484

116
...

F

F

2

2

7

7

+

+

+

+

Transformer block

...

+

Concatenation

Target
movie rating

Position
embedding

Embedding lookup Dense layer Linear layer

...

Genre
features

(432, 5), (654, 5), (900, 4), (344, 5), (484, 4), (291, 3), (116, 5)
Event sequence for user 1:

Movie ID

Rating

Figure R6.12: The BST model for the MovieLens 1M dataset.

r6.6 graph models

In the previous sections, we discussed that the data generated by a typical recom-
mendation environment can be represented in several different ways, including rating
matrices and sequences of interaction events. The third option that we can explore is
a graph representation. This is a promising alternative because interactions between
users and items can naturally be modeled as graphs, and additional entities such as
user groups or user-defined item collections can be incorporated. This flexibility is a

R6.6 graph models 317

major advantage over the previously discussed approaches that often require the model
to be redesigned from the ground up when the input structure changes.

The data produced by a recommendation environment can be converted to a graphi-
cal representation using several different strategies including the following:

bipartite graph The most common option is to use a bipartite graph where users
and items are modeled as nodes and interactions are modeled as edges. The
continuous feedback data is typically incorporated as edge weights, so that the
graph is specified as G “ pUY V ,Eq where U is a set of user nodes, V is a set
of item nodes, E is a set of edges each of which is a tuple pu,guv, vq where u
is a user node, v is an item node, and guv is the corresponding feedback value.
This layout is illustrated in Figure R6.13 (a). Assuming this representation, the
recommendation problem can be solved by learning node embedding and then
leveraging the standard scoring techniques discussed in the previous sections.

item graph The alternative option is to build a graph that includes only the item
nodes. We can specify this graph as G “ pV ,Eq where V is the set of item nodes
and E is the set of edges where each edge pvi,gvi,vj , vjq captures the strength
of association gvi,vj between nodes vi and vj. The strength of association can
be specified, for example, as the number of users who purchased both items.
This layout is shown in Figure R6.13 (b). We can use this approach to learn item
embeddings and make recommendations by searching nearest neighbors in the
embedding space.

directed item graph The two methods described above assume that a single graph
is built for all users and items, so that the learned node embeddings capture the
global interaction patterns. The alternative approach is to build an item graph
for an individual user or even a session, and predict the next item that the user
will interact with based on this graph [Wu et al., 2019]. This basically reduces
the recommendation problem to the graph classification task. The user-level and
session-level representations are more granular than the global interaction graph,
and this can be leveraged to capture more detailed information. For example, we
can use a directed graph to capture the sequence of interactions, as illustrated in
Figure R6.13.

v1

v2

v3

v4

v1

v2

v3

u1

u2

u3

u4

v1

v2

v3

v4

w12

w31

w22

w32

w33

w43
w34

w24

w23

w12

(b) Item graph(a) Bipartite graph (c) Session graph

Figure R6.13: Different options for representing interaction data as a graph.

318 product recommendations

In the next sections, we develop two specific solutions that use the item graph and
bipartite graph approaches, respectively.

r6.6.1 Case Study: Recommendations Using Node2Vec

The complete reference implementation for this section is
available at https://bit.ly/3R5UCMR

We start by developing a basic solution that uses the Node2Vec algorithm introduced
in Section 2.7.2.3 to learn node embeddings from the item graph, and then make rec-
ommendations by searching nearest neighbors in this embedding space. Similar to the
previous sections, we use one of the MovieLens datasets that includes about 100,000

movie ratings. We build the item graph based on this dataset as follows:

• The original dataset consists of tuples pu, v,guvq where u is the user identifier, v
is the item identifier, and guv is the corresponding rating made on a scale from 1

to 5. We keep only the records with the highest positive feedback (guv “ 5) and
filter out all other records, so that the preprocessed dataset is simply a collection
of pu, vq tuples which can be interpreted as positive associations between the
corresponding users and items.

• Next, we build a graph where each node represents an item (movie), and an edge
between items vi and vj is created when at least one user exists who provided
a positive feedback on both items, that is, the dataset contains tuples pu, viq and
pu, vjq for some user u.

• Finally, we assign weights to the edges to capture the strength of the item-to-item
associations. We choose to compute the weight for the edge between nodes vi
and vj using the following measure:

wvi,vj “ log
qpvi, vjq
qpviqqpvjq

(R6.16)

where qpviq is the number of users who provided the feedback on item vj, and
qpvi, vjq is the number of users who provided the feedback on both items vi and
vj. This measure can be viewed as the mutual information between the items in
the sense that the numerator corresponds to the joint probability of the feedback,
and the denominator corresponds to the probability of the feedback assuming the
independence between the items. A small part of the resulting graph is shown in
Figure R6.14.

Once the graph is constructed, we can apply the Node2Vec algorithm. We use the
standard Node2Vec algorithm specified in Section 2.7.2.3, but we modify the random

https://bit.ly/3R5UCMR

R6.6 graph models 319

w
=15.33

Matrix, The (1999)
(109 ratings)

Lion King, The (1994)
(40 ratings)

Aladdin (1992)
(35 ratings)

Godfather, The (1972)
(88 ratings)

Ratatouille (2007)
(12 ratings)

w=35.45

w=74.29

w=130.78 w
=13.24

w=2
4.6

3

w=15.65

w=47.76

Figure R6.14: A subgraph that shows the relationships between five hand-picked movies. We show
only the edges between the subgraph nodes, and each node has many other links
to the nodes outside of this subgraph. On average, each item is linked to about 60

other items.

walk routine to account for the edge weights. More specifically, we change rule 2.99

that controls the transition probabilities as follows1:

ppv, v2q 9

$

’

’

&

’

’

%

wv, v2{p, if dpv, v2q “ 0

wv, v2 , if dpv, v2q “ 1

wv, v2{q, if dpv, v2q “ 2

(R6.17)

In other words, we make the random walk process biased towards the edges with
relatively high weights. Once the random walks are performed, we follow the standard
Node2Vec process. We first generate the training samples using negative sampling, and
then train the dot product network to learn the node embeddings.

The node embeddings can be used to serve recommendation requests in many differ-
ent ways. The first possible use case is to make non-personalized recommendations, for
example, on a product detail page, by searching the nearest neighbors of a given item.
Let us use this simple scenario to validate that the embedding space has a reasonable
structure, and look up the nearest neighbors of five popular movies which were already
used for illustrative purposes in Figure R6.14:

Matrix, The (1999):
- Lord of the Rings: The Fellowship of the Ring, The (2001)
- Lord of the Rings: The Return of the King, The (2003)
- Star Wars: Episode V - The Empire Strikes Back (1980)
- Star Wars: Episode VI - Return of the Jedi (1983)

1 See Section 2.7.2.3 for the notation details.

320 product recommendations

Godfather, The (1972):
- Godfather: Part II, The (1974)
- Apocalypse Now (1979)
- Fargo (1996)
- Star Wars: Episode V - The Empire Strikes Back (1980)

Lion King, The (1994):
- Jurassic Park (1993)
- Aladdin (1992)
- Apollo 13 (1995)
- Braveheart (1995)

Aladdin (1992):
- Lion King, The (1994)
- Apollo 13 (1995)
- Beauty and the Beast (1991)
- Jurassic Park (1993)

Ratatouille (2007):
- Up (2009)
- Monsters, Inc. (2001)
- Guardians of the Galaxy (2014)
- Casino Royale (2006)

We can see that most recommendations are aligned with the intuitive expectations
based on the movie genres, although certain items look somewhat questionable. The
second typical use case is to produce personalized recommendations using the item-
based framework specified by expressions R6.5 and R6.9 where the items are scored
based on the average distance to the items in the interaction history of a user. This
solution can be categorized as pure collaborative filtering because the item embeddings
produced by the Node2Vec algorithm capture nothing but the interaction patterns.

r6.6.2 Recommendations Using GNNs

In the previous section, we managed to replace the feedback prediction problem with
the problem of learning the manifold of positive feedbacks, and it enabled us to suc-
cessfully apply the unsupervised Node2Vec algorithm. In most cases, however, it is
more convenient to follow the standard feedback prediction formulation and use the
supervised modeling approach. The graph neural networks (GNNs) introduced in Sec-
tion 2.7.3 provides a generic solution for this problem. In this section, we discuss a basic
GNN recommendation model, known as graph convolutional matrix completion (GC-MC),
that learns item and user embeddings in a supervised way [van den Berg et al., 2017].
A variant of this model was successfully productized by Pinterest at the scale of several
billions of nodes [Ying et al., 2018].

Let us consider a recommendation environment where we observe interactions be-
tween users and items as tuples pu, v,guvq where u is the user identifier, v is the item
identifier, and guv is a discrete feedback variable that takes values from the set of valid
feedback levels t1, . . . ,Ru. We also assume that users and items are associated with
k-dimensional feature vectors which we denote as xu and xv, respectively.

We can represent the user-item interaction histories as R bipartite graphs G1, . . . ,GR
where graph Gr has an edge between user u and item v if, and only if, we observed the
feedback guv “ r. In other words, we represent multiple feedback levels as multiple
layers, each of which is an unweighted graph. This enables us to apply the standard
message passing framework defined in Section 2.7.3.1.

R6.6 graph models 321

Conceptually, our goal is to develop a network that consists of an encoding part that
maps users and items to embedding vectors zu and zv, respectively, and a decoding
part that reconstructs feedback values guv based on these embeddings.

We specify the encoder using the standard message passing framework with several
modifications that are needed to accommodate for multiple graph layers. The flow is
symmetrical for user and item embeddings, so let us focus on the user embeddings
first. For each user u, we start with aggregating messages from the adjacent item nodes
as follows:

mu,r “
ÿ

vPNrpuq

1

cuv
Wrxv, 1 ď r ď R (R6.18)

where index r iterates over all graph layers,Nrpuq are the neighbors of u in graph Gr,
and Wr is the matrix of learnable parameters for layer r. The normalization factor cuv
is used to remove the bias toward high-degree nodes, and we can specify it as follows:

cuv “
a

| Nrpuq | ¨ | Nrpvq | (R6.19)

The message vectors are then aggregated across the layers for each user as follows:

mu “ apφpmu,1, . . . , mu,Rqq (R6.20)

where φ is the aggregation operation such as averaging or concatenation, and a is the
element-wise activation function such the sigmoid or ReLu. The final user embeddings
are produced using a standard dense layer applied to the aggregated messages:

zu “ apWmuq (R6.21)

where W is the matrix of learnable parameters. The flow for item embeddings zv is
completely symmetrical, and parameter matrices W can be shared between users and
items. This flow is illustrated in Figure R6.15. We can stack multiple message passing
layers on top of each other by inserting embeddings z produced by the previous layer
instead of the node feature vectors x in expression R6.18. In practice, however, the
number of message passing layers is usually small: a one-layer network is sufficient for
many real-world problems, and two layers will be sufficient for graphs with billions of
nodes [van den Berg et al., 2017; Ying et al., 2018].

The decoding part of the network reconstructs the feedback values based on the user
and item embeddings. We choose to model the user-item interaction using a bilinear
layer, and start by computing the following scores:

spu, v, rq “ zTuQrzv , 1 ď r ď R (R6.22)

where Qr is a dˆ d matrix of learnable parameters assuming that the embedding
vectors are d-dimensional. The probability that the feedback for user u and item v takes
a specific value r is then estimated using softmax over the feedback values:

ppguv “ rq “ softmax
r

spu, v, rq “
exppspu, v, rqq

řR
ρ“1 exppspu, v, ρqq

(R6.23)

322 product recommendations

......

u v

xu xv

Nr(u)

Gr

G1...

mu,r

mu mv

zu zv

more layers

zu zv

Decoder

guvˆ

...

Figure R6.15: The architecture of the GC-MC model for feedback prediction.

These probabilities enable us to estimate the expected value of the feedback as fol-
lows:

pguv “ E rr | zu, zvs “
R
ÿ

r“1

r ¨ ppguv “ rq (R6.24)

The complete network comprised of the encoding and decoding parts can then be
trained using the standard categorical cross-entropy loss:

LpDq “ ´
ÿ

u,v P D

R
ÿ

r“1

Ipguv “ rq ¨ logppguv “ rq (R6.25)

where D is the training dataset, and I is the indicator function that is equal to one
when its argument is true and zero otherwise. Finally, the actual recommendations can
be produced based on the estimated scores pguv using the standard ranking techniques.

R6.7 extensions and variations 323

The GNN-based solution described above provides a powerful framework for build-
ing recommendation engines. First, it can be applied in pure collaborating filtering
and hybrid environments because the user and item embeddings can incorporate both
the structural information and entity features. Second, graph-based recommendation
models generally achieve performance competitive with other approaches including
the designs that we discussed in the previous sections of this recipe. Finally, the GNN
approach is very flexible both in terms of scalability and expressiveness, so it can be
applied to very large graphs that represent the entire user population, graphs with
domain-specific entities such as user-defined item collections, and to small graphs that
represent, for example, individual web-browsing sessions.

r6.7 extensions and variations

The methods developed in the previous sections can be viewed as generic building
blocks for estimating the feedback, predicting user-item interactions, and evaluating
item similarities based on historical feedback data, entity features, event sequences, or
interaction graphs. These methods can be modified and combined in many different
ways to solve real-world recommendation problems. For example, we can produce
nonpersonalized recommendations for product detail pages based on the distances in
item embedding space, create recommendations for known customers based on their
purchase histories, and recommend items to unknown (anonymous) customers based
on their web sessions.

In this recipe, however, we assumed a basic B2C environment where the only goal is
to create a list of relevant recommendations. This formulation is sufficient for a wide
range of applications, but the functionality of a recommendation solution is not always
limited to the item ranking. One typical example are B2B recommendation systems that
are created by CPG, manufacturing, and other companies alike for their B2B digital
commerce platforms. The users of such platforms are wholesale buyers who typically
place recurrent orders with a large number of items and large quantities. The recom-
mendation systems can provide features that facilitate this process by recommending
not only items, but also the corresponding number of units, or recommending com-
plete orders that can be placed with one click. This often requires involving not only
the recommendation algorithms discussed in this section, but also demand forecasting
methods which we discuss in other recipes.

In both B2C and B2B scenarios, the final list of recommendations can be the sub-
ject of various constraints that are applied on top of the output produced by the core
recommendation algorithm. For example, a B2B recommendation system that suggests
complete orders can make adjustments to fill up the shipping boxes or containers effi-
ciently.

r6.8 summary

• The basic recommendation problem is to create an ordered list of items for a
specific user and context in a way that the probability of desirable outcomes is

324 product recommendations

maximized. In most environments, the desirable outcome is defined in terms of
the probability of interaction with the recommended items or the magnitude of
the feedback measured on some scale.

• The input of a recommendation system can be any combination of the user profile
data and events, item data, user-item interaction events, and context data.

• A recommendation model is usually trained to optimize the accuracy of the in-
teraction or feedback predictions, but multiple secondary metrics can be used
in the offline evaluation to control the quality of recommendations. The overall
efficiency of the recommendation solution is measured using online evaluation.

• Recommendation engines are commonly built using a two-layer architecture that
consists of candidate retrieval and ranking algorithms.

• The interaction and feedback prediction problems can be solved by scoring in-
dividual items using arbitrary classification and regression models, but this ap-
proach is not always optimal from the computational standpoint. The alternative
solution is to search for the nearest neighbors in the space of user and item em-
beddings.

• User and item embeddings suitable for the nearest neighbor search can be ob-
tained using shallow and deep neural networks that predict the interaction prob-
ability or feedback using a dot product layer. Such networks can use item at-
tributes, content embeddings, and user profile attributes as inputs.

• The order of interaction events can be accounted for using sequence models such
as transformers. This approach is a powerful alternative to factorization networks
with aggregated features.

• Interactions between user and items can naturally be represented as graphs, and
thus the graph learning methods can be applied to learn user and item embed-
dings. This approach can be implemented using both unsupervised methods such
as Node2Vec and supervised GNNs.

• The overall functional scope of a recommendation solution is often broader than
just producing lists of recommended items. In both B2C and B2B environments,
it can include quantity recommendations, one-click order recommendations, and
various constraint-based optimizations.

Recipe

7

K N O W L E D G E M A N A G E M E N T

Processing and Querying Structured and Unstructured Data Using Large Language Models

The visual search and product recommendation methods discussed in the previous
recipes are typically used to create customer-facing services for product discovery. In
this recipe, we turn to another major group of information discovery use cases – in-
formation discovery in internal enterprise data sources such as relational databases,
document stores, and system APIs. These discovery capabilities are typically created
for internal users, but can also be provided as services for external customers. For ex-
ample, a wealth management company can create a service that allows independent
financial advisors to search across their knowledge base.

From a business perspective, internal information discovery services can be viewed
as the technical infrastructure for the enterprise knowledge management capability. This
capability represents a collection of processes for identifying, storing, and sharing infor-
mation within the organization with the goal of reducing the time and cost associated
with seeking relevant information.

r7.1 business problem

We assume an environment with multiple data sources that might potentially have
inconsistent data formats. For example, a retailer might receive product data from mul-
tiple suppliers, each of which uses its own format, and an insurance agent may receive
insurance policies from multiple issuers. Consequently, the incoming data might need
to be transformed from one format to another (e.g., structured attributes might need to
be extracted from unstructured data) or harmonized in some other way. In this recipe,
we focus on the scenarios when structured attributes need to be discovered in and ex-
tracted from unstructured sources such as textual documents, as shown in the bottom
part of Figure R7.1.

325

326 knowledge management

Data sources

Structured
data

Unstructured
data

External
systems

Attribute
discovery

Attribute
extraction

Attribute
harmonization

Structured data querying
in natural language

Document querying
and summarization

API querying
in natural language

Data
processing

Analytics

Figure R7.1: Knowledge management environment and use cases.

We further assume that the preprocessed data are stored in three ways. First, struc-
tured data are stored in relational databases and can be accessed using SQL queries.
Second, unstructured data such as textual documents are stored as files that can be
fetched by a file name. Finally, both structured and unstructured data can be accessed
through system APIs with well-defined semantics. For example, we can query the latest
news on a certain topic using a search engine API and receive back a set of relevant
web pages.

Our goal is to create a data access and analytics layer that allows business users to
conveniently query all three types of data. More specifically, we focus on providing
business users with a conversational interface where they can ask questions about the
data in natural language and get back responses that can include a natural language
answer or summary, links to the relevant segments of the original documents (citations),
tables with structured data, or charts that visualize this data.

The problem statement described above is relevant for a broad range of verticals and
domains. We can illustrate this with several real-world examples:

• A vendor of a software platform for financial advisors might be willing to build
a knowledge management system that allows the advisors to ask questions about
the platform, financial products, and tax policies. The system needs to search
through an extensive collection of documents and other unstructured data.

• A wholesaler of industrial goods might build a knowledge management system
that allows customers to ask questions about products and browse product de-
tails. Internally, the system needs to extract product details from the specification
documents provided by suppliers and search through this collection.

• A bank can build a decision support system for business users that allows them to
quickly visualize relevant data. For example, a user can ask to display a historical
volatility plot for a certain financial instrument using a natural language prompt
or voice command. Internally, the system queries a relational database.

R7.2 solution options 327

In this recipe, we aim to create a consistent collection of methods for solving the
individual data processing and querying tasks. These methods can be amalgamated in
different ways to create domain-specific solutions similar to the ones listed above.

r7.2 solution options

Most tasks outlined in the previous section can be approached using conventional task-
specific methods. The most common methods include the following:

preprocessing Data preprocessing and harmonization tasks are typically addressed
using rule-based transformations. It is also common to employ task-specific ma-
chine learning models for handling unstructured data. For example, a custom
language model can be used to assign a positive, neutral, or negative sentiment
label to a product review. Both rule-based and model-based processing demand
significant custom development work.

structured data Querying and visualizing structured data are usually accom-
plished using SQL and business intelligence (BI) tools. This approach generally
requires users to possess a deep understanding of the data schema and semantics,
as well as SQL coding skills, which may not be feasible for certain categories of
business users.

unstructured data Querying unstructured data, such as texts and documents, is
traditionally performed using information retrieval engines that typically employ
indexing and keyword search. This approach does not provide efficient tools for
answering specific questions or generating summaries in natural language.

Simultaneously, the large language models (LLMs) introduced in Section 3.4 offer
a versatile platform for implementing most of the above capabilities in a unified way,
significantly improving the processing of unstructured data and enhancing natural lan-
guage interfaces. In this recipe, we exclusively focus on the LLM-based approach, with
the goal of implementing all the use cases outlined in Figure R7.1 using foundation
LLMs. We assume the availability of advanced instruction-fine-tuned models that can
be provided as a service by a third-party vendor or deployed locally within the com-
pany.

r7.3 data preprocessing

The complete reference implementation for this section is
available at https://bit.ly/45A3vms

In this section, we discuss how the LLM-based approach can be applied to data
preprocessing tasks. For the sake of illustration, we assume a retailer or marketplace
that receives product data from multiple sellers. We further assume that sellers pro-
vide unstructured documents for each product that can include multiple sections, such
as product names, natural language descriptions, and bullet points highlighting the

https://bit.ly/45A3vms

328 knowledge management

main product features. However, we do not make any specific assumptions about the
structure and content of these documents.

The marketplace operator generally aims to extract structured attributes such as
product category, material, or style from the input documents. These attributes are
then used in downstream services such as online product catalogs, product search,
and assortment analytics. The taxonomy of attributes and their value formats must be
consistent across the entire catalog so that downstream product search and catalog nav-
igation functions can be easily implemented using simple algorithms, such as filtering
by keywords. We can attempt to accomplish these goals using the pipeline presented
in Figure R7.2.

Product type
extraction

Discover
attributes

Recognize
attributes

Raw product
description

Raw
attributes

Attribute
harmonization

Product
attributes

Register new
product type

Product type
registry

New type Known type

Figure R7.2: A reference workflow for product attribute discovery, extraction, and harmonization.

The reference pipeline includes four main processing blocks. First, we need to de-
termine the product type or category based on the input document. We assume that
previously seen product types are stored in the product type registry, allowing us to
check whether an incoming description matches one of the existing types. If the prod-
uct type is not registered yet, we need to invoke the second block to determine the
optimal set of attributes for representing this new product type. We refer to this step as
attribute discovery. The discovered attribute schema is then saved to the registry. If the
product type is already registered, we simply fetch the corresponding attribute schema
from the registry.

Once the attribute schema is determined, we need to extract the attribute values. We
refer to this step as attribute recognition. This is a non-trivial task because the attributes
are not necessarily listed explicitly in the input document but may just be mentioned in
the description or even completely missed. Finally, we need to ensure that the attribute
values are consistent across the product catalog, regardless of how they were populated

R7.3 data preprocessing 329

and from which source. This step is referred to as attribute harmonization. In the next
sections, we discuss how these steps can be implemented using LLMs.

r7.3.1 Attribute Discovery

To implement the product type and attribute discovery blocks using an LLM, we need
to design the LLM input (prompt) that instructs the model to search for attributes,
specifies the output format, and includes the raw product data to be analyzed. An
example of such a prompt is presented in Figure R7.3.

Your goal is to determine the product category and propose attributes for this category
based on the user's input. The output must follow the format described below.

```TypeScript
category: {                               // Category metadata      
   category_name: string                  // Product type
   product_attribute_names: Array<string> // A list of product attribute names that
                                          // should be used to describe products in 
                                          // this category (not more than 4 attributes)
}
```

Please output the extracted information in JSON format. Do NOT add any clarifying
information. Output MUST follow the schema above. Do NOT add any additional fields that
do not appear in the schema.

Input: Noriega Glass Table Vase. A retro green tone meets a classic shape: This bud
vase has a sleek, eye-catching look that's inspired by vintage design.
Output: { {"category_name": "Table Vases"}, {"product_attribute_names": ["Brand",
"Size", "Vase Shape", "Indoor Use Only"]} }

Input: {input}
Output:

Prompt template

Title: Caannasweis 10 Pieces Pots and Pans Non Stick Pan White Pot Sets Nonstick Cook-
ware Sets w/ Grill Pan
Description:
1: These cookware sets are included 1*9.5” frying pan, 1* 8” frying pan, 1*1.5QT sauce
pot with glass lid, 1*4.5QT deep frying pan with lid, 1*5QT stock pot with glass lid,
and 1*9.5” square grill pan.
This 10-piece granite pots and pans set is everything you need to get cooking in your
kitchen. Not just that, the cooking set also makes an appreciable housewarming gift or
holiday gift for your loved ones.
2: Our pots and pans use scratch-proof nonstick granite coating, which can keep food
sliding smoothly along the surface, preventing food to stick, and making cooking
easier. Sturdy interiors can avoid
chipping and coming off.
3: These nonstick cookware sets are free of PFOA, PFOS, lead & cadmium(Have FDA certi-
fication for SGS testing). Giving you and your family a healthier and easier home
culinary experience.
4: All-in-one design. Rivetless interior to prevent snags and food buildup. Just rinse
with a rag or water to finish cleaning.

Input

{ {"category_name": "Cookware Sets"}, {"product_attribute_names": ["Brand", "Material",
"Color", "Number of Pieces"]} }

Output

Figure R7.3: Example of attribute discovery in an unstructured product description. The input is
inserted into the prompt template as the value of the input variable, and the result is
fed into the LLM which generates the output. This and the following examples have
been created using the PaLM2 model [Anil et al., 2023].

330 knowledge management

To make this example more practical, we define a reusable prompt template that
contains a placeholder for the actual product data, and assume that this data is inserted
at runtime to create the final prompt for processing a specific product. The template
includes the task definition, output schema specification with clarifying comments, and
an example that aims to leverage the few-shot learning ability of the LLM discussed in
Section 3.4.4.3. For the sake of simplicity, we also assume that a document describing
an individual product is small enough to fit within the model’s context (we will discuss
techniques that allow us to overcome this limitation in the following sections).

This example illustrates how an LLM discovers high-quality representative attributes
in a low-quality convoluted input document. In particular, attributes such as “Material”
and “Number of Pieces” indicate that the model deeply understands which attributes are
essential and characteristic, specifically for the cookware sets category.

r7.3.2 Attribute Extraction

The method we developed for attribute discovery can also be applied to the attribute
extraction problem. As shown in Figure R7.4, we can provide the model with a schema
that specifies the required set of attributes and requests the extraction of their values
from the unstructured product description. The schema is assumed to be automatically
generated from the outputs of the attribute discovery stage.

Your goal is to extract structured information from the user's input that matches the
form described below. When extracting information please make sure it matches the type
information exactly. Do not add any attributes that do not appear in the schema shown
below.

```TypeScript
product: {                  // Product attributes
   brand: string            // The name of the product's brand
   material: string         // The primary material the product is made of
   category: string         // Product type such as set, pot, or pan
   items_count: integer     // Number of items
   features: Array<string>  // A list of the main product features (not more than 3)
}
```

Please output the extracted information in JSON format. Do NOT add any clarifying
information. Output MUST follow the schema above. Do NOT add any additional fields that
do not appear in the schema.

Input: Gotham Aluminium Cookware 12 Pieces Set. The nonstick cooking surface is coated
3x, and reinforced with ceramic and titanium to deliver the ultimate food release.
Dishwasher safe.
Output: { {"brand": "Gotham"}, {"material": "Aluminium"}, {"category": "Set"},
{"items_count": 5}, {"features": ["ceramic coating", "dishwasher safe"]} }

Input: {input}
Output:

Prompt template

{ {"brand": "Caannasweis"}, {"material": "Granite"}, {"category": "Set"},
{"items_count": 10}, {"features": ["nonstick coating", "rivetless interior", "FDA
certified"]} }

Output

Figure R7.4: Example of attribute extraction from an unstructured product description. The input
is the same as in Figure R7.3.

R7.3 data preprocessing 331

r7.3.3 Attribute Harmonization

The attribute harmonization problem arises in applications where the values of certain
attributes are described in natural language or have complex or ambiguous semantics.
This problem is illustrated in Figure R7.5, where the input contains two attributes, style
and dimensions, described in natural language. We would like to harmonize these at-
tributes so that the style becomes a categorical variable, and dimensions become a
real-valued array. Solving this task using conventional methods can be challenging be-
cause it requires understanding the semantics of the style description and extracting
the numerical dimension values from a string that can be spelled in many different
ways. However, the LLM-based approach, similar to what we used for the discovery
and extraction problems, helps overcome these challenges and to perform harmoniza-
tion using a simple prompt.

Your goal is to format product attribute values in the user's input to match the format
described below.

```TypeScript
product: {                    // Product attributes
    style: string             // One of the following three style values: 
                              // Traditional, Modern, Nature 
    dimensions: Array<float>  // An array of floating-point values expressed in inches 
}
```

Please output the extracted information in JSON format. Do NOT add any clarifying
information.

Input: { "style" : "wooden texture", "dimensions" : "8-1/2” x 1-1/16”" }
Output: { "style" : "Nature", "dimensions" : [8.5, 1.0625] }

Input: { "style" : "abstract hexagons", "dimensions" : "2/5 inch x 2 inch" }
Output: { "style" : "Modern", "dimensions" : [0.4, 2] }

Input: {input}
Output:

Prompt template

{ "style" : "Traditional", "dimensions" : [2.375, 8.3125, 0.5] }

Output

{ "style" : "classic blue polka dot pattern", "dimensions" : "2-3/8 inch x 8-5/16 inch
x 1/2 inch" }

Input

Figure R7.5: Example of attribute harmonization.

The attribute discovery, extraction, and harmonization examples demonstrate how
the same LLM-based method can be used to solve various data preprocessing tasks.
This method can be applied to many more preprocessing scenarios that involve un-
structured data.

332 knowledge management

r7.4 querying structured data

The complete reference implementation for this section is
available at https://bit.ly/3qNimeg

Structured data are usually queried using SQL, which requires a thorough under-
standing of the relational schema and certain technical skills. LLMs are generally able
to generate SQL queries based on a natural language description of the desirable re-
sults, and this capability can be leveraged to create user interfaces that do not require
detailed knowledge of the relational schema or SQL writing skills.

A basic example that demonstrates text-to-SQL generation is presented in Fig-
ure R7.6, where we assume a database with customer order data. The model is
provided with the relational schema definition, which includes information about the
available tables, columns, and keys. It is then tasked with generating an SQL query
based on a natural language question. We assume that the schema is automatically
fetched from the database by the frontend application where users enter the questions
and browse the results.

Although the example in Figure R7.6 is fairly straightforward, implementing a high-
quality tool for relational data querying can be challenging for several reasons. First,
the model needs to be provided with sufficient and relevant contextual information
about the schema and data semantics. In practice, it is usually beneficial to provide
the model with both schema definitions and actual data samples (several rows from
each table). This context can be automatically fetched from the database. However,
enterprise databases can include hundreds or thousands of tables, which might not
fit within the model’s context window or might confuse the model. This issue can be
alleviated by adding a schema preprocessor, which analyzes the input question and
excludes irrelevant tables from the schema. This preprocessor can also be implemented
using LLMs.

The second challenge is semantic and syntactic errors made by LLMs in SQL queries.
These issues can be mitigated using few-shot learning, fine-tuning on specialized
datasets with text-SQL pairs, and self-correction techniques where the LLM iteratively
rewrites the query, taking into account the error messages returned by the database
management system [Sun et al., 2023].

Finally, presenting the raw results of the SQL queries to business users might not be
acceptable, and these results might need to be converted into text or charts. This can be
achieved by adding post-processing blocks that determine the optimal representation
of the results, such as a bar chart, time series plot, or plain text summary, for a given
question. These blocks can also be implemented using LLMs.

https://bit.ly/3qNimeg

R7.5 querying unstructured data 333

Given an input question, create a syntactically correct MySQL query to run. Only use
the following tables:
{schema}

Limit the number of rows in the SQL result by 3.

Question: {input}
SQL query:

Prompt template

SELECT SUM(quantityOrdered * priceEach) AS revenue, orderDate
FROM orderdetails
JOIN orders ON orderdetails.orderNumber = orders.orderNumber
GROUP BY orderDate
ORDER BY orderDate
LIMIT 3

Output (query)

How did the revenue change over time?

Input

revenue orderDate
10223.83 2003-01-06
10549.01 2003-01-09
5494.78 2003-01-10

SQL result

CREATE TABLE orderdetails (
 `orderNumber` INTEGER NOT NULL,
 `productCode` VARCHAR(15) NOT NULL,
 `quantityOrdered` INTEGER NOT NULL,
 `priceEach` DECIMAL(10, 2) NOT NULL,
...)
CREATE TABLE orders (
 `orderNumber` INTEGER NOT NULL,
 `orderDate` DATE NOT NULL,
...)

Schema

Figure R7.6: Translation of a natural language question into an SQL query.

r7.5 querying unstructured data

The complete reference implementation for this section is
available at https://bit.ly/47Xufia

In this section, we shift our focus to querying unstructured data, including texts and
documents. When we refer to querying, we mean the ability to answer questions about
the text, extract relevant excerpts based on specific queries or topics, and summarize the
most crucial facts and ideas from the given text. Generally, LLMs are exceptionally well-
suited for performing these tasks. However, querying large volumes of data presents a

https://bit.ly/47Xufia

334 knowledge management

challenge that often necessitates the use of advanced techniques. From this perspective,
we can differentiate between the following scenarios:

1. Data that fits within the model’s context window. An example of this scenario is
a tool designed to help users rapidly analyze or summarize news articles or other
brief texts.

2. Data that exceeds the model’s context window, with relevant information scat-
tered throughout. This is often the case for summarization tasks that involve
consolidating extensive texts or documents.

3. Data that exceeds the context window, yet only a small portion is relevant. This
is typically encountered in large collections of texts or documents where only a
few items are pertinent to a given question.

4. Data volumes that are unknown. This is usually the case when querying system
APIs. For instance, a search engine can provide access to a virtually unlimited
volume of data, potentially requiring multiple searches to locate relevant infor-
mation.

These scenarios usually necessitate the use of different implementation strategies.
Therefore, we will discuss each of them in the following sections. To illustrate these
strategies, we will use an example involving a wholesale company specializing in food
ingredient distribution. We assume that this company is developing a knowledge man-
agement system that enables sales representatives and customers to search within their
repository of ingredient specifications.

r7.5.1 Querying Using a Single Prompt

Assuming that the input data fits within the model’s context, we can employ a straight-
forward prompt that instructs the model to read the input and respond to questions.
This approach is demonstrated in Figure R7.7, where the model answers a question
about the contents of a specific document included in the prompt.

The text states that "Lemons and limes have particularly high concentrations of the
acid; it can constitute as much as 8% of the dry weight of these fruits (about 47 g/L
in the juices)". So the correct answer is lemons and limes.

Output

Please read the following text and answer which fruits have the highest concentration
of citric acid.

TEXT:
Citric acid occurs in a variety of fruits and vegetables, most notably citrus fruits.
Lemons and limes have particularly high concentrations of the acid; it can constitute
as much as 8% of the dry weight of these fruits (about 47 g/L in the juices). The
concentrations of citric acid in citrus fruits range from 0.005 mol/L for oranges and
grapefruits to 0.30 mol/L in lemons and limes; these values vary within species depend-
ing upon the cultivar and the circumstances under which the fruit was grown.

Prompt

Figure R7.7: Example of document querying using a single prompt.

R7.5 querying unstructured data 335

The same approach can be applied to other tasks like text summarization. However,
it becomes impractical when dealing with large documents or collections of documents.
To address this limitation, we can employ various divide-and-conquer strategies, which
typically require multiple LLM invocations.

r7.5.2 Querying Using Map-Reduce

Querying large documents or collections of documents can be effectively handled by
employing the map-reduce pattern. To apply this approach, we need to partition the in-
put data into manageable chunks that individually fit within the LLM’s context. These
chunks can be created simply by segmenting the input into portions with a fixed num-
ber of tokens or by using more sophisticated strategies that preserve sentences or para-
graphs.

The processing occurs in two stages: map, and reduce, each utilizing distinct prompts.
During the map stage, the LLM is tasked with summarizing individual chunks or ex-
tracting relevant facts to answer specific questions. In the reduce stage, the summaries
or facts are concatenated, and the LLM is instructed to merge them into the final re-
sponse. This process is illustrated in Figure R7.8.

The map-reduce approach is particularly suitable for tasks like text summarization,
where relevant information is somewhat evenly distributed across the entire input.
However, it necessitates making as many LLM calls as there are input chunks, and the
input to the reduce stage can potentially grow without bounds, which may introduce
scalability challenges.

r7.5.3 Retrieval-Augmented Generation

A scalable querying solution can be created by combining LLMs with traditional infor-
mation retrieval methods. In traditional information retrieval, the querying problem is
typically formulated as follows: given a large collection of documents and a natural
language query, identify a specific number of the most relevant documents and rank
them based on their relevance. The standard solution approach for this problem is as
follows1:

1. Create a data structure (index) that enables efficient pre-fetching of a set of poten-
tially relevant documents from the complete collection. This can be achieved, for
instance, by fetching only the documents that share at least one common word
(token) with the query.

2. Define a metric for scoring the relevance of a given document to a particular
query. This metric is usually established as the cosine distance between the vector
representations of the query and the document. The vector representations are
obtained using heuristic algorithms such as the TFˆIDF vectorizer.

3. Precompute the vector representations for all documents in the collection.

4. To process a given query, pre-fetch candidate documents, compute the vector
representation for the query, calculate the distance metric between the query and

1 A comprehensive review of traditional information retrieval algorithms is available, for example, in [Manning
et al., 2008].

336 knowledge management

Use the following portion of a long document to see if any of the text is relevant to
answer the question. Return bullet points that help to answer the question.

{context}

Question: {question}
Bullet points:

Map prompt template

Given the following bullet points extracted from a long document and a question, create
a final answer.
Question: {question}

{summaries}

Final answer:

Reduce prompt template

- Citric acid is used as a flavoring and
preservative in food and beverages,
especially soft drinks.

- Citric acid's ability to chelate metals
makes it useful in soaps and laundry
detergents.

- Citric acid is used in the biotechnolo-
gy and pharmaceutical industry to passiv-
ate high purity process piping.

Map output

- Used in shampoo to wash out wax and
coloring from the hair.

- Used as a stop bath in photography.

- One of the chemicals required for the
synthesis of hexamethylene triperoxide
diamine (HMTD).

The three most important applications of citric acid are:
- As a flavoring and preservative in food and beverages, especially soft drinks.
- In soaps and laundry detergents, due to its ability to chelate metals.
- In the biotechnology and pharmaceutical industry to passivate high purity process
piping.

Reduce output

What are the three most important applications of citric acid?

Question

Figure R7.8: Example of document querying using the map-reduce pattern. We assume a relatively
large input article about citric acid (not shown) that is divided into two chunks.

each pre-fetched document, then rank the pre-fetched documents based on the
computed metric, and finally, return the required number of top-ranked items as
the final result.

However, this baseline approach has several shortcomings. First, it employs a pre-
fetching heuristic to reduce the number of documents that need to be scored in real
time, in order to achieve acceptable query processing latency and computational com-
plexity. In practice, this heuristic might become very sophisticated to handle synonyms
and other nuances of natural language. Second, presenting a ranked list of the most rel-
evant documents is not always ideal from the end user’s standpoint, and summarizing
these documents into a concise answer might be preferable.

The first issue can be addressed by designing an efficient nearest neighbor search
algorithm that can handle large collections of embeddings. With such an algorithm, we
can process the query by computing its embedding and then looking up the required

R7.5 querying unstructured data 337

number of its nearest neighbors among the precomputed document embeddings. For
computing the embeddings, we can utilize a wide range of language models, including
LLMs. The second issue can be naturally tackled by feeding the limited number of
retrieved documents into the LLM and generating a summary, similar to what we did
in Section R7.5.1.

The above considerations lead us to the strategy known as retrieval-augmented gen-
eration (RAG) [Lewis et al., 2021]. The high-level architecture of the RAG system is
presented in Figure R7.9. The input knowledge base (e.g., a collection of documents)
is pre-processed and divided into chunks that fit within the LLM context. The LLM is
used to pre-compute embeddings for all chunks, and these embeddings are saved into
a vector storage, which essentially acts as an index enabling efficient nearest neighbor
search. The query is also converted into an embedding in the same vector space; the
most similar chunks are fetched using nearest neighbor search, and then summarized
into the final response using the LLM.

Knowledge
base

Pre-processing

Splitting

Embedding model

Vector
storage

Query

Pre-processing

Query
embedding

Nearest
neighbor search

Language
model

Response

Figure R7.9: A reference architecture of a retrieval-augmented generation system.

The RAG approach is illustrated with an example in Figure R7.10. We assume one
large input document that contains multiple articles about food ingredients – this con-
tinues the running example we started in the previous sections. We divide this docu-

338 knowledge management

ment into chunks, compute their embeddings, and index them in the vector storage.
The input question is focused on properties of a specific ingredient, so we efficiently
retrieve a small number of chunks that are relevant for answering it and generate the
final answer using them as context.

Ingredient name: E322 Lecithin
Description: Lecithin is a naturally occurring fatty substance found in various plant
and animal tissues. It is a complex mixture of phospholipids and other lipids. ...

Ingredient name: E330 Citric acid
Description: Citric acid is a weak organic acid found in citrus fruits and is commonly
used as a food additive and flavor enhancer. Here are some of its physical ...

...

Document

What is the melting point of citric acid?

Question

The melting point of citric acid is approximately 153 °C (307 °F).

Output

Use the following pieces of context to answer the question at the end. If you don't
know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}
Helpful Answer:

Prompt template

Figure R7.10: Example of retrieval-augmented generation. The retrieved document chunks are in-
serted into the prompt template as the value of the context variable.

Retrieval-augmented generation is a powerful technique that significantly enhances
the capabilities of LLMs, enabling us to query large knowledge bases effectively. From
the user’s perspective, the retrieval and summarization steps can be entirely transpar-
ent, and the RAG system can offer a simple question-answering interface, similar to a
plain LLM.

r7.5.4 Conversational Retrieval

The RAG design described in the previous section enables users to ask standalone
questions and receive standalone answers. However, in many applications, having a
conversational interface that allows users to ask clarifying questions based on the con-
versation history is more convenient. We can build such an interface by combining
retrieval-augmented generation with memory buffers as introduced in Section 3.4.6.1.
For example, we can use the LLM to create a concise standalone question based on
the entire conversation history, including the latest user’s question, retrieve relevant

R7.5 querying unstructured data 339

knowledge using RAG methods based on this question, and then make another LLM
call to generate the answer using the retrieved text and history.

r7.5.5 Agents

The complete reference implementation for this section is
available at https://bit.ly/3R4KTq4

In the previous sections, we assumed that the knowledge base is easily accessible, and
the complete collection of input documents can be preprocessed, indexed, and searched
through. However, this is not the case for applications in which the knowledge base can
only be accessed through APIs of internal or external systems, such as search engines.
Using APIs to retrieve information might seem conceptually similar to searching the
vector storage in a typical RAG architecture, but usually, we must address additional
challenges. First, we may need to deal with various errors and incomplete or non-
informative system responses. Second, the semantics of the APIs might differ from the
regular RAG setup, necessitating complex interactions between the LLM and external
systems.

The above challenges can be addressed using LLM agents as introduced in Sec-
tion 3.4.6.2. Recall that an agent is a system that receives the input task and uses an
LLM to plan how this task can be solved using available tools, take actions such as in-
voking specific tools with specific parameters, assess the observations returned by the
tools, and iterate on this process until the task is solved. In our case, the input task
is a question and the tools are the available APIs. The iterative approach and reason-
ing about the task and observed results help to overcome the challenges presented by
fragmented system responses outlined earlier.

One particular approach for implementing an information retrieval agent is known
as reasoning-acting agent or ReAct [Yao et al., 2023]. The ReAct agent operates in steps,
and the output of each step is appended to a continuously growing prompt (it can be
viewed as an execution log or scratchpad) which is then used as input for the next step.
The steps are specified as follows:

1. The agent appends the input question to the initial prompt.

2. The agent invokes the LLM to generate an assessment of the question (thought).
This assessment is added to the prompt.

3. The agent invokes the LLM to generate an action based on the prompt. In the
canonical ReAct design, three actions are possible:

search[query] This instructs the agent to invoke a search tool API for a given
query and return the beginning of the document if it exists.

lookup[string] This instructs the agent to invoke an API that searches a given
string in the previously found document and return a sentence that follows
this string. This simulates the Ctrl+F functionality of a text editor or web
browser.

https://bit.ly/3R4KTq4

340 knowledge management

finish[answer] This instructs the agent to terminate the execution and return
the answer to the user.

4. The agent executes the action and, unless the execution is finished, appends the
result returned by the tool (observation) to the prompt.

5. Steps 2–4 are executed in a loop until the finish action is generated. In other
words, the observations are getting assessed and new actions are generated if
needed.

More formally, the ReAct agent implements action policy πpat | ctq that determines
action at at step t based on the context ct “ pq,u1, . . . ,ut´1,at´1, vt´1,utq where
q is the input question, ut is a thought, and vt is an observation. This algorithm is
relatively straightforward, but how do we explain it to the LLM in the initial prompt?
The ReAct framework accomplishes this solely by using few-shot learning: the prompt
is initialized with several generic examples that demonstrate the execution of the ReAct
algorithm, and the actual execution keeps adding records to this log. This process
is illustrated in Figure R7.11 where the prompt template contains generic examples
unrelated to the actual task or domain, the input question is appended to it, and the
agent executes the reasoning-action loop until the answer is found. In other words, the
initial prompt does not contain any abstract description of the algorithm which we
specified earlier.

r7.6 security and data privacy

Security is a challenging aspect of LLM-powered knowledge management systems for
several reasons. First, a company developing a knowledge management system using
third-party LLM services risks disclosing sensitive information to those third parties
through the requests sent to the models. Secondly, a company providing its knowledge
management systems to third-party users faces the risk of exposing sensitive data that
was used to train or fine-tune private LLMs, or data collected by retrieval-augmented
generation components. Finally, both internal and external users of knowledge manage-
ment systems are exposed to general risks associated with LLMs, such as the generation
of toxic, biased, or misleading answers.

Some of these risks can be addressed at the level of LLM training or fine-tuning
algorithms. For example, one can mitigate the risk of memorization and revealing of
exact training samples, including personally identifiable information, by adding a care-
fully controlled noise in the stochastic gradient descent process [Behnia et al., 2022].
However, such methods are relatively heavyweight and cannot be easily applied to all
model deployment scenarios. A more general approach that applies to both private and
third-party LLMs is the use of interceptors, commonly referred to as guardrails, that an-
alyze and preprocess the inputs of the LLMs or knowledge management systems, and
post-process their outputs. Examples of preprocessing guardrails include the following:

anonymization Detects sensitive data such as names, addresses, dates, credit card
numbers, or email addresses and replaces them with surrogate values such as
EMAIL_ADDRESS_1. This operation may or may not be made reversible.

jailbreaking Detects attempts to elicit sensitive or inappropriate responses from the
model, such as unveiling sensitive data.

R7.6 security and data privacy 341

Thought: I need to search citric acid and find its annual production.
Action: Search[citric acid]
Observation: Could not find [citric acid]. Similar: ['Citric acid', 'Citric acid
cycle', 'Pyruvic acid', 'Oxaloacetic acid', 'Malic acid', 'Adenosine triphosphate',
'Tricarboxylic acid', 'Cellular respiration', 'Fumaric acid', 'Acid']
Thought: I need to instead search Citric acid.
Action: Search[Citric acid]
Observation: Citric acid is an organic compound with the chemical formula HOC(-
CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus
fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs
in the metabolism of all aerobic organisms.More than two million tons of citric acid
are manufactured every year. It is used widely as an acidifier, as a flavoring, and a
chelating agent.A citrate is a derivative of citric acid; that is, the salts, esters,
and the polyatomic anion found in solution. An example of the former, a salt is triso-
dium citrate; an ester is triethyl citrate. When part of a salt, the formula of the
citrate anion is written as C6H5O3−7 or C3H5O(COO)3−3.
Thought: More than two million tons of citric acid are manufactured every year.
Action: Finish[two million tons]

Execution log

Question: Were Pavel Urysohn and Leonid Levin known for the same type of work?
Thought: I need to search Pavel Urysohn and Leonid Levin, find their types of work,
then find if they are the same.
Action: Search[Pavel Urysohn]
Observation: Pavel Samuilovich Urysohn (February 3, 1898 - August 17, 1924) was a
Soviet mathematician who is best known for his contributions in dimension theory.
Thought: Pavel Urysohn is a mathematician. I need to search Leonid Levin next and find
its type of work.
Action: Search[Leonid Levin]
Observation: Leonid Anatolievich Levin is a Soviet-American mathematician and computer
scientist.
Thought: Leonid Levin is a mathematician and computer scientist. So Pavel Urysohn and
Leonid Levin have the same type of work.
Action: Finish[yes]
...
Question: {input}

Prompt templatePrompt template

What is the annual production of citric acid?

Input

Figure R7.11: Example of API querying using the ReAct agent.

prompt injection Detects attempts to override prompt templates and instruct the
model to perform unintended actions.

rate limiting Limits the frequency of API invocations for a model or knowledge
management system to prevent misuse and denial-of-service attacks.

On the post-processing side, the guardrails can reverse the modifications done by
the preprocessors, prevent sensitive data leakages, and protect the users. Examples of
post-processing guardrails include the following:

deanonymization Reversal of the anonymization operation by replacing the surro-
gate value with the original values. Automatic anonymization and deanonymiza-
tion makes the privacy protection transparent to the users.

toxicity Detects potentially harmful or offensive statements in the output.

342 knowledge management

sensitive data Detects personally identifiable information, passwords, and other
sensitive data in the outputs.

refutation Detects outputs that contradict or refute the given inputs or established
facts.

Some of these guardrails require advanced language understanding capabilities
which can be implemented using secure private LLMs. Security guardrails can also
include regular tests that are performed separately from the processing of the actual
requests. For example, one can regularly test that a knowledge management system
exposed to external users produces a refusal like “I’m unable to provide that information.”
in response to potentially harmful or policy-breaching prompts.

r7.7 quality evaluation

Evaluating the quality of LLM-based systems is generally a challenging task, but it is an
unavoidable part of solution development. In this section, we discuss several methods
that help to automate the evaluation.

r7.7.1 Data Preprocessing

Evaluating data processing components that produce structured attributes can be per-
formed using benchmarks that include example inputs and reference outputs. However,
this evaluation can be challenging because many tasks allow for multiple correct an-
swers. For example, the attribute discovery process can produce multiple different sets
of attributes for a given product, all of which can be deemed reasonable and correct. In
this case, we can use metrics based on the overlap between the actual and reference sets,
such as the precision and recall1. Some attributes, like product titles or SEO tags, can be
full-fledged texts produced using natural language generation, and we can evaluate
them using corresponding metrics such as BLEU2.

r7.7.2 Structured Data Querying

Structured data querying systems employing text-to-SQL generation typically require
specialized evaluation methods. In principle, the generated SQL queries can be eval-
uated by comparing them to the references as strings, but this approach is flawed
because multiple correct SQLs exist for one query. This leads to false negatives where
the generated SQL is semantically correct but does not match the reference exactly. A
better approach is to measure execution accuracy, which compares SQL execution out-
comes with the reference. This approach requires creating a database against which
both the generated and reference queries can be executed. However, this method also
has a shortcoming – semantically different queries can accidentally produce the same
execution outcomes on a particular database, resulting in false positives. The proba-
bility of such false positives can be decreased by generating multiple databases and
ensuring that the outcomes match for every database, as illustrated in Figure R7.12. The

1 See Appendix B.3 for the definitions of these metrics.
2 See Appendix B.5 for more details.

R7.7 quality evaluation 343

quality metric obtained using this method is known as test-suite accuracy [Zhong et al.,
2020].

Query: How many customers are more than 30 years old?

Reference: SELECT COUNT(*) FROM customers WHERE age > 30

Generated 1: SELECT COUNT(*) FROM customers WHERE age >= 31 (Correct semantics)

Generated 2: SELECT COUNT(*) FROM customers (Missing WHERE clause)

Database 1
+--------+-----+
| name | age |
+--------+-----+
| Alice | 32 |
| Bob | 45 |
+--------+-----+

Reference: 2
Generated 1: 2
Generated 2: 2

Execution

Database 2
+--------+-----+
| name | age |
+--------+-----+
| Tom | 20 |
| Helen | 38 |
+--------+-----+

Reference: 1
Generated 1: 1
Generated 2: 2

Figure R7.12: Example of text-to-SQL evaluation. In this example, the exact string matching would
result in a false negative for the first generated query, and execution accuracy only
on database 1 would result in a false positive for the second generated query. The
test-suite accuracy on two databases correctly indicates that the first generated query
is valid and that the second is wrong.

r7.7.3 Unstructured Data Querying

In retrieval-augmented generation, the quality of the entire solution is determined by
the quality of the retrieval component that searches for the most relevant documents
and the quality of the generation component that analyzes or summarizes these docu-
ments (context). The quality of these components can be evaluated separately.

Since the retrieval component is based on vector search, it is often useful to analyze
the quality of the embedding space. This can be done by first creating low-dimensional
projections of the document embeddings using algorithms like PCA or t-SNE, visualiz-
ing these projections, and validating that the space has a semantically meaningful topol-
ogy where similar documents are collocated. Secondly, we should evaluate whether the
retrieved contexts are relevant to the input questions. This can be done using standard
metrics for information retrieval systems, such as precision and recall.

Evaluating the generation part, as well as the end-to-end quality of the knowledge
management solution, is more challenging. The quality of the generated answer can be
assessed across different dimensions including faithfulness (the answer does not contain
claims that cannot be deduced from the context), relevancy (the answer is relevant to
the question), fluency (the answer is well-written and grammatically correct), coherency
(all sentences fit together and sound natural), and non-redundancy (the answer does not

344 knowledge management

repeat any points). This assessment can be performed manually or using automated
metrics for natural language generation such as BLEU and G-Eval1.

r7.8 summary

• The development of knowledge management systems involves preprocessing of
unstructured data, extraction of structured data from unstructured, and creation
of interfaces for data querying and summarization.

• Large language models (LLMs) provide a versatile platform for implementing a
broad range of preprocessing and querying use cases.

• Product attribute management is a typical example of a data preprocessing sce-
nario. An attribute management solution can leverage LLMs to discover, extract,
and harmonize structured attributes from unstructured descriptions of products
or other entities.

• Advanced tools for querying and analyzing structured data can include text-to-
SQL generators and components that automatically determine how the query
results should be visualized. Text-to-SQL translation is a complex task that might
require discovering tables and columns relevant to the question, understanding
the semantics of the input data, providing these inputs to the LLM, and handling
errors in the generated queries.

• Querying and summarization of unstructured data can be performed using sev-
eral different methods including map-reduce generation and retrieval-augmented
generation. The main consideration for choosing the optimal method includes
task type, data volume, and information distribution patterns.

• Retrieval-augmented generation (RAG) combines vector search with question an-
swering or summarization. Both parts can be implemented using LLMs.

• Unstructured data querying in complex environments that involve API calls and
handling erroneous or incomplete results can be done using LLM agents such as
ReAct.

• Security, data privacy, and predictability are the major concerns in the develop-
ment of LLM-based knowledge management systems. These concerns can be ad-
dressed using specialized model training and fine-tuning techniques, guardrail
services that scan and edit model inputs and outputs, and automated tests.

• The quality of attribute extraction can be measured using standard accuracy met-
rics. The quality of text-to-SQL generation can be measured using query execu-
tion accuracy. The quality of natural language generation can be evaluated using
manual scoring and specialized automated metrics.

1 See Appendix B.5 for a comprehensive description of the evaluation methodology for natural language genera-
tion.

Recipe

8

S Y N T H E T I C M E D I A

Personalizing Content and Products Using Language–Image Models

The methods discussed in the previous recipes help to discover relevant content items
in large collections of the existing content. In this recipe, we explore the problem of
content creation using AI methods and its enterprise applications.

r8.1 business problem

Automated content creation, modification, or personalization, can be applied to a wide
range of enterprise use cases. To better understand how the problem can be formulated,
let us review several examples:

• Some footwear and apparel companies allow customers to personalize product
design, materials, or color themes. In particular, shoe customization services are
offered by the footwear giants such as Nike and Adidas. Since the design cus-
tomization services are intended to be used by regular consumers, providing sim-
ple interfaces that take basic inputs such as a textual description of a color theme
and automatically generate high-quality design suggestions can be valuable.

• In online retail, the quality of product visualizations is an important factor that
directly influences the conversion rates. This aspect is particularly important for
segments with multiple product variants and complex evaluation contexts. For
example, furniture and home decor products often come in multiple colors and
styles, and consumers usually evaluate them in the context of their existing or
planned interiors. Apparel products can also have multiple variants and be eval-
uated in the context of outfits. This creates a need to provide users with com-
prehensive sets of visualizations for different styles, perspectives, and lighting
conditions, as well as interactive services for visualizing personalized contexts
(e.g. virtual try-on in apparel and interior design in home improvements and
furniture). This problem can be addressed to a large extent using conventional

345

346 synthetic media

methods such as image recoloring and 3D model rendering, but these approaches
have significant limitations in terms of quality and flexibility.

• In video game development, production of game assets such as characters, ob-
jects, and icons is usually one of the biggest expense categories. The ability to
automatically produce multiple assets of the same style based on limited inputs
such as textual descriptions or sketches can significantly increase the develop-
ment productivity and reduce costs.

At a high level, we can consider addressing these and similar use cases by creating a
content synthesis system according to the layout presented in Figure R8.1. The system
has an internal collection of reference assets or pretrained models, consumes a textual
description or reference images that specify the target asset, and produces either the
final asset or intermediate components such as color palettes that can be used to vi-
sualize the final asset using conventional methods. We further assume that the output
assets are images, but alternative outputs such as 3D models can be used in some
applications.

Content
synthesis

Textual prompt

Reference image

Reference assets

Content
components

Final
content

Figure R8.1: Content synthesis environment.

The environment described above, although very generic, addresses only a small sub-
set of enterprise use cases that can involve content synthesis using AI methods. More
generally, this domain includes video, sound, and voice synthesis, and is commonly
referred to as synthetic media. For the sake of specificity we limit our consideration here
to text-to-image and image-to-image synthesis problems.

r8.2 solution options

One of the central problems in content synthesis is how to specify the desirable out-
come. The ability to specify graphical content using a natural language prompt is ex-
tremely powerful and versatile, but its implementation requires building a model that
learns and links together both language and image manifolds.

We start with developing a solution that performs the basic language-image mapping,
and demonstrate how it can be combined with conventional visualization methods to
accomplish content synthesis tasks. This approach provides a high level of control over
the final outcome, but it is feasible mainly for those use cases with limited and well-
defined content customization options.

As the next step, we explore how content synthesis can be performed using the deep
learning methods end-to-end. This solution approach provides much greater flexibility,
and can be applied for tasks that generally require creativity and which are traditionally
performed by human visual artists.

R8.3 language-image models 347

r8.3 language-image models

In Recipe R5 (Visual Search), we demonstrated that it is possible to build an image
manifold model by training a high-capacity classification network on sufficiently large
sets of images, and extracting the intermediate representations from it. Moreover, we
determined that the models are often transferable across the domains, so that the model
trained on one set of labels can produce representations that can be relatively easily
mapped to another set of labels. However, the shortcoming of the regular classification
approach is that the supervision is provided in the form of discrete tokens (classes) and
even if these tokens are associated with human-readable textual labels, the semantic
meaning and relations between these labels are ignored.

The alternative solution is to provide the supervision in the form of natural language
texts that are mapped to the same embedding space as images in a way that preserves
the semantic meaning and distances between the texts. In other words, the texts are
threaded as points in the continuous language space, not as discrete tokens. These two
types of supervision are compared side by side in Figure R8.2.

Image
domain

Embedding
domain

Classes

Training set

Language domain

Training set

(a) (b)

Figure R8.2: Supervision using discrete classes (a) and language supervision (b).

Natural language supervision is a powerful concept that enables various text-to-
image and image-to-text use cases. For example, we can implement image search
based on a natural language query using a generic pretrained language-image model
as shown in Figure R8.3 (a). First, the pretrained model is used to calculate the embed-
dings for all images in the collection, and these embeddings are indexed. To serve a
query, we compute its embedding in the same space and search for the nearest neigh-
bors among the image embeddings. Another example is image generation based on a
natural-language prompt. At a conceptual level, this use case can be implemented by
mapping the prompt to the embedding space and then decoding it into an image as
shown in Figure R8.3 (b). Since both language and image spaces are considered con-
tinuous, neither the prompt nor output images are restricted to the set the model is
trained on.

348 synthetic media

Language domain

Image
domain

Embedding
domain

Language domain

(a) (b)

Image collection

Nearest
neighbors

Query

Training set

Prompt

Generated
image

Figure R8.3: Examples of a language-image model applications: image search (a) and image gen-
eration (b).

r8.3.1 CLIP Model

In this section, we focus on the problem of mapping natural language texts and images
to a common embedding space. As we discussed in Chapter 2, a number of standard
network architectures for mapping texts or images to low-dimensional representations
are readily available, including the transformers for texts and convolutional networks
and visual transformers for images. We can attempt to use these standard components
to build a language-image model.

Let us assume a dataset of image-text pairs where the texts are the natural language
descriptions of the image content. Let us further assume a standard image encoding
network fpximgq that maps the input image ximg to a k-dimensional vector. Similarly,
we also assume a text encoding network gpxtxtq that maps the input text xtxt to an
m-dimensional vector. We can cast the outputs of both networks to embeddings of the
same dimensionality d using linear transformations as follows:

u “ Wimg fpximgq

v “ Wtxt gpxtxtq
(R8.1)

where u and v are the d-dimensional image and text embeddings, respectively, and
Wimg and Wtxt are the learnable dˆ k and dˆm matrices, respectively.

The image and text encoders, including linear projections R8.1, can then be combined
in a two-tower network that is trained using the InfoNCE contrastive loss function1.
More specifically, the network is iteratively trained on minibatches of image-text em-
bedding pairs. Assuming that each minibatch includes n pairs, we compute the cosine
distances for all combinations of image and text embeddings as follows:

sij “
uTi vj
‖u‖ ‖v‖

for i, j “ 1, . . . ,n (R8.2)

1 See Section A.3.4 for more details about the InfoNCE loss.

R8.3 language-image models 349

This layout is depicted in Figure R8.4. For each sample in the batch, we then compute
image-to-text and text-to-image losses as follows:

L
puÑvq
i “ ´ log

exppsii{τq
řn
j“1 exppsij{τq

and L
pvÑuq
i “ ´ log

exppsii{τq
řn
j“1 exppsji{τq

(R8.3)

where τ is a learnable temperature parameter. In other words, we pose 2n classifi-
cation problems for each batch where we need to determine either a correct text for a
given image or a correct image for a given text out of n alternatives, and compute a
regular cross-entropy loss for each problem.

(Image, Text)

v1 v2 vn...

u1

u2

...

un

s11

...

...

...

...

Image encoder Text encoder

s21

sn1

s12

s22

sn2

s1n

s2n

snn

Figure R8.4: Contrastive pretraining of the CLIP model.

The total loss for the batch is then computed by averaging the image-to-text and
text-to-image losses in a symmetric way:

Lpu1:n, v1:nq “
1

2n

n
ÿ

i“1

´

L
puÑvq
i ` L

pvÑuq
i

¯

(R8.4)

This architecture is known as contrastive language-image pretraining or CLIP [Radford
et al., 2021]. The reference CLIP implementation uses a regular multilayer transformer
as a text encoder and a visual transformer as an image encoder.

The entire network is trained from scratch (without initializing the encoder or de-
coder with pretrained weights) on a set of image-text pairs. One of the main advan-
tages of CLIP and, more broadly, the natural language supervision approach, is that
the model can be pretrained on generic low-quality datasets instead of the manually
labeled datasets required for regular supervised models. For example, such datasets,
that are image-text pairs, can be efficiently crawled from the internet.

350 synthetic media

Once the CLIP model is trained, the image and text encoders can be extracted and
used jointly or separately to embed arbitrary images and texts into a unified semantic
space. In particular, the pretrained CLIP model can used to perform several different
tasks on unseen domain-specific data including the following:

representation learning The encoder and decoder parts of the pretrained
model can be used separately to compute embeddings for arbitrary input texts
and images.

classification The pretrained model can be used for image classification as follows.
Assuming that we have a set of discrete domain-specific classes, each of which
is associated with a keyword or snippet of text, we can compute an embedding
for each class using the text encoder. To classify a given image, we compute its
embedding using the image encoder, compute distances between this embedding
and each classes’ embedding, and assign the class label based on the smallest
distance.

image search Assuming a collection of images, we can pre-compute their embed-
dings using the image encoder and index them. To serve a natural language
search query, we compute its embedding using the text encoder, find the nearest
neighbors in the index, and return the corresponding images ranked according
to the distances in the embedding space.

All these capabilities can be useful in the context of enterprise applications. The
ability to search images in domain-specific collections without any labeling, metadata,
or fine-tuning is particularly important, and we leverage it in the next section to build
a basic content synthesis solution.

r8.3.2 Prototype

The complete reference implementation for this section is
available at https://bit.ly/3Z2RGTf

Although the CLIP model is not designed specifically for content synthesis tasks,
it can be combined with conventional visualization components to synthesize content
based on natural language descriptions (prompts). Let us consider the following use
case: a footwear company provides customers with an option to customize the color
theme of the shoes, so that the colors of different parts such as the toe cap, heel counter,
and tongue can be specified individually. The most basic implementation of such a
service would require a customer to manually select, say, 5-6 colors to specify the color
theme. However, this approach is not necessarily ideal for consumers because the cre-
ation of a harmonious good-looking color theme requires both skill and time, and the
result might be boring rather than attractive.

The alternative approach is to provide consumers with a simple interface that al-
lows them to describe the color theme as a natural language prompt and automatically
generate suggestions based on it. We can implement this workflow by creating a suf-

https://bit.ly/3Z2RGTf

R8.3 language-image models 351

ficiently large collection of images, searching the most relevant images based on the
input prompt, extracting the color theme (palette) from these images, and rendering
the suggestion using conventional methods. This workflow is outlined in Figure R8.5.

Describe your color theme: A mountain lake in the summer

Text embedding

Image collection Nearest neighbor search

Image

Palette extraction

Rendering

Palette

Figure R8.5: A pipeline for generating a personalized product design based on the natural lan-
guage description of the color theme.

The image search part of the solution can be easily implemented using the pretrained
CLIP model. Once one or several best-matching images are identified, the conventional
methods can be used to extract the pallet and render the final suggestions to be pre-
sented to the user. In particular, a color palette can be extracted by clustering image
pixels in an RGB (for red, green, blue) or HSB (for hue, saturation, brightness) space
and selecting the cluster centroids, as well as other heuristics [Grogan et al., 2018].

352 synthetic media

The final rendering can be done using the conventional 3D computer graphics soft-
ware. Several examples of the input prompts and output renderings are presented in
Figure R8.6.

A fruit salad Winter in the mountains

Summer in the mountains A coral reef fish

Figure R8.6: Examples of the color themes generated using the CLIP model.

r8.4 text-to-image generative models

Many basic content synthesis tasks such as pallet generation, background replacement,
and recoloring can be automated using various combinations of deep learning models,
conventional image processing methods, and computer graphics software. However,
this approach does not allow us to generate truly original content and often requires
us to manually prepare templates and to configure conventional visualization compo-
nents. In this section, we approach the content synthesis problem from a more holistic
perspective and focus on the methods for generating high-quality images end-to-end
without involving any conventional rendering methods.

R8.4 text-to-image generative models 353

r8.4.1 Denoising Diffusion Models for Images

The denoising diffusion models discussed in Section 3.3 provide a general foundation
for learning complex distributions and sampling from them. However, sampling images
is a particularly challenging problem because of its high dimensionality, and the basic
diffusion design needs to be scaled up to address this challenge. In this section, we
discuss two design techniques that are commonly used for building diffusion models
for images. These techniques can be used to create many different specific designs, so
we focus on the main concepts and omit the low-level details.

r8.4.1.1 U-Net Backbone

Recall that a denoising diffusion model generates the output object x0 through iterative
denoising of the initial sample xT „ Np0, Iq. At each iteration of this process, known as
the reverse diffusion process, the next state xt´1 is sampled based on the previous state
xt and conditioning signal (context) c. The key component of a model is a backbone
network εθpxt, c, tq that predicts the gradient of the data density based on the input
xt and context c, and this gradient is then used to compute the next (denoised) state
xt´1, so the reverse diffusion process can be summarized as follows:

xT , c −Ñ . . . −Ñ xt, c −Ñ εθpxt, c, tq −Ñ xt´1, c −Ñ . . . −Ñ x0 (R8.5)

In the case of text-to-image generation, xt and εθpxt, c, tq are tensors (height ˆ
width ˆ RGB channels), and context is initially a natural text prompt. This setup is
illustrated in Figure R8.7 (compare it with Figures 3.8 and 3.9 in Chapter 3).

Forward process

Reverse process

x0 xT/3 x2T/3 xT

c

...

Figure R8.7: An example of the forward and reverse diffusion processes for images.

Since we need to perform a tensor-to-tensor mapping, we can consider using the
U-Net architecture1 for implementing the backbone network [Ho et al., 2020]. A high-
level design of such a network is presented in Figure R8.8. It extends the reference
U-Net design with the injection of the conditioning signal and diffusion step counter
into all contraction and expansion layers. The conditioning signal is usually encoded
into an embedding using a standard language model such as CLIP, and the diffusion
step counter is encoded using the positional embedding techniques used in the regular
transformer2. A diffusion model with such a backbone network can be trained using

1 See Section 2.5.4.2 for a description of the canonical U-Net architecture.
2 See Section 2.4.7.3 for more details on positional embeddings.

354 synthetic media

the standard algorithm 3.1, and images can sampled from the trained model using the
standard sampling algorithm 3.2.

...
...

Contraction layers
(convolution/pooling)

Copy

Expansion layers
(upconvolution)

xt

εθ(xt, c, t)

t

Positional
embedding

c

Text
encoder

Prompt

Figure R8.8: A typical architecture of a backbone network for the reverse diffusion process for
images.

Denoising diffusion models with the U-Net backbone networks is generally sufficient
for accurate learning of image distributions based on specialized datasets, such as a
database of portrait images, and generating photorealistic samples with relatively low
resolutions [Ho et al., 2020].

R8.4 text-to-image generative models 355

r8.4.1.2 Cascaded Diffusion Models

High-resolution images can be generated by stacking multiple diffusion models on top
of one another [Ho et al., 2021]. This design, known as a cascaded diffusion model, is il-
lustrated in Figure R8.9 (a). The first block in a cascaded model is a regular conditional
diffusion model that generates a low-resolution image xp1q0 based only on the condition-
ing signal c. This image is upsampled using basic methods such as bilinear or bicubic
interpolation, and then used as an additional input to the second block in the cascade.
We denote this upsampled image as up1q.

The second block of the cascade aims to enhance the quality of the image up1q ob-
tained by basic upsampling, so it is referred to as a super-resolution model. This model is
also a conditional denoising diffusion model, but its backbone network is modified to
incorporate the image produced by the previous block. More concretely, the upsampled
input up1q is concatenated (stacked) with the regular input of the backbone network
which we denote as xp2qt to indicate that it belongs to the second level of the cascade.
This design is illustrated in Figure R8.9 (b). The image generated by the second block,
that is xp2q0 , can be further upsampled and used as an input to the next super-resolution
block. The output of the last block is the final high-resolution image.

r8.4.2 Latent Diffusion Models

In Section 3.3, we stated that the latent variables in diffusion models usually have the
same dimensionality as the original data representations, that is x1, . . . , xT have the
same dimensionality as x0. However, this approach becomes computationally challeng-
ing and unstable for high-resolution image generation where the dimensionality of the
latent variables is too high. The cascading approach discussed in the previous section
helps to mitigate the stability issues, but still requires computationally expensive dif-
fusion models that operate in the high-dimensional pixel space. We can attempt to
overcome this limitation by switching from the pixel space to a latent space of a lower
dimensionality.

r8.4.2.1 Image Encoding and Decoding

The latent space approach can be implemented by combining a diffusion model with
an image autoencoder that performs mapping between the pixel and latent spaces. In
particular, we can use a regular variational autoencoder (VAE) that is trained separately
from the diffusion model. As shown in Figure R8.10 (a), the encoder part of the VAE is
used in the forward diffusion process to map the input image x to embedding z0:

z0 “ Epxq (R8.6)

where E is the encoding operation, x is an h0 ˆw0 ˆ 3 tensor representing a color
image, and z0 is an hˆwˆ c tensor where c is the number of channels. The dimen-
sionality of the latent space is usually selected to be h “ h0{2

m and w “ w0{2
m

where m is the downsampling factor hyperparameter. This representation is then used
as an input to the regular diffusion process, but this process operates in a smaller latent
space.

356 synthetic media

...
...

xt

εθ(xt , c, u , t)

u

xt-1

c

(a) (b)

xt , c, u , t

Conditional diffusion
model

Conditional super-resolution
diffusion model

Conditional super-resolution
diffusion model

Upsampling

(i)

(i)

(i-1)

x0
(1)

x0
(2)

x0
(3)

(i)

(i)

(i-1)

(i-1)

Figure R8.9: A typical architecture of a cascaded diffusion model for high-resolution image gener-
ation. (a) A cascaded model consists of a base model (regular conditional diffusion)
and one or more super-resolution models. (b) Each super-resolution model uses a U-
Net backbone network modified to incorporate the upsampled output of the previous
stage. The conditioning signal, positional embeddings, and other details are omitted
to avoid cluttering.

The decoder part of the VAE is used in the sampling process, so that the reverse
diffusion is performed in the latent space, iteratively generating z0 from a noise sample
zT and conditioning signal c, and then the representation in the pixel space is obtained
by decoding z0:

px “ Dpz0q (R8.7)

R8.4 text-to-image generative models 357

Image
encoder

x

Forward
diffusion

Reverse diffusion
(denoising U-Net)

Image
decoder

z0

zT

z0

zT ~ N(0, I)

x [h0 × w0]

[h × w]

[h × w]

�

(a) (b)

Text
encoder

c

c0

Figure R8.10: Conceptual architecture of a latent diffusion model.

where D is the decoding operation. The generation flow is presented in Fig-
ure R8.10 (b) where we also assume a text encoder that maps the input natural text
prompt c0 to embedding c which is used as a conditioning signal.

Models that follow the above architecture are known as latent diffusion models [Rom-
bach et al., 2021]. In this architecture, we can think of the image encoder as a perceptual
compression component that aims to remove high-frequency details, but not to learn
the semantic structure. Conversely, the inner diffusion model focuses on learning the
topology of the conditional image manifold, but not the high-frequency representation
details.

r8.4.2.2 Conditioning Mechanism

In latent diffusion models, the image embedding is a three-dimensional tensor just
like the image itself, and thus we can use the U-Net backbone in a similar way to the
regular diffusion models discussed in Section R8.4.1. However, the reference design of
the latent diffusion models makes several enhancements to the basic U-Net architecture
and, specifically, to the conditioning mechanism [Rombach et al., 2021]. In this section,
we dive deeper into these details.

The high-level reference architecture of the U-Net backbone used in the latent diffu-
sion models is presented in Figure R8.11. In this architecture, the basic convolution and

358 synthetic media

upconvolution layers are replaced with more complex units, each of which includes a
residual block, one or several spatial transformer blocks, and additional convolution
or upsampling transformations. The residual block is essentially a stack of two convo-
lution layers with a skip connection, and it can generally be viewed as an enhanced
version of a regular convolution operation1. The standard design of the residual block
is also extended to consume the time step embedding as a second input, reshape it
using a linear operation, and add it to the main flow.

...
...

zt

εθ(zt, c, t)

zt-1

Residual convolution block

Spatial transformer blocks

...

Downsampling convolution

t

c

Residual convolution block

Spatial transformer blocks

...

Upsampling

t

c

Convolution

Input
blocks

Output
blocks

U-Net

Figure R8.11: A high-level architecture of the U-Net used in the latent diffusion model.

The high-level architecture of the spatial transformer block is presented in Fig-
ure R8.12. The input of the block is a three-dimensional image embedding that is
reshaped (flattened) into a sequence of vectors that can be consumed by regular
transformer blocks2. The design of the transformer blocks is modified to incorpo-
rate the conditioning signal, so that each block includes a self-attention layer and
cross-attention layers. The self-attention layer is identical to the regular multihead

1 See Section 2.3.3 for more details about residual blocks.
2 See Section 2.4.7 for a reference description of the transformer block.

R8.4 text-to-image generative models 359

height

width

channels

channels
height × width

Self-attention

Cross-attentionc

Convolution and reshape

Transformer block

Convolution and reshape

...

Dense

Transformer block

Transformer block

Z

Z’

Figure R8.12: A high-level architecture of the spatial transformer block used in the latent diffusion
model.

self-attention mechanism described in Section 2.4.7, so each of its heads computes the
query, key, and value embeddings as follows (compare this to expression 2.70):

Qself
h “ ZWQ, self

h

Kself
h “ ZWK, self

h

Vself
h “ ZWV , self

h

(R8.8)

where h is the index that iterates over the attention heads, W are the learnable pa-
rameter matrices, and Z is the input of the layer (i.e. flattened input of the spatial
transformer block). The layer output is then computed according to expressions 2.71

and 2.72. The cross-attention layer has a similar design, but computes the keys and
values based on the conditioning signal c which is assumed to be shaped as a matrix:

Qcross
h “ Z 1WQ, cross

h

Kcross
h “ cWK, cross

h

Vcross
h “ cWV , cross

h

(R8.9)

Similar to the self-attention layer, the final output of the cross-attention layer is com-
puted using the standard expressions 2.71 and 2.72. This output is then reshaped into
the final output of the spatial transformer block, as shown in Figure R8.12.

360 synthetic media

r8.4.2.3 Training

The training algorithm for the latent diffusion models is similar to the regular denoising
diffusion models. Recall that the loss function for a conditional denoising diffusion
model can be defined as follows1:

LDM “ Ex, c, ε„Np0,Iq, t

”

‖ε´ εθpxt, t, cq‖2
ı

(R8.10)

where t is uniform between 1 and T . The loss function for a latent diffusion model
can be specified analogously as:

LLDM “ EEpxq, c0, ε„Np0,Iq, t

”

‖ε´ εθpzt, t, Sθpc0qq‖2
ı

(R8.11)

where E is the image encoder and Sθ is the text prompt encoder. In the original
latent diffusion model design, the text prompt encoder is implemented as a regular
transformer, and both Sθ and εθ are jointly optimized during the training process
based on the above loss function [Rombach et al., 2021]. The alternative solution, which
is arguably more common, is to use a frozen CLIP text encoder [Saharia et al., 2022].

r8.4.2.4 Structure of the Latent Space

We conclude our discussion of the latent diffusion models with a small study of the
semantics spaces learned by such models. For the sake of specificity, we assume a
use case from the game development industry where one needs to create sprites of
isometric buildings for a strategy game. We use an off-the-shelf Stable Diffusion model
(see the box below for more details), and formulate two text prompts for generating
isometric sprites of an oil refinery and a castle, as shown at the top of Figure R8.13.

Stable Diffusion Models

Stable Diffusion is a family of latent text-to-image diffusion models which
were developed by Stability AI, Runway, CompVis group LMU Munich,
and a non-profit Large-scale Artificial Intelligence Open Network (LAION)
organization in 2022. The models are pretrained on subsets of LAION-5B, a
database of more than 5 billion text-image pairs [Schuhmann et al., 2022].

Stable Diffusion models were the first public text-to-image models that pro-
vided nearly-sufficient quality for applied design tasks and could be efficiently
used by artists and designers. This greatly contributed towards the populariza-
tion of generative AI.

Examples of images that are generated based on these two prompts are shown in
Figure R8.13 (1) and Figure R8.13 (9). Since the prompts are internally mapped to text
embeddings by the text encoder, we can connect these two points in the text embedding
space by a straight line, pick several intermediate points on this line, and decode them
into images. In other words, we can perform a linear interpolation between the two

1 See expressions 3.43, 3.47, and Section 3.3.5 for the derivation.

R8.4 text-to-image generative models 361

standalone isometric oil refinery,
realistic, made in blender 3D,
white background

standalone isometric castle,
realistic, made in blender 3D,

white background

(1)

(4)

(7)

(2)

(5)

(8)

(3)

(6)

(9)

1 92 3 4 5 6 7 8

Figure R8.13: An example of the latent space walk-through for a latent diffusion model pretrained
on large public datasets.

text prompts. We choose to pick seven equidistant intermediate points and visualize
the corresponding decoded images in Figure R8.13. This analysis reveals the continuity
of the latent space, so that each point is decoded into a consistent realistic image. In
this particular example, we can also observe a sharp transition between the oil refinery
and castle manifolds.

362 synthetic media

r8.5 advanced control mechanisms

The prompt-based conditioning mechanism described in the previous sections is suf-
ficient for solving certain practical tasks provided that the user has good prompt en-
gineering skills. However, this approach is infeasible for many important applications
that require a higher level of control. Let us consider several examples:

style-consistent synthesis Art asset creation for video games and other similar
problems requires generating multiple assets or multiple versions of a specific as-
set that are strongly consistent in terms of the visual style. Although the prompt-
based approach allows us to specify style guidelines, this capability alone might
not be sufficient for achieving the desired level of consistency or, alternatively,
variability.

reference-driven synthesis We often need to specify the exact shape or style of
the desired result by using a manually drawn sketch, reference image, or exam-
ples created by a human artist. This level of control is fundamentally unattainable
using the prompt-based approach.

subject recontextualization We can be provided with reference photographs
of a certain subject such as a commercial product or a person which need to be
rendered in different contexts. For example, we might need to synthesize images
of a specific automobile in different environments and weather conditions. Recon-
textualization tasks usually have two inputs: reference images of the subject and
text prompts that describe the environment.

subject rendering under novel viewpoints Some recontextualization tasks
also require controlling the viewpoint under which the subject is rendered. For
example, we might need to render an automobile from the side, from the back,
or from the top.

subject property modification In many marketing applications, we need to
generate variants of the input reference image with modified properties. For
instance, we might need to generate images of a specific sofa with different
upholstery fabrics and materials.

The above problems can be approached from several different angles. One possible
solution for the style-consistent and subject-driven synthesis is to fine-tune a diffusion
model pretrained on a large general image database. This approach can be illustrated
using examples in Figures R8.14 and R8.15.

We start with generating an initial collection of game art assets using a general-
purpose diffusion model and a basic prompt that includes several style guidelines. A
subset of this collection is presented in Figure R8.14 where we can observe a significant
variability in style. We manually select 20 examples of approximately the same style
from this collection (four of these examples are shown in Figure R8.15 (a)), and then
use a variant of the fine-tuning method called DreamBooth to create a customized
diffusion model based on this small training dataset [Ruiz et al., 2022]. The images
sampled from the fine-tuned model have much higher style consistency, as illustrated in
Figure R8.15 (b) and (c). This method can also be used to replicate specific visual styles
based on manually created reference images to create subject-specific models that allow
us to sample recontextualized or modified versions of the subject. The disadvantages

R8.5 advanced control mechanisms 363

oil refinery

building with
a radar dome
on the top

Figure R8.14: Examples of game art assets sampled from a general pretrained diffusion model. All
assets are generated based on a prompt “Isometric , cyberpunk style, realistic, video
game, made in blender 3D” where the placeholder is replaced with the building type
or description.

of the fine-tuning approach include relatively high computational costs and limited
ability to control the output layout.

The ability to control the shape, semantics, style, color theme, and other aspects of
the assets can be dramatically improved by extending the range of the conditioning
signals beyond the natural language prompt [Zhang and Agrawala, 2023; Huang et al.,
2023]. For example, the image layout can be conveniently controlled using a sketch,
segmentation mask, or a reference image.

Let us consider the sketch-driven synthesis in more detail. For the model training
purposes, sketches can be automatically generated from the training images using ba-
sic algorithms such as the Canny edge detector [Canny, 1986], and the model can be
trained based on tuples that include an image, text, and sketch. For the inference, a
sketch can be created manually or extracted from the reference image. This approach
is illustrated using an example in Figure R8.16 where a pretrained model called Con-
trolNet is used to generate several variants of a game asset based on a manually drawn
sketch [Zhang and Agrawala, 2023]. This example demonstrates the high level of con-

364 synthetic media

(a)

(b)

(c)

Figure R8.15: Example of fine-tuning of a diffusion model. Four images from the training set are
shown in (a), images sampled from the fine-tuned model are shown in (b) and (c).
The samples in plates (b) and (c) are generated using basic prompts “Tall factory
building” and “Radar dome”, respectively.

trol and consistency that can be achieved using a complex conditioning signal that
includes both a natural language prompt and a sketch.

r8.6 summary

• Content generation has multiple enterprise applications including product cus-
tomization services, virtual user experiences, and art asset creation.

• AI methods can be used to create content components such as color pallets and
textures, and the final content assets can be produced using conventional meth-
ods such as 3D rendering based on these inputs. Alternatively, generative AI
methods can be used to synthesize the content assets end-to-end.

• Content generation based on natural language description can be enabled by
language-image models that map text and images to unified latent spaces. Such
models can be trained using large noisy datasets that consist of image-text pairs.

• End-to-end image synthesis based on natural language prompts can be per-
formed using denoising diffusion models. Such models usually use U-Net

R8.6 summary 365

Figure R8.16: An example of game art asset generation based on a sketch and a prompt “Isometric
traditional Chinese temple, realistic, video game, made in blender 3D”.

backbone networks, prompt-based conditioning mechanisms, and specialized
techniques such as cascaded super-resolution to achieve high image quality.

• Computational efficiency and stability of diffusion models can be improved by
switching from the pixel space to latent space that can be achieved using a sepa-
rate variational autoencoder or other methods.

• The prompt-based conditioning is not sufficient for applications such as sketch-
driven and subject-driven image generation. These limitations can be addressed
using advanced control mechanisms and model fine-tuning on domain-specific
datasets.

Part IV
R E V E N U E A N D I N V E N T O RY M A N A G E M E N T

In the previous parts, we were mainly focused on the efficient usage of marketing re-
sources such as budgets, campaigns, customer attention, and screen time. We generally
assumed that customer engagement and conversion rates can be improved using per-
sonalized services, relevant and timely information, and valuable deals, and that the
cost of these offerings to the company needs to be factored into the resource optimiza-
tion problems. However, we did not discuss how to quantitatively assess the impact of
pricing parameters on the demand, and how this assessment can be used to improve
the overall financial performance of the company. In this part, we explore the relation-
ship between prices, discounts, revenues, and profits more thoroughly and develop
decision support tools and optimization components that help to efficiently manage
the demand using pricing levers.

The demand modeling capabilities are the foundation of another large area of enter-
prise AI which is related to supply chain management and inventory optimization. We
discuss how the operations in this area can be improved using forecasting, simulation,
and optimization techniques.

Recipe

9

D E M A N D F O R E C A S T I N G

Understanding the Structure, Dynamics, and Uncertainty of Demand

A wide range of decision-making processes in the enterprise including production ca-
pacity planning, inventory allocation, price setting, and staff scheduling is required to
forecast the future demand and sales, as well as to understand and quantify the im-
pact of various factors on these estimates. In this recipe, we aim to develop a toolkit for
analyzing the demand structure, forecasting its future trajectory, and estimating the un-
certainties that should be accounted for in the downstream decision-making processes.
In the next recipes, we leverage this toolkit as a component to solve applied use cases.

r9.1 business problem

The main considerations that need to be incorporated in the design of the demand
analytics and forecasting solutions include the domain context, properties of the input
data, desirable functional capabilities, and quality criteria. We discuss all these aspects
in the next sections.

r9.1.1 Environment

We consider a company that sells multiple products at multiple locations or through
multiple channels. The company observes the demand metrics for specific combina-
tions of a product, channel, location, and possibly some other qualifiers, so we can
think of these qualifiers as dimensions of a hypercube. We further assume that each
dimension can be associated with a hierarchical structure and each node in this hierar-
chy can be associated with a set of attributes. For example, the dimension of products
can be associated with a hierarchy where the bottom layer represents SKUs, the sec-
ond layer represents products, the third layer represents subcategories, and so on. Each
node in this hierarchy can be associated with categorical and numerical attributes, as

369

370 demand forecasting

well as textual descriptions, product images, and other data. This layout is illustrated
in the left-hand side of Figure R9.1 for the two-dimensional case. We refer to specific
combinations of qualifiers such as a particular SKU at a particular store as entities.

Metrics (yt)

Future

Node

Past

Scope of the analysis

Known features

Observed features

Static features
(scope-level)

Entity
hierarchy 1

Entity hierarchy 2

t

xt

Figure R9.1: The general structure of the input data for the demand analysis and forecasting.

The company observes a time series for some, but not necessarily all, combinations
of the qualifiers. For example, the data can be available for products that are present on
the market for some time, but not for newly launched products; SKU-level data might
be available for the first-party sales channels, but not from third parties, and so on.

We assume that each time series includes one or several metrics of interest such as the
sales volume, revenue, or profit. In many applications, the demand can be measured in
non-monetary metrics such as the number of trucks or the number of warehouse work-
ers required on a particular date. We refer to a series that includes only one metric as a
univariate time series, and it can be represented as a sequence of scalar (one-dimensional)
values yt. A series with multiple metrics is called a multivariate time series, and it is rep-
resented as a sequence of vectors yt. We use a shorthand y1:t to denote the sequence
py1, . . . , ytq.

Each time series can also be associated with features (covariates). We distinguish
between static features that do not change over time, such as product attributes, and
dynamic features that vary over time. Some dynamic features such as weather and com-
petitor pricing are observed for past and present moments of time, but cannot be pre-
dicted for future time steps. We refer to such features as observed. Some other dynamic
features such as holidays and prices are known in advance or can be controlled, and

R9.1 business problem 371

we refer to them as known features. We denote a vector of dynamic features at time t as
xt.

We further assume that the time series are related and can share common patterns.
For example, substitutable products can have similar demand patterns, and the de-
mand for new products can sometimes be forecasted based on the historical data for
similar items. We can perform the analysis and forecasting for individual time series
or an aggregated scope such as a product category or geographic region, as shown in
Figure R9.1.

r9.1.2 Demand Patterns

The relations between different entities such as products is one of the characteristic
features that needs to be accounted for in demand analysis problems. Other notable
patterns that are common for many real-world environments include the following:

irregular demand The time series for fast-moving popular items may be relatively
smooth, but other categories of items can exhibit various irregular patterns [Cros-
ton, 1972; Syntetos et al., 2005]. One of the most common demand categorization
methodologies differentiates between smooth demand, intermittent demand with al-
tering zero and non-zero intervals, erratic demand with large magnitude variation,
and lumpy demand that combines both intermittent and erratic features. These
patterns are illustrated in Figure R9.2, and it is common practice to use different
modeling approaches for different patterns.

Intermittent Lumpy

Smooth Erratic

Va
ria

bi
lit

y
in

 d
em

an
d

tim
in

g

H
ig

h
Lo

w

Variability in demand magnitude
Low High

Figure R9.2: Categorization of demand patterns based on inter-demand intervals and magnitude
variation.

constrained demand The company usually observes the sales data measured in
product units or dollars. In many environments, we can interpret this data as
the demand, that is the market response on the offering. However, the sales and
demand metrics might not be identical. For example, the sales volume can be
lower than the true demand when the item goes out of stock. We refer to this
scenario as constrained demand. Tracking the out-of-stock events is important for
valid demand analysis, and specialized methods can be used to retrieve the true
demand from constrained observations.

372 demand forecasting

skewed magnitude distribution The magnitudes of the time series for different
entities can differ widely, and the distribution of the magnitudes often follows
a power law. For example, the sales volumes for the most popular and long-tail
items can differ by many orders of magnitude. This phenomenon has significant
implications on learning global demand models that capture common patterns
across the entities.

We will incorporate the above considerations of the demand time series into the
solutions that we develop later in this recipe.

r9.1.3 Tasks

The general goal of demand modeling is to analyze the past and future trajectories
of products and other entities in the space of metrics such as sales volume, revenue,
or profit. This is a typical example of the trajectory analytics problem introduced in
Chapter 1. The most common specific tasks that are performed using demand models
are as follows:

point forecasting Assuming that we observe a time series y1:t where each ele-
ment can include one or several metrics, we might be looking to predict the
expected (mean) metric values for the forecasting horizon of k steps ahead:

pyt`k “ E ryt`k | y1:t, x1:t`ks (R9.1)

where xt are covariate vectors that include known features for all time steps and
observed features for steps from 1 to t. This problem statement is depicted in
Figure R9.3 (a).

probabilistic forecasting In many practical applications, knowing only the ex-
pected sales or profit values is not sufficient for making operational decisions. For
example, price management and inventory allocation decisions often require us
to account for the uncertainty of the forecast. This generally requires us to model
the conditional distribution:

p pyt`k | y1:t, x1:t`kq (R9.2)

of the future metric values. This problem statement, known as probabilistic forecast-
ing, is depicted in Figure R9.3 (b). The distribution model enables us to estimate
specific statistics such as confidence intervals for the predicted values which can
be directly used in the downstream decision-making and optimization processes.

scenario evaluation Estimates R9.1 and R9.2 are conditioned on the future val-
ues of the known features x1:t`k. These estimates can be evaluated for different
values of the controlled features such as prices and discounts, to compare the ex-
pected outcomes and determine the optimal control values. This setup is depicted
in Figure R9.3 (c).

decomposition Finally, we might be looking to decompose the observed or pre-
dicted metrics into components such as trend, seasonality, and contribution of in-
dividual factors such as prices, as shown in Figure R9.3 (d). The ability to perform
such a decomposition is important in many applications. For example, the abil-
ity to isolate and assess the impact of a price change for one product on other

R9.1 business problem 373

(a)

(b)

(c)

(d)

E[yt+k]yt–i

p(yt+k)

t t+k

xt:t+k

xt:t+k’

Figure R9.3: Common demand modeling tasks: (a) point forecasting, (b) probabilistic forecasting,
(c) scenario evaluation, (d) decomposition.

related products is essential in price management applications which we discuss
in Recipe R10 (Price and Promotion Optimization).

The above tasks often need to be performed for different levels of granularity, time
horizons, levels of accuracy, demand patterns, and downstream use cases. Although it
is conceptually possible to build a single demand model that addresses all these tasks
and scenarios at once, it is common to build multiple specialized models for different
use cases. We review the main business considerations that drive the development of
specialized models in the next section, and discuss more technical arguments for and
against creating multiple models later in this recipe.

r9.1.4 Applications

The most important factors that influence the design of a forecasting model include the
forecasting horizon and the ability to perform scenario evaluation for different values
of known features. These factors, in turn, are dictated by the downstream applications
of the model, and it is common to differentiate between the following categories:

long-term The long-term forecasting, also referred to as strategic forecasting, deals
with horizons of more than one year. These long-term forecasts support strate-
gic decision-making activities such as supply chain capacity planning, market
expansion planning, and product portfolio rationalization. Long-term forecasting
is usually performed using econometric revenue and market-share models that
involve a significant amount of domain knowledge.

374 demand forecasting

mid-term The mid-term forecasting, also known as operational forecasting, usually ad-
dresses the horizons ranging from 6-8 weeks to one year. The mid-term forecasts
support decisions such as inventory allocation, procurement, and promotion plan-
ning. The mid-term forecasts often rely on trend and seasonality analysis, and
leverage dynamic features that are known far in advance such as major public
events and statistical weather forecasts.

short-term The short-term forecasting, also known as execution forecasting or demand
sensing, is focused on time horizons under 6-8 weeks. This type of forecasting sup-
ports decisions such as price optimization, local inventory replenishment, and
order promising. Unlike operational forecasting, demand sensing can take advan-
tage of real-time signals such as current competitor pricing, web traffic, macroe-
conomic metrics, and weather forecasts. Demand sensing can be viewed as a
technique that enhances operational forecasts with corrections derived from the
ongoing information.

In this recipe, we discuss methods that can be used for operational forecasting and
demand sensing. Some of these methods do not support dynamic features, and are
thus most suitable for operational purposes, but most methods can be used for both
applications dependent on proper inputs and design tuning. In Recipe R10 (Price and
Promotion Optimization), we discuss even more specialized demand sensing models
that are designed specifically to evaluate the impact of the pricing variables.

r9.1.5 Evaluation Metrics

The demand forecasting models are commonly trained and evaluated using the regular
regression loss functions and evaluation metrics discussed in Appendices A.1 and B.1,
respectively. However, the usage and interpretation of these functions and metrics is
influenced by the following considerations specific to the demand forecasting applica-
tions:

• Percentage metrics such as MAPE are commonly used because they are more in-
terpretable and convenient for business users than absolute errors such as RMSE
or MAE.

• Irregular demand patterns with zero intervals and high variation of the demand
magnitudes across products and seasons generally require the use of robust met-
rics. For example, WAPE is often preferred over MAPE for this reason.

• In many applications, the costs associated with demand forecasting errors are
asymmetric. For example, underforecasting can incur profit losses and overfore-
casting can lead to storage and write-off costs, as illustrated in Figure R9.4. These
considerations are sometimes incorporated into the forecasting model using
asymmetric loss functions such as the pinball function.

• In the regular regression metrics, we assume that the training and evaluation
datasets are unordered collections of independent samples. The evaluation of
such metrics for a forecast requires converting the forecast into an unordered col-
lection of samples. Since the quality of the forecast is usually a function of the
forecasting horizon, forecasts for different horizon values k are usually evaluated
separately on the corresponding sets of target variables tpyi,t`ku where i iterates
over the time series in the dataset, and t iterates over the time steps within each

R9.2 solution options 375

Forecast error

Lo
ss

Underforecast Overforecast

Lost
profit

Storage
costs

Write-offs

Shelf
life

Figure R9.4: Example of asymmetric costs for perishable products.

series. The analysis and visualization of the dependency between the forecasting
horizon and forecasting quality is a separate important problem in many applica-
tions.

Probabilistic demand forecasts can be evaluated using the calibration and sharpness
metrics described in Appendices B.1.2 and B.1.3, respectively. The downstream metrics
such as revenue or supply chain SLAs can be evaluated using simulations based on
the demand samples drawn from the probabilistic forecasting model. We discuss such
simulations in the next recipes dedicated to price and inventory optimization.

r9.2 solution options

The demand forecasting tasks defined in the previous section can be approached using
a wide range of time series analysis methods. In this recipe, we focus on several major
categories of methods that are commonly used in demand forecasting applications, and
provide references to a broader range of techniques that can generally be considered as
alternatives.

We start with traditional time series forecasting methods, and discuss a family of
models that is arguably the most common choice for creating basic forecasts1. Some
concepts and ideas that underlie these models are used later in more complex deep
learning solutions. Next, we discuss how demand forecasting tasks can be reduced
to regression problems. This approach is of high practical importance because of its
versatility and ability to leverage arbitrary regression methods. Third, we discuss how
demand forecasting can be approached using the sequence modeling methods intro-
duced in Section 2.4. Fourth, we review the solutions that combine the scalability of
deep learning with the interpretability and structural rigor of traditional forecasting
models. Finally, we discuss the problem of consistent forecasting for time series with
hierarchical relationships.

1 A comprehensive review of traditional time series analysis methods is available in [Shumway and Stoffer, 2017],
[Mills, 2019], [Hyndman and Athanasopoulos, 2021] and other textbooks dedicated to this topic.

376 demand forecasting

r9.3 state space models

The complete reference implementation for this section is
available at https://bit.ly/44EbCNv

A state space model or SSM is a time series model in which the time series yt is
interpreted as a noisy observation of a hidden stochastic process zt. The hidden process,
also referred to as the state process, is usually assumed to be Markovian, so the general
form of the SSM can be written as follows:

zt “ gθpzt´1, xt, εtq

yt “ hθpzt, xt, δtq
(R9.3)

The first equation describes the state process using the state model g, also known as
the transition model. The hidden state zt at time t is a function of the previous state zt´1
and optional covariate features xt, and εt is the noise. The second equation describes
the observation model h which is also referred to as the measurement model. Observations
yt are the functions of the corresponding states and observed covariates, and δt is the
observation noise. Both state and observation models are parametrized by a vector of
parameters θ. The general structure of the SSMs is illustrated in Figure R9.5.

z1 z2 zt... ...

y1 y2 yt

z0

Figure R9.5: The general structure of the SSMs using the graphical notation.

The time series analysis using SSMs generally requires two problems to be solved.
First, we need to estimate the belief state ppzt | y1:t, x1:t,θq. Second, we need to predict
the future observations by estimating the posterior ppyt`k | y1:t, x1:t,θq based on our
belief about the hidden state.

The general SSM framework can be used to build a wide range of models. In enter-
prise applications, the two most widely used families of SSMs are exponential smooth-
ing models and ARIMA models. The exponential smoothing approach is arguably more
common in traditional supply chain operations, and it provides powerful decompo-
sition and explainability capabilities. The ARIMA approach generally offers a more
comprehensive framework for applications with vector time series and covariate vari-
ables [Hyndman et al., 2008; Osman and King, 2015]. In the next sections, we review
the exponential smoothing family to illustrate the basic principles used in traditional
demand forecasting1.

1 A comprehensive review of the state space methods for time series analysis is available in [Durbin and Koopman,
2012]. The exponential smoothing methods are analyzed in detail in [Hyndman et al., 2008]. The traditional
forecasting methods for supply chain and production operations are surveyed in [Silver et al., 2016; Jacobs et al.,
2018; Langley et al., 2020; Vandeput, 2021].

https://bit.ly/44EbCNv

R9.3 state space models 377

r9.3.1 Simple Exponential Smoothing

In this section, we explore the most basic model in the exponential smoothing family.
We start by discussing several basic considerations and then link these considerations
to the SSM framework.

r9.3.1.1 Weighted Average Form

Let us consider a simple scenario where we observe a single univariate (one-
dimensional) time series y1:t without covariates. One naïve method for point
forecasting would be to use the last observation as the forecast for all horizons
k “ 1, 2, . . .:

pyt`k “ yt (R9.4)

Another naïve approach is to set all future forecasts to be the simple average of the
observed samples:

pyt`k “
1

t

t´1
ÿ

i“0

yt´i (R9.5)

We can interpret the first approach as a weighted sum of the observations where the
weight of the last sample is equal to one, and all other weights are equal to zero. In
the second approach, all weights are equal to 1{t. Since most real-world time series
have limited memory effects, it may be useful to define a solution that fills the gap
between these two extremes and weighs each observation according to its recency. We
can implement this idea using the exponentially decaying weights as follows:

pyt`k “
1

t

t´1
ÿ

i“0

αp1´αqiyt´i (R9.6)

where 0 ď α ď 1 is the smoothing parameter. This forecasting method is known
as the simple exponential smoothing. Similar to the naïve methods, simple exponential
smoothing produces a flat forecast where the forecasted values are the same for all
horizons k. This is illustrated in Figure R9.6 where the forecasts for several different
values of α are computed for the same input series.

2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07 2019-01
600
800

1000
1200
1400
1600
1800 Observed

α = 0.1
α
α

= 0.5
= 0.9

Figure R9.6: Forecasting using simple exponential smoothing.

378 demand forecasting

r9.3.1.2 Component Form

We can rewrite model R9.6 in a recursive form as follows:

lt “ αyt ` p1´αqlt´1 (level)

pyt`k “ lt (forecast)
(R9.7)

where lt is called the level at time t. This separation between the level and forecasting
equations is not particularly useful, but it suggests two important ideas. First, we can
attempt to interpret these two equations as the state and observation equations, respec-
tively, in the generic state space model R9.3, and thus establish the link between the
simple exponential smoothing and SSMs. Second, we can attempt to develop models
with more internal components than just the level, to increase both the model expressive-
ness and interpretability.

To explore the relationship between the exponential smoothing and SSMs, we can
rewrite the level equation as a function of the forecasting error:

lt “ lt´1 `αpyt ´ lt´1q “ lt´1 `αet (R9.8)

where et “ yt ´ lt´1 “ yt ´ pyt is the forecasting error at time t. In other words,
the level is adjusted based on the sign and magnitude of the error at each step, so that
the negative errors (overestimates) result in downward level adjustments, and positive
errors (underestimates) result in upward adjustments. The exponential smoothing can
be linked to SSMs by interpreting the forecasting error as a random variable, so that
the model can be written as follows:

lt “ lt´1 `αεt

yt “ lt ` εt
(R9.9)

where εt is the error term drawn from a probability distribution that we need to spec-
ify as a part of the model. For example, we can assume the normal error distribution
εt „ Np0,σ2q where σ is the model parameter that needs to be estimated.

r9.3.1.3 Model Fitting

Assuming the component form of the model given by equation R9.7, we need to es-
timate the smoothing parameter α and initial level l0 in order to specify the model
and compute the forecasts. This is usually done by searching the parameter values that
minimize the forecasting error metric such as MSE on the validation dataset. The error
distribution parameters in the state space model R9.9 can be estimated based on the
empirical distribution of the residuals et.

r9.3.2 Double Exponential Smoothing

The main limitation of the simple exponential smoothing method is that it captures
only the average level of the time series and produces a flat forecast that does not

R9.3 state space models 379

reflect any trends or patterns present in the training sample. We can extend the basic
model to capture the linear trend as follows:

lt “ αyt ` p1´αqplt´1 ` bt´1q (level)

bt “ βplt ´ lt´1q ` p1´βqbt´1 (trend)

pyt`k “ lt ` kbt (forecast)

(R9.10)

The first equation specifies the level lt as the weighted average of the observation yt
and one-step-ahead forecast given by lt´1 ` bt´1. The second equation specifies the
trend bt of the time series at time t as the weighted average of the level change lt´ lt´1
and previous trend value bt´1. The parameters 0 ď α,β ď 1 control the smoothness
of the level and trend estimates. Finally, the third equation forecasts the future values
of the time series as a linear function of the forecasting horizon k based on the latest
level and trend estimate. This method is known as double exponential smoothing or Holt’s
linear method [Holt, 1957].

The double exponential smoothing method is illustrated in Figure R9.7 where sev-
eral forecasts for different values of β are plotted. Similar to the simple exponential
smoothing method, the smoothing parameters α and β, as well as the initial level and
trend values l0 and b0, are usually optimized to minimize the forecasting error on the
validation dataset.

2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07 2019-01
500

1000
1500
2000
2500
3000 Observed

α = 0.9, β = 0.1
α
α

= 0.9, β = 0.5
= 0.9, β = 0.9

Figure R9.7: Forecasting using double exponential smoothing (Holt’s method).

r9.3.3 Triple Exponential Smoothing

The double exponential smoothing method produces a linear forecast, and thus it is not
able to capture complex patterns such as seasonal changes. We can work around this
limitation by extending the model with a seasonal component. This component can be
specified using an additive or multiplicative approach.

The additive approach is most suitable for applications where the seasonal changes
are relatively constant over the entire time range and independent of the time series
level, so that the seasonal component can be modeled as an additive term in the fore-
casting equation. The multiplicative approach is suitable for applications where the
seasonal changes represent the percentage of the level. We choose to focus on the addi-
tive approach for the sake of illustration, and specify the model as follows:

lt “ αpyt ´ st´mq ` p1´αqplt´1 ` bt´1q (level)

bt “ βplt ´ lt´1q ` p1´βqbt´1 (trend)

st “ γpyt ´ lt´1 ´ bt´1q ` p1´ γqst´m (seasonal)

pyt`k “ lt ` kbt ` st´m`1`pk´1q mod m (forecast)

(R9.11)

380 demand forecasting

where st is the seasonal component, γ is the seasonal smoothing coefficient, and m
is the period of the seasonality that is assumed to be an optimizable model parameter.
The forecast is computed as a sum of the level, linear trend, and seasonal components.
This method is known as the triple exponential smoothing or Holt-Winters’ method.

The expressiveness of the Holt-Winters’ additive method is illustrated using an ex-
ample in Figure R9.8. The time series in this example has a clear seasonal pattern with
a period of m “ 12 months that is properly captured by the model.

2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07 2019-01

750
1000
1250
1500
1750
2000 Observed

m = 12

Figure R9.8: Forecasting using the Holt-Winters’ additive method).

r9.3.4 Decomposition

The component-based structure of the exponential smoothing models is a major ad-
vantage from the interpretability standpoint. First, the model components are usually
defined in a way that each of them has a clear semantic meaning such as trend or
seasonality. Second, we can simply compute and visualize these components for both
historical and future time intervals provided that the model parameters are estimated.
An example of the historical series decomposition is shown in Figure R9.9 where the
level, trend, and seasonal components estimated using the Holt-Winters’ method are
visualized separately and then summed into the forecast.

3.54
3.56
3.58 Level

1
2
3
4 Trend

−0.05
0.00
0.05 Season

2015-01 2016-01 2017-01 2018-01

1000

1500 Observed
Fitted

Figure R9.9: Decomposition using Holt-Winters’ method.

R9.4 time series regression 381

Finally, the ability to customize the definitions of the components is also a power-
ful tool that can be used for interpretability and decomposition purposes. Examples
of such customizations include the additive and multiplicative forms of the seasonal
component and non-linear trend components [Gardner Jr and McKenzie, 1985].

r9.3.5 Probabilistic Forecast

In the previous sections, we described how the exponential smoothing models can be
used to produce point forecasts, that is to estimate the expected values pyt`k. The prob-
abilistic forecasts can be obtained using simulations based on the space state models
such as R9.9. Provided that the parameters of the model and error term distribution
are estimated, multiple future forecasts can be sampled and various forecasts’ char-
acteristics such as the confidence intervals can be assessed. Alternatively, analytical
expressions for the forecast variances σ2t`k are available for most of the exponential
smoothing models and can also be used to assess the confidence intervals [Hyndman
et al., 2008; Hyndman and Athanasopoulos, 2021]. An example of such an assessment
is presented in Figure R9.10 where the point forecast from Figure R9.8 is overlaid with
the estimates of the confidence intervals.

2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07 2019-01
500

1000

1500

2000

2500

3000 Observed

CI 95%
Forecast

Figure R9.10: Probabilistic forecast using the Holt-Winters’ method.

r9.4 time series regression

The exponential smoothing approach described in the previous section has several ma-
jor limitations. First, it is a purely autoregressive solution that does not support covari-
ates. This makes it inefficient in data-rich environments where multiple signals and
features are available, and also prevents scenario evaluation that requires performing
demand forecasting based on controllable variables such as prices. Second, the basic
exponential smoothing method models each time series in isolation that makes it inef-
ficient in environments with vector time series. Finally, it has limited ability to capture
complex demand patterns because of its parametric nature. All these limitations can
be addressed to a certain extent by using more advanced models from the traditional
SSM toolkit, but generic supervised learning models adapted to time series forecasting
as described in Section 2.4.2 often provide a more powerful and flexible alternative.

A typical architecture of the demand forecasting model that follows the sliding win-
dow approach is presented in Figure R9.11. This architecture assumes a high-capacity

382 demand forecasting

regression model such as a deep neural network that is trained to predict one value
yt`k based on autoregressive lags and external signals up to the step t.

Dynamic features

Lagged
values

Forecasted
value

Demand
forecast

D
em

an
d

Static features

Feature
vector

Forecasting
horizon

Forecasting
time

x

y

Known features
(including the contol
variables to be evaluated)

Observed
features

Model

Lookback
horizon

Figure R9.11: A typical regression model architecture for demand forecasting.

Each input feature vector is typically constructed as a concatenation of several lag
vectors and static attributes. Each lag vector can, in turn, include the demand value
and covariates for the corresponding time lag. For example, a model that produces a k-
steps-ahead demand forecast for an individual product can have the following design
for the inputs:

pyt`k “ f pa, pt`k, mt`k, xt, xt´1, xx´2, . . .q (R9.12)

where yt is the demand, a is a vector of product attributes, pt andmt are the planned
product price and markdown values at time t, respectively, and xt “ pyt,pt,mtq are
the lag vectors. This basic design can be extended further with a wider range of static
and dynamic features.

The dataset for model training and evaluation is usually prepared using the sliding
window approach described in Section 2.4.2: we iterate over each input time series,
assemble a feature vector and target variable for each time step t, and add this pair to
the dataset. The created dataset then can be split into the training, validation, and test
subsets.

The regression approach provides high flexibility for incorporating covariates, evalu-
ating scenarios based on control variables, modeling multiple related time series, and
using arbitrary off-the-shelf regression models. These advantages lead to it being fre-
quently used in enterprise applications.

R9.4 time series regression 383

r9.4.1 Probabilistic Forecast

A probabilistic forecast can be produced using the standard regression techniques for
estimating the distribution of the target variable. First, we can use the quantile loss
described in Appendix A to train multiple models for estimating the quantiles of the
target variable. Each such model is trained for a specific quantile value τ P p0, 1q, so we
can rewrite the above example as follows:

yτ, t`k “ fτ pa, pt`k, mt`k, xt, xt´1, xx´2, . . .q (R9.13)

The second option is to estimate the parametric distribution model using the ap-
proach described in Section 2.3.4. For example, we can make an assumption that the
target variable follows the normal distribution, and engineer the model to estimate the
time-dependent mean and variance parameters:

pµt`k, σt`kq “ f pa, pt`k, mt`k, xt, xt´1, xx´2, . . .q (R9.14)

Finally, we can use the standard sensitivity and feature importance analysis methods
to evaluate the impact of individual covariates on the forecasts.

r9.4.2 Model Scope

The sliding window model can be trained for different scopes, and the choice of the
scope is a major design decision. For example, a retailer that sells multiple products
and needs product-level demand forecasts can train one model R9.12 using all available
data, a separate model for each product category, or a separate model for each prod-
uct. If the retailer has multiple sales channels, locations, or other scope dimensions, the
number of possible design options can be very high. Building a model for a narrow
scope such as a specific product-location combination is often challenging because of
limited data availability for slow-moving and new products. On the other hand, build-
ing a model for a broad scope helps to enable transfer learning across products and
locations, but requires the demand pattern to be somewhat consistent for all entities
in the scope. It is usually preferable to start with building broad-scope models and to
split them into more specialized versions only if necessary.

r9.4.3 Multiple Forecasting Horizons

We often need to produce forecasts for multiple horizon values. This can be accom-
plished by training a separate model for each horizon value, one model that produces
a vector of demand values for all required horizons, or one model that uses horizon
as an input feature. We can also train one model for some fixed horizon and use it to
perform iterative (also known as rolling or recursive) forecasts for other horizon val-
ues. In the latter case, the values predicted for shorter horizons are used as inputs to
make longer-term forecasts. For example, we can use a 7-days-ahead model to predict
the next seven daily demand values, and then use these values as inputs (lags) for
the same model to produce the forecast for up to 14 days ahead. These options are
illustrated in Figure R9.12.

384 demand forecasting

M1
M2

M3

M

M

M

M

(a)

(b)

(c)

Figure R9.12: Strategies for multistep ahead forecasting: (a) multiple models, (b) vector output
or horizon variable, (c) iterative (rolling, recursive) inference. Individual forecasting
models are denoted by M.

r9.4.4 Calendar-based Features

A sliding window model can incorporate arbitrary static and dynamic features. To
facilitate the learning of time-dependent patterns, it is a common best practice to in-
clude calendar features such as day of the week into the input vector, as illustrated in
Figure R9.13.

The encoding visualized in Figure R9.13 is not necessarily optimal, because most
time and calendar variables are cyclical, and, ideally, we should encode them in a way
that preserves the cyclical continuity. For example, the connection between month 12

(December) and month 1 (January) is generally as strong as between month 1 (January)
and month 2 (February), and thus the distance between the corresponding encodings
should be the same. The most frequently used technique for achieving the cyclical con-
tinuity is a mapping using sine and cosine transformations, so that a cyclical variable x
with a period m is represented by a pair of features x1 and x2 as follows:

x1 “ sinp2πx{mq and x2 “ cosp2πx{mq (R9.15)

It is also common to include holiday indicators and domain-specific calendar features
such as days to Black Friday in retail applications. Many off-the-shelf forecasting libraries
and commercial forecasting services add the time and calendar features automatically.

R9.4 time series regression 385

0

10

20

0.0

2.5

5.0

Jun 22 Jul 01 Jul 08 Jul 15 Jul 22 Aug 01
0

20

Target
variable

Hour of
the day

Day of
the week

Day of
the month

Figure R9.13: Example of calendar features for an hourly time series.

r9.4.5 Lag Features

Assuming a metric or covariate series x1, . . . , xt, the lag features can be computed using
several different techniques. First, we can pick individual samples xt´τ for several
different offsets τ. The maximum offset that corresponds to the earliest lag is referred
to as the lookback horizon.

Second, we can compute one or several aggregates for a time window around
each offset. For example, we can compute the mean and variance of samples
xt´τ´w, . . . , xt´τ for each offset τ and fixed window size w. Such features are referred
to as the rolling window statistics.

The third popular technique is to compute aggregates over all samples that precede
the current time step. For example, the feature vector for time step t can include the
mean and variance of samples x1, . . . , xt. This category of features is known as the
expanding window statistics.

r9.4.6 Product Features

Assuming that we build a model for a scope that includes multiple items (products
or SKU), the set of static features should include some item discriminators. The most
basic option is to use only the item identifier such as an SKU number that can be in-
corporated using an embedding lookup layer which is trained jointly with the main
model. However, this approach limits the transfer learning across the items. This issue
is usually addressed by including various item attributes such as a category identifier,
product style, target customer segment, and SKU size or color. Attribute-based forecast-
ing enables better transfer across the items and forecasting for new and slow-moving
products.

386 demand forecasting

Finally, the forecasting model can use item embeddings produced by external mod-
els based on the content and user-item interaction data using the methods discussed in
Recipes R2 (Customer Feature Learning) and R6 (Product Recommendations). In partic-
ular, item embeddings can incorporate natural language product descriptions, product
images, and product graphs created based on category hierarchies or basket analysis
(items that are frequently purchased together). We continue to discuss this topic in
Section R9.8.2.

r9.4.7 Pricing Features

Pricing is usually among the most important factors that influence the demand on
products and services, so the pricing features are important in many demand forecast-
ing applications. Moreover, price optimization is among the most common enterprise
use cases that requires demand forecasting, and it necessitates not only incorporating
the pricing features, but also accurately isolating and quantifying the impact of pricing
variables.

In the most basic scenario, the forecasting model can incorporate pricing variables
associated with an item as dynamic features. In many environments, prices are commu-
nicated to customers using several components (e.g. base price and discount), and these
components can have different impacts on price perception and, ultimately, on demand.
Consequently, each price component is usually included as a separate variable.

Unfortunately, the demand on a given item is influenced not only by the item’s own
price, but by the prices of related items and competitors’ offerings as well. For example,
the demand for a specific brand of regular milk can be reduced when the competitor
drops prices or when soy milk goes on promotion. These dependencies, known as cross
effects, represent a major challenge from the modeling perspective because they gener-
ally require estimating how any subset of items will be impacted by any other subset.
This challenge is often addressed using aggregated pricing variables. For example, we
can introduce the promotion pressure variable ρi,t that is defined for the i-th item at time
t as follows:

ρi,t “
ÿ

j

simpi, jq ¨mj,t (R9.16)

where simpi, jq is the similarity score for a pair of items i and j,mj,t is the markdown
on item j, and j iterates over all items that potentially have significant impact on item
i. The similarity score can be computed using product content and sales data, as well
as product embeddings. In a similar way, we can define competitor pricing pressure and
other aggregated pricing variables. We continue to discuss the relationship between
demand and prices in Recipe R10 (Price and Promotion Optimization)

R9.4 time series regression 387

r9.4.8 Case Study

The complete reference implementation for this section is
available at https://bit.ly/3EjCaJj

The general regression design outlined in the previous section can produce meaning-
ful results only if the input data are valid. Unfortunately, sales and pricing data across
the industries is often incomplete and it can contain various irregularities, resulting in
the developers of forecasting solutions often having to engineer complex data prepro-
cessing pipelines and auxiliary models to achieve useful and credible results. In this
section, we review a simplified example of such a pipeline to better understand what a
complete forecasting solution can look like and what methods can be used to support
the core models that were introduced earlier.

We use a dataset created based on the online orders obtained from a retailer of
consumer goods. The dataset is pre-aggregated into a flat set of tuples, each of which
includes the realized demand (sales quantity) and price for a certain product at a certain
date:

Order items: 94591 rows x 4 columns
+-------------+------------+---------+---------------+---------------+
product_id	date	price	sales_units	category_id
-------------+------------+---------+---------------	---------------			
0	2017-06-05	55.9	1	6
0	2017-06-28	55.9	1	6
0	2017-07-27	55.9	1	6
0	2017-08-01	58.9	1	6
0	2017-08-05	58.9	1	6
0	2017-08-10	58.9	1	6
0	2017-09-13	58.9	1	6
0	2018-03-18	64.9	1	6
0	2018-05-18	64.9	1	6
1	2017-04-26	239.9	1	27
+-------------+------------+---------+---------------+---------------+

From the demand modeling perspective, this is a challenging dataset because it in-
cludes about 32,000 unique products and less than 100,000 sales data points. An exam-
ple of price and sales time series for one of the products is shown in Figure R9.14. This
particular example includes a relatively large number of samples and price changes,
but many other products have far fewer samples and less variability in price.

Our goal is to build a simplified demand forecasting model, but we do not aim to
estimate complex economic effects such as halo and cannibalization, nor to leverage
transfer learning across the products because the input dataset lacks product catego-
rization and attribute information.

The implementation plan is presented in Figure R9.15. We start by filtering out prod-
ucts with insufficient sales data, so that the resulting dataset includes only active prod-
ucts that have had at least ten weeks with non-zero sales. The number of such products
is close to 1,200 which is a sharp drop compared with the number of unique products in
the original dataset. The products with insufficient data need to be handled separately
using the coverage expansion techniques discussed in Section R9.8.2.

https://bit.ly/3EjCaJj

388 demand forecasting

2017-03 2017-07 2017-11 2018-03 2018-07
Date

0

1

2

3

4

5

6
Sa

le
s

un
its

110
120
130
140
150
160
170
180
190

Pr
ic

e

Price
Sales

Figure R9.14: An example of price and sales series for one of the products in the dataset.

Order items

Demand type model

Active products

Demand type filter

Enough variability

Forecasting model

Elasticity analysis

Non-lumpy Lumpy

Coverage expansion,
algorithmic price management

Specialized
models

Inactive

Inactive

Feature engineering

Figure R9.15: The modeling flow of the prototype.

The second step is to classify and filter the products by demand type. The rationale
behind the demand type analysis is that many general-purpose forecasting methods
have issues handling sparse and highly irregular time series, but irregularities occur
frequently in the demand data. Consequently, it is usual to split products into sev-
eral groups based on the demand patterns and to use different forecasting techniques
for different groups. Most demand categorization methods use metrics that quantify

R9.4 time series regression 389

various aspects of demand variability, define demand types as regions in the space
spanned on these metrics, and then map products to those regions. One of the most
popular categorization methodologies uses the following two metrics [Syntetos et al.,
2005]:

adi The average inter-demand interval (ADI) is a measure of demand sparsity that
is defined as the average distance between two nonzero demand intervals. For a
time series of length n, the ADI can be calculated simply as:

ADI “
n

k
(R9.17)

where k is the number of demand buckets, which are the intervals with consecu-
tive nonzero demand values.

cv
2 The squared coefficient of variation (CV2) is a measure of the demand magnitude

variance. It is defined as the ratio between the variance σ2q and squared empirical
mean E rqs of the demand series:

CV2 “
ˆ

σq

E rqs

˙2

(R9.18)

The above two metrics can be used to construct a two-dimensional space and de-
fine four regions that correspond to four distinct demand patterns introduced in Sec-
tion R9.1.2, as shown in Figure R9.16. The threshold values for ADI and CV2 can be
chosen based on the theoretical analysis. The most frequent choice of ADI = 1.32 and
CV2 = 0.48 is based on the comparative theoretical analysis of two specific forecasting
methods designed for smooth and intermittent patterns, and determining the optimal
point for switching between the two.

Intermittent Lumpy

Smooth Erratic

AD
I

CV2

ADI = 1.32

CV
2 =

 0
.4

9

Figure R9.16: The distribution of products by demand type with daily data aggregation.

390 demand forecasting

Armed with the above methodology, we compute the ADI and CV2 metrics for the
set of active products we created in the previous step, and plot them as shown in
Figure R9.17. This visualization reveals that most products have intermittent and lumpy
demand patterns.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
CV2

0

10

20

30

40

50
AD

I
Intermittent Lumpy

Smooth Erratic

Figure R9.17: The distribution of products by demand type with daily data aggregation.

It is sometimes feasible to change the distribution of demand patterns by switching
between different levels of aggregation. For example, we can aggregate the original
daily series into weekly buckets and repeat the demand type analysis. The weekly series
are expectedly smoother than the daily ones, so the corresponding distribution shown
in Figure R9.18 has more items falling into the smooth and erratic regions compared to
the daily plot in Figure R9.17.

We choose to use weekly series for further analysis, and to filter out the lumpy items
so that the filtered set we work with includes about one thousand products. The lumpy
items can be handled separately using more specialized modeling methods. Ideally,
each of four regions should be studied separately and the possibility of developing
region-specific improvements should be explored.

Finally, we apply one more filter to ensure enough variability in the pricing parame-
ters. This filter allows only for products that have changed their price several times. The
final dataset we use for model training includes about 1,700 samples of approximately
70 products. This example demonstrates how a seemingly large sales dataset can shrink
by several orders of magnitude after the data cleansing, resulting in a very low catalog
coverage.

Once the dataset is prepared, we fit a demand forecasting model using a simplified
version of the design presented earlier in Figure R9.11. We first perform some feature
engineering work extending the original schema with features like month, year, and
sales lags, and mapping the price values to the logarithmic scale. This input is then
used to fit a generic supervised model with aggregated inputs. For the sake of concise-
ness, we skip the validation details and provide just the feature importance chart in
Figure R9.19 which confirms that time, autocorrelations, price, and product identities

R9.4 time series regression 391

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
CV2

1

2

3

4

5

6

7

8

AD
I

Figure R9.18: The distribution of products by demand type with weekly data aggregation.

have significantly the most influence on the demand. An example in-sample forecast is
presented in Figure R9.20.

0 100 200 300 400 500 600
Feature importance

year
month

category_id
product_id

week
sales_lag
price_log

Figure R9.19: Relative feature importance for the demand forecasting model.

The forecasting model can be used in a number of ways, including market response
analysis, price optimization, and inventory planning. The market response analysis, for
instance, can be performed by fixing a specific product and date, and then evaluating
the demand for a grid of price points. An example output of this procedure is shown
in Figure R9.21. This output essentially represents a nonparametric market response
function, and more insights such as price elasticity and its dynamics over time can be
derived from it. We use this capability as a foundation for building price optimization
solutions in Recipe R10 (Price and Promotion Optimization).

392 demand forecasting

2017-09 2017-11 2018-01 2018-03 2018-05 2018-07 2018-09
Date

0

1

2

3

4

5

6
Sa

le
s

un
its

Observed
Forecast

Figure R9.20: An example of an in-sample forecast for one of the products.

110 115 120 125 130 135 140 145 150
Price

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sa
le

s
un

its

Figure R9.21: Market response profiles computed for a specific product on several different dates
and average profile for this product.

r9.5 sequence models

Demand forecasting is fundamentally a sequence modeling problem, so all model ar-
chitectures developed in Section 2.4 including CNNs, RNNs, and transformers are gen-
erally feasible for it [Wen et al., 2017; Lim et al., 2021]. In this section, we discuss how
generic sequence models can be modified to meet the requirements of the demand fore-
casting applications. We focus on one commonly used design to illustrate how several
modifications are combined together in a complete solution.

R9.5 sequence models 393

r9.5.1 DeepAR Model

DeepAR is a probabilistic time series forecasting model that was developed by Amazon
with a focus on retail demand forecasting applications [Salinas et al., 2020]. The model
is based on the encoder-decoder architecture introduced in Section 2.4.4 and uses LSTM
described in Section 2.4.5 as the main building block.

The DeepAR model assumes a univariate time series with vector covariates, that is
one-dimensional yt and vector xt, but it can be extended to the multivariate case, that
is multidimensional yt. This extension is known as DeepVAR1 [Salinas et al., 2019].

r9.5.1.1 Encoder and Training

The encoder represents a stack of one or several standard LSTM layers. To encode one
time series, the encoder starts with the initial state vector zi,0 where i is the index of a
time series, and then consumes the target variable lag yi,t´1 and covariates xi,t at each
time step t to compute the next state zi,t. The state vector obtained at the end of the
sequence is considered the sequence embedding.

Since we are interested in a probabilistic forecast, the backbone LSTM network is
combined with the distribution estimation layer described in Section 2.3.4, so that the
distribution parameters at any time step are computed based on the corresponding
state vector. This design is depicted in Figure R9.22 where we assume the normal dis-
tribution model whose parameters, that is the mean µi,t and variance σi,t, are com-
puted from the state vector using expression 2.35. In general, arbitrary parametric dis-
tributions can be used. In particular, the negative binomial distribution is often used
in applications where the demand values are relatively small integer numbers, and
Student’s t distribution is generally used as an alternative to the normal distribution
because the real-world demand distributions often have relatively fat tails.

Similar to the sliding window models, DeepAR is trained on all time series included
in the model scope. To train the encoder, we iterate over the time series, feed each se-
ries into the network, and compute the log-likelihoods Li,t for each time step based on
the distribution model, estimated parameters, and target labels. The network’s param-
eters, including both the LSTM and distribution estimation layers, are then updated
based on the log-likelihood gradient. The training process is depicted in the top part of
Figure R9.22.

r9.5.1.2 Decoder and Forecasting

The decoder network is identical to the encoder network. Assuming that the encoder
is trained as described above, the forecast for one time series is produced by encod-
ing the observed part of the series, and then decoding the obtained series embedding
recursively, that is sample by sample. This process is illustrated in Figure R9.23.

We assume that the observed sequence with index i has t´ 1 samples that are being
encoded into embedding zi,t´1, and the decoder needs to predict the distribution pa-
rameters for time steps from t till the end of the forecasting horizon T . The distribution

1 In time series analysis, AR and VAR are the standard acronyms for autoregression and vector autoregression,
respectively.

394 demand forecasting

yi,0, xi,1

zi,1

μi,1 σi,1

yi,1

p(yi,1 | μi,1, σi,1)

yi,t-1, xi,t

zi,t

μi,t σi,t

yi,t

...

Stack of LSTM layers Dense layer Softplus

Li,1 Li,t Li,1:t

zi,0

Figure R9.22: Architecture of the DeepAR encoder and training process.

parameters for step t are computed based on the embedding zi,t which is, in turn com-
puted, based on the last observed target yi,t´1 and known covariates xi,t. The fitted
distribution is then used to draw sample pyi,t and feed it recursively into the decoder
to produce the forecast for step t` 1. The process repeats till the end of the forecasting
horizon.

yi,0, xi,1

zi,1

yi,t - 2, xi,t - 1

zi,t - 1

yi,t - 1, xi,t

zi,t

yi,t, xi,t+1

zi,t+1

yi,T - 1, xi,T

zi,T...

~

μ, σ

yi,tˆ

~

μ, σ

yi,t+1

~

μ, σ

yi,T+1

...

Encoder Decoder

...

ˆ ˆ

ˆ ˆ

Figure R9.23: Forecasting using the DeepAR model.

r9.5.1.3 Feature Engineering and Scaling

The model described in the previous sections is a fairly generic solution for probabilistic
time series forecasting. However, DeepAR includes two additional features that are
geared specifically towards the demand forecasting applications.

First, DeepAR addresses the problem of the skewed magnitude distribution dis-
cussed in Section R9.1.2 by scaling the autoregressive inputs by an item-dependent

R9.5 sequence models 395

scale factor, and applying the inverse transformation to the distribution model param-
eters. For example, the scaling factor for item i can be computed as the mean over the
observed series (we add a shift to avoid division by zero in the next steps):

si “ 1`
1

t

t
ÿ

τ“0

yi,τ (R9.19)

The autoregressive inputs, both observed and estimated, are then rescaled as:

yi,t Ð
1

si
yi,t and pyi,t Ð

1

si
pyi,t (R9.20)

The inverse rescaling is applied to the distribution parameters. For example, the
parameters of the normal distribution need to be rescaled as follows:

µi,t Ð si ¨ µi,t and σi,t Ð
?
si ¨ σi,t (R9.21)

Second, the reference design of the DeepAR model follows the feature engineering
best practices described in Sections R9.4.4 and R9.4.6. More specifically, time and cal-
endar features are automatically added to the covariate vectors xt,y and input product
identifiers are mapped using embedding lookup units that are trained jointly with the
model.

r9.5.2 Case Study

The complete reference implementation for this section is
available at https://bit.ly/3EmKuI5

We demonstrate the capabilities of the DeepAR model using a basic dataset that
mimics the sales data of a brick-and-mortar retailer with multiple store locations. Each
sample in this dataset includes a date, store ID, item ID, and number of units sold:

Sales: 913000 rows x 4 columns
+------------+---------+--------+---------+
| date | store | item | sales |
|------------+---------+--------+---------|
2013-01-01	1	1	13
2013-01-01	7	12	26
2013-01-01	7	46	27
2013-01-01	8	12	54
2013-01-01	9	12	35
2013-01-01	10	12	41
2013-01-01	6	46	23
+------------+---------+--------+---------+

The dataset includes 10 stores and 50 items, so there are 500 time series in total. We
visualize one of these time series in Figure R9.24. The upper plot shows the full date
range which is about 5 years, and the lower plot zooms into the tail of the series to
show the weekly patterns. The upper plot also visualizes the train/test split.

https://bit.ly/3EmKuI5

396 demand forecasting

2013 2014 2015 2016 2017 2018

10

20

30

40

50
Sa

le
s

un
its

2017-10-01 2017-10-15 2017-11-01 2017-11-15 2017-12-01 2017-12-15 2018-01-01
5

10
15
20
25
30
35

Sa
le

s
un

its
Train Test

Figure R9.24: One time series from the store sales dataset. The upper plot shows the full date
range and train/test subsets, the lower plot shows the tail of the series in detail (last
100 samples). In the lower plot, the gray vertical stripes correspond to the weekends.

We train a single DeepAR model using all available time series. The store and item
identifiers are used as covariates, and sales numbers are used as a target. The trained
model is used to produce probabilistic 60-days-ahead forecasts for individual series.
Example forecasts are visualized in Figure R9.25 where both the median forecasted
value and uncertainty ranges are presented.

r9.6 composable models

We call a model composable if it consists of modules, each of which contributes an
additive or multiplicative component to the forecast. A composable architecture signif-
icantly helps to improve the interpretability of the model which is important in many
demand forecasting applications, and also provides the ability to customize the model
by switching individual components on and off.

The SSM models are composable and their components are specified in a parametric
way which helps to achieve excellent interpretability. At the same time, the practical us-
age of SSMs in complex environments can be challenging because it generally requires
manual data preparation, model tuning, and domain knowledge. The deep learning
models such as DeepAR provide much better scalability, level of automation, and ro-
bustness to missed and skewed data, but lack the advantages associated with the com-
posable approach. In this section, we discuss how a composable deep learning solution
can be created by constructing a neural network with multiple specialized modules.

R9.6 composable models 397

0

10

20

30

40

50

Observed
Predicted median

Predicted 90% quantile
Predicted 99% quantile

20

40

60

80

100

Sep 2017 Oct Nov Dec

20

40

60

Store 1, item 1

Store 1, item 2

Store 1, item 3

Sa
le

s
un

its
Sa

le
s

un
its

Sa
le

s
un

its

Figure R9.25: Example forecasts using DeepAR.

r9.6.1 NeuralProphet Model

We consider a composable forecasting model designed by Facebook. The design was
initially implemented using probabilistic programming methods and open sourced as a
project called Prophet [Taylor and Letham, 2017]. A few years later, a similar design was
implemented using a deep learning framework and released as NeuralProphet [Triebe
et al., 2021].

NeuralProphet assumes a univariate time series with vector covariates. The model
produces the forecast for horizon k by combining up to six additive components that
can be individually switched on and off:

pyt`k “ bt`k ` st`k ` at`k ` gt`k ` et`k ` lt`k (R9.22)

where bt is the trend at time t, st is the seasonal effect, at is the autoregression
effect, gt is the regression effect for the known features, et is the event effects, and lt is
the regression effect for the lags of the observed features. We discuss these components
and some of their configuration options one by one in the next sections.

398 demand forecasting

Once the components are specified, the model is trained using the regular stochastic
gradient descent framework based on the selected loss function. The process is essen-
tially the same as for the generic regression models described in Section R9.4.

r9.6.1.1 Trend

For each time series, the trend is assumed to be a piece-wise linear function with n
changepoints c1, . . . , cn. The number and positions of the changepoints can be cho-
sen using heuristic rules or configured manually, and equidistant points are used by
default.

A segment between the adjacent changepoints ci and ci`1 is assumed to be a linear
function specified by its offset and slope. We further assume that we start with offset
ρ0 and slope δ0, and make incremental slope adjustments by δi at each changepoint
ci, as shown in Figure R9.26. We also require the piece-wise series to be continuous, so
that the trend component can be specified as follows:

bt “

it
ÿ

i“0

δi ¨ t`

»

–ρ0 ` c1δ0 `

it
ÿ

i“2

pci ´ ci´1q

i´1
ÿ

j“0

δj

fi

fl (R9.23)

where it is the largest i such that ci ď t. The initial offset ρ0 and slope adjustments
δi are the learnable model parameters.

0 c1 c2 c3

ρ0

δ0 δ0+δ1

δ0+δ1+δ2

c1δ0
(c2 - c1)(δ0+δ1)

(c3 - c2)(δ0+δ1+δ2)

t

b

Figure R9.26: Piece-wise linear trend.

r9.6.1.2 Seasonality

The seasonality component is implemented using Fourier terms [Harvey and Shephard,
1993]. More specifically, we assume that the seasonality component is a sum of several
subcomponents, each of which corresponds to specific periodicity p:

st “
ÿ

p

sp,t (R9.24)

The periodicity values p are selected automatically based on the frequency and
length of the series. For example, the annual (p “ 365.25) and weekly (p “ 7) seasonal-
ities can be added to a multi-year daily time series, the annual seasonality of p “ 52.18

R9.6 composable models 399

can be added to a weekly time series, and so on. Each seasonality subcomponent is
then approximated using Fourier terms as follows:

sp,t “

mp
ÿ

j“1

αp,j ¨ cosp2πjt{pq `βp,j ¨ sinp2πjt{pq (R9.25)

where mp is the hyperparameter that controls the number of terms for periodicity p,
and αp,j and βp,j are the learnable model parameters.

r9.6.1.3 Autoregression

The autoregression component forecasts the future values based on its past values. In
NeuralProphet, the autoregression module is implemented as a multiple-output fully
connected neural network that estimates all values up to the forecasting horizon k

based on lags up to the lookback horizon q:

pat, at`1, at`kq “ fapyt´1, . . . , yt´qq (R9.26)

where fa is a stack of dense layers. In particular, fa can be a linear function when a
single layer with a linear activation is used.

r9.6.1.4 Covariates

The known features are available for all future time steps up to the forecasting horizon
at the moment of forecasting. Their contribution is modeled as the following compo-
nent:

gt “
ÿ

j

θjxj,t (R9.27)

where j iterates over all known features, xj,t is the value of j-th feature at time t, and
θ are the learnable parameters.

An event is a special type of a known feature that represents a holiday or domain-
specific activity such as a sport tournament. The events are encoded as binary variables,
and their contribution is modeled using a separate component as follows:

et “
ÿ

j

φjej,t (R9.28)

where j iterates over all event variables, and ej,t P t0, 1u indicates the occurrence of
the j-th event at time t.

Finally, there is a separate component that captures the effect of the lags of the ob-
served features. Unlike the known features, the observed feature values are available
only for the time steps that precede the moment of forecasting. The contribution of
an individual observed feature is modeled using a multiple-output fully connected
network, similar to how the autoregression component is handled:

plj,t, lj,t`1, lj,t`kq “ flpxj,t´1, . . . , xj,x´qq (R9.29)

400 demand forecasting

where lj,t is the effect of the j-th feature at time t, xj,t is the value of j-th feature at
time t, and fl is a stack of dense layers. The overall effect of the observed feature lags
is a sum of the individual feature contributions:

lt “
ÿ

j

lj,t (R9.30)

where index j iterates all observed features. This completes the specification of all
components used in the NeuralProphet model R9.22.

r9.6.2 Case Study

The complete reference implementation for this section is
available at https://bit.ly/3sI2f1Q

We demonstrate the NeuralProphet model in action using the same dataset and evalu-
ation approach as we used for DeepAR in section R9.5.2. An example forecast produced
by the NeuralProphet model is presented in Figure R9.27, and it can be compared to the
DeepAR forecast in Figure R9.25. The uncertainty ranges in this forecast are obtained
using the quantile loss approach.

2017-08 2017-09 2017-10 2017-11 2017-12 2018-01
5

10
15
20
25
30
35

Store 1, item 1

Sa
le

s
un

its

Observed
Predicted median

Predicted 90% quantile
Predicted 99% quantile

Figure R9.27: Example forecast using NeuralProphet.

The composable architecture of NeuralProphet enables us to visualize the individual
components of the forecast. The plots in Figure R9.28 show the piece-wise linear trend
for the entire date range of the series, and then annual and weekly seasonalities. This
decomposition generally agrees with the patterns visible in Figure R9.24.

r9.7 hierarchical models

We previously stated that demand time series often have hierarchical relationships, so
that some series are aggregates of others. The forecasts for such series should be consis-
tent with the logical relationships across the series. For example, region-level forecasts

https://bit.ly/3sI2f1Q

R9.7 hierarchical models 401

2013 2014 2015 2016 2017 2018
16
17
18
19
20
21
22

Tr
en

d

Jan 1 Mar 1 May 1 Jul 1 Sep 1 Nov 1 Jan 1
Day of year

−6
−4
−2
0
2
4
6

Se
as

on
al

ity
: y

ea
rly

Sun Mon Tue Wed Thu Fri Sat Sun
Day of week

−4
−2
0
2
4

Se
as

on
al

ity
: w

ee
kl

y

Figure R9.28: Decomposition using NeuralProphet.

should add up to the country-level forecast, and SKU-level forecasts should add up
to the category-level forecast. The forecasting methods developed in the previous sec-
tions can be used to produce forecasts for different scopes by either building multiple
models or including the information about the scope into the static features, but these
approaches do not guarantee the consistency across the forecasts. In this section, we
develop methods that provide strict consistency guarantees for the hierarchical time
series.

r9.7.1 Hierarchical Time Series

We start with defining a general framework for representing hierarchical time series.
Let us assume m univariate time series organized into a hierarchical structure, so that
q series reside at the bottom (leaf) nodes of the hierarchy, and the remaining p “ m´q
series are considered the aggregates. This concept is illustrated in Figure R9.29 where
b1,t, . . . , b5,t are the bottom time series, and a1,t, a2,t, and a3,t are the aggregated time
series.

At each time step t, the values of the bottom time series can be represented as q-
dimensional vector bt, and aggregated values can be represented as p-dimensional vec-
tor at. The bottom and aggregated values can be concatenated into an m-dimensional

402 demand forecasting

a1,t

a2,t a3,t

b1,t b2,t b3,t b4,t b5,t

Figure R9.29: Example of a hierarchical time series structure with q “ 5 bottom and p “ 3
aggregated series.

vector yt “ rat, btsT . The hierarchical structure can then be encoded using a binary
mˆ q aggregation matrix S as follows:

yt “ Sbt or, equivalently

«

at
bt

ff

“

«

Ss
Iq

ff

bt (R9.31)

where Ss is a binary pˆq summation matrix and Iq is the qˆ q identity matrix. For
example, the hierarchy from Figure R9.29 can be represented using this notation as:

at “ ra1,t, a2,t, a3,ts

bt “ rb1,t, b2,t, b3,t, b4,t, b5,ts

S “

»

—

—

—

—

—

—

—

–

1 1 1 1 1

1 1 0 0 0

0 0 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(R9.32)

We can furthermore rewrite equation R9.31 as follows:

Ayt “ 0 (R9.33)

where A “ rIp| ´ Sss is a binary pˆm matrix, Ip is a pˆ p identity matrix, and 0
is a p-dimensional vector of zeros. In other words, matrix A specifies the differences
between the aggregated series and sums of the bottom series that need to be zeros
(according to the hierarchical structure). This formulation is convenient for evaluating
the coherency of the observed series and forecasts. More specifically, we say that a point
forecast pyt`k is coherent if it meets the condition R9.33, and a probabilistic forecast is
said to be coherent if all samples drawn from it are coherent. Consequently, we refer to
matrix A as the coherency matrix and define the coherency error as et`k “ Apyt`k, that is
the deviation from the coherency point.

r9.7.2 Hierarchical Forecasting Using Reconciliation

One possible way of producing a coherent point forecast for hierarchical time series is
to start with an initial, potentially incoherent, forecast pyt`k obtained using an arbitrary
forecasting model or set of models, and to transform it into a coherent forecast ryt`k
using a reconciliation procedure [Hyndman and Athanasopoulos, 2021].

R9.7 hierarchical models 403

Assuming a linear reconciliation transformation, the reconciled forecast can be ex-
pressed as follows:

ryt`k “ S Ppyt`k (R9.34)

where S is the aggregation matrix and P is a q ˆ m reconciliation matrix. In
other words, the reconciliation matrix maps the initial m-dimensional forecast to
a q-dimensional bottom-level forecast that is then used to recreate the complete
m-dimensional forecast through the aggregation.

The reconciliation matrix can be designed in several different ways. First, we take a
bottom-up approach, and compute all aggregated forecasts based on the bottom-level
forecasts (all aggregated items in the initial forecast are ignored or not even estimated):

Pbottom-up “ r0qˆp | Iqs (R9.35)

For example, a retailer can compute coherent state and country-level forecasts by
aggregating the location-level forecasts. Alternatively, we can follow a top-down ap-
proach, and compute the bottom-level forecasts by desegregating the top-level series
using the following reconciliation matrix:

Ptop-down “ rwqˆ1 | 0qˆp´1s (R9.36)

where w is a q-dimensional vector of non-negative entries that add up to one, so that
the top-level forecast is split proportionally into the bottom-level values. This vector
needs to be estimated separately. For example, a retailer can split the state-level forecast
into the location-level forecasts using the historical proportions.

The bottom-up and top-down reconciliations are the basic techniques that achieve the
coherency by ignoring some parts of the initial forecast. However, it is possible to build
a reconciliation matrix that incorporates the information from all levels of the hierarchy.
For example, it can be shown that the following reconciliation matrix minimizes the
sum of variances of the forecast errors, given an unbiased initial forecast:

PMinT “ pSTΣ
´1
k Sq´1STΣ´1k (R9.37)

where Σk is the covariance matrix of the k-steps-ahead forecasting errors. This
method is known as the MinT (or Minimum Trace) reconciliation [Wickramasuriya
et al., 2019].

r9.7.3 Hierarchical Forecasting Using DeepVAR

The difficulties associated with the two-step reconciliation approach can be circum-
vented by incorporating the coherency considerations into the design of the forecast-
ing model. In this section, we demonstrate how the DeepAR design described in Sec-
tion R9.5.1 can be modified to support hierarchical time series [Rangapuram et al.,
2021].

We consider an m-dimensional hierarchical time series yt with a known coherency
matrix A. The DeepVAR model, a multivariate version of DeepAR, estimates the param-
eters of the multivariate distribution ppytq at time t based on the lag yt´1, covariates

404 demand forecasting

xt, and state vector zt´1. Assuming the normal distribution ppytq “ Npyt | µt, Σtq,
the regular DeepVAR network performs the following mapping:

pµt, Σtq “ fDeepVARpxt, yt´1, zt´1q (R9.38)

A coherent forecast for time t can be produced by drawing samples from Npµt, Σtq
and then projecting them to the feasible space defined by criterion R9.33. These two
operations can be implemented as differentiable layers on top of network R9.38, so that
the loss function can be computed for the projected (coherent) forecast, and the model
can be trained end-to-end as a single network:

sampling The sampling layer can be implemented as a differentiable operation using
the reparametrization trick described in Section 2.3.5. More specifically, we can
compute samples with distribution Npµt, Σtq as:

pyt “ µt `Σ
1{2
t η (R9.39)

based on the values η „ Np0, Iq. This is a differentiable deterministic function of
µt and Σt given that the values η are generated independently of the network
parameters.

projection Samples pyt can be projected to the feasible space by solving the following
optimization problem:

ryt “ argmin
y

‖y´ pyt‖

subject to Ay “ 0
(R9.40)

This problem has a closed-form solution1, which is:

ryt “ M pyt where M “ I´AT pAAT q´1A (R9.41)

Matrix M depends only on the coherency matrix, so it can be computed once
and stored. Consequently, the projection step can be performed as a single matrix
multiplication.

The training and forecasting are performed using the same encoder-decoder frame-
work as we used for DeepAR. On the training side, the difference is that the likelihood
needs to be evaluated based on the projected samples ryt, not on the initial distribution
parameters µt and Σt. This is achieved by sampling multiple values trytu at each time
step t and re-estimating the statistics pµt and pΣt that are then used in the likelihood
evaluation, as shown in Figure R9.30 (a).

On the forecasting side, the process is essentially the same as for DeepAR, except
that the projection is performed before the forecast is recursively fed into the model
and outputted. This layout is visualized in Figure R9.30 (b).

r9.8 imputation techniques for demand analytics

In the previous sections, we briefly discussed that limited data availability and variabil-
ity are among the main challenges in practical demand forecasting. These issues can be

1 This problem is an instance of the equality-constrained quadratic programming problem. See, for example,
[Bertsekas, 2016] for the derivation of the solution for this particular formulation.

R9.8 imputation techniques for demand analytics 405

yt-1, xt

ztzt-1

μt, Σt

{yt}

{yt}~

μt, Σt

Loss

LSTM layers

Dense layers

Sampling

Projection

Estimation

...

yt-1, xt

ztzt-1

μt, Σt

{yt}

{yt}~

yt, xt+1

zt+1

μt+1, Σt+1

...

Forecast

~

...

DeepVAR

Coherence
enforcement

(a) Encoder/training (b) Decoder/forecasting

ˆ ˆ

ˆ ˆ

Figure R9.30: Training and forecasting using hierarchical DeepVAR.

addressed to a certain extent using the basic techniques such as the linear interpolation
of the missed values, and research papers that describe new forecasting methods often
include method-specific recommendations on how the missed values should be han-
dled. However, more advanced cases such as handling of the sales data collected in the
presence of out-of-stock events or demand forecasting for new products require more
advanced techniques. In this section, we turn to the methods that help to overcome
some of these challenges and extend the applicability of the forecasting methods.

r9.8.1 Demand Unconstraining

The complete reference implementation for this section is
available at https://bit.ly/44Ae5IW

The first scenario we consider is the sales data collected in the presence of out-of-
stock events, so that some samples in the demand series correspond to the true demand,
but others are truncated because of capacity or inventory limitations. Such truncated
samples are commonly referred to as censored, and the demand is said to be constrained.

https://bit.ly/44Ae5IW

406 demand forecasting

Performing forecasting or response modeling using censored data would generally re-
sult in underestimation, so we should either discard the censored samples or handle
them in a special way.

Removing the censored samples from the dataset is a valid approach, and, moreover,
we can backfill these elements by the corresponding predicted values once the fore-
casting model is built. However, the censored samples carry the information about the
lower boundary of the demand (the true demand is at least as high as the capacity
constraint), and we can extract it using appropriate techniques. This problem is typi-
cally framed as a stand-alone demand unconstraining problem, that is the estimation of
the true demand values based on the available data. The censored samples can then be
replaced by the estimates and used in the downstream analysis and modeling activities.

One of the most common demand unconstraining methods is based on the idea
that the demand samples can be assumed to be drawn from some parametric proba-
bilistic distribution, and the parameters of this distribution can be estimated using the
expectation-maximization (EM) procedure [Salch, 1997]. We discuss the basic version
of this method that assumes all demand samples to be independent and identically
distributed, but it can be extended further to incorporate the dependencies between
samples in a time series.

Let us assume that we observe a set of n demand values:

Y “ ty1, . . . ,ynu (R9.42)

For each sample yi, we know the corresponding maximum capacity bi, and samples
where yi “ bi are considered censored. For example, a retailer might know the stock
level for a certain product at the beginning of each week and the number of units sold
during that week, which cannot exceed the stock level. Let us assume that there are
nu unconstrained samples, and denote the subsets of constrained and unconstrained
values as C and U, respectively.

We further make an assumption that the demand samples are drawn from the nor-
mal distribution Npµ,σ2q and aim to estimate its parameters µ and σ. The procedure,
however, is generic, and other parametric distributions can be inferred in the same way.
We start by estimating the initial parameter values using the available unconstrained
samples:

µ “
1

nu

ÿ

yiPU

yi

σ2 “
1

nu

ÿ

yiPU

pyi ´ µq
2

(R9.43)

We next replace the constrained values by the expectations conditioned on the known
constraints bi and also estimate the corresponding squared values:

for yi P C : yi Ð E
”

x | c ě bi, x „ Npµ,σ2q
ı

y2i Ð E
”

x2 | c ě bi, x „ Npµ,σ2q
ı (R9.44)

The above values can be estimated using Monte Carlo sampling, as well as analyti-
cally. This step is commonly referred to as the expectation step.

R9.8 imputation techniques for demand analytics 407

Once the demand values are updated, we can re-estimate the distribution parameters
using all available samples:

µ “
1

n

ÿ

yiPY

yi

σ2 “
1

n

ÿ

yiPY

y2i ´ 2yiµ` µ
2

(R9.45)

This step is known as the maximization step. Repeating the expectation and maxi-
mization steps iteratively, we normally converge to specific distribution parameters and
corrected demand values.

The above process is illustrated in Figures R9.31 and R9.32. The first figure shows the
input dataset; a short sales series of 18 samples and corresponding capacity constraints.
It is clear from the figure that the demand values at positions 2, 5, and 7 are constrained.
The second figure shows the demand values after each of the first three iterations of
the EM algorithm. The constrained samples are recovered, and the process quickly
converges to the stable values that are, as expected, higher than the original ones.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Time step

20

30

40

50

60

70

80

90

Sa
le

s
(u

ni
ts

)

Sales
Capacity

Figure R9.31: A data sample for the demand unconstraining prototype.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Time step

20

30

40

50

60

70

80

90

Sa
le

s
(u

ni
ts

)

Iteration 1
Iteration 2
Iteration 3

Figure R9.32: The outputs of the EM algorithm in the demand unconstraining prototype.

408 demand forecasting

r9.8.2 Product Similarity Analysis

One of the most frequent and challenging problems in both B2C and B2B price man-
agement environments is the limited availability of sales data. The data may be limited
because the product is new or slow-moving, and the percentage of such products in
the assortment may be very high in certain sectors such as online marketplaces. The
second reason why data may be limited is insufficient price variability. In B2B environ-
ments, for example, it is often the case that only a small fraction of items were ever
on promotion. This makes it challenging to estimate the promotional price elasticity
for all items and to determine which ones should really be promoted. Finally, the data
may be limited because of technical and organizational issues. For example, pricing
information can be scattered across multiple systems or documented in slide decks or
other formats that are difficult to parse.

From the modeling perspective, the limited data availability typically leads to low
catalog coverage, so that reasonably accurate demand forecasts can only be produced
for a subset of products that have enough historical data. The coverage can, however,
be improved using a number of techniques. First, one can evaluate several forecast-
ing models that use product attributes such as category, size, and color, and various
product embeddings as input features, and compare the results. The use of product at-
tributes and embeddings generally enables transfer learning across products, and also
forecasting for new and slow-moving products.

The second technique is to compute product similarity metrics, and to make forecasts
and other estimates for products that are covered insufficiently, by averaging the fore-
casts for the most similar products that have enough historical data. The similarity is
typically estimated based on attributes and embeddings, but the specific approach and
algorithms are usually selected heuristically based on the industry, available data, and
other considerations. An example pipeline for coverage expansion that combines both
this and previous techniques is shown in Figure R9.33. The upper part of the figure de-
picts several model designs that can be used to directly forecast the demand for a given
product based on its identity or attributes. The lower part shows the similarity-based
expansion for insufficiently covered products.

The quality of the forecast, as well as the precision of the optimization, is typically
highest for the products and categories with sufficient data, and the more aggressive
coverage expansion techniques we use, the lower the quality of the results for the items
we expand over. In practice, it is often useful to visualize the trade-off between the
quality and coverage as shown in Figure R9.34. This chart helps to trace how different
expansion techniques influence the accuracy of other quality metrics, what business
value is delivered by each expansion technique, and what the most useful expansion
boundaries are.

r9.9 extensions and variations

Most of this recipe was focused on the basic formulation of the demand forecasting
problem, that is the prediction of the future demand values based on the available past
observations. However, demand forecasting can be performed in the context of busi-
ness tasks and environments that require more than just an application of the regular

R9.9 extensions and variations 409

Forecast

(date, product ID) → quantity

(date, color, size, ...) → quantity

(date, product embedding) → quantity

(product ID) → embedding

Demand
model

Forecast

Product
similarity model

Sufficiently covered
products and
attribute-based
expansion

Similarity-based
expansion

Figure R9.33: Catalog coverage expansion using content features and product similarity analysis.

20% 40% 60% 80% 100%
Coverage

Fo
re

ca
st

in
g

ac
cu

ra
cy

Fast-moving
products

Attribute
expansion

Similarity
expansion

Low

High

Figure R9.34: A conceptual illustration of the catalog coverage expansion analysis.

forecasting methods. In this section, we briefly discuss several advanced scenarios and
outline possible solution strategies.

r9.9.1 Causal Effects

Many forecasting methods allow for incorporating covariates and performing what-if
analysis for different future values of the known features. We demonstrated this tech-

410 demand forecasting

nique in Section R9.4.8 where the importance of the pricing features was gauged and
a price-demand dependency profile was plotted. This approach, however, should be
viewed only as a basic tool for the analysis of the causal effects between the covari-
ates and demand. More specialized statistical tests such as the Granger causality tests
[Granger, 1969] and model interpretation methods such as the partial dependency plots
[Friedman, 2001; Molnar, 2020] should be used in applications that require accurate
evaluation of the causal effects.

r9.9.2 Dealing with Disruptions

The forecasting methods that learn from historical data are applicable only in relatively
stable environments with slowly-changing demand patterns. As a result, the quality
of regular forecasts usually degrades or becomes unacceptable in times of social and
economic disruptions. Although this problem is somewhat fundamentally unsolvable,
there are several techniques that can help to confront disruption challenges.

First, it is advisable to explore alternative data sources that are typically not used in
regular demand forecasting. This can be illustrated by the actions and strategies that
were used during the coronavirus pandemics in 2020-2022. At the beginning of the pan-
demics, some international companies in the US used the data from their subsidiaries
in Asia and Europe (where the pandemics started slightly earlier) to estimate the im-
pact of lockdowns and reopenings on the demand and store traffic. Some companies
also extrapolated the impacts of the past economic crises and surges of flu cases, and
incorporated the mobility data (changes in the number of people in office, home, and
retail locations) into their forecasting models.

Second, the volatility of the environment can be addressed by means of advanced
data collection and experimentation strategies. For example, one can consider using
multi-armed bandits or Bayesian optimization methods to rapidly estimate how the
market responds to price changes in volatile settings (for example, in periods of high
inflation) instead of using regular forecasting models. We discuss this particular appli-
cation in more detail in Recipe R11 (Dynamic Pricing).

r9.10 summary

• Demand forecasting problems are often associated with the hierarchical structure
of the time series, irregularity of demand patterns, skewed distribution of the
magnitudes, and the wide range of covariates that can include static and dynamic
features.

• The main tasks associated with demand analytics include point forecasting, prob-
abilistic forecasting, scenario evaluation, and decomposition.

• The quality of the forecast is often evaluated using the standard metrics for point
and probabilistic regressions. The evaluation methodology can also account for
asymmetric costs, forecasting horizon, and other application-specific considera-
tions.

• The most common traditional methods for demand forecasting are exponential
smoothing and ARIMA that belong to the state space model family. These meth-

R9.10 summary 411

ods offer strong interpretability capabilities, but limited scalability in environ-
ments with large numbers of entities and metrics.

• The scalability limitations of the traditional method can be overcome using
deep learning models with vector or sequential inputs. These models can use a
component-based architecture to improve interpretability and control over the
modeled effects.

• The coherency across the forecasts for different levels of the entity hierarchy can
be achieved by reconciling non-coherent forecasts or incorporating the coherency
constraints into the model or loss function.

• The limited data availability for new and slow-moving products, as well as data
censoring caused by out-of-stock situations, can be mitigated using specialized
imputation and extrapolation techniques.

• The capabilities of the regular forecasting models can be extended by means of
causality tests, interpretation methods, non-standard data sources, and dynamic
learning methods in the applications that require advanced what-if analysis and
volatile environments.

Recipe

10

P R I C E A N D P R O M O T I O N O P T I M I Z AT I O N

Decision Support Tools and Optimization Models for Price Management

Pricing decisions are critically important for virtually all businesses because even small
price changes can have a major impact on profitability and other key financial metrics.
The idea to optimize prices using data-driven methods looks attractive because one can
expect this approach to provide optimality guarantees and, in some sense, ensure that
the company does not lose profits because of suboptimal pricing decisions. Secondly,
pricing decisions are relatively easy to implement compared to other means, such as
marketing campaigns or supply chain optimization, that the company can use to im-
prove its profitability. One can therefore expect to achieve a high level of automation
across both decision-making and decision operationalization processes.

The above considerations, as well as many other facts from economic theory and
empirical studies, provide a strong argument for automated data-driven price manage-
ment. Nevertheless, the practical implementation of these concepts is often challenging
owing to the limited availability of data, complexity of demand patterns, sophisticated
pricing structures, and other issues. This mismatch makes price management one of
the most controversial areas of enterprise data science. In this recipe, we investigate
some aspects of this problem and develop a few models and tools that help to improve
certain pricing decisions. We focus mainly on the practical tasks and use cases provid-
ing only a basic overview of the fundamental models for price and demand analysis
developed in economic theory.

r10.1 business problem

Price management requires making many decisions at different levels of granularity,
ranging from long-term strategic planning at the level of the entire company to person-
alized real-time decisions at the level of individual customers and specific moments in
time. Some of these decisions require a lot of human judgment and can be supported

413

414 price and promotion optimization

only to a limited extent by data analytics, other decisions can be improved by combin-
ing advanced analytics with expert judgment, and certain decisions can be completely
automated using programmatic agents.

In this section, we review the main stages of the price management process at a high
level and discuss the functionality of possible decision support and automation tools
for each stage. This analysis aims to identify specific problems that can be tackled using
statistical methods and set a proper context for the development of specific solutions.

r10.1.1 Price Management Process

Price management processes vary significantly across companies depending on the in-
dustry, distribution channels, products, and other factors. In most cases, however, the
process includes the development of a pricing structure and positioning, strategic anal-
ysis, regular planning, execution, and measurement. This reference process and some
common activities associated with each step are shown in Figure R10.1. We discuss
these steps one by one in the next subsections and then review the variations across
industries.

Revenue Model

– Price positioning
– Pricing structure

Strategic Analysis

– Competitive pricing analysis
– Customer segmentation
– Strategy differenciation

Planing and Evaluation

– Market response modeling
– Price optimization

Execution

– Dynamic pricing
– Price personalization

Measurement

– Demand decomposition
– Demand unconstraining
– ROI model

Decision support tools

Scenario planning tools

Decision automation components

Econometric models

General analytics tools

Figure R10.1: The main steps of the reference price management process and examples of specific
activities in each of the stages. The typical level of automation for each step is shown
on the right-hand side.

R10.1 business problem 415

r10.1.2 Revenue Model

The pricing model is generally inseparable from the overall business model of the com-
pany, and some pricing decisions need to be made in the early stages of the business or
product life cycle. More concretely, the business model of a company usually includes
a revenue model that specifies which revenue sources to pursue, what value to offer,
who pays for this value, and how the value is priced, and this is the point where price
management originates.

One category of fundamental pricing decisions is price positioning of a company,
product line, or individual product. It is common to distinguish between luxury, pre-
mium, medium, low, and ultra-low price positions, and each of these positions has
extensive implications on the business strategy in general and the price management
approach in particular.

A company that pursues a luxury position typically makes heavy investments into
brand awareness, the quality of their product or service, and limits production to rel-
atively small volumes. The prices for luxury products are usually set to multiples of
already-expensive premium alternatives to cover the costs associated with promotion,
high quality, and limited production, as well as to communicate their value and exclu-
sivity. Price setting for luxury goods requires deep understanding of the industry and
close coordination with the setting of production limits.

In contrast, a company that pursues a low-price position would generally focus on
sustainable cost minimization, limited assortment, product simplification, and large
volumes. Price setting in this position usually follows the every day low price (EDLP)
model with fewer special offers and discounts compared to the premium and medium
positions.

Another large category of top-level pricing decisions is related to the design of the
pricing structure. A software or media company, for instance, might need to choose
between selling subscriptions and selling perpetual licenses. This choice has major im-
plications on business sustainability, sales and marketing processes, and even organi-
zational structure. In each of these two approaches, the pricing structure is further
elaborated down to specific product packages, price tiers, and bundles.

The top-level decisions described above are usually supported by data analytics, and
specific scenarios (business plans) are evaluated quantitatively to prove the feasibility
of the approach and determine the key numerical parameters. This stage of the analy-
sis can sometimes benefit from advanced statistical methods as well, but this approach
generally requires a large set of comparable historical cases to be available. This may be
feasible, for instance, for a large manufacturing company that can determine the price
structure and positioning for a new product in a data-driven way based on the exten-
sive portfolio of comparable products. In many other cases, the initial top-level analysis
is done using conventional methods, but more nuanced details of the pricing structure
and strategy are fine-tuned using decision support tools once the feedback data be-
comes available. This second level of the analysis is more relevant for the purposes of
this recipe, and we discuss it more deeply in the next section.

416 price and promotion optimization

r10.1.3 Strategic Analysis

Assuming that the price position and structure guidelines are shaped out, and the
initial market response data is available, we can start making more granular decisions.
In this section, we discuss the main categories of decisions that can be characterized as
strategic.

r10.1.3.1 Price Strategy Differentiation

The corporate price positioning decisions can be further differentiated across products,
channels, and locations. For example, a retailer can use an aggressive pricing strat-
egy for the key items that drive its pricing image, but pursue high margins for the
slow-moving items. Markets can also respond differently to price changes for different
products, and the pricing strategy can be differentiated based on the response type and
sensitivity to price changes.

In many B2B environments, as well as certain B2C businesses, pricing strategies can
be differentiated across customer segments or individual customers. In B2B settings,
pricing decisions for individual deals are often made on a case-by-case basis by sales
representatives, which entails the problem of decision consistency.

Later in this recipe, we will discuss how the mapping between products and pricing
strategies can be created using data-driven methods, and how the parameters of these
strategies can be optimized.

r10.1.3.2 Competitive Pricing Analysis

Competitor pricing is one of the main considerations for price setting, and pricing
managers usually put a major effort into the analysis of how the value and price of
the products they manage compare to those of competitors. Competitor pricing con-
siderations are generally incorporated into all stages of the price management process.
At the positioning level, the main focus is typically on the price-to-value relationship,
so that a given product or service can be strategically priced below, in line, or above
that of the competition depending on the relative value of its features. At the strategic
analysis level, the choice of a pricing strategy is generally influenced by the strategies
of competitors, and a pricing manager should justify why they take a similar or differ-
ent approach compared to competitors. Statistical methods, however, enable us to go
beyond the informal or qualitative comparison with competitors.

One technique that can be useful at the level of strategic analysis is the estimation
of competitor price elasticities. Competitors’ prices are commonly obtained by scrap-
ing the values from digital commerce systems and other web resources, but many
retailers additionally provide the information about the inventory availability in on-
line and brick-and-mortar stores, as illustrated in Figure R10.2. This information can
be displayed as the number of stocked units or just binary indicators (available or not
available). In either case, one can record the history of price, promotion, and inventory
changes, and then estimate the efficiency of promotion campaigns executed by competi-
tors, that is the acceleration or deceleration of the demand induced by price changes,
through elasticity analysis.

R10.1 business problem 417

Price:

eCommerce system (3rd party)

$7900

46 in stock at Santa Clara
Check Another Nearby Store

Jan Feb Mar Apr May Jun Jul Aug SepOct Nov Dec

Price elasticity estimate

Figure R10.2: Estimating competitor price elasticity using web scraping.

At the lower levels of the price management process, competitor prices are usually
incorporated into the demand models as one of the factors that influences the demand.
We discuss this aspect in the next sections.

r10.1.4 Planning and Evaluation

The planning and evaluation stage of the price management process is focused on de-
termining specific pricing parameters for the pricing strategies and structures selected
in the previous steps. The planning process is more specific than the strategic analysis,
and it usually provides more opportunities for statistical modeling and mathematical
optimization, although it is not supposed to be completely automated. In this section,
we discuss some of the planning activities and then review the design of the corre-
sponding tools for decision support and optimization.

r10.1.4.1 Planning Process

For the sake of specificity, let us consider a typical planning process used by large
retailers. The process generally starts with setting up a financial goal such as increasing
sales by 5% over the previous year’s figure, or achieving a specific target of $20 billion
in sales and $8 billion in margin. Once the goal has been set, multiple teams build a
specific plan for achieving the targets. This process, known as the plan-to-sell process, is
often led by a merchandising team, with assortment planning, inventory, pricing and
marketing teams helping the merchants to manage their respective processes. The plan-
to-sell process is generally focused on developing two groups of assets: a buy plan
that specifies what to buy, and a pricing plan that specifies how to sell, as shown in
Figure R10.3.

The merchandising team first develops the buy plan. This plan typically specifies
the composition of the buy (what items, sizes, colors, and brands to carry), the size of

418 price and promotion optimization

Financial
plan

Buy
plan

Pricing
plan

Figure R10.3: The plan-to-sell process.

the buy (how many units of each item), and the life cycle of the buy (replenishment
periodicity or seasonal cycles). Once the merchandising team has established the initial
buying strategy, the pricing plan is then developed to specify how the merchandise
will be sold. The pricing plan can initially be drafted using rough price optimization
models at the level of categories and geographic regions, ignoring some of the inventory
constraints. The buy and pricing plans are then iteratively reviewed and adjusted. For
example, if the original buy plan does not have enough units to achieve the financial
goals after exhausting all the pricing options, this information needs to be fed back, and
the buy plan needs to be adjusted accordingly. As the retailer proceeds to execution,
the pricing plan is regularly re-evaluated to incorporate ongoing sales data and other
signals.

r10.1.4.2 Planning Process Variations

The price-to-sell process needs to account for supply and operational constraints which
can be different for different types of products. For example, many retailers have sig-
nificantly different price-to-sell processes for seasonal and replenishable items:

seasonal items Retailers typically purchase seasonal items such as apparel collec-
tions upfront and then optimize pricing to sell the limited purchased stock by the
end of the season. A plan for seasonal products includes both an in-season pro-
motion pricing plan and a post-season clearance markdown pricing. The pricing
goal for the seasonal plan is to achieve maximum sales revenues for the entire
item life cycle or the entire season. From the tooling standpoint, this involves
long-term demand forecasting and inventory-constrained optimization.

replenishable items For replenishable items such as toiletries, since inventory can
be replenished and there are no constraints for the inventory ownership, the goal
is to optimize profit for every selling period. Consequently, a pricing plan for
replenishable items is usually much simpler than for seasonal items. From the
tooling perspective, the problem boils down to price response modeling and un-
constrained optimization.

In the next sections, we discuss the main considerations that drive the design of the
decision support and optimization tools for the price-to-sell process. These considera-
tions are generally valid for both seasonal and replenishable items.

r10.1.4.3 Variables

In order to create a pricing plan, we need to evaluate specific pricing scenarios. A
scenario generally includes pricing variables that need to be optimized, optimization
objectives, and constraints. Let us start with elaborating on the variables design.

R10.1 business problem 419

Each product or service is associated with a price waterfall that generally includes
multiple positive and negative elements. For example, the final price of a product can
be computed by a retailer as

out-the-door price “ cost`markup´markdown

In this expression, the markup and markdown components can be varied separately,
and they can have different impacts on the demand, depending on how they are com-
municated to the customers. For example, a retailer may communicate only the out-
the-door price in the case of the EDLP strategy, but emphasize the markdowns in the
case of the Hi-Lo approach. In practice, list prices, out-the-door prices, and markdowns
(including dollar-off, percent-off, and buy-x-get-y deals) are the most common subjects
of optimization.

r10.1.4.4 Objectives

Scenario evaluation assumes that some performance metrics are estimated based on
the input variables. These metrics are also used as optimization objectives and to mon-
itor the actual outcomes in the measurement stage. The most common metric options
include the following1:

margin The gross margin is the difference between the total amount of goods sold
(net sales revenue) and the total cost of the goods sold. This is one of the most
common price optimization objectives. The margin is an aggregate metric defined
for a group of products and a certain time period.

revenue In certain scenarios, such as the price setting for seasonal items, the costs are
fixed or can be excluded from the consideration by other reasons. The revenue is
an appropriate objective for such cases.

pricing index In certain verticals, such as grocery retail, competitiveness of pricing
is the main consideration. The common measure of the competitiveness is the
pricing index which is the position (rank) of the seller in the list of all sellers that
offer a given item sorted by price.

market share A seller might strategically focus on retaining or expanding its mar-
ket share. The expected market share or dynamics of the observed share can be
used as an objective or constraint for the price setting process.

turnover The inventory turnover is the ratio between the cost of goods sold during
a certain time period and the average value of inventory for the same period.
In other words, the turnover is the number of times inventory is sold in a time
period. It is an important metric that characterizes the overall efficiency of the
business. Pricing variables do not enter the turnover formula directly, but the
impact of pricing decisions on the turnover can be estimated and measured.

sell-through The sell-through rate is the percentage of inventory that is sold to cus-
tomers relative to the total quantity available or received from a supplier. Pricing
variables for seasonal and perishable items are often optimized to achieve high
sell-through rates by the end of the season or shelf life.

1 See [Tepper and Greene, 2020] and [Donnellan, 2013] for a comprehensive review of metrics, equations, and
accounting techniques used in traditional price management and merchandising processes.

420 price and promotion optimization

In the most basic case, we can estimate some of the above metrics for an individ-
ual product over a certain time interval given specific pricing parameters. In practice,
this approach is often imperfect or misleading because of significant cross-product and
cross-interval effects, and a meaningful result can only be obtained through the evalua-
tion of the aggregated metrics such as the total profit or revenue for a group of related
products given all their pricing parameters.

r10.1.4.5 Constraints

The evaluation and optimization of the pricing variables often requires accounting for
various constraints and rules. These constraints vary greatly across companies and
domains, but the following categories are quite common:

chaining consistency Sellers usually try to maintain price consistency across the
related offerings. For example, a 16 oz. can should be more expensive than a 12

oz. can for the same energy drink, and the price for a six-can pack should be
consistent with the price for one can.

pricing index Competitor prices are often used as constraints for the price optimiza-
tion process driven by margin or other objectives. For example, a seller can avoid
offering the worst price in the market, that is appearing in the bottom of the price
index. Another common option is to always match the best price in the market.

legal constraints Prices are sometimes constrained by laws to protect suppliers,
consumers, or competition. For example, the so-called EGALIM law passed in
France in 2018 required retailers to achieve a minimum margin of 10% on food
products to prevent the resale at a loss practice and to balance trade relations in
the agricultural and food sector.

price stability Sellers often aim to maintain price stability and limit the frequency
and magnitude of price changes.

price levels In many verticals, particularly in retail, prices can take values only from
discrete sets created based on the consistency or perception considerations. For
example, a retailer may require all prices to end with .49 or .99.

minimum advertised price A minimum advertised price (MAP) is a pricing agree-
ment between a manufacturer or brand and its resellers to not advertise the price
of a specific product below a certain level. Manufacturers set the MAP on their
products to maintain the brand value and image.

shelf life Perishable and seasonal products must be sold within a certain time inter-
val to avoid write-off and liquidation losses. Some non-perishable products such
as smartphones can also have relatively short life cycles that impact the price set-
ting process. The shelf life constraints are closely related to the sell-through rate
discussed in the previous section.

inventory availability Finally, we often need to account for supply constraints
such as inventory levels and lead times; the lack of coordination between inven-
tory and pricing can result in out of stock events and lost revenues. Ideally, in-
ventory and pricing parameters should be optimized jointly to achieve maximum
returns, but, in practice, it is not always possible to do it this way. For example,
seasonal items discussed in a previous section are typically purchased based on
high-level demand estimates, and then only the pricing parameters are adjusted

R10.1 business problem 421

during the season to track the changes. In this recipe, we assume that supply
constraints are fixed, and we can only optimize pricing parameters. A more gen-
eral approach that involves both inventory and price decision optimization is
discussed in Recipe R12 (Inventory Optimization).

In practice, price setting always involves some constraints, and the ability to perform
the constrained optimization is an important requirement for any price optimization
solution.

r10.1.4.6 Cross Effects

In order to evaluate a scenario, we need to estimate the performance metrics based
on the pricing variables and constraints. As we stated earlier, such an evaluation often
requires taking the following cross-product and cross-interval effects into account:

cannibalization Comparable and substitutable products compete for the same de-
mand, and aggressive pricing on one product can cause it to cannibalize the de-
mand on the alternatives. For example, a manufacturer of power tools is likely
to observe that promotions of drill kits cannibalize the demand on drills sold
separately.

halo The positive correlation between the demands on complementary products is
referred to as the halo effect. For example, promotion of cordless drills is likely to
increase sales of the corresponding batteries and other accessories. In some cases,
a company can promote certain products exclusively to create halos and drive
sales of other, more profitable items.

pull-forward Aggressive pricing on a product can drive an immediate revenue up-
lift at the expense of future revenues. A typical example is consumable goods
such as toothbrushes – temporary promotions can entice a customer to purchase
and stockpile multiple product units, but then this customer is likely to stop mak-
ing any purchases until these units are consumed. This phenomenon is known as
the pull-forward or stockpiling effect.

In practice, these effects can dramatically increase the complexity of evaluation be-
cause a large number of pricing variables need to be evaluated jointly.

r10.1.4.7 Designing the Decision Support Tools

An illustrative example of a tool that helps to evaluate pricing scenarios according
to the above principles and guidelines is presented in Figure R10.4. In this example,
we address the problem of the price promotion evaluation for a single product. The
tool takes the promotion time frame (start and end dates) and promotion depth as in-
put parameters, and then uses long-term demand and revenue forecasting models to
evaluate the impact of this promotion on the product and category performance. The
upper chart visualizes how the demand changes depending on the promotion depth or,
alternatively, the out-the-door price. The spread between the demand forecasts that cor-
respond to the minimum and maximum allowed prices characterizes the price elasticity
of demand. For many products, the elasticity changes over time, and pricing managers
can examine this plot to determine the optimal time frame for a promotion. For exam-

422 price and promotion optimization

ple, the price elasticity is usually higher during the holiday season compared to other
times of the year.

Promotion
depth

Cannibalization

Promotion
timeframe

Pull-forward

Cumulative
revenue without
promotion

Max price

Min price

Cumulative
revenue with
promotion

Cumulative
revenue without
promotion

Cumulative
revenue with
promotion

Immediate
uplift

Product
demand

Product
revenue

Category
revenue

Jan Feb Mar Apr May Jun Jul Aug SepOct Nov Dec

Figure R10.4: An example interface of a promotion evaluation tool.

The middle and lower charts visualize the cumulative product and category revenue,
respectively. These charts help to analyze how the cross-product and temporal effects
impact the business performance in the short and long runs. In particular, the cannibal-
ization effect is highlighted in the middle and lower charts of Figure R10.4: the revenue
of the promoted product increases during the promotion period compared to the base-
line, but the overall category revenue decreases because of cannibalization. The middle
chart of Figure R10.4 illustrates the analysis of the pull-forward effect: the promoted
product is expected to get a revenue uplift during the campaign, but the long-term
forecast shows the performance degradation compared to the baseline.

The example in Figure R10.4 demonstrates the use of predictive models for detailed
price planning and evaluation. These models can further be combined with optimiza-
tion algorithms to search for optimal pricing parameters such as promotion depth and
date ranges. However, the optimization use cases can be more complex than just the set-
ting of pricing points. Advanced examples include the detection of loss-driving promo-
tions in manually created promotion calendars and the generation of new promotion
suggestions. Similar to the forecasting problems, the main challenge in optimization
is cross-product and temporal dependencies that require jointly optimizing multiple
pricing variables.

R10.1 business problem 423

r10.1.5 Execution

The planning framework described in the previous section aims to produce a pricing
plan for a relatively distant horizon. Once the initial plan is finalized, and the seller
proceeds to its execution, the discrepancy between the plan and actual results would
typically emerge. For example, a retailer can observe that the actual sales rate for a
seasonal product is lower than planned and recognize the risk of high liquidation losses.
The usual approach to managing the execution phase is the continuous re-evaluation
of the pricing scenarios based on the ongoing inventory and sales data and adjustment
of the pricing parameters. In other words, the seller can dynamically change pricing
variables to accelerate or decelerate the demand to meet the constraints and achieve
the objectives.

The traditional approach to planning and execution, however, assumes the availabil-
ity of historical data, a relatively static environment, and a fairly small number of pric-
ing decisions. These assumptions hold true in many traditional environments, but there
are a number of use cases, mainly related to digital channels, that cannot be efficiently
solved using the planning framework alone. Such use cases require developing compo-
nents that autonomously make decisions during the execution phase, often in real time
and on a large scale. We collectively refer to this class of methods as algorithmic pricing.
The main challenges that algorithmic pricing aims to address are as follows:

• First, historical sales data can be very limited in many environments. In prac-
tice, it is common to have only 10-20% of the catalog items sufficiently covered
by historical data, and the remaining items are either new, have never been on
promotion, or have data gaps because of technical or process issues. These limi-
tations can be partly addressed using specialized demand forecasting techniques
discussed later in this recipe, but, in general, pricing actions cannot always be
planned for all items in advance, and some prices need to be automatically man-
aged based on the near real-time market feedback.

• Second, prices need to be continuously adjusted in dynamic environments. For
instance, many large retailers such as Amazon, Walmart, and Best Buy have
adopted algorithmic price management which has resulted in frequent, often
intra-day, price changes in their e-commerce systems. A retailer that operates in
such an environment can use statistical analysis to estimate the impact of competi-
tor price changes and design a proper price setting policy, but the implementation
of this policy requires to develop near real-time decision-making components to
respond automatically to competitor moves.

• Finally, price segmentation and personalization can sharply increase the num-
ber of pricing decisions. In an extreme case, the number of decisions can be as
high as the number of customer-product combinations, and these decisions can
only be made using decision-automation components. The ability to differentiate
pricing based on the willingness of individual customers to pay, and to capture
the corresponding revenues, is one of the main advantages of algorithmic price
management.

Algorithmic pricing plays an important role in modern price management environ-
ments, so we dedicate Recipe R11 (Dynamic Pricing) to a more detailed discussion of
the above problems and to the development of the corresponding solutions.

424 price and promotion optimization

r10.1.6 Measurement

The primary goal of the measurement stage is to analyze the impact of the pricing
actions that were planned and executed in the previous stages. Although it is the last
step in our reference price management process, the ability to perform credible and
accurate measurements of the results is the foundation and precursor of the entire
process. In practice, the measurement capabilities should always be established before
the optimization and execution take place.

The measurement stage usually includes tracking the basic performance metrics that
we defined earlier in Section R10.1.4.4. However, we can also define more specialized
metrics specifically for evaluating the impact of pricing actions and cross-effects.

Price management is an activity that is associated with financial gains and losses, and
thus it generally makes sense to measure the impact of pricing actions using return on
investment (ROI) concepts. As a starting point, let us define the net marketing contribution
as

c “ qˆ pˆm´ e (R10.1)

where q is the volume sold, p is price, m is margin percentage, and e stands for
marketing and sales expenses. The margin and expenses can be further decomposed
into regular prices, markups, discounts, and other components according to the pricing
and cost structures of the company. The pricing ROI can then be defined as

ROI “
upliftpcq
e0

ˆ 100% “
ca ´ cb
e0

ˆ 100% (R10.2)

where cb and ca denote the contributions before and after a certain price change,
respectively, and e0 is the cost of planning and implementing the change. For instance,
the ROI of a promotional campaign is commonly defined and measured as

Promotion ROI “
pqa ´ qbq ˆ pˆm´ e

e
ˆ 100% (R10.3)

where subscripts b and a denote the values before and after the change, respectively,
and e is the total cost of promotions. The practically useful ROI definitions, however,
are usually more complex than the basic concept outlined in expression R10.2 because
one needs to incorporate a wider range of business and econometric considerations.
We examine some of these extensions in the next two sections.

r10.1.6.1 Uplift Metrics

It is common practice to use several metrics that provide different perspectives on
the gains and losses [Ruggiero and Haedt, 2014]. The following examples illustrate
the process of breaking down the overall ROI into more granular measures, although
the specific design is heavily influenced by the industry, business model, and sales
channels:

by price Instead of tracking the overall contribution uplift, we can isolate the portion
of revenue growth or loss attributable to a change in price as follows:

upliftppriceq “ ppa ´ pbq ˆ qA (R10.4)

R10.1 business problem 425

where p stands for price, q for volume, and subscripts a and b are used as defined
in the previous section. This metric can be computed at different levels of aggre-
gation such as product, category, client account, or business unit, and it helps to
gauge how well the price change is received by sales channels and customers.

by volume Alternatively, the portion of revenue growth or loss attributable to a
change in volume can be tracked as

upliftpvolumeq “ pqa ´ qbq ˆ pb (R10.5)

This metric isolates the impact of a change on longer-term consumption patterns.
Similar to the price uplift, volume uplift can be calculated at various levels of
aggregation.

by product Pricing actions can make customers switch between products or ven-
dors, and some actions are specifically designed to drive cross-sell. The impact
of pricing on the product portfolio can be measured as the portion of revenue
attributable to the change in nonrepeating sales. Assuming a certain scope such
as a regional or business account, we denote the set of all items with nonzero
sales during the current period but without sales in the previous period as P`
(added products), and all items without sales in the current period but nonzero
sales in the previous period as P´ (removed products). The uplift by product can
then be measured as the difference between the revenues associated with these
two sets:

upliftpproductq “ revenuepP`q ´ revenuepP´q (R10.6)

This metrics, also known as product churn, helps to relate pricing actions with
product penetration, sustainability of demand, and cross-sell potential.

The design of these metrics is mainly driven by business considerations and rarely
involves complex statistical methods. The accurate estimation of these metrics, however,
is not a trivial problem but one that often requires advanced mathematical apparatus,
as we discuss in the next section.

r10.1.6.2 Demand Decomposition

The metrics presented above assume that we can accurately calculate the change in
volume or revenue associated with a certain entity such as a product category and
specific pricing action. Although this assumption can seemingly be satisfied using only
the basic accounting methods, in practice it can be challenging to accurately estimate
these values. As an illustrative example, let us consider a manufacturer that initially
offered only one product a in a certain category, and then launched a second product
b. The contribution uplift for this setup can be defined as

upliftpcq “ qb ˆmb ´ qaÑb ˆmb (R10.7)

where qb is volume for the new product, ma and mb are margins for new and exist-
ing products, respectively, and qaÑb is the volume cannibalized by the new product
from existing products. The evaluation of this expression can be complicated for several
reasons. First, the estimation of the cannibalization term is likely to require statistical
analysis, and it can be blocked by insufficient data variability in the collected samples.

426 price and promotion optimization

Second, the estimation of volume qb can also be complicated by out of stock events.
To measure the success of a new product, we should calculate the uplift using the true
demand values rather than the inventory-constrained sales numbers. This leads to the
problem of demand unconstraining, that is the estimation of the true demand based on
the sales data obtained under a limited supply. This task is important not only for
measurement purposes, but for all other steps of the price management process, as
well as inventory management. The reason for this is that making the forecasts and
decisions based on partly observed demand is likely to produce suboptimal results. As
we discuss in the solution section, the demand unconstraining problem can be tackled
using several different statistical methods.

Finally, we might be interested not only to estimate the total uplift delivered by the
new product, but to determine which part of it comes from the market expansion,
and which part comes from customers who are switching from competitors. Similar
to demand unconstraining, this insight helps to properly analyze the success of the
product.

The above examples demonstrate that even a seemingly simple scenario with two
products can require decomposing the observed sales numbers into multiple compo-
nents such as cannibalization, unrealized demand attributed to out of stock events, and
market expansion to perform accurate and meaningful measurements. In real-world
environments with multiple related products, competition, and other factors it is al-
most impossible to precisely measure the true positive or negative impact of a specific
pricing action, but it is usually possible to avoid misleading results by making proper
corrections.

r10.2 solution options

In the above sections, we reviewed the typical problems that a price manager needs to
solve at the different stages of the planning and execution cycle. To solve these problems
efficiently, the price manager should be provided with a number of decision support
and decision-automation tools. In this section, we discuss how an analytics platform
that provides such a toolkit can be designed.

One possible architecture of the analytics solution for price and promotion optimiza-
tion is presented in Figure R10.5. This architecture includes several layers, and we
discuss them moving from the top to the bottom of the figure. The first layer provides
tools for differentiating the pricing strategies across the products. This layer can use
specialized models for computing the item’s importance scores, as well as leveraging
the market response models from the bottom layers. The output of this layer is a map-
ping between products and pricing strategies, as well as the strategy specifications.

The second layer is focused on preparing the inputs for the evaluation and opti-
mization models. One of the main problems that needs to be addressed at this layer
is the creation of product groups that can be optimized independently, so that the
cross-product effects between the groups are minimized and the number of pricing
parameters within each group is small enough for joint optimization. The output of
this layer is the specifications of the optimization tasks that include pricing parameters,
objectives, and constraints.

R10.2 solution options 427

Strategy
differentiation

Response
model

Demand forecasting
model

Pricing
policy

q = ��(p) qt = ��(pt)

pt = π(t)Solver

Decision support
tools

Scenario
generator

ObjectivesSKU
grouping

HiLo, EDLP, ...
KVI, Background, ...

Decision support

Optimization
tasks

Pricing parameters and
diagnostic information

Response
forecasts

Constraints

– Margin
– Revenue
– Pricing index
– Market share
– Turnover
– Sell-through

– Chaining consistency
– Pricing index
– Legal
– Price stability
– Price levels
– MAP
– Inventory availability

Metrics

– Margin
– Revenue
– Pricing index
– Market share

A/B
testing

Data
collection

– Turnover
– Sell-through
– Uplift

Figure R10.5: High-level overview of the planning and evaluation solution.

428 price and promotion optimization

The next layer provides the capabilities for the evaluation of the pricing parame-
ters. This evaluation can be performed using market response models that estimate the
response in terms of demand, profit, or revenue, conditioned on specific values of the
pricing variables. Assuming that we perform the evaluation for a group of interdepen-
dent products, the response model generally estimates the vector of response variables
q based on the vector of pricing parameters p, as shown in Figure R10.5. The second
most common option is to use the demand forecasting models discussed in Recipe R9 (De-
mand Forecasting) to estimate time-dependent response qt based on pricing param-
eters pt that can vary over time. Both the response and forecasting models can have
complex internal design that includes product similarity analysis, imputation of the
missed values, and other features. The evaluation models can be connected to decision
support tools for the manual scenario evaluation.

The next layer provides the optimization capabilities. This layer is often implemented
using off-the-shelf solvers or optimizers. For example, the price optimization task can
often be represented as a linear or integer program which can be solved using the cor-
responding generic algorithms. In some cases, scenario generators are used to generate
multiple optimization tasks or specific pricing scenarios based on the specifications
provided by the upper layers of the solution. The solver uses the evaluation models to
estimate the expected outcome for different scenarios. The alternative to mathematical
programming is reinforcement learning methods that use the evaluation models as a
simulator of the environment and learn reward-maximizing price management policies
by playing against this environment.

Finally, the bottom layer of the architecture depicted in Figure R10.5 includes the
measurement and experimentation components. The experimentation components pro-
vide the capabilities for evaluating different optimization algorithms and collecting the
initial data through experimentation.

In the next sections, we discuss how the main components of the above architecture
can be built. We start with a review of the price strategy differentiation techniques, then
discuss market response modeling, and finally develop a number of components for
the optimization layer using mathematical programming and reinforcement learning
approaches.

r10.3 price strategy differentiation

In this section, we review data-driven methods for differentiating pricing strategies
across products and clients. These methods generally assume the availability of the
initial market response data that can be obtained by executing some initial strategy,
which can be viewed as experimentation, or collecting public or private data about
similar businesses, products, and competitors.

r10.3.1 Price Strategy Differentiation by Product

We first consider the problem of the price strategy differentiation across the products
or services offered by the company. Let us assume a retailer that has a specific price
position and a price structure that can include multiple elements such as regular prices,
discounts, and special offers. Our goal is to determine the optimal pricing guidelines

R10.3 price strategy differentiation 429

for individual products or product categories, although we are not looking to assign
specific values to the price elements at this stage of the analysis. For example, we
can determine that some products should be priced using the EDLP approach, but
others would be better managed using the high-low pricing (also abbreviated as ‘Hi-
Lo’ pricing) which alternates between regular and promotional prices.

This problem can be approached using the value maps introduced in Chapter 1.
One common choice is to analyze products in the space of metrics that characterize
the importance of a product to business and customers, as illustrated in Figure R10.6.
The most basic measures that can be used to quantify the importance are the profit
(importance to the business) and sales volume or revenue (importance to customers).
However, more advanced metrics – such as number of online searches, number of
shopping baskets, market share, and costs of switching between providers – can be
used to measure the product’s importance and consumer price perception.

Importance to business

Im
po

rt
an

ce
 to

 c
on

su
m

er
s

Priority Key value items

Tail Filler

Figure R10.6: An example of a product value map spanned on financial metrics. Each point repre-
sents one entity such as an SKU, product, a product group, category, or department.

The resulting space can then typically be divided into four areas that can potentially
use different price strategies and guidelines:

key value items The items with high value to both business and customers are often
referred to as the key value items (KVIs)1. Customers generally remember market-
average prices on KVIs, so these items play a central role in shaping customers’
price perception of the seller. Consequently, KVIs are usually priced based on
competitive pricing considerations, and setting the price points above the com-
petitors’ can negatively impact the pricing image of the seller.

priority items Certain high-volume items can have relatively low margins, but
drive incremental shopping trips and cross-selling. Retailers commonly use price

1 This is just one of many KVI definitions. The term KVI is used broadly in many different contexts, and there are
many methodologies for determining and managing KVIs.

430 price and promotion optimization

segmentation and personalization techniques such as promotions to manage the
trade-off between volume and margins for such items, and sometimes sell certain
items at a loss just to drive incremental traffic.

filler items Slow-moving items that complement the main assortment can be priced
based mainly on internal economics, for example, to maintain the target margin.
These items also aim to improve customers’ perception of the assortment.

tail items The items with low value to both business and customers, commonly re-
ferred to as ‘tail’ items, are also used to improve the perception of the assortment.
These items are often differentiated across different locations and priced based
on internal economics.

The above methodology facilitates the decomposition of the top-level pricing struc-
tures and positions into more specific strategies such as Hi-Lo promotions, and in the
next section we will discuss how the parameters of these strategies can be set.

However, the analysis in the space of basic metrics such as volume and margin is not
the only option, and we can construct other useful spaces using more complex scores.
For instance, the volume-margin space is not necessarily optimal for the KVI analysis
because the volume and margin metrics are not directly linked to price perception
and sensitivity. In practice, it may be better to develop more advanced scores that
incorporate several metrics and to identify KVIs by ranking products according to these
scores. For example, variants of the following algorithm are commonly used to identify
KVIs in business verticals with frequently purchased items:

1. Identify bargain items that represent good value for the money (e.g. a 32 oz.
yogurt product is good value for the money, compared with a 6 oz. product).

2. Identify price-sensitive customers who mostly buy the bargain items.

3. Estimate the percentage of price-sensitive customers who buy the item. This value
corresponds to ratio C{pB`Cq in Figure R10.7.

4. Estimate what percentage of all customers who buy the item are price-sensitive.
This value corresponds to ratio C{pA`Cq in Figure R10.7.

5. Calculate the KVI score for frequently purchased items as:

score “ α ¨
C

B`C
`β ¨

C

A`C
(R10.8)

where α and β are the hyperparameters.

An example of the product value map constructed using the above algorithm is
presented in Figure R10.8. The items are categorized as background, foreground, and
KVIs based on the score defined by expression R10.8, and specialized pricing strategies
can be set for each of these categories.

The KVI analysis is mainly focused on managing pricing decisions against reference
competitors’ prices. However, an analysis in the space of advanced metrics can help
differentiate between other aspects of the pricing strategy. In many verticals, price man-
agers must balance between competing based only on regular prices and promoting
products using special offers and discounts. This type of decision can be supported by
a statistical analysis that quantifies regular-price and promoted-price elasticities, that

R10.3 price strategy differentiation 431

All customers

Customers who
buy the item

Price-sensitive
customers

A

C B

Figure R10.7: Customer cohorts for the product value analysis.

Importance to price
sensitive customers

Im
po

rt
an

ce
 to

 a
ll

cu
st

om
er

s

Background
items

Foreground
items

Key value items

Figure R10.8: An example of a product value map spanned on the behavioral metrics. Each circle
represents one entity such as an SKU, product, or category, and the radius of a circle
is proportional to the sales volume of the entity.

is the sensitivity of demand to the changes in the corresponding pricing elements. We
will discuss how these elasticities can be estimated later in this recipe, but assuming
that such estimates are available, we can assign products to the following four pricing
strategies:

edlp For products and categories with relatively low promoted-price elasticities, pro-
motion dollars can be redirected to the regular price.

hi-lo For products that are more sensitive to promoted-price as opposed to regular-
price changes, fewer, but deeper, discounts can be offered.

432 price and promotion optimization

hybrid For products that are sensitive to both regular and promotion prices, a hybrid
pricing strategy that optimizes the balance between regular prices and promoted-
prices can be used.

margin Products with low sensitivity to both regular-price and promoted-price
changes can benefit from limits on promotion volume, as well as better price
discipline.

This approach is illustrated in Figure R10.9. In addition to the customer response
analysis, the choice between EDLP and Hi-Lo strategies can also be supported by the
following insights:

market share Small brands will generally employ a Hi-Lo strategy to compete
against stronger brands.

product life stage The Hi-Lo strategy is advantageous for new products with high
levels of innovation and strong marketing support, while EDLP is generally more
suitable for mature products.

seasonality Products with seasonal demand spikes are likely to benefit from the
Hi-Lo strategy.

Regular price elasticity

Pr
om

ot
io

n
pr

ic
e

el
as

tic
ity

Hybrid

Margin EDLP

Hi-Lo

Figure R10.9: An example of a product value map spanned on elasticity metrics. Each circle repre-
sents one entity, and the radius of a circle corresponds to the sales volume.

r10.3.2 Price Strategy Differentiation by Client

The price differentiation techniques presented in the previous section are geared mainly
towards retailers and direct-to-consumer businesses. These techniques can be applied
in some B2B environments as well. For instance, a manufacturer of consumer packaged
goods would use similar methods to manage manufacturer-sponsored promotions exe-
cuted through its retail partner network. At the same time, many B2B and subscription-

R10.3 price strategy differentiation 433

based businesses have complex pricing structures that are customized for each client.
This requires the functionality for client-level pricing strategy differentiation to be pro-
vided by the decision support tools.

An example of a value map for the client-level strategy analysis is depicted in Fig-
ure R10.10. This map plots individual client entities in the space of simple metrics: the
total client revenue for a period of time such as one year and the average discount
amount provided to this client. In general, the value of a client, which we measure in
terms of revenue, should be consistent with the discount, so the clients should, ide-
ally, be concentrated along the diagonal line highlighted in the figure. This particular
example, however, indicates that a number of clients with relatively low value are get-
ting disproportionately large discounts, suggesting mismanagement. These cases might
need to be investigated and pricing policies may need to be adjusted.

Discount amount

Re
ve

nu
e

Figure R10.10: An example of a client value map. Each point represents one client.

The above method can be viewed as a simple client segmentation technique. We
basically grouped customers into different revenue buckets and validated that the cor-
responding discount policies are properly differentiated across the segments. We can,
of course, use more advanced methods both to define the segments and to differenti-
ate the strategies across them in both B2C and B2B environments. The segments are
commonly defined using geolocation qualifiers like country, state, region, or individ-
ual store; demographic properties such as income level; and various statistical scores
discussed in Recipes R1–R4 including a lifetime value and propensity to churn. The
previously described analytical techniques can then be applied at the level of individ-
ual segments. For example, a retailer can segment its brick-and-mortar stores based
on the median income or average price elasticity in the corresponding locations, and
then tune the product pricing strategies at the level of location zones using the tools
described in the previous section.

The above approach is applicable in environments with relatively small numbers of
segments, so that a meaningful strategic analysis can be performed for each of them.

434 price and promotion optimization

However, there is quite a broad range of scenarios that require the use of a large num-
ber of small segments or, ultimately, treating each customer as a stand-alone segment.
This can be done to increase the efficiency of price differentiation, to work around data
limitations, or to deal with complex and dynamic environments. These scenarios can-
not be solved using methods and tools devised for strategic analytics, but need to be
addressed using decision-automation components which we discuss later in this recipe.

r10.4 market response modeling

Market response on a price change is the sum of individual customer responses, and
thus the response function can be derived from a probabilistic model of a customer. Let
us first assume that each customer makes a yes-no purchasing decision based on the
offered price. This is typically the case for services and durable products. A consumer
can, for instance, decide between buying a car from a certain dealer or from their com-
petitor, but buying two or more cars is not common even if an excellent price is offered.
We can further assume that each customer has a maximum price they are willing to
pay for a given product or service and we denote the distribution of such prices over
the target market as wppq. The aggregation of individual customer responses into the
total market response is illustrated in Figure R10.11 (a): the upper plots show the max-
imum acceptable prices for 16 customers that are drawn from the uniform distribution
in the range from 0 to 100, and the lower plot is the sum of these step functions that
corresponds to the total market demand.

In a more general case, customers can buy variable quantities of a product at different
prices rather than make yes-no decisions. This is typical for consumable products such
as groceries. Individual customer responses in this case are arbitrary functions of the
price rather than step functions. An example of variable quantity responses is presented
in Figure R10.11 (b): each customer’s response is a linear function specified by the
intercept and slope coefficients drawn from two different uniform distributions, and
the sum of eight responses is the total market response function.

The above examples illustrate that the shape of the market response function is deter-
mined by the distribution of individual customer responses. Several standard shapes
exist that are known to approximate market responses for most products reasonably
well, and we discuss the two most common options in greater detail in the next sec-
tions.

r10.4.1 Linear Model

One of the most basic response models can be obtained under the assumption that the
distribution of maximum acceptable priceswppq in the yes-no scenario is uniform. First,
let us note that the market response function for a specific price p can be obtained by
integrating wppq as follows:

qppq “ qmax

ż 8

p
wpxq dx (R10.9)

R10.4 market response modeling 435

0 20 40 60 80 100
Price

Q
ua

nt
ity

0
2
4
6
8

10
12
14
16

c1
c2
c3
c4
c5
c6
c7
c8
c9

c10
c11
c12
c13
c14
c15
c16

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0 20 40 60 80 100
Price

0

5

10

15

20

25

Q
ua

nt
ity

c1

c2

c3

c4

c5

c6

c7

c8

(a) (b)

Figure R10.11: Examples of a market response function for (a) yes-no customer responses and (b)
customer responses with variable quantity.

where q is the total demand in units and qmax is the maximum achievable demand
for a given number of customers. Assuming that wppq is uniform in the range from 0

to pmax, we obtain the following demand function:

qppq “ qmax

ż pmax

p
wpxq dx

“ qmax

ˆ

1´
p

pmax

˙

“ ´
qmax

pmax
¨ p` qmax

(R10.10)

This is a linear function of price p, so we can conclude that the uniform distribution
wppq implies a linear demand function. The demand curve presented earlier in Fig-
ure R10.11 (a) indeed resembles a linear function, and we can get an arbitrarily close
approximation by increasing the number of customers in the sample. Since the values

436 price and promotion optimization

qmax and pmax are not known in advance, we can specify the linear demand model
simply as

qppq “ a´ bp (R10.11)

where a and b are the model parameters that need to be inferred from the data.

The demand function specifies the relationship between price and demand, but it
is also useful to have a metric that explicitly quantifies the magnitude of the market
response on a unit price change. The standard choice for such a metric is the price
elasticity of demand defined as the ratio of the percent change in demand to the percent
change in price:

εppq “ ´
∆q{q

∆p{p
“ ´

Bq

Bp
ˆ
p

q
(R10.12)

The elasticity coefficient is the function of price, so it can take different values at
different price or demand levels. High elasticity values at a certain price range generally
indicate that the demand can be efficiently manipulated by price changes, while low
values indicate that the demand is insensitive to price changes. For the linear model,
we can insert a linear demand function into definition R10.12 to get the following
expression for the elasticity:

εppq “
bp

a´ bp
(R10.13)

An example of a linear demand function and corresponding elasticities is shown
in R10.12. This example illustrates how the elasticity can change at different price levels.

0 2 4 6 8 10

0

2

4

6

8

10

Price

Demand
Elasticity

Figure R10.12: A linear demand model qppq “ 10´ 10p and corresponding price elasticity.

The linear model is one of the most basic tools to use for price optimization. Con-
ceptually, it can be fitted using just a few known price-demand points and any re-
gression algorithm, and then various price points can be evaluated to determine the

R10.4 market response modeling 437

optimal price. This approach may be feasible for rough market response estimates: for
example, a price management system of an online marketplace can use such a simple
model to estimate the price-demand dependency based on a few data points in near
real time. Many environments, however, require significantly more accurate market re-
sponse modeling, and we discuss several simple extensions of the linear model that can
help to achieve this in the next sections.

r10.4.2 Constant-Elasticity Model

In the linear model, price elasticity is just a secondary metric that helps to gauge the
potential impact of price changes at different points of the demand curve. However, it
is a known empirical fact that elasticity is relatively constant at different price points for
many products, so we can build a more practical model under this constant-elasticity
assumption. We can start with a hypothesis that elasticity is constant when the market
response is a power function of the price:

qppq “ ap´ε (R10.14)

To prove this statement, let us express the derivative of the demand function as

Bq

Bp
“ ´ε ¨ ap´ε´1 (R10.15)

and then insert both R10.14 and R10.15 into the definition of the elasticity R10.12

obtaining the following:

´
Bq

Bp
ˆ
p

q
“ ε ¨ ap´ε´1 ¨

p

ap´ε
“ ε (R10.16)

Consequently, the elasticity stays constant across the entire price range for demand
function R10.14 and any given ε. This is illustrated by an example in Figure R10.13

where the demand curve clearly follows the power law and elasticity stays flat.

The constant-elasticity model can be fitted on sales data using basic regression tech-
niques, similar to the liner model. From that perspective, it is particularly convenient
to rewrite expression R10.14 in the logarithmic form as follows:

logq “ loga´ ε logp (R10.17)

This allows one to reduce the constant-elasticity model to the linear regression prob-
lem by applying a simple transformation to the input price and quantity samples. The
constant-elasticity model is commonly referred to as a log-linear model for this reason.

r10.4.3 Modeling the Cross-Effects

The basic models described above are useful for estimating the correlations between
product sales and individual pricing components, but most real-world response model-
ing problems involve multiple products, pricing components, and time intervals. One
possible way to account for these factors is to build multiple constant-elasticity response
models and to combine them, as summarized in Figure R10.14.

438 price and promotion optimization

0 2 4 6 8 10

0

2

4

6

8

Price

Demand
Elasticity

ε = 0.25

Figure R10.13: An example of a constant-elasticity demand function qppq “ 5 ¨p´0.25 and corre-
sponding price elasticity.

Pricing
model

Own price
elasticity

Competitor
pricing Pull-forward

Cannibalization
and halo

Marketing
activity

Figure R10.14: Typical composition of response models. For the sake of illustration, we assume
two products, a and b. qa stands for demand on product a, superscripts b and
d stand for the baseline price and discount, respectively, superscript c denotes
competitor price, superscript t denotes time interval, and ma is the intensity of
the marketing activity for product a.

First, product price often includes the base price, discounts, and surcharges, and each
of these components is usually associated with a distinct elasticity value, depending on
how the price is communicated to the customers. Second, we often need to account for
the cannibalization and halo effects discussed earlier. These effects can be expressed in

R10.4 market response modeling 439

terms of cross-elasticities. For instance, the cross-elasticity of the demand on product a
with regard to price changes on a related product b can be expressed as follows:

εbÑa “ ´
Bqa

Bpb
ˆ
pb
qa

(R10.18)

Third, the impact of competitor prices can also be expressed in terms of cross-
elasticities. Fourth, the pull-forward effect can be captured by measuring the elasticities
between time-shifted pairs of price and demand. Finally, it is often useful to estimate
the impact of the intensity of the marketing activities on the demand as the marketing
elasticity of demand just like we estimate the price elasticity of demand.

Let us review a numerical example that demonstrates how the above analysis can
be done using only the basic tools. We consider a setup with three related products
(denoted as a, b, and c), and evaluate two pricing scenarios for product a. We start
by fitting four regression models to estimate their own price elasticity, cannibalization
between products a and b, halo between a and c, and pull-forward effect for product
a. We assume that this analysis produces the following estimates:

• The own price elasticity is about 3.00. For instance, price reduction by 50% in-
creases sales by 150%.

• The cross-elasticity between a and b is about -0.75. For instance, price reduction
for product a by 20% decreases sales of product b by 15%.

• The cross-elasticity between a and c is about 1.20. For instance, price reduction
for product a by 20% increases sales of product b by 24%.

• The pull-forward effect is estimated to decrease sales by 4% for every 20% of price
reduction for a period of about a quarter.

The calculations needed for scenario evaluation are presented in Figure R10.15. We
evaluate and compare two possible price options: regular price of $3.00 and price re-
duction down to $2.50. Prices for products b and c are assumed constant.

Price Units Sales Price Units Sales Price Units Sales

Price 1
Price 2

% Change

Own a Cannibalized b Halo c

$ 3.00
$ 2.50

1000
1500

$ 3,000
$ 3,750

-17% +50%

$ 3.00
$ 3.00

800
700

$ 2,400
$ 2,100

0% -13%

$ 3.50
$ 3.50

0%

500
600
20%

$ 1,750
$ 2,100

a+b+c
Total
sales

$ 7,150
$ 7,950

Own
elasticty

17% / 50% = 3.00

Cross
elasticty

-13% / 17% = -0.75

Cross
elasticty

20% / 17% = 1.20

Pull forward a

Sales for next
3 months

Baseline
Forecasted

Changes

$ 9,000
$ 8,700
- $ 300

Figure R10.15: An example of cross-effects analysis and pricing scenarios planning using basic
tools.

440 price and promotion optimization

As shown in the figure, the first option translates into the total sales of $7,150 for the
current month for all three products. The second option delivers 50% volume increase
for product a, 13% volume decrease for product b due to cannibalization, and 20%
volume increase for product c due to halo. The total revenue for the current month
increases to $7,950. At the same time, the long-term revenue for product a is expected
to drop by $300 because of pull-forward, so the final total revenue number is estimated
as $7,650. We can conclude that the second option (price reduction) is better than the
first one in terms of revenues, although it is associated with both positive and negative
effects that need to be carefully assessed and included in the ROI calculations.

r10.4.4 Time-Dependent Response Models

The econometric techniques discussed in the previous sections estimate the average
correlations between price and demand. This can help to perform the high-level anal-
ysis and evaluation, but in many practical applications, demand and its relationship
to price change over time. We therefore need to optimize pricing decisions for specific
time intervals rather than optimizing them on average. For example, a seller might be
interested in intensifying promotional campaigns during the time intervals when price
elasticity is at its highest. This generally requires forecasting the demand, revenue, or
profit as functions of time.

The dynamic (time-dependent) market response can be estimated using the demand
forecasting models developed in Recipe R9 (Demand Forecasting). In order to support
the evaluation of pricing scenarios, the inputs of the forecasting models have to include
pricing parameters. In the next sections, we discuss the price optimization methods
under the assumption that time-dependent demand forecasts and elasticity estimates
are available.

r10.5 optimization using mathematical programming

The market response and demand forecasting models allow us to estimate the demand
as a function of price, and we can thus leverage them to perform price optimization.
In the most basic case, the price of a single product considered in isolation can be
optimized based on a profit equation such as the following:

gppq “ qppq ˆ pp´ cvq ´ cf (R10.19)

where g is the objective function, q is the demand function, p is price, and cv and cf
are variable and fixed costs, respectively. In practice, this equation needs, of course, to
be customized dependent on the specific industry, business model, and pricing struc-
ture. Assuming a parametric differentiable demand model, the optimal price that max-
imizes the profit in expression R10.19 can be determined analytically by taking the
derivative of the profit and equating it to zero. In this way, the closed-form expres-
sions for optimal prices can be obtained, particularly for linear and constant-elasticity
demand models. In practice, however, it is much more common to solve the problem
numerically by evaluating the profit for all valid price points and picking the best op-
tion. This helps to account for the discreteness of price levels, to incorporate various
constraints, and to perform optimization for non-parametric demand functions and
arbitrary complex profit models.

R10.5 optimization using mathematical programming 441

Example R10.1: Price Optimization for a Single Product

Let us consider a simple example of price optimization for a single product. We
assume the constant-elasticity demand model, so that the profit function R10.19

can be rewritten as follows:

gppq “ ap´ε ˆ pp´ cvq ´ cf (R10.20)

We further assume the following parameter values: ε “ 2.1, a “ 104, cv “ 1,
and cf “ 103. This profit function is plotted in the following figure for the price
range p P r1, 5s:

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−1000

−500

0

500

1000

p*

Price

Pr
ofi
t

It is easy to determine numerically that the profit-optimal price p˚ equals 1.91,
but the same result can also be obtained analytically by taking the derivative,
equating it to zero, and solving the resulting equation for the price variable:

Bg

Bp
“
app´ εp` εcvq

pε`1
“ 0 ñ p˚ “

εcv

ε´ 1
(R10.21)

The numerical price optimization for simple scenarios similar to that above, is typi-
cally straightforward, but real-world scenarios often require optimizing multiple inter-
dependent pricing parameters. Some problems in this category can be computationally
challenging, but we can tackle them using a wide range of optimization methods. In
the next sections, we consider several typical business scenarios that require advanced
optimization and examine how these problems can be reduced to the standard mathe-
matical programming tasks.

442 price and promotion optimization

r10.5.1 Multiple Products

The complete reference implementation for this section is
available at https://bit.ly/3qVXZvd

We first consider a scenario where a seller offers multiple products in some category
or group, so that the products are fully or partly substitutable. As a rule, the demand
function for each product depends on all individual prices of other products that can
be challenging to accurately estimate and optimize. One possible simplification is to
use a demand model that estimates the demand for a given product based on both the
product’s own price and the average price within a group of substitutable products [Fer-
reira et al., 2015]. This may be an accurate approximation in many settings because the
ratio between the product’s own price and the average price in the group reflects the
competitiveness of the product and quantifies demand cannibalization. Assuming the
finite number of valid discrete price levels, the set of possible average prices is also
finite, so we can evaluate the demand for a given product for all possible combinations
of own and average prices. This enables us to formulate the price optimization problem
as follows:

max
ÿ

k

ÿ

i

pk ¨ qikc ¨ xik

subject to
ÿ

k

xik “ 1, for all i

ÿ

k

ÿ

i

pk ¨ xik “ c

xik P t0, 1u

(R10.22)

where qikc is the demand for product i, given that it is assigned k-th price level
and all prices in the category sum up to c, and xik is a binary dummy variable that
is equal to one if price k is assigned to product i, and zero otherwise. Indices i and k
iterate over all products and price levels, respectively. The first constraint ensures that
each product has exactly one price, and the second constraint ensures that all prices
sum up to some value c: that is, the average price is fixed. In solving this problem for
each possible value of c and picking the best result, we obtain the set of variables x that
defines the profit-optimal assignment of prices to products.

In expression R10.22, the values qikc need to be precomputed for all combinations
of i, k, and c which can be done using a regular demand forecasting model. One of the
main advantages of this approach is that we make no assumptions about the demand
function, so arbitrary demand forecasting methods can be used.

The problem defined above is an integer programming problem, because the deci-
sion variables x are either ones or zeros. It can be computationally intractable to solve
this problem, even for medium size categories, especially if prices need to be updated
frequently. We can work around this problem by replacing the original integer program-

https://bit.ly/3qVXZvd

R10.5 optimization using mathematical programming 443

ming problem with a linear programming problem where variables x are assumed to
be continuous:

max
ÿ

k

ÿ

i

pk ¨ qikc ¨ xik

subject to
ÿ

k

xik “ 1, for all i

ÿ

k

ÿ

i

pk ¨ xik “ c

0 ď xik ď 1

(R10.23)

This technique is known as linear relaxation. The resulting linear program can be
solved efficiently, even if the number of products and possible average prices is high.
It can be shown that the solution of the linear program gives a tight bound for the
optimal solution of the integer program [Ferreira et al., 2015]. This boundary can be
used to reduce the set of price sums c for which the integer problem needs to be solved.
In practice, the number of integer programs that need to be solved can be reduced very
sharply (e.g. from hundreds to less than ten).

The alternative approach is to set prices directly based on the solution of the linear
program. In this case, each product can have more than one non-zero variables x, and
the operational model needs to be adjusted to account for this. For example, a time
interval for which one price is offered can be divided into multiple subintervals in
proportion, specified by variables x. For instance, if there are two nonzero elements
equal to 0.2 and 0.8, then the corresponding prices can be offered for 20% and 80% of
the time, respectively.

Example R10.2: Price Optimization for Multiple Products

We illustrate the linear relaxation technique by a numerical example. We use a
linear programming routine from the standard library that requires the input
problem to be defined in the following vector form:

max r ¨ x

subject to A ¨ x “ b
(R10.24)

where r is the cost vector, x is the vector of decision variables, and matrix A and
vector b specify the constraints. We use the following design of the inputs to
impose constraints on the sum of the prices and price weights for each product:

444 price and promotion optimization

p1 · q11

p2 · q12

...
pk · q1k

p1 · q21

p1 · qn1

...

pk · qnk

...

r A b

1 1... 0 0 0 0 0...
1 1...0 0... 0 0...

0 0 0 0 0... 1 1...
p1 pk... p1 pk... p1 pk...

1
1...

1
ck

· n

k · n
n

+
1

k

...

number of products
number of price levels

In other words, the cost vector r consists of revenues for all possible price
assignments, and each row of matrix A ensures that the price weights sum
to 1 for any given product, except the last row that ensures that all prices
sum to the required level c. The decision vector x has k ¨ n elements and it is
convenient to reshape it into nˆ k matrix to analyze the optimal prices for
each product, as we show below.

We next assume four allowed price levels

p “ (1.00, 1.50, 2.00, 2.50) (R10.25)

and three products with the following demands at each price level (each row
corresponds to a product, and each column corresponds to a price level):

q :

»

—

—

–

Price level 1.00 1.50 2.00 2.50

Product 1 28 23 20 13

Product 2 30 22 16 12

Product 3 32 26 19 15

fi

ffi

ffi

fl

(R10.26)

Finally, we assume that all prices need to sum up to 5.50. We use these values
to construct the inputs for the standard solver and run it to obtain the vector of
decision variables that can be reshaped into the following matrix:

x :

»

—

—

–

Price level 1.00 1.50 2.00 2.50

Product 1 0.0 0.0 1.0 0.0

Product 2 0.0 1.0 0.0 0.0

Product 3 0.0 0.5 0.0 0.5

fi

ffi

ffi

fl

(R10.27)

This result can be interpreted as follows: assign product 1 with price 2.00, prod-
uct 2 with price 1.50, and sell product 3 half of the time at price 1.50 and the
other half at price 2.50.

The problem definitions R10.22 and R10.23 can be modified or extended to cover
more complex scenarios with additional constraints. One of these scenarios is the price

R10.5 optimization using mathematical programming 445

optimization for multiple products that have inventory dependencies. For example, a
manufacturer can assemble different products from parts drawn from one or several
shared pools of resources. In this case, we can simply add a constraint that the total
number of parts needed to assemble all products must not exceed the corresponding
level of in-stock inventory.

r10.5.2 Multiple Time Intervals

The integer programming and linear relaxation approaches can not only be used to
optimize pricing parameters for multiple products, but to strategically optimize the
sequence of prices over multiple time intervals. For example, a seasonal product can
be purchased by a retailer at the beginning of the season and it has to be sold out by
the end of the season. In this case, we might be interested not only in forecasting the
demand and optimizing the price for one time interval, but in estimating the demand
functions for all time intervals until the end of the season and optimizing prices under
the constraint that the sum of the demands for all intervals needs to converge to the
available inventory (i.e. the product needs to be sold out or the unsold units will be
lost). The optimization problem for one product can then be defined as follows:

max
ÿ

t

ÿ

k

pk ¨ qtk ¨ xtk

subject to
ÿ

k

xtk “ 1, for all t

ÿ

t

ÿ

k

qtk ¨ xtk “ c

xtk P t0, 1u

(R10.28)

where t iterates over time intervals within the season, and c is the available inventory.
Similar to the case with multiple products, demand values qtk can be precomputed
using an arbitrary demand model, and linear relaxation can be used as an alternative
to the integer programming formulation.

r10.5.3 Optimization Under Uncertainty

The optimization methods described above produce meaningful results only when the
demand estimates are sufficiently accurate, but, in practice, the demand estimates are
always associated with some level of uncertainty. In the case of probabilistic demand
forecasts described in Recipe R9 (Demand Forecasting), this uncertainty is quantified
explicitly, and we might be willing to propagate it thorough the optimization process
to obtain not just the expected maximum values of the revenue or profit, but their prob-
abilistic distributions. In the case of point forecasts or basic market response models,
the uncertainty is not quantified, but we might still want to perform the sensitivity
analysis, that is evaluate the impact of the demand forecasting errors on the revenues,
profits, and optimal price levels.

446 price and promotion optimization

r10.5.3.1 Modeling the Uncertainty

We can incorporate the uncertainty into the optimization problem using an extended
objective function gpp, zq where p is a vector of pricing variables and z is a vector
of additional random variables. For example, we can extend the single-product profit
function R10.19 as follows:

gpp, zq “ pqppq ` zq ˆ pp´ cvq ´ cf, z „ Npµ, σ2q (R10.29)

where qppq is the mean demand, and the distribution parameters µ and σ either
come from a probabilistic demand model or are controlled manually for the sensitivity
analysis. In a general case, gpp, zq can be a complex non-linear function of p and z for
multiple products and time intervals.

r10.5.3.2 Uncertainty Propagation

To optimize the pricing parameters, we should be able to evaluate the extended objec-
tive function for any set of pricing parameters p. This evaluation can be thought of
as uncertainty propagation through a deterministic function, so that the distribution of
gpp, zq is estimated based on the distribution of z.

The distribution of the objective for a particular set of pricing parameters can be eval-
uated analytically or by using Monte Carlo simulations, that is by sampling multiple
values of z and evaluating the corresponding values of the objective. In particular, the
mean and variance of the extended objective function can be evaluated using Monte
Carlo integration based on n samples as follows:

Ez r gpp, zq s “
1

n

n
ÿ

i“1

gpp, ziq

Varz r gpp, zq s “
1

n

n
ÿ

i“1

gpp, ziq2 ´Ez r gpp, zq s2
(R10.30)

r10.5.3.3 Optimization Problems

The extended objective function can be used to define various optimization problems.
The most straightforward option is to maximize the mean objective such as the revenue
or profit:

argmax
p

Ez r gpp, zq s (R10.31)

Alternatively, we might be interested to find the pricing parameters that are least sen-
sitive to uncertainty, that are the parameters that minimize the variance of the objective.
We can also combine these two approaches to find a trade-off between the high yield
and low sensitivity:

argmax
p

αEz r gpp, zq s ´ p1´αq
b

Varz r gpp, zq s (R10.32)

where α is a hyperparameter that controls the balance between the two goals.

R10.5 optimization using mathematical programming 447

Example R10.3: Price Optimization for a Single Product Under Uncertainty

We illustrate the optimization under uncertainty by extending the single-
product example R10.1. Let us assume that the elasticity estimates in the
constant-elasticity demand model are not fully accurate, and we want to ac-
count for this uncertainty in the optimization process. We start with adding a
stochastic estimation error z to objective R10.20 as follows:

gpp, zq “ ap´pε`zq ˆ pp´ cvq ´ cf, z „ Np0, σ2q (R10.33)

We further evaluate the mean and variance of this objective function for all
price points in the feasible range using Monte Carlo simulations. The evaluation
results for three different values of σ are presented in the following plot (the
numerical parameters are the same as in the original example):

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−1000

−500

0

500

1000

1500

2000

2500

±σ
Mean profit

Price

Pr
ofi
t

z ~ N(0, 0.25):

±σ
Mean profit

z ~ N(0, 0.50):z = 0:

Profit

We can see that the maximum achievable profits are different for different of
levels of uncertainty, and these maximums correspond to different optimal pric-
ing points.

448 price and promotion optimization

r10.6 optimization using reinforcement learning

The complete reference implementation for this section is
available at https://bit.ly/3YZqZPs

The optimization approach described in the previous section is quite versatile be-
cause it allows for a price-demand function of an arbitrary shape (linear, constant
elasticity, etc.) and arbitrary seasonal patterns. This flexibility stems partly from the
ability to precompute the demand values, and it has a major advantage in the integer
programming approach. The use of the precomputed values, however, is also a major
shortcoming because it limits the ability to model dependencies between products and
time intervals. In the scenario with multiple products, we circumvented this problem
by using the concept of average price, but it is a somewhat limited and specialized
solution. In this section, we explore the ways of building a more generic solver.

r10.6.1 Motivation

Let us start with an example that illustrates how the dependencies between time in-
tervals can impact the optimization process. In the real world, demand depends not
only on the absolute price level but can also be impacted by the magnitude of recent
price changes; price decrease can create a temporary demand splash, while price in-
crease can result in a temporary demand drop. The impact of price changes can also
be asymmetrical, so that price increases have a much bigger or smaller impact than
the decreases [Simon and Fassnacht, 2018]. We can codify these assumptions using the
following price-demand function:

qppt, pt´1q “ q0 ´ k ¨ pt ´ a ¨φpppt ´ pt´1q`q

` b ¨φpppt ´ pt´1q
´q

where

x` “ x if x ą 0 , and 0 otherwise

x´ “ x if x ă 0 , and 0 otherwise

(R10.34)

and pt is the price for the current time interval and pt´1 is the price for the previous
time interval. The first two terms correspond to a linear demand model with intercept
q0 and slope k. The second two terms model the response to a price change between
two intervals. Coefficients a and b define the sensitivity to positive and negative price
changes, respectively, and φ is a shock function that can be used to specify a nonlinear
dependency between the price change and demand. For the sake of illustration, we
assume that φpxq “

?
x.

We next investigate what the optimal price schedule for such a price-response
function looks like. We start by implementing a simple simulator that evaluates
function R10.34 for certain parameter values and computes the profit based on the

https://bit.ly/3YZqZPs

R10.6 optimization using reinforcement learning 449

evaluated demand, given unit costs, and current and new price levels. We use this
simulator to visualize the price-profit curves for different magnitudes of the price
increase and decrease, as shown in Figure R10.16. This plot also includes the baseline
profit function computed for the no-change scenario. We can see that price increases
“deflate" the baseline profit function, while price decreases “inflate" it. The simulator is
then extended to compute the total profit for multiple time steps given a certain price
schedule, that is a vector of price values for every time step.

0 100 200 300 400
Price ($)

−400K

−300K

−200K

−100K

0

100K

200K

Pr
ofi
t

Price change (%)
50
40
30
20
10
0

-10
-20
-30
-40
-50
-60

-70
-80
-90

Figure R10.16: Profit functions for different magnitudes of the price change.

In this particular setup, we can construct the optimal price schedule using greedy
optimization: start by finding the optimal price for the first time step, then optimize the
second time step having frozen the first one, and so on. This approach produces the
price schedule presented in Figure R10.17. The total profit generated by this schedule
is much higher than the profit generated by any constant-price schedule.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

200
250
300
350
400
450
500

Pr
ic

e
($

)

Figure R10.17: Optimal price schedule for the profit function from Figure R10.16.

This result is remarkable: a simple temporal dependency inside the price-demand
function dictates a complex pricing strategy with price surges and discounts. It can be
viewed as a formal justification of the Hi-Lo pricing strategy used by many retailers;
we see how altering regular and promotional prices helps to maximize profit.

The above example sheds light on the relationship between price management and
reinforcement learning. The price-response function we have defined is essentially a
difference equation where the profit depends not only on the current price action but
also on the dynamics of the price. It is expected that such equations can exhibit so-
phisticated behavior, especially over long time intervals, so the corresponding optimal

450 price and promotion optimization

control policies can also become sophisticated. Optimization of such policies thus re-
quires powerful and flexible methods, such as deep reinforcement learning.

r10.6.2 Prototype

We prototype a reinforcement learning solution using the standard DQN algorithm de-
scribed in Section 4.4.4.5. Recall that reinforcement learning considers the setup where
an agent interacts with the environment in discrete time steps with the goal of learning
a reward-maximizing behavior policy. At each time step t, with a given state s, the
agent takes an action a according to its policy πpsq and receives the reward r moving to
the next state s 1. We redefine our pricing environment in these reinforcement learning
terms as follows.

First, we encode the state of the environment at any time step t as a vector of prices
for all previous time steps concatenated with one-hot encoding of the time step itself:

st “ ppt´1, pt´2, . . . , p0, 0, . . .q | p0, . . . , 1, . . . , 0 q (R10.35)

Next, the action a for every time step is just an index in the array of valid price levels.
Finally, the reward r is simply the profit of the seller. Our goal is to find a policy that
prescribes a pricing action based on the current state in a way that the total profit for a
selling season (episode) is maximized.

The agent training process starts with a random policy, but the agent quickly learns
the sawtooth pricing pattern. We can get insights into this process by recording
and plotting the pricing schedules realized in each training episode, as shown in
Figures R10.18 and R10.19. We can see that, in this particular implementation, the DQN
agent learns the beginning of the right pattern in about 200 episodes, and produces a
near-optimal policy in about 1000 episodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

0

100

200

300

400

500

Pr
ic

e
($

)

Figure R10.18: Pricing schedules produced during the first 200 episodes of DQN training. The
schedule for the 200th episode is highlighted.

The overall dynamics of the learning process can be visualized by plotting how the
returns improve with the number of episodes, as shown in Figure R10.20. The agent
finds a fairly good policy relatively quickly, but continues to improve over a large
number of episodes.

R10.6 optimization using reinforcement learning 451

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time step

0

100

200

300

400

500

Pr
ic

e
($

)

Figure R10.19: Pricing schedules produced during the last 300 out of 1000 episodes of DQN train-
ing. The schedule for the 1000th episode is highlighted.

0 200 400 600 800 1000
Episode

−3
−2
−1
0
1
2
3
4

Re
tu

rn
 ($

)

1e6

Figure R10.20: Agent training progress over 1000 episodes. The line is smoothed using a moving
average filter with a window of size 10. The shaded area corresponds to two stan-
dard deviations over the window.

The quality of the policy learned by the DQN agent can be assessed more thoroughly
by studying the Q-values estimated by the underlying neural network. For example, we
can analyze the accuracy of the estimates by plotting the Q-values and true returns as
shown in Figure R10.21. The data points for this plot are obtained by playing multiple
episodes using a fully trained agent and recording the Q-value at each state, as well as
the true returns.

The returns are spread over a wide range because of the ε-greedy policy randomiza-
tion, but the correlation is almost ideal thanks to the simplicity of the toy price-response
function we use. The correlation pattern can be much more sophisticated in more com-
plex environments. A complicated correlation pattern might be an indication that a
network fails to learn a good policy, but that is not necessarily the case as a good policy
might have a complicated pattern.

We conclude this section with a remark that reinforcement learning is an extremely
versatile tool for optimizing action policies in complex environments, but its practical
application to enterprise problems is generally challenging. Unlike traditional optimiza-
tion techniques such as integer programming, reinforcement learning algorithms tend
to produce highly irregular policies that are difficult to interpret and operationalize. It

452 price and promotion optimization

0.0 0.5 1.0 1.5 2.0 2.5
Q-value

1e6

0.0

0.5

1.0

1.5

2.0

2.5

Re
tu

rn

1e6

Figure R10.21: Analysis of the correlation between Q-values and true episode returns for a fully
trained agent.

is also difficult to assess how close the learned policy is to the optimal solution and to
guarantee consistent behavior free of totally unreasonable actions.

r10.7 extensions and variations

In the previous sections, we were focused mostly on generic price management and
optimization capabilities and paid little attention to industry-specific features. Price
management practices, however, are very different across different industries, so we
conclude this recipe with a brief discussion on the main industry profiles. We start
with B2B sectors and gradually move toward B2B environments.

r10.7.1 Retail

Pricing is a very important competitive instrument for many retailers, and it is common
to see sophisticated price management processes and models in retail industry. The
main distinctive features of retail price management include the following:

• Pricing has a high impact on profitability because of relatively thin profit margins.

R10.7 extensions and variations 453

• Price strategy differentiation and price communication strategies are important
for many retail sectors because of large assortment of items. Price management
techniques also differ for seasonal and replenishable items.

• Most retailers have access to transactional and demographic consumer data
which enables price and offer segmentation and personalization. This is an im-
portant capability because it allows the capture of the differences in willingness
to pay across the customer base.

• Digital channels play an increasingly important role in most retail sectors. This
shifts the focus from traditional planning to smart execution, dynamic and algo-
rithmic price management.

• In both e-commerce and brick-and-mortar retail, it is relatively easy to collect
competitor prices which helps to improve the price optimization models.

• Analysis and optimization of prices and discounts is complicated by strong cross-
product and temporal effects including cannibalization, halo, and pull-forward.

r10.7.2 Consumer Services

Providers of consumer services can use very different pricing strategies depending on
their ability to control the service capacity. From that perspective, we can distinguish
between the following three categories:

fixed capacity Service providers such as airlines, hotels, and theaters have limited
ability to change the capacity, and major capacity changes require huge invest-
ments of capital and time. Companies in this sector rely mainly on dynamic
pricing and capacity-aware reservation algorithms to sell off the fixed inventory
with the maximum revenue.

high fixed costs Software providers, video streaming companies, and media pub-
lishers typically have high fixed costs associated with content or product develop-
ment, but the variable costs associated with the distribution are negligible. This
makes subscription-based pricing very popular in technology and media sectors,
and pricing is often set based on economic sustainability considerations.

variable capacity Labor-intensive service providers such as education and legal
services, can adjust their capacity by hiring or repurposing the workforce. This
provides more flexibility because all terms of the profit equation (price, volume,
and cost) are optimizable.

The above examples indicate that the capacity-aware price optimization and dynamic
pricing methods are important for service industries. We discussed the problem of
constrained optimization in Section R10.5, and continue to develop dynamic pricing
methods in Recipe R11 (Dynamic Pricing). However, we do not dive deeply into more
specialized methods used by airlines and hotels1.

1 A more detailed treatment of such methods is provided, for instance, in [Talluri and van Ryzin, 2004]

454 price and promotion optimization

r10.7.3 Consumer Goods

The price management processes of consumer goods manufacturers are heavily influ-
enced by the fact that products are typically sold through retailers and other third
parties. The main features of price management in this sector are as follows:

• The presence of retailers or other intermediaries generally requires them to jointly
optimize both manufacturer’s and retailer’s actions. In theory, there are a num-
ber of econometric models that help perform such an optimization1. Some of
these models assume the cooperation between the manufacturer and intermedi-
ary, while others assume that each agent pursues their own goals.

• In practice, manufacturers are not necessarily isolated from consumers by the
intermediaries, and often have powerful means to control pricing. One common
example is manufacturer-sponsored promotions. Manufacturers in many sectors
routinely request retail partners to run promotion campaigns and cover the costs
associated with price reductions. Another increasingly popular strategy is the de-
velopment of direct-to-consumer channels that allow manufacturers to bypass the
intermediaries and benefit from many of the marketing and price management
techniques used by retailers.

• Manufacturers usually receive quite limited data from their retail partners. Many
retailers provide only the aggregated weekly numbers, and this significantly com-
plicates the analysis. For example, we might have only about a hundred weekly
points available for fitting a price-response model using historical data for two
years.

r10.7.4 Industrial Goods and Services

The last sector we consider is industrial goods and services. The price setting strategies
in this sector are governed by the fact that it serves organizations rather than end
customers:

• Both buyers and sellers of industrial goods and services usually perform a thor-
ough ROI analysis that helps to determine the value-based upper boundary for
the price. The lower boundary is determined by costs. Advanced and innovative
products and services are priced based mainly on the value considerations, while
prices for commodity products and services are set mainly based on costs.

• Many industrial projects are complex and unique. This translates into complex
and highly customizable pricing structures that are configured by account man-
agers for every individual engagement or transaction. As we discussed in Sec-
tion R10.3.2, specialized analytical tools might be needed to ensure the efficiency
and consistency of these decisions across clients.

• Industrial goods and services are often sold through tenders where multiple sup-
pliers bid for a project. Game theory offers a comprehensive framework for bid
optimization, but the applicability of these methods in practice is limited for sev-
eral reasons. First, making a decision exclusively based on a bid is feasible only
for commodity products and services where suppliers can be deemed perfectly

1 See, for example, [Simon and Fassnacht, 2018] for an overview.

R10.8 summary 455

substitutable. For noncommodity products, the buyer usually makes a decision
based on multiple considerations such as product features and supplier experi-
ence. Second, the supplier rarely has enough information about the tender setup
and true value of the deal for the buyer and themselves to build a useful quan-
titive model. Bidders commonly use costs and estimated value as the lower and
upper boundaries, respectively, and set a specific price point based on marginality,
strategic growth potential, and competitive considerations.

r10.8 summary

• Price management is a complex multistage process that requires multiple decision
support and decision-automation models.

• The process starts with a top-level decision about price structures and price po-
sitioning. This step is usually supported by conventional business intelligence
tools.

• The second step of the process is strategic analysis that focuses on price strat-
egy differentiation, clients, and competitors. This step can benefit from market
response models and other basic quantitative techniques.

• The third step is usually focused on detailed planning, scenario evaluation, and
optimization. This step can significantly benefit from market response models,
demand forecasting, and price optimization tools.

• The last two steps are execution and measurement. Many execution systems use
automatic components that combine market response modeling with dynamic op-
timization, as well as personalization models. The measurement step can benefit
greatly from demand decomposition and unconstraining techniques.

• Market response models aim to evaluate how price changes impact the demand.
Such models generally need to account for an item’s own price elasticity, can-
nibalization, halo, and pull-forward effects, as well as competitor pricing and
marketing activities.

• Demand forecasting models are commonly built using general-purpose super-
vised models with aggregated or sequential inputs. This approach is more suit-
able for many enterprise problems compared to traditional time series models.

• Many price optimization problems can be reduced to standard formulations such
as integer or linear programming. Reinforcement learning and simulations can
be used for complex scenarios that cannot be easily reduced to standard formula-
tions.

Recipe

11

D Y N A M I C P R I C I N G

Algorithmic Price Management Using Reinforcement Learning

The heavyweight pricing models, such as the models we developed in Recipe R10 (Price
and Promotion Optimization), aim to capture all significant factors that influence prod-
uct demand and enable what-if analysis and long-term planning for complex scenarios.
This approach is geared towards relatively static environments where we have access to
relatively large volumes of historical sales data and focus on creating decision support
tools rather than on completely automated price management agents. This is the case,
for instance, for traditional brick-and-mortar retail environments where product assort-
ments, prices, and promotions are typically planned in advance and change somewhat
infrequently.

In digital and omnichannel environments, the traditional approach can be subopti-
mal or inapplicable. One typical example is online marketplaces with a high turnover
of products or offers such as Groupon. Since many items are somewhat unique and
short-lived, it is challenging to develop a good demand model based on historical data
even with the similarity expansion techniques discussed in Recipe R10. More broadly,
the ability to re-optimize prices frequently in response to competitor moves and mar-
ket changes gives a business advantage to the seller, and companies generally tend to
exercise this option when it is technically possible. Digital channels, of course, provide
almost unlimited flexibility in that regard, and the wide adoption of digital and om-
nichannel commerce has reshaped the price management practices as well. This can
be illustrated by the fact that the frequency of price changes in multichannel retailers
increased rapidly in the period from 2008 to 2017. The average duration for regular
prices decreased from 6.7 months in 2008–2010 to 3.6 months in 2014–2017, and the
duration of posted (promotional) prices followed the same pattern, decreasing from 5

months in 2008 to 3 months in 2017 [Cavallo, 2018].

In this recipe, we discuss price optimization methods that are specifically designed
for dynamic environments. These methods can be used as stand-alone optimization
components or they can be combined with traditional pricing models and processes.

457

458 dynamic pricing

r11.1 business problem

Traditional price optimization requires knowing or estimating the dependency between
price and demand. Assuming that this dependency is known (at least at a certain time
interval), the revenue-optimal price can be found by employing the following equation:

p˚ “ argmax
p

p ¨ qppq (R11.1)

where p is the price and qppq is the demand model. This basic model can be fur-
ther extended to incorporate item costs, cross-item demand cannibalization, competi-
tor prices, promotions, inventory constraints and many other factors. The traditional
price management process assumes that the demand function is estimated from the
historical sales data. That is accomplished by doing some sort of regression analysis for
observed pairs of prices and corresponding demands ppi, qiq. Since the price-demand
relationship changes over time, the traditional process typically re-estimates the de-
mand function on a regular basis. This leads to some sort of dynamic pricing algorithm
that can be summarized as a sequence of the following steps:

1. Collect historical data on different price points offered in the past as well as the
observed demands for these points.

2. Estimate the demand function.

3. Solve the optimization problem similar to the problem defined in equation R11.1
to find the optimal price that maximizes a metric like revenue or profit, and meets
the constraints imposed by the pricing policy or inventory.

4. Apply this optimal price for a certain time period, observe the realized demand,
and repeat the above steps.

The fundamental limitation of this approach is that it passively learns the demand
function without actively exploring the dependency between price and demand. This
may or may not be a problem depending on how dynamic the environment is. If the
product life cycle is relatively long and the demand function changes relatively slowly,
the passive learning approach combined with organic price changes can be efficient, as
the price it sets will usually be close to the true optimal price. If the product life cycle
is relatively short or the demand function changes rapidly, the difference between the
price produced by the algorithm and the true optimal price can become significant, as
will the lost revenue. In practice, this difference is substantial for many online retailers,
and critical for retailers and sellers that rely extensively on short-term offers or flash
sales such as Groupon and Rue La.

The second case represents a classical exploration-exploitation problem. In a dynamic
environment, it is important to minimize the time spent on testing different price levels
and collecting the corresponding demand points to accurately estimate the demand
curve, and to maximize the time used to sell at the optimal price calculated based
on the estimate. Consequently, we want to design a solution that optimizes this trade-
off, and also supports constraints that are common in real-world environments. More
specifically, we focus on the following design goals:

exploration-exploitation Optimize the exploration-exploitation trade-off given
that the seller does not know the demand function in advance (for example, the

R11.2 solution options 459

product is new and there is no historical data available). This trade-off can be
quantified as the difference between the actual revenue and the hypothetically
possible revenue given that the demand function is known.

limited experimentation Provide the ability to limit the number of price changes
during the product life cycle. Although the frequency of price changes in digital
channels is virtually unlimited, many sellers impose certain limitations to avoid
inconsistent customer experiences and other issues.

discrete price levels Provide the ability to specify valid price levels and price
combinations. Most retailers restrict themselves to a certain set of price points
(e.g. $25.90, $29.90, ..., $55.90), and the optimization process has to support this
constraint.

constrained optimization Enable the optimization of prices under inventory
constraints, or given dependencies between products.

In this recipe, we develop several methods that help to achieve the above design goals,
starting with the simplest ones and gradually increasing the complexity of the scenarios.
Unlike some other recipes where we have just one section dedicated to prototyping, we
implement prototypes for all techniques, and we thus have several sections, each of
which describes both the solution design and implementation.

r11.2 solution options

In theory, an agent that starts to sell some product online having no relevant historical
data, can efficiently determine the price level that maximizes revenues or profits using
multi-armed bandits that were introduced in Section 4.3. In practice, multi-armed ban-
dits can be used as the core idea, but customizations are needed to create a complete
solution that meets the constraints that we discussed in the previous section.

The limited experimentation is a particularly challenging problem that requires ad-
vanced theoretical analysis, so we develop a specialized algorithm for it. The continu-
ous experimentation case can be solved using the standard Thompson sampling frame-
work introduced in Section 4.3.3.

r11.3 limited price experimentation

We first consider a scenario where the demand remains constant during the product
life cycle, but the number of price changes is limited by the seller’s pricing policy. This
scenario is often a valid approximation of flash sales or time-limited deals. For instance,
a variant of the algorithm described below was successfully used at Groupon [Cheung
et al., 2017].

r11.3.1 Solution Design

Let us assume that the total duration of the product life cycle T is known to the seller
in advance, and the maximum number of price changes allowed during this time range

460 dynamic pricing

is m. Our goal is then to split time frame T into m` 1 intervals of arbitrary duration
and assign a price level to each of them so that the expected revenue r is maximized:

r “

m`1
ÿ

i“1

τi ¨ pi ¨E rdppiqs (R11.2)

where τi is the duration of the i-th interval, pi is the corresponding price level, and
dppq is the unknown stochastic demand function. This problem statement is illustrated
in Figure R11.1.

p1 p2 pm+1...

τ1 τ2 τm+1
0 T

Time

Figure R11.1: Optimization variables in the environment with limited price experimentation.

In an extreme case, only one price change can be allowed. A seller starts with an
initial price guess, collects the demand data during the first period of time (exploration),
computes the optimized price, and sells at this new price during the second time period
that ends with the end of the product life cycle (exploitation).

It can be shown that in these settings, the optimal durations of the price intervals
have to be increasing exponentially, so that a seller starts with short intervals to explore
and learn, and gradually increases the intervals until the final price is set for the last
and the longest interval, which is focused purely on exploitation. The proof of this
fact is quite involved, and we skip the details here, referring the reader to the original
paper [Cheung et al., 2017], but the final result is that the revenue-optimal interval
durations can be specified as follows:

τi “ α logpm´i`1q T (R11.3)

where logpnq x stands for n iterations of the logarithm, that is logplogp... log xqq, and
α is a coefficient that depends on the demand distribution. For practical purposes, α
can be chosen empirically because the parameters of the demand may not be known.
This layout is illustrated in Figure R11.2.

p1 p2 pm+1...

α log(m) T

Time

α log(m - 1) T T - α ∑ log(i) Tα log T

pm

Exploration Exploitation

i=1

m

Figure R11.2: Theoretically optimal price schedule under the constraint that onlym price changes
are allowed.

Next, we need to specify how the prices are generated for each time interval. One
simple but flexible approach is to generate a set of parametric demand functions (hy-
potheses) in advance, pick the hypothesis that most closely corresponds to the observed

R11.3 limited price experimentation 461

demand at the end of each time interval, and optimize the price for the next interval
based on this hypothesis. In practice, the set of hypotheses can be generated based on
the historical demand functions for similar products or categories. (We just need to
generate a reasonably dense grid of demand curves that covers the range where the
true demand function is likely to be located.)

Let us assume that we have defined k distinct demand functions q1ppq, . . . ,qkppq that
can potentially approximate the true demand function dppq. For each function qjppq,
we can numerically or analytically determine the optimal price p˚j that maximizes the
revenue p˚j ¨ qjpp

˚
j q. We can then randomly pick one of these optimal prices, and test

it in production for a relatively short time as prescribed by result R11.3, observe the
actual demand that corresponds to this price, find the hypothesis that matches the ob-
servation as closely as possible, and switch to the optimal price that corresponds to this
hypothesis. This process can then be repeated m times, so that the search for the best
demand function approximation continues for first m time intervals and the pm` 1q-th
step is used to monetize the gained knowledge. This algorithm is summarized in list-
ing R11.1.

Algorithm R11.1: Dynamic price optimization with limited experimentation

input:
q1ppq, . . . ,qkppq – set of k demand functions
m – allowed number of price changes
T – duration of the product life cycle

initialization:
Compute the set of optimal prices p˚1 , . . . ,p˚k

Set the initial price p1 to randomly picked p˚j

for i “ 1 to m do

Offer price pi for α logpm´i`1q T time units

Observe the average demand per time unit di

Find hypothesis j that minimizes
ˇ

ˇ qjppiq ´ di
ˇ

ˇ

Set the next price pi`1 to p˚j

end

r11.3.2 Prototype

The complete reference implementation for this section is
available at https://bit.ly/3OYJNK1

https://bit.ly/3OYJNK1

462 dynamic pricing

We next develop a prototype for algorithm R11.1 that can, for example, sell some
product on an online marketplace. First, we need to specify the demand model that
can be used to generate hypotheses. In practice, the common options are the linear and
constant-elasticity models, so we choose to use a basic linear model

qppq “ b` a ¨ p (R11.4)

where a and b are the parameters. For a linear model, the revenue-optimal price can
be calculated by taking a derivative of the revenue with respect to price, and equating
it to zero:

p˚ :
δ

δp
p ¨ qppq “ 0

p˚ “ ´
b

2a

(R11.5)

Second, we assume that it is possible to determine plausible price-demand ranges
for the product we are going to sell using comparable historical cases and other prior
knowledge. These ranges should include the true price-demand function with a high
probability, but do not necessarily need to be narrow. With this assumption, we gen-
erate a set of hypotheses that covers the plausible location of the true price-demand
function and compute the corresponding optimal prices using formula R11.5. These
hypotheses, as well as the mean of the true stochastic demand function that we use for
the simulation, are shown in Figure R11.3.

0 10 20 30 40 50 60
Price ($)

0

10

20

30

40

50

60

70

D
em

an
d

(U
ni

ts
)

True demand function
Optimal prices

Figure R11.3: The set of price-demand function hypotheses used in the prototype. The revenue-
optimal prices for the corresponding functions are shown as the circle markers.

R11.4 continuous experimentation 463

For the simulation, we assume that we run a 24-hour flash sale event and we can
change the product price three times during this period. We first calculate the price
schedule using expression R11.3, obtaining the following:

τ1 “ 2 hours, τ2 “ 4 hours,

τ3 “ 8 hours, τ4 “ 10 hours
(R11.6)

As we discussed earlier, the schedule depends on the properties of the demand dis-
tribution, which is unknown to the seller, so we choose the scaling coefficient α “ 2

heuristically.

The results of the simulation are shown in Figure R11.4. Each row represents the
state of the system at the end of the corresponding pricing interval τi. The plots in
the left-hand column show the current and past price-demand function hypotheses, as
well as the realized price-demand pairs. The charts in the right-hand column show how
the price and demand change over time. The agent initially chooses the hypothesis far
below the true curve, sets a relatively low price, and observes that the actual demand
is higher than that predicted by the hypothesis. This situation is shown in the first row.
Consequently, the agent switches to another hypothesis that happened to be above the
actual curve, sharply increases the price, and observes that now the average demand
is a bit lower than predicted, as shown in the second row. In the next two intervals,
the agent makes smaller adjustments converging to the near-optimal demand curve
estimation and near-optimal price.

r11.4 continuous experimentation

The algorithm described in the previous section is a simple yet efficient solution for
settings where the demand function can be assumed to be stationary. In more dynamic
settings, we might need to use more generic tools that can continuously explore the
environment, while also balancing the exploration-exploitation trade-off. Fortunately,
reinforcement learning offers a wide range of methods designed specifically for this
problem. In this section, we aim to develop an algorithm that supports continuous
experimentation and also allows us to constrain the set of valid prices.

r11.4.1 Solution Design

We can start with an observation that the approach used in the previous section can be
improved in the following two areas:

• First, we can expect to build a more flexible and efficient framework by utilizing
Bayesian methods for demand estimation. Using a Bayesian approach will en-
able us to accurately update the demand distribution model with every observed
sample, as well as to quantify the uncertainty in the model parameter estimates.

• Second, we should replace the fixed price change schedule with continuous ex-
ploration. Again, a Bayesian approach can help to better control the exploration
process, as the time allocated for exploration and the breadth of exploration can
be derived from the uncertainty of the demand estimates.

464 dynamic pricing

Price ($)

0

20

40

60
Price-demand curve fitting

Realized price-demand pairs

0

20

40

24

25

26

Realized demand and price

0

25

50

0

20

40

25

30

35

40

0

25

50

0

20

40

25

30

35

40

0 10 20 30 40 50 60

0

25

50

D
em

an
d 0 5 10 15 20

20

40

30

35

40

Pr
ic

e

True demand function
Current hypotesis

Price
Realized demand

Time (hours)

D
em

an
d

Figure R11.4: A simulation of dynamic price optimization. Each row shows the state of the system
at the end of the corresponding pricing interval.

These two ideas are combined in Thompson sampling that we discussed in Sec-
tion 4.3.3, and we use it as the foundation for developing a flexible dynamic pric-
ing framework that can be customized to support a number of use cases and con-
straints [Ferreira et al., 2018]. A variant of this framework was tested by Walmart with
positive results [Ganti et al., 2018].

Let us reformulate the price optimization problem in Thomson sampling terms. Re-
call that the Thompson sampling algorithm decides which action to take based on
parameters that it samples from some probabilistic model, executes the action, and up-
dates the model based on the observed result. In the price optimization context, the
action corresponds to price that can be chosen from a discrete or continuous set of
allowed prices, and the model can be a demand distribution qpd | θq conditioned on
the vector of parameters θ. Using this notation, we can rewrite the Thompson sam-
pling algorithm as shown in listing R11.2. Thompson sampling controls the amount of
exploration by sampling the model parameters for a probabilistic distribution that is

R11.4 continuous experimentation 465

refined over time. If the variance of the distribution is high, we will tend to explore a
wider range of possible demand functions. If the variance is low, we will mostly use
functions that are close to what we think is the most likely demand curve (that is, the
curve defined by the mean of the distribution), and explore more distant options just
occasionally.

Algorithm R11.2: A general form of the dynamic pricing algorithm using
Thompson sampling

initialization:
Specify the prior distribution of the demand model parameters qpθq

Specify the demand distribution qpd | θ, pq conditioned on a vector of
parameters θ and price p

execution:
for each time step t do

Sample the demand parameters θt „ qpθq

Find the optimal price for the sampled demand parameters:

p˚ “ argmax
p

pˆE rqpθt, pqs

Offer the optimal price and observe the demand sample d

Update the parameter distribution using the likelihood of the observed
demand:

qpθq Ð qpθq ˆ qpd | θ, pq

end

Algorithm R11.2 is a generic template, and we need to specify a probabilistic demand
model q to make it concrete. One possible way to accomplish this task is to use a
continuous model such as linear or constant-elasticity. In this case, we have only one
model qpθ,pq that is parametrized by vector θ which can be the slope coefficients
or elasticity coefficients, and this model can be evaluated for any price p to obtain the
corresponding demand value. Another way is to assume a discrete set of price levels pi,
and maintain a parameter vector θi for each level. In this case, we can have a separate
demand distribution model qpθiq for each price level, assuming that the levels are
independent. The models do not take price p as an argument; we just pick the right
model based on the price. This approach is preferable in many environments because
many companies, especially retailers, have a pricing policy that prescribes a certain set
of price levels (e.g. $5.90, $6.90, etc.), and we further focus on this setup.

The overall demand model represents a table with k price levels. Since each price
level is associated with its own demand probability density function (PDF) specified
by some parameters, we can visualize the overall demand curve by plotting the price
levels and their mean demands, as shown in Figure R11.5. This is convenient because

466 dynamic pricing

the curve can have an arbitrary shape and can approximate a wide range of price-
demand dependencies, including linear and constant-elasticity models.

Price

D
em

an
d

p1 pkp2

Price-demand
curve

p2

p1

pk

θ1
θ2

θk

... ...

E[θ1]

E[θ2]

E[θk]

Discrete price-demand model

Continuous price-demand model

q(p) = θ1 + θ2p Linear

q(p) = θ1 pθ2 Constant-elasticity

Demand
parameterPrice

...

Figure R11.5: Examples of price-demand models that can be used in the Thompson sampling-
based dynamic pricing algorithm.

We next need to specify the demand distributions for individual price levels. We pre-
viously assumed that the levels are independent, meaning that the demand distribution
for level i depends only on its own parameter θi but not on parameters of the other
levels. We also captured the shape of the demand curve point by point using a table, so
we can use some simple parametric distribution to specify each level. For instance, we
can assume that the demand samples observed at a given price have a Poisson distri-
bution (a natural choice because each sample represents the number of purchases per
unit of time):

d1, . . . ,dn „ poissonpθq (R11.7)

In this case, each level can be specified by a scalar parameter θ that is simply the mean
demand at the corresponding price level. The prior distribution of θ can be chosen to
be gamma because it is conjugate to the Poisson distribution:

qpθq “ gammapα,βq “
βα

Γpαq
θα´1e´βθ (R11.8)

where α and β are the parameters. Consequently, the full model for k price levels is
specified by k pairs pαi,βiq.

R11.4 continuous experimentation 467

Assuming that price pi was offered n times and thus n demand samples di were
observed for it, the likelihood of this observation given the demand hypotheses θ can
be evaluated as

qpd | θq “

n
ź

i“1

e´θ θdi

di!
“
e´nθ θ

ř

i di
ś

i di!
(R11.9)

Finally, the update rule for the posterior distribution of the parameter θ is obtained
as a product of the prior and likelihood:

qpθq Ð qpθq ¨ qpd | θq “ gammapα`
ÿ

di, β`nq (R11.10)

In other words, we update the prior distribution at a certain price point by adding
the number of times this price was offered to hyperparameter β, and the total demand
observed during these times to the hyperparameter α.

Collecting the above assumptions together, we can rewrite the generic template R11.2
into a specific algorithm R11.3 that includes all the details needed for implementation.
At each step, the agent samples an expected demand value for each price level, com-
putes the corresponding revenues, and picks the revenue-maximizing price. The price
is offered to customers for one time step, and the model’s parameters are updated
based on the observed demand. In the next section, we develop a prototype of this
solution, and then discuss how more complex demand models can be plugged into the
agent.

r11.4.2 Prototype

The complete reference implementation for this section is
available at https://bit.ly/3PkyzRt

We evaluate algorithm R11.3 in a simple environment where the market responses
to price p with demand

dppq “ 50´ 7p` η (R11.11)

and η is a Poisson-distributed noise. We assume that the set of prices is limited to
the following six values due to the seller’s business constraints:

$1.99, $2.49, $2.99, $3.49, $3.99, and $4.49

We can verify that the revenue-maximizing price in this setup is $3.49, and we can
use this fact to validate the results of the simulation. For the simulation, we set the
same noninformative prior for all price levels, as shown in the first row of Figure R11.6,
and run the algorithm for 50 time steps drawing the “observed" demand samples from
function R11.11. The posterior demand and revenue distributions for all price levels at
the 50-th time step are shown in the second row of Figure R11.6. We can see that the
agent correctly determines that the mean revenue is maximized under the price level
of $3.49.

https://bit.ly/3PkyzRt

468 dynamic pricing

Algorithm R11.3: A pricing agent that assumes discrete price levels and the
Poisson-Gamma demand model

initialization:
Specify prior distributions for all price levels:

qipθq “ gammapαi,βiq, i “ 1, . . . ,k

execution:
for each time step t do

Sample the mean demand di „ qipθq for each price level i

Find the optimal price index:

j “ argmax
i

pi ˆ di

Offer the optimal price pj and observe the demand dt

Update the model parameters for price level j:

αj Ð αj ` dt

βj Ð βj ` 1

end

0.0

0.2

0.4

D
em

an
d

PD
F

Demand PDFs

1.99 2.49 2.99 3.49 3.99 4.49

0.0

0.1

0.2

0.3

Re
ve

nu
e

PD
F

Revenue PDFs – pi × qi(θ)

0 10 20 30 40 50 60
Demand (Units)

0.0

0.2

0.4

D
em

an
d

PD
F

30 40 50 60 70 80 90 100 110
Revenue ($)

0.0

0.1

0.2

0.3

Re
ve

nu
e

PD
F

Price levels ($)

qi(θ) = gamma(30, 1)

Figure R11.6: Simulation results for the Thompson sampling-based price optimization algo-
rithm R11.3. The first row corresponds to the initial state of the model, the second
row corresponds to the state after 50 time steps.

R11.5 variations and extensions 469

r11.5 variations and extensions

The two solutions described in the previous section can be used in real digital environ-
ments to optimize pricing for products and offerings that are relatively short-lived and
independent from each other. In many settings, however, we need to account for de-
pendencies between related products and other constraints. This can be accomplished
using more sophisticated demand models or more complex optimization algorithms.
In this section, we discuss several techniques that can be handy in such cases.

r11.5.1 Bayesian Demand Models

The complete reference implementation for this section is
available at https://bit.ly/45SkoIS

In stationary environments and long-term price planning, it is common to use com-
plex demand models that account for demand evolution over time similar to what
we discussed in Recipe R10 (Price and Promotion Optimization). In dynamic environ-
ments, this approach might not be feasible, and lightweight demand models such as
linear or constant-elasticity is often a more appropriate choice. Since we dynamically
collect the feedback from the environment, the model fitting procedure should work
well on limited amounts of data, and the Bayesian approach is often preferable from
that perspective. In particular, we might need to generate the set of demand function
hypotheses for limited-experimentation algorithm R11.1 using limited data, and the
Thompson sampling algorithm R11.2 explicitly requires a Bayesian model.

The implementation of such models using just basic tools can be quite involved.
Even in our simple example with the Poisson-Gamma model (algorithm R11.3), we
had to do some math and manually implement the update rules for the distribution
parameters. This process can be even more complicated if we need to use multivariate
distributions for interdependent products, or to customize the model based on business
requirements and constraints. Fortunately, we can work around this issue by using
probabilistic programming frameworks that allow us to specify models in a declarative
manner and abstract the inference procedure. Internally, these frameworks use generic
methods such as Markov chain Monte Carlo (MCMC) and variational inference (VI)
to infer the model parameters. In this section, we develop three basic examples that
demonstrate the probabilistic programming approach and some of its capabilities.

r11.5.1.1 Poisson-Gamma Model

As in the first example, we reimplement the basic Poisson-Gamma model to illustrate
the difference between the analytical solution in algorithm R11.3 and probabilistic pro-
gramming solution.

In probabilistic programming, we specify the structure of some distribution using
a directed graph of random variables, lock the prior distributions for the root vari-

https://bit.ly/45SkoIS

470 dynamic pricing

ables in this graph, and provide samples of the observed leaf variables as reference
data points. The framework then generates a sequence of samples for each variable
that approximates its posterior distribution given the structure we have specified, prior
distributions, and data points.

In the case of the Poisson-Gamma model, we specify a separate model instance for
each price level as a graph with two variables: the gamma-distributed mean demand θ
and the Poisson-distributed observed demand d conditioned on the mean, as shown in
Figure R11.7. We also have to specify the prior distribution for the mean demand and
provide the actual data samples di for the observed demand variable.

gamma(α, β)

poisson(θ)

di

~

~

Figure R11.7: The graphical structure of the Poisson-Gamma demand model.

We can illustrate the implementation of this model using the probabilistic pro-
graming approach using the following example. We start with the prior distribution
gamma(α = 15, β = 1) which means that our initial guess is, assuming some fixed
price, that the mean demand is 15 units. We then observe five actual demand samples
of 20, 28, 24, 20, and 23 units. In most probabilistic programming frameworks, the
specification of this model and sampling from the posterior distribution, the mean
demand will look similar to the following pseudocode:

observed_demand = [20, 28, 24, 20, 23]

θ_prior = gamma(15, 1)

likelihood = poisson(θ_prior, observed_demand)

θ_samples = sample(likelihood, 5000)

(R11.12)

The last line of the above implementation instructs the framework to draw 5000 sam-
ples from the posterior. The histogram of these samples, as well as the prior distribution,
are shown in Figure R11.8. This figure indicates that the mean demand was underesti-
mated in the prior, and the posterior was shifted significantly towards the higher value
based on the observations.

The implementation R11.12 can be plugged directly into the algorithm R11.3 as a
replacement for the analytically derived model update rules. Although the Poisson-
Gamma model is fairly basic, it is apparent that the probabilistic programming ap-
proach can sharply reduce the effort associated with the implementation of the model
inference logic.

r11.5.1.2 Constant-Elasticity Model

The second example we consider is the constant-elasticity model described in Sec-
tion R10.4.2, which is arguably the most common choice in enterprise practice. Unlike

R11.5 variations and extensions 471

10 15 20 25 30
Demand (units)

0.00

0.05

0.10

0.15

0.20

p(
de

m
an

d)

Prior
Posterior

Figure R11.8: An example of estimating the posterior distribution for the Poisson-gamma demand
model using probabilistic programming.

the model with discrete price levels, the constant-elasticity model assumes the follow-
ing continuous relationship between price and demand:

dppq “ b ¨ pc (R11.13)

where d is demand, p is price, b is the scale coefficient, and c is the price elasticity of
demand. Assuming that we have collected a number of price-demand pairs, the model
can be specified and inferred using the probabilistic programming approach as shown
in the following example:

observed_price = [15, 14, 13, 12, 11]

observed_demand = [20, 28, 35, 50, 65]

b = normal()

c = normal()

d = b * power(observed_price, c)

likelihood = poisson(d, observed_demand)

samples = sample(likelihood, 5000)

(R11.14)

where parameters b and c are assumed to have standard normal priors. The samples
drawn from this model are tuples that include values of variables b, c and d. Conse-
quently, we can create a demand curve for each sample by inserting the values of b and
c into expression R11.13. The set of curves generated using this approach is visualized
in Figure R11.9. This illustration makes it clear that we can estimate the demand dis-
tribution at any price point. We can also plug this model into the Thompson sampling
algorithm, so that at each time step we draw a sample demand curve, find an optimal
price for it, offer this price to the market, add the observed price-demand pair to the
data, and re-infer the model.

Implementation R11.14 can be further detailed and improved using additional data
and domain knowledge. For example, we can use the fact that the price elasticity c is
negative in most practical settings, and specify its prior distribution to be a semi-infinite
(e.g. half-normal).

r11.5.1.3 Cross-Product Dependencies

The third example demonstrates how the constant-elasticity model can be extended to
account for cross-product dependencies. We consider the case of two products, each of

472 dynamic pricing

Price ($)

D
em

an
d

(u
ni

ts
)

10 11 12 13 14 15 16

20

40

60

80

100

120

Figure R11.9: An example of estimating the posterior distribution for the constant-elasticity de-
mand model using probabilistic programming. The circle markers represent the ob-
served price-demand pairs.

which obeys the constant-elasticity model, but we believe that the elasticity coefficients
in the two models are strongly correlated. This can be the case, for instance, for two
substitutable products such as fat-free and low-fat milk. We can put together a model
that implements this assumption as follows:

b = normal(µ “ r 0 0 s , Σ “
“

1 0
0 1

‰

)

c = normal(µ “ r 0 0 s , Σ “
”

1 ρ
ρ 1

ı

)

d = b * power(observed_price, c)

likelihood = poisson(d, observed_demand)

samples = sample(likelihood, 5000)

(R11.15)

This implementation is a generalization of one-dimensional model R11.14 to the vec-
tor case. Random variables b and c are now two-dimensional vectors drawn from the
multivariate normal distribution specified using mean vector µ and covariance matrix
Σ, and the observed prices and demands are now matrices that include samples for each
of the two products. The correlation between the products is specified using parameter
ρ, that varies between 0 (independent demand function) and 1 (perfectly correlated
elasticities).

We infer model R11.15 using a small dataset with 5 price-demand pairs for each
product plotted in Figure R11.10, and then sample the demand function parameters
from it. The results for two different values of ρ are shown in Figure R11.11. These
plots illustrate how the affinity between the two demand functions can be controlled.
This model can be plugged into the Thompson sampling agent in a similar manner to
the single-product model.

r11.5.2 Multiple Products and Inventory Constraints

The correlation between elasticity coefficients is just one, mainly illustrative, example of
interdependent demand functions. In Section R10.5, we discussed two other important
examples: cross-product demand cannibalization and inventory-constrained sales plan-
ning. For the cannibalization case, we found that it is possible to use discrete prices,

R11.6 summary 473

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0
Price ($)

10

20

30

40

50

60

D
em

an
d

(u
ni

ts
)

Product 1
Product 2

Figure R11.10: The observed price-demand points for the example with two related products.

25

50

75

100

D
em

an
d

1 (
un

its
)

10 11 12 13 14 15 16
Price ($)

10

20

30

D
em

an
d

2
(u

ni
ts

)

20

40

60

80

100

10 11 12 13 14 15 16
Price ($)

10

20

30

Correlation 0.1 Correlation 0.99

Figure R11.11: The estimated posterior distributions for the example with two related products.
The left- and right-hand graphs correspond to the low level of elasticity correlation
(ρ=0.1) and high level (ρ=0.99z), respectively.

precompute demand values for possible ratios of product own price and category-
average prices, and use linear or integer programming to jointly optimize prices for
interdependent products. For the inventory-constrained sales planning, we determined
that a similar approach can be used to jointly optimize prices for multiple time steps
ahead, under non-stationary demand.

These two solutions are feasible for dynamic pricing as well. Assuming that we de-
velop a proper Bayesian model that allows us to sample demands at different product-
category price ratios or time intervals, we can solve a linear or integer programming
problem to find the optimal prices for several products or time intervals. We can then
plug this process into Thompson sampling just as we did for several other models we
developed earlier in this recipe.

r11.6 summary

• The ability to actively explore the price-demand relationship and respond to mar-
ket changes using dynamic pricing is a major advantage for a seller. Sellers from

474 dynamic pricing

many industries exercise this advantage, developing algorithmic price manage-
ment components that can be connected to digital channels and marketplaces.

• Dynamic pricing is particularly important in environments with a high inflows
of new products, offers, or users, because we either need to learn a price-demand
function from scratch or to efficiently validate hypotheses created based on prior
knowledge or historical data.

• Dynamic price management requires addressing several challenges such as un-
availability of historical data, necessity for active environment exploration, and
limited frequency of price changes. Traditional price optimization methods and
models do not properly address these requirements.

• In many settings, the frequency of price changes is limited based on the business
and customer experience considerations. In case of flash sales, it can sometimes be
permissible to change the price just once or twice during the product or offer life
cycle. We can attempt to optimize pricing in such environments by generating
a set of price-demand function hypotheses, and iteratively determine the best
hypothesis.

• We can use multi-armed bandits for dynamic price optimization when the envi-
ronment allows for continuous experimentation. Thompson sampling is a com-
mon choice for this category of problems, and it can be combined with a wide
range of demand and pricing models.

• Simple Bayesian models for Thompson sampling can be designed analytically
and then manually coded. For more complex models, such as models with cross-
product dependencies, probabilistic programming provides a flexible framework
that separates model specification from the mechanics of model inference.

• In environments with strong cross-product effects or inventory constraints, we
can employ the same optimization methods as in the traditional price manage-
ment problems.

Recipe

12

I N V E N T O RY O P T I M I Z AT I O N

Planning and Managing Inventories Using Simulations and Reinforcement Learning

Manufacturing and distribution processes represent complex multistage pipelines
through which raw materials, parts, and finished products move. The connections be-
tween the stages of such pipelines are often imperfect in the sense that different stages
consume and produce batches of different sizes, have different operational schedules,
change their capacities over time, and are prone to various disruptions related to
transportation delays, equipment failures, natural disasters, and economic crises. This
generally requires designing the supply, manufacturing, and distribution processes
in a way that makes them resilient to external and internal shocks. The solution to
this problem may involve the use of multiple procedures ranging from organizational
to mathematical methods. Among these methods, inventory bufferization is one of
the most fundamental concepts. Various inventory buffers such as warehouses and
backrooms are critically important for integrating otherwise incompatible processes
into a solid value chain and protecting them from disruptions.

Inventory buffers are associated with additional inventory costs, storage charges,
and labor expenses. In practice, these costs usually amount to levels that significantly
impact the overall financial performance of the company, so that inventory misman-
agement can directly result in major business issues. For example, it is possible for an
apparel retailer to be thrown into bankruptcy because of major miscalculations related
to seasonal merchandise. This makes inventory management and optimization one of
the most important problems in enterprise data science. In fact, the impact of supply
chain efficiency on business performance is so high that it is possible to link the aver-
age efficiency metrics with the macroeconomic performance indicators. For example,
there is strong theoretical and empirical evidence that the magnitude and duration of
economic crises have a certain dependency on the ability of corporate supply chains to
adapt to the initial shocks and costs associated with such accommodation [Bloom et al.,
2018].

475

476 inventory optimization

In this recipe, we focus on simulation and reinforcement learning-based techniques
for inventory optimization, evaluate them for several basic supply chain scenarios, and
compare this approach to traditional analytical methods.

r12.1 business problem

Inventory optimization is a broad problem because supply, production, and distribu-
tion processes vary significantly across industries, so many different problem formula-
tions exist that rely on different sets of assumptions about the environment. We start
this section by discussing some aspects of production and inventory management pro-
cesses to set the context for designing inventory optimization solutions, and then define
the formal environment models that can be used for solution development.

r12.1.1 Inventory in the Context of Production Processes

Inventory bufferization is a way of adapting different stages of the value chain to each
other and providing shock-absorbing isolations. However, the specific roles of inventory
buffers can vary significantly depending on the industry and location of the buffer in
the value chain. From that perspective, we can distinguish between several categories of
inventories that might require different management and optimization approaches [Sil-
ver et al., 2016]:

cycle inventory Most manufacturing and distribution processes operate in
batches, and batch sizes can vary across the value chain. Inventory pockets
needed to adapt processes with different batch sizes to each other are called
cycle inventory.

congestion stock Production and distribution processes can share the same infras-
tructure or capacity, and inventory can be temporarily accumulated waiting for
machines, vehicles, or other resources to become available. We categorize this
inventory as congestion stock.

decoupling inventory Inventory buffers can sometimes be created to decouple
business entities and organizations. For example, regional operations can be de-
coupled from central operations by introducing a local warehouse.

safety stock In most environments, inventory production and consumption are af-
fected by disruptions such as transportation delays, weather conditions, strikes,
and consumer demand surges. Creating safety stock buffers is one of the main
ways to protect against such uncertainties.

anticipation inventory Inventory can be accumulated in anticipation of seasonal
demand surges, supply shortages, or price changes.

pipeline inventory Finally, the inventory that currently moves through production
or transportation processes rather than sitting in the buffers is called pipeline
inventory. This includes work-in-progress and in-transit units.

The above categorization suggests that inventory bufferization aims to address two
major groups of concerns. The first of these can be related to the economy of scale. Inven-
tory buffers are needed to deal with storage and transport capacity constraints, large

R12.1 business problem 477

batch sizes, long lead times, volume discounts, and other restrictions. The creation and
management of such buffers would be unnecessary in an ideal world where arbitrary
amounts of inventory are instantaneously available to the buyer. The second group of
concerns is related to uncertainty. Bufferization is needed to deal with imperfect de-
mand forecasts, demand spikes, supply delays, and various types of disruptions. One
would not need to deal with such issues in an ideal, perfectly predictable world. The
formal environment models that we define in the next sections incorporate both the
scale and uncertainty features.

r12.1.2 Inventory Optimization Strategies

The most fundamental approach to inventory optimization is the redesign of produc-
tion processes in a way that reduces the need for inventory bufferization. A canonical
example of such optimization is the just-in-time (JIT) manufacturing methodology that
uses techniques such as setup time reduction, pull-based replenishment, and lot size
minimization to reduce inventory requirements. This approach does not necessarily
require the use of modeling and mathematical optimization.

The second layer of improvements is related to better production planning, schedul-
ing, and inventory control using material requirements planning (MRP) systems. MRP
aims to efficiently coordinate all resources and activities associated with the manufac-
turing process, which can thus help to eliminate inefficiencies in inventory usage, lower
inventory requirements, and provide guidance for the inventory management system.
However, low-level inventory management is not necessarily a part of the scope of
MRP.

Finally, inventory optimization models and control policies can be developed to au-
tomatically or semi-automatically manage the inventory according to the targets and
service level agreements produced by the MRP or other upstream processes. This layer
is our main focus in the rest of this recipe.

r12.1.3 Inventory Management Process

In the previous sections, we outlined how the inventory flows through the various
stages of manufacturing and transportation processes, where it can accumulate, and
what the fundamental approaches are to reducing the costs and risks associated with
inventory bufferization. We assume that the topology of the supply chain, including
the locations and capacities of the inventory buffers (nodes) and transportation options
between the nodes, suppliers, and consumers, is established based on these considera-
tions, and we consider it as a fixed input to the inventory management process.

The inventory management process is typically designed and decomposed into spe-
cific tasks based on the inventory life cycle. This life cycle is different for different
industries and types of goods, but some tasks are common to several environments.
Let us consider an example of an apparel retailer who needs to manage seasonal in-
ventory according to the life cycle presented in Figure R12.1. At the beginning of each
seasonal cycle, the retailer plans the procurement according to the long-term demand
estimates and places the orders with the suppliers. Once the merchandise is produced,
the retailer refines the estimates and allocates the inventory to specific facilities such as

478 inventory optimization

warehouses and stores. The inventory is then transported to the facilities and becomes
available to the customers. Throughout the season, the retailer can manage the demand
using price changes and promotions, rebalance the inventory across the facilities, and
place additional replenishment orders with the suppliers. These activities should be
coordinated to minimize the costs, lost sales, and unsold inventory.

Order
placement

Production

Allocation

Transportation

Available

Rebalancing

Replenishment

Supply
management

Demand
management

Planning

Figure R12.1: Example of the inventory life cycle.

There are two different ways of approaching the individual tasks in the above pro-
cess. The first option is to specify and solve an optimization problem that captures all
important objectives and constraints. For example, we attempt to determine optimal
inventory allocations based on the expected demands at different locations, shipping
costs, and other factors. This optimization procedure can be invoked for the initial
planning, but it can also be used in order to repeatedly guide the rebalancing and
replenishment decisions. We refer to this approach as aggregate planning. The second
option is to design or learn an inventory control policy that dynamically makes rebal-
ancing and replenishment decisions to manage cycle and safety inventory. In general,
these two control styles are often combined to optimize the inventory in strategic and
tactical contexts, respectively.

r12.1.4 Environments

The previous sections outlined how inventory optimization tasks fit the bigger picture
of supply chain management. In this section, we turn to more formal environment
specifications that can be used to develop inventory optimization algorithms.

R12.1 business problem 479

r12.1.4.1 Single-Echelon Environment

The first environment model we consider is a basic setup that includes a supplier, ware-
house (buffer), and client. This model, depicted in Figure R12.2, can be viewed as an
elementary inventory bufferization unit, and more complex pipelines can be assembled
by chaining multiple units together. In supply chains with multiple layers such as fac-
tories, central warehouses, and regional distribution centers, each layer is referred to
as an echelon, and thus the basic environment depicted in Figure R12.2 is known as a
single-echelon supply chain.

Supplier Warehouse Client
L - lead time

k - transaction cost
v - variable cost

h - holding cost
p - price
d - demand
b - backorder cost

α - cycle service level
β - fill rate

Figure R12.2: Single-echelon supply chain model.

We assume that the environment operates in discrete time. We also assume that
the chain serves only one stock-keeping unit (SKU) which we also refer to as an item.
Alternatively, we can assume that each item is managed completely independently.
At each time step, the client indicates their intention to purchase d units from the
warehouse, and we call this value a demand. The demand samples d are assumed to be
independently drawn from the demand distribution ppdq. The warehouse can fully or
partially serve the demand, charging a constant price p for each unit. If the demand
cannot be fully fulfilled, that is the current stock is less than d, there are two options for
handling the difference between the demand and the available quantity. This difference
can be discarded, resulting in lost sales, or it can be backordered, which means that it is
carried over to a future time step. In the latter case, the warehouse is charged a penalty
b which can be either a zero or a nonzero constant. In either case, the actual number of
units sold over a particular time interval is less than or equal to the sum of demands
over that interval.

On the supply side, the warehouse orders the item from the supplier in batches of
arbitrary size. Each order has a fixed transaction fee k, and the per-unit cost is v. The
transaction fee is supposed to include production setup costs, volume-independent
transportation costs, and other operational expenses. Each order placed by the ware-
house is delivered by the supplier in L time steps after the order is placed. The latencies
L, called lead times, are assumed to be drawn independently from distribution ppLq for
each order. Finally, the holding cost per unit per time step at the warehouse is assumed
to be h. The holding cost generally includes operational expenses, property-related
expenses, as well as risk factors associated with potential inventory and capital losses.

We refer to the inventory that was ordered from the supplier but which is not yet
available in the warehouse as on-order inventory; inventory that is physically available
for a client to purchase as on-hand inventory; and the sum of on-hand and on-order
inventories minus backorders as net inventory or inventory position. Denoting the inven-
tory position at time t as Ipt , on-hand inventory as Iht , on-order inventory as Iot , and

480 inventory optimization

backordered inventory as Ibt , we can express the relationship between these values as
follows:

I
p
t “ I

h
t ` I

o
t ´ I

b
t (R12.1)

We also define the inventory level at time t as the on-hand inventory minus backo-
rders:

Ilt “ I
h
t ´ I

b
t (R12.2)

A positive inventory level means that we have on-hand inventory, and negative in-
ventory level means that we have backorders and no on-hand inventory. We can express
this property as follows1:

Iot “
”

Ilt

ı`

and Ibt “
”

Ilt

ı´
(R12.3)

Finally, we can break down the on-order inventory into the in-transit inventory that
was shipped by the supplier by time t, which we denote as Itt, and inventory that
was backordered by the supplier, which we denote as Ibst . Consequently, the following
identity holds at any time step:

Iot “ I
t
t ` I

bs
t (R12.4)

The monetary aspects of the environment defined above can be summarized in the
following profit equation for a certain time period τ:

profitpτq “ p ¨ dτ ´ cτ (R12.5)

where dτ is the total filled demand over the period and cτ are the costs defined as
follows:

cτ “ h ¨ I
h
τ ` k ¨n

t
τ ` b ¨n

b
τ ` v ¨n

u
τ (R12.6)

where Ihτ is the average on-hand inventory over the period, ntτ is the number of
orders on the supply side, nbτ is the number of backorders, and nuτ is the total number
of units purchased from the supplier. If backorders are not allowed, nbτ will be zero,
but lost sales will be subtracted from filled demand dτ.

The environment model does not assume or prescribe any specific dependency be-
tween the demand and supply sides. It is the function of the inventory control algo-
rithm deployed at the warehouse to determine the optimal ordering cadence and pa-
rameters based on the observed demand, price, costs, and required service levels. We
discuss service levels, performance metrics, and optimization objectives for the single-
echelon environment in the sections that follow.

1 We use notation x` “ maxrx, 0s and x´ “ | minrx, 0s | here and later in this recipe.

R12.1 business problem 481

r12.1.4.2 Multi-Echelon Environment

The single-echelon model described above can normally be used to represent some ba-
sic real-world supply chains, such as the supply chain of a small retailer. Supply chains
in large companies, however, usually include multiple echelons such as production fa-
cilities, central warehouses, and distribution centers. A basic example of a supply chain
that includes three serially connected nodes is presented in Figure R12.3. We refer to
networks where each node, except the terminal nodes, has exactly one predecessor and
exactly one successor as serial networks.

Supplier Factory Regional
hub

Distribution
center Client

Scope of optimization

Figure R12.3: Example of a serial multi-echelon supply chain.

Real-world supply chain topologies are usually more complex than just a single se-
rial connection. In supply chain theory, it is common to distinguish between assembly
networks where multiple inventory streams merge together (e.g. parts are assembled
into the final product), distribution networks where one source node serves multiple des-
tinations (e.g. consumer goods distribution), and tree networks where both merge and
fork nodes can occur, but undirected cycles1 are not allowed. Finally, the network can
contain undirected cycles such as the cycles created by the ability to move the inventory
between the nodes within the same layer. We refer to such networks as mixed networks
or general networks. These topologies are illustrated in Figure R12.4.

Serial Assembly

Distribution Tree

Mixed

Figure R12.4: Typical topologies of multi-echelon networks.

Multi-echelon networks can be interpreted in two ways. One option is to view the
network from a logistics perspective where the nodes are locations or facilities that
inventory units move through from the source to the destination. This perspective is
most typical for retail applications and distribution networks. In this interpretation, a

1 A directed graph contains an undirected cycle if the undirected graph constructed from it by replacing directed
edges with undirected ones contains a cycle.

482 inventory optimization

node with multiple predecessors can source the required number of inventory units
from any combination of these predecessors to accumulate the required total amount.

The second option is to view the network from the production perspective, where
each node is a transformation operation that consumes certain parts and produces in-
termediate or finished goods. In this case, nodes do not necessarily correspond to loca-
tions or facilities. Instead, the network corresponds to the bill of materials, and a node
with multiple predecessors must source a specific number of units from each predeces-
sor to produce its output. This interpretation is typical for the assembly topologies.

Each node in a multi-echelon network can be managed separately using single-
echelon methods, but simultaneous optimization of multiple echelons can unlock addi-
tional gains. Later in this recipe, we explore how to achieve this using both traditional
optimization methods and reinforcement learning.

r12.1.5 Performance Metrics

The inventory optimization algorithm for the supply chain model depicted in Fig-
ure R12.2 should account for several objectives. First, we generally have the goal to min-
imize the operational costs or maximize operational profit based on expressions R12.5
and R12.6. Second, the average on-hand inventory term Ihτ in the profit expression is
special. On the one hand, it is associated with the holding costs, and it should thus
be minimized in order to maximize profits. On the other hand, inventory is one of
the major corporate assets that can be examined from the accounting and financial
health standpoint. From that perspective, the primary metric that describes the overall
inventory-efficiency of the company is the inventory turnover:

inventory turnover “
annual sales ($)

average inventory ($)
(R12.7)

The turnover metric is closely monitored by management and investors as a measure
of operational efficiency and capital allocation risks, so minimization of the average
inventory is a major goal even outside of the cost minimization context.

Finally, the above objectives cannot be considered separately from the service levels
guaranteed to the client. In practice, supply chains almost always need to guarantee
certain levels of inventory availability or lead times. These may or may not coincide
with the levels attained when the control parameters are set purely based on the profit-
optimality considerations. The service level measures are generally dictated by the busi-
ness model of a company, and companies sometimes design custom measures that re-
flect their value proposition to the customers, but the following metrics are considered
to be standard:

cycle service level (α) Although the inventory control environment does not re-
quire inventory to be replenished in batches, irregular policies that reorder arbi-
trary quantities at arbitrary times are impractical, and most algorithms operate
in some sort of cycle. Consequently, it is common to track and optimize the prob-
ability of not hitting a stock-out during a replenishment cycle, which is usually
defined as the time between the receipt of subsequent orders from the supplier.

R12.2 solution options 483

This metric is known as the cycle service level and is usually denoted as α. It can
be estimated based on the observed cycles as

α “
number of cycles without a stock-out

total number of cycles
(R12.8)

period service level (ατ) Similar to the cycle service level, we can track the prob-
ability of not experiencing a stock-out during some fixed period τ such as a day,
week, or month. This metric can be more meaningful from a business standpoint
than the cycle service level as it is not attached to cycles which are basically the
internals of the inventory management process.

fill rate (β) The fill rate is defined as the fraction of the demand that is supplied
from the on-hand inventory. Assuming that the system operates over τ time steps,
and denoting the demand at each step as dt and on-hand inventory as Iht , the fill
rate can be estimated as

β “
fulfilled demand

demand
“

ÿ

tPτ

minpIht , dtq
dt

(R12.9)

We use the cycle service level and fill rate as the main optimization objectives to
develop inventory control policies later in this recipe. Assuming relatively long inven-
tory management cycles, the cycle service level can be viewed as a strict coarse-grained
metric that equally penalizes short and long stock-outs. The period service level is less
restrictive, assuming that the period duration τ is less than a cycle, and the fill rate is
the finest-grained measure because it is computed based on individual time steps. It
is easy to see that the following relationship holds when the period duration τ is less
than a cycle:

α ă ατ ă β (R12.10)

In practice, supply chain operations and analytics teams often track many more
business-oriented metrics and events such as the percentage of backorders, lost sales,
and risky anomalies.

r12.2 solution options

The problem with inventory optimization in single-echelon and multi-echelon environ-
ments as introduced earlier can be approached from several different angles. We can
attempt to determine the optimal inventory levels analytically, to develop determinis-
tic inventory control algorithms, or to learn inventory control policies using machine
learning methods in the spirit of Chapter 4. In the next sections, we explore all of these
approaches. We start with a discussion of how aggregate planning can be performed
using the standard optimization algorithms. Next, we review the basic inventory con-
trol policies for a single-echelon environment and demonstrate how such policies can
be evaluated and optimized using both analytical and simulation approaches. We de-
velop inventory management policies for several environment types starting with the
most basic settings and moving towards more complex problem definitions. Finally, we
discuss the inventory control problem in multi-echelon environments and develop a
prototype using the reinforcement learning approach.

484 inventory optimization

r12.3 aggregate planning

The aggregate planning problems introduced in Section R12.1.3 can often be solved
using standard mathematical programming methods. In particular, tasks that require
the optimal inventory levels to be determined can usually be represented as linear pro-
gramming models, and tasks that require the determining of optimal locations among
available options can be formulated as integer programming models.

We can illustrate this approach using the inventory allocation task discussed in Sec-
tion R12.1.3. Let us assume an online retailer has n warehouses that collectively serve
customer orders from m regions (markets), as shown in Figure R12.5. At the beginning
of each season, the retailer estimates the total expected demand for each market and
then determines the optimal inventory level for each warehouse with a goal to max-
imize profits, minimize shipping costs, and avoid stock-outs. We further assume that
each product is optimized independently, product prices can be different across the
markets, and shipping costs can be different for each pair of a warehouse and market.
These assumptions lead us to the following linear program for each product:

max
qij

m
ÿ

j“1

pj

n
ÿ

i“1

qij ´

n
ÿ

i“1

m
ÿ

j“1

cijqij

subject to
n
ÿ

i“1

qij ď dj for j “ 1, . . . ,m

(R12.11)

where pj is the unit product price for market j, cij is the cost of shipping one unit
from warehouse i to market j, dj is the demand in market j, and qij is the number
of units that should be allocated at warehouse i for market j. In other words, we are
seeking to maximize the profits under the constraint that the merchandise must be
completely sold out by the end of the season. Once the optimal allocation values qij are
determined, they can be summed over markets to obtain the final stock levels for each
warehouse. In the linear programming formulation, the allocation values are the real
numbers, but we assume that they can be rounded to the integer unit quantities without
significant degradation of the decision quality. The integer programming formulation
can be used in applications that require higher precision.

This approach provides significant flexibility and can be used to construct more com-
plex models that incorporate a broad range of considerations. First, the basic model
specified above can be extended with additional costs and constraints such as the stor-
age cost and capacity constraints. Second, the optimization can be done for frequent
itemsets rather than for individual products to avoid order splitting. The third com-
mon extension is to optimize the inventory levels for multiple time intervals rather
than for one interval such as a season. Finally, aggregate planning can be integrated
with the price management processes discussed in Recipe R10 (Price and Promotion
Optimization) to coordinate supply and demand management. We do not aim to pro-
vide a comprehensive catalog of such model variants in this recipe, but a large number
of off-the-shelf models are readily available in the literature.

R12.4 single-echelon control policies 485

Warehouse i

Market j

cij

dj
pj

Figure R12.5: Example of the inventory allocation optimization problem.

The prototypes of the inventory allocation optimizers for
individual items and itemsets are available at
https://bit.ly/45RGr2c

r12.4 single-echelon control policies

The optimization techniques presented in the previous section can be applied iteratively
to manage not only the long-term allocation but the replenishment decisions as well.
The replenishment process, however, requires making repeated decisions based on the
current inventory state, so we can consider using a control policy instead of solving a
complete optimization problem at each iteration.

In this section, we discuss several standard rule-based policies for managing the
inventory in single-echelon environments. The properties of these policies are well-

https://bit.ly/45RGr2c

486 inventory optimization

researched for different environment models, and optimal policy parameters for the
environments that comply with such models can be determined using the formulas or
numerical procedures derived analytically. The disadvantage of the analytical approach
is that any change in the environment model results in a new optimization problem for
which an analytical solution might not be readily available. The alternative approach
is to develop a simulator of the environment that allows us to evaluate given policies
and search for optimal policy parameters. This approach helps with handling complex
scenarios such as cross-product dependencies to achieve greater fidelity of the model. In
this section, we develop analytical solutions and simulators in parallel for the standard
environments.

r12.4.1 Inventory Policies

In general, one can use an arbitrary sophisticated or irregular algorithm to place re-
plenishment orders. In practice, however, it is usually preferable to use regular and
relatively simple control policies because of logistics and production limitations, con-
tractual terms on both the supply and demand side, and other factors.

The first standard control policy we consider is known as a continuous review policy
that is defined as follows:

As soon as the net inventory reaches the threshold s or goes below it, order a fixed
number of units Q.

This policy is specified by two parameters, reorder point s and order quantity Q,
commonly abbreviated as (s, Q) policy. A conceptual example that illustrates its execu-
tion is presented in Figure R12.6. The first time the net inventory reaches the reorder
point, the order for Q units is placed, and these units are received with a delay that
corresponds to the lead time L. The net inventory, however, is sufficient to cover the
demand until the order is received. The second time the reorder point is reached, a re-
plenishment order is placed again, but the realized demand exceeds the net inventory
before the order is received, and stock-out occurs.

One of the main advantages of the continuous review policy is that the order quan-
tity is fixed, which usually allows overheads to be minimized and discounts maximized.
The policy also provides strict service level guarantees in the sense that the stock-out
time cannot exceed the lead time. The main disadvantage of the continuous review pol-
icy is the variable cycle duration. A replenishment order can be placed at any time but
this is not always possible in practice because of supply and transportation constraints.
The irregular order timing also makes it difficult to group orders together for multiple
SKUs.

The second standard policy we examine is a periodic review policy that operates ac-
cording to the following logic:

Every R time steps, order the difference between the up-to level S and net inventory.

Like the continuous review policy, the periodic review policy has two parameters:
review period R and up-to level S. Consequently, this policy is commonly abbreviated
as (R, S) policy. It is also common to call this policy a periodic review base-stock policy
and call parameter S a base-stock level. The execution of this policy is illustrated in

R12.4 single-echelon control policies 487

s

Time

St
oc

k
(u

ni
ts

)

L

Stock-out

L

Lost demand
or backorders

Q

Order
placed

Order
received

Q

0

Figure R12.6: The main concepts of the (s,Q) policy.

Figure R12.7 where the order placement cadence is fixed and is independent of the
inventory level, but the ordered amount can vary.

S

Time

St
oc

k
(u

ni
ts

)

L L

R

Q

Q

Lost demand
or backorders

L

R

Q

Stock-out

0

Figure R12.7: The main concepts of the (R,S) policy.

488 inventory optimization

The periodic review policy is the reverse of the continuous review policy in terms of
advantages and trade-offs. On the one hand, fixed replenishment cycles enable order
grouping, which helps to integrate production and transportation schedules. On the
other hand, the periodic review policy requires dealing with variable order quantities
and imposes a risk of stock-outs that can be as long as the review period. However,
the periodic review policy is arguably the most commonly used inventory control algo-
rithm.

The above concepts can be used to define more sophisticated control policies. For
example, one can define a (R, s, Q) policy that reviews the inventory every R units of
time and places an order of fixed quantity Q only if the net inventory is below the
threshold s. It is not uncommon for large companies to develop and use non-standard
control policies to meet their specific needs [Agarwal, 2014].

r12.4.2 Environment Simulator

The complete reference implementation for this section is
available at https://bit.ly/3R1mRfR

The parameters of the inventory control policies described in the previous section can
be optimized analytically under certain assumptions about the demand and lead time
distributions. The analytical approach helps to explain the fundamental dependencies
between various environment and policy parameters, but the practical use of analytical
solutions faces a number of challenges including the following:

• Analytical methods typically assume that the demand and lead times have certain
parametric distributions ppdq and ppLq, respectively, with the normal and gamma
distributions being the most common choices. This approach can be restrictive in
several ways. First, available theoretical solutions might not fit well in the real-
world environment, and adjusting or reworking these solutions analytically can
be prohibitively slow and expensive. Second, relatively limited changes in the en-
vironment layout might require a complete solution redesign. For example, there
is a major difference between how continuous and discrete demand distributions
need to be handled.

• Traditional models assume demand and lead time samples to be independent
and identically distributed values. In real environments, the demand and lead
time samples are not independent and follow complex patterns due to season-
ality, price changes, market-level trends and disruptions, and other factors. In
particular, the volatility of demand can change over time according to a complex
pattern requiring the inventory bufferization policy to change accordingly. Conse-
quently, the optimization model should generally incorporate forecasting models
similar to those we discussed in R9 (Demand Forecasting) which are challenging
to handle analytically.

The alternative to the analytical approach is to use simulations. Simulation-based
optimization is extremely versatile because the environment is specified in a procedu-

https://bit.ly/3R1mRfR

R12.4 single-echelon control policies 489

ral way allowing arbitrary complex assumptions and constraints to be incorporated
in a relatively straightforward way. The simulation-based approach is also consistent
with advanced control optimization methods such as reinforcement learning, so we use
simulations extensively in this recipe.

Our first step toward simulation-based optimization is to develop a single-echelon
supply chain simulator that can evaluate specific inventory control policies. This simu-
lator closely follows the environment description provided earlier in Section R12.1.4.1.
It tracks costs and service level metrics, supports arbitrary demand and lead time dis-
tributions, and allows arbitrary inventory control policies to be plugged in. These make
ordering decisions at every time step based on the environment’s state.

The best way to understand how the simulator works is to review an example output
presented in Figure R12.8. The simulation parameters are summarized in the lower
section of the figure. We specified three cost parameters (transaction cost k, variable
cost v, and holding cost h), chose to use an (s, Q) policy, and configured demand and
lead time samples to be drawn from the folded normal distribution defined as follows:

x „ N`pµ,σ2q ðñ x “ |y|, y „ Npµ,σ2q (R12.12)

0

20

40

0

1

2

3
Lead time

0

20

40

0.0

2.5

5.0

7.5

0 20 40 60 80 100 120
0

250
500
750

1000

Demand
Filled demand
Lost demand

Stock
Safety stock

Fixed costs
Variable costs
Holding costs

Orders

k = 10
v = 1

h = 0.1
d ~ N+(5, 2)

L ~ N+(0, 1)
(s, Q) : s=5, Q=10

Figure R12.8: Example run of the supply chain simulator.

490 inventory optimization

The simulator then executes the logic on the supplier, warehouse, and client sides
for 128 time steps, recording the order times and quantities, corresponding lead times,
current stock levels, actual and filled demands, and cumulative costs. These recorded
values are grouped into four time series charts presented in Figure R12.8. We can clearly
see the irregular sawtooth-like pattern which is expected for the continuous review
policy.

The simulator enables us to evaluate supply chain performance for various environ-
ment and policy parameters, to study the relationships and trade-offs between these
parameters, and to determine the optimal parameter combinations. We examine sev-
eral basic scenarios using this approach in the next sections, and the simulator can be
further extended to handle significantly more complex real-world problems.

r12.4.3 Scenario 1: Constant Demand, Zero Lead Time

We start with a basic scenario where the demand rate, that is the number of inventory
units sold during one time step, is assumed to be constant and lead time is assumed to
be zero. This is a strictly deterministic environment, so we do not need to create any
inventory buffers to protect against uncertainties of any kind, and the problem reduces
to the cost optimization.

Under the above assumptions, the continuous and periodic review policies are equiv-
alent, as illustrated in Figure R12.9. On the one hand, we can use a continuous review
policy with safety stock set to zero and order quantity Q which should be chosen based
on the cost considerations. On the other hand, we obtain exactly the same behavior us-
ing a periodic review policy with a review period set to R “ Q{dwhere d is the demand
rate, and the up-level equal to the order quantity, that is S “ Q. Consequently, the prob-
lem boils down to determining the cost-optimal order quantity Q which is commonly
referred to as the economic order quantity or EOQ.

Q, S

R R R
s = 0

d
Q, S

Time

St
oc

k
(u

ni
ts

)

Figure R12.9: Replenishment process with a constant demand rate and zero lead times.

To determine the optimal order quantity Q, we can first express the total costs for
some long time period of τ time steps as

cτpQq “ h
Q

2
` k

τd

Q
` vτd (R12.13)

R12.4 single-echelon control policies 491

where the first term corresponds to the holding costs (the average stock level, as
shown in Figure R12.9, is Q{2), the second term is transaction costs, and the last term
is variable costs. We next take the derivative with respect to Q

dcτpQq

dQ
“
h

2
´ k

τd

Q2
(R12.14)

and, equating it to zero, we obtain the following expression for the economic order
quantity, assuming a planning horizon τ:

Q˚ “

c

2kτd

h
(R12.15)

This result agrees with the intuition that it makes sense to order larger batches when
the transaction costs are relatively high, and smaller batches when the holding costs are
relatively high. The relationship given by R12.15 is one of the oldest classical inventory
optimization models [Harris, 1913; Wilson, 1934].

The result R12.15 can be reformulated in terms of the periodic review policy by set-
ting the up-to level to S˚ “ Q˚ and computing the review period as the ratio between
the economic order quantity and the total demand for the planning horizon:

R˚ “
Q˚

τd
“

1

τd

c

2kτd

h
“

c

2k

τdh
(R12.16)

We can perform more elaborate analyses using simulations. In the first experiment,
we draw the demand and lead time from a low-variance folded normal distribution,
so that the samples are near-constant but the sensitivity to random deviations is also
measurable. We also set the safety stock threshold to be a small positive value instead
of zero to maintain a near-perfect fill rate in the presence of these deviations. We then
evaluate a number of (s, Q) policies with different order quantity values separately ,
and plot the holding, fixed, and total costs, as well as the fill rate in Figure R12.10. For
each value of Q, we perform multiple simulations, so we can measure the variance of
the estimated costs as well. The result agrees with the analytical solution. There is a
global minimum for the total costs at the point where the fixed costs match the holding
costs.

This visualization also enables several versions of the sensitivity analysis. First, we
can see that the total costs stay relatively flat around the minimum, so the order quan-
tity can be adjusted in a relatively wide range without a significant impact on perfor-
mance. In this particular example, the optimal order quantity of around 30 units can
be changed to 20 or 40 (because of batching considerations, for instance), with a very
small impact on the total costs. Second, we can see that the variance of the cost esti-
mates increases slightly but consistently as the order quantity increases because of the
finite simulation duration. Finally, it is important to monitor that the fill rate and its
variance stay relatively flat over the entire range of evaluated parameters to ensure that
the apple-to-apple comparison of the estimated costs can be made.

The second experiment we do is more comprehensive, and it aims to analyze the
interplay of the safety stock and order quantity parameters in the (s, Q) policy. The
result is presented in Figure R12.11 where each point on a two-dimensional grid is

492 inventory optimization

100

200

300

400

500

600

700

800

20 40 60 80

0.998
1.000 Fill rate

Holding costs
Fixed costs
Total costs

k = 10
v = 1

h = 0.1
d ~ N+(5, 0.5)

L ~ N+(0, 0.5)
(s, Q) : s = 10, Q = 10..100

Q

Co
st

s

Figure R12.10: Economic order quantity optimization using simulations. The width of the shaded
areas is two standard deviations around the mean.

obtained by averaging the results of multiple simulation sessions. The total cost profile
in Figure R12.10 basically corresponds to a horizontal slice of the total cost surface
shown on the right-hand image in Figure R12.11 at a fixed value of the safety stock.

10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9 Fill rate

10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9 Total costs

0.900

0.915

0.930

0.945

0.960

0.975

0.990

1.005

350
400
450
500
550
600
650
700
750
800

s s

QQ

k = 10
v = 1

h = 0.5
d ~ N+(5, 0.5)

L = 0
(s, Q) : s = 1 .. 10, Q = 10 .. 100

Figure R12.11: Pareto frontier analysis for the safety stock and order quantity parameters.

Since we use near-constant but not perfectly constant demand distribution, the fill
rate can degrade at low levels of the safety stock as apparent from the left-hand image
in Figure R12.11. Consequently, there is a complex interplay between the service level
and cost considerations. For example, the cost can be minimized only down to a certain
level if we require the fill rate to be near-perfect (e.g. above 0.99), but lower costs can
be achieved if the fill rate requirements are relaxed. We can precisely visualize the

R12.4 single-echelon control policies 493

Pareto frontiers that describe the best achievable result according to one performance
metric under the constraints in another metric by overlaying the left and right images
presented in Figure R12.11.

In this section, we used the stochastic demand and safety stock only to illustrate the
sensitivity and trade-off analysis. The optimization of the safety stock parameters in the
face of uncertainty, however, is the central problem in inventory management, and we
study it in the next sections in greater detail, both analytically and through simulations.

r12.4.4 Scenario 2: Constant Demand and Lead Time

The second scenario we consider also assumes that the demand and lead time are
constant, but the lead time can be greater than zero. Nonzero lead time basically means
that a replenishment order should be placed at a point when the on-hand inventory
becomes insufficient to cover the demand that is expected to realize during the lead
time. This scenario is depicted in Figure R12.12.

R

s

L

dL

S

dR
ItSt

oc
k

(u
ni

ts
)

Time
0

Figure R12.12: Replenishment process with constant demand and lead times.

The assumption about the nonzero lead time impacts the continuous and periodic
review policies as follows:

continuous review In the case of a continuous review policy, we need to only
change the reorder threshold s to place orders proactively to ensure that the lead
time interval is covered. Assuming the constant demand rate d, lead time L, and
denoting the demand realized during the lead time as dL, we get the following
threshold:

s “ dL “ dˆ L (R12.17)

The optimal order quantity Q can still be computed using expression R12.15

periodic review In the case of the continuous review policy, we need to change the
up-to level S to cover both the review period demand dR and lead time demand
dL which results in the following rule:

S “ dL ` dR “ dˆ L` dˆ R (R12.18)

The corresponding optimal review period R can be calculated using expres-
sion R12.16.

494 inventory optimization

For both (s, Q) and (R, S) policies, the amount of in-transit inventory It is determined
only by the lead time and demand rate:

It “ dˆ L (R12.19)

We can summarize that, in the deterministic environment, we can incorporate a non-
zero lead time into the analytical solution in a relatively straightforward way, and the
same can be done for simulations. The case of a stochastic lead time, however, can be
somewhat more sophisticated and we explore this case in great detail in one of the next
sections.

r12.4.5 Scenario 3: Stochastic Demand, Constant Lead Time

We turn next to building an inventory control policy that is resilient to uncertainties,
and the first step is to replace the constant demand with stochastic demand. Let us
assume that the demand samples are drawn from the normal distribution:

d „ Npµd, σ2dq (R12.20)

This commonly used assumption is not perfect because it allows for negative de-
mand, which is invalid. However, it is feasible practically when the demand variance
is small compared to the mean which is usually the case.

We next want to quantify the amount of inventory needed to maintain a certain
cycle service level α. Recall that the probability that a value drawn from the standard
normal distribution does not exceed threshold z is given by the cumulative distribution
function Φpzq:

Φpzq “ ppx ď zq “

ż z

´8

ppxqdx, x „ Np0, 1q (R12.21)

Consequently, the level of inventory needed to guarantee that the probability of a
stock-out even during one time step will not exceed α can be expressed using the
inverse cumulative distribution function Φ´1pαq:

Iα “ µd ` σdΦ
´1pαq “ µd ` I

s
α (R12.22)

The first term in this expression can be interpreted as the expected demand that
needs to be covered, and the second term, which we denoted as Isα, is the safety stock
that is proportional to both the demand variance and the required service level.

The total demand over τ independent and identically distributed time steps has the
mean of τµd and variance equal to σd

?
τ, and thus the level of inventory needed to

cover τ time steps is as follows:

Iαpτq “ τµd `Φ
´1pαq ¨ σd

?
τ “ τµd ` I

s
αpτq (R12.23)

where Isαpτq is the safety stock for period τ. The above result has the following
implications on the inventory control policies:

R12.4 single-echelon control policies 495

continuous review Under a continuous review policy, the maximum time one has
to wait to receive the order is equal to the lead time L. Therefore, the reorder
point can be calculated by evaluating expression R12.23 for L time steps:

s “ dL `Φ
´1pαq ¨ σd

?
L (R12.24)

The first term is the mean demand that is expected to realize during the lead
time, and the second term is the safety stock. The optimal order quantity Q is
still calculated using the EOQ model.

periodic review For a periodic review policy, the maximum time one needs to wait
for a replenishment is the sum of a review time and a lead time, so the up-to level
should be computed by evaluating the expression R12.23 for L` R time steps:

S “ dR ` dL `Φ
´1pαq ¨ σd

?
R` L (R12.25)

where dR and dL are the expected demands for the review period and lead time,
respectively. In a similar manner to the continuous review policy, the review pe-
riod R is set based on the cost considerations.

The above analysis provides the basic framework for inventory optimization under
the stochastic demand. We start with linking the demand variance to the probability
of a stock-out at a certain time step, then provide a rule for demand aggregation over
multiple time steps, and finally update the policy parameters to achieve the required
service level. This framework can be extended further to account for non-stationary
demand, correlated demand samples, and other complexities of real-world environ-
ments, but the analytical solution gets quickly convoluted as additional requirements
and details mount up.

The alternative approach is to use simulations, and the simulator we have previously
developed provides all the necessary capabilities to perform the safety stock analysis.
The most basic experiment we can do is to examine how the cycle service level α
depends on the reorder level parameter s. The simulation results for a setup with the
folded-normally distributed demand are presented in Figure R12.13. It is apparent that
the dependency curve closely follows the cumulative distribution function (CDF) of the
folded normal distribution which agrees with the theoretical analysis presented above.
It is also apparent that the improvement delivered by the safety stock increase follows
the law of diminishing returns, and achieving high service levels such as α “ 0.999 can
be prohibitively expensive due to high inventory storage costs.

A more comprehensive view can be obtained by changing both the demand variance
and reorder level, as shown in Figure R12.14. This analysis indicates that the cycle
service level is sensitive to the demand variance, and relatively small changes in the
demand distribution are required to significantly increase the safety stock level in order
to maintain the given service level. We can also see that the fill rate, which is defined
as a continuously changing ratio, is less sensitive to demand variance than the service
level which is defined using the all-or-nothing rule (stock-out or no stock-outs).

The simulation model can also be used to analyze the dependency between the ser-
vice levels and inventory costs. We have previously stated that order quantity Q and
review period R can be computed using the EOQ model that was originally developed

496 inventory optimization

5.0 10.0 15.0

0.2

0.4

0.6

0.8

1.0
Se

rv
ic

e
le

ve
l

s

k = 10
v = 1

h = 0.5
d ~ N+(10, 3)

L = 0
(s, Q) : s = 1..20, Q = 20

Figure R12.13: The trade-off between the reorder level and cycle service level. The width of the
shaded area corresponds to two standard deviations.

2 4 6 8 10 12 14
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 Fill rate

2 4 6 8 10 12 14
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 Service level

0.795

0.825

0.855

0.885

0.915

0.945

0.975

1.005

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

k = 10
v = 1

h = 0.5
d ~ N+(10, 0..5)

L = 0
(s, Q) : s = 1..16, Q = 20

ss

σd σd

Figure R12.14: Dependency between the reorder level, demand variance, and service levels.

for the case of deterministic demand. This statement is not perfectly accurate for the
stochastic setup because stock-outs can occur, and this invalidates the basic assumption
about the holding costs we made to derive the EOD formulas. This limitation can be
addressed by incorporating stock-outs into the cost equation and performing simulta-
neous optimization of s and Q (or R and S) parameters.

R12.4 single-echelon control policies 497

r12.4.6 Scenario 4: Stochastic Demand and Lead Time

In real-world supply chains, the lead time is usually a complex variable that includes
multiple components such as the time needed by a supplier to review the order, in-
corporate it into the production schedule, and prepare the freight for shipment; trans-
portation time; and delays associated with various disruptions such as storms and
labor strikes. Many of these components are associated with at least some level of un-
certainty, and thus the lead time should generally be modeled as a stochastic variable.
In this section, we consider a scenario that assumes both the demand and lead times to
be random variables.

We have previously established that the safety stock Is required to absorb the de-
mand variance depends on the cycle service level α, magnitude of the variance σd, and
duration τ of the interval that needs to be covered (see expression R12.23):

Isαpτq “ Φ
´1pαq ¨ σd

?
τ (R12.26)

We have also shown that the continuous and periodic review policies have different
intervals to be protected (expressions R12.24 and R12.25), but this interval depends on
the lead time L in both cases. Assuming that the lead time is a random variable, we
need to develop a new version of expression R12.26 under the assumption that the
interval duration τ is stochastic.

We can start with the general fact for a sum of random variables. Let us assume n
independent and identically distributed variables x with n being a random variable
itself. It then can be shown that the sum of these variables

y “ x` x` . . .` x
loooooooomoooooooon

n times
(R12.27)

has the following mean and variance:

E rys “ E rnsE rxs

Var rys “ E rnsVar rxs `Var rnsE rxs2
(R12.28)

Going back to the inventory management problem, we can assume that the lead time
is normally distributed

L „ NpµL, σ2Lq (R12.29)

and the demand that needs to be protected using the safety stock is a sum of either
L or L` R demand values d, depending on which policy we use. Consequently, we can
rewrite the rules developed in the previous section as follows:

continuous review The continuous review policy has a risk period of L time steps,
and thus we can derive the following expression for the safety stock by replacing
the variance in expression R12.26 with the variance computed using rule R12.28:

Isαpτq “ Φ
´1pαq ¨

b

µLσ
2
d ` σ

2
Lµ
2
d

(R12.30)

periodic review Under the periodic review policy, the risk period is L` R where
R is a constant review period, so we get the following expression for the safety
stock:

Isαpτq “ Φ
´1pαq ¨

b

pµL ` Rqσ
2
d ` σ

2
Lµ
2
d

(R12.31)

498 inventory optimization

The above expressions suggest that small changes in the lead time variance σ2L can
have a major impact on the service level when the expected demand µd is large. This
can also be illustrated using simulations. The example presented in Figure R12.15

shows how the increase in the lead time variance causes a far more severe degrada-
tion of the fill rate and cycle service level compared to the increase in the demand
variance.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Fill rate

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Service level

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

1.00

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

1.04

k = 10
v = 1

h = 0.5
d ~ N+(5, 0..4)

L ~ N+(0, 0..4)
(s, Q) : s = 10, Q = 20

σd σd

σL σL

Figure R12.15: Dependency between the demand variance, lead time variance, and service levels.

r12.4.7 Lost Sales and Demand Unconstraining

All analytical models and simulation techniques discussed in the previous sections
assume that the demand distribution is known. Most of these methods, particularly
those that are simulation-based, can readily be extended to use time-dependent de-
mand forecasts rather than assuming that demand samples are independent and iden-
tically distributed. We have discussed the demand estimation and forecasting methods
in Recipe R10 (Price and Promotion Optimization) and emphasized that the forecasting
based on the sales data with stock-outs can result in underestimates, and specialized
demand unconstraining procedures should be used to work around this problem. In
this section, we review the stock-out problem once again but this time through the lens
of the inventory management problem.

In an ideal supply chain, all the demand generated by clients is converted into sales.
Historical sales data are used to build a demand forecast, inventory is replenished in
time according to this forecasts, and then the cycle repeats. If the realized demand
exceeds the on-hand inventory, the excess demand translates into backorders or lost
sales, as depicted in Figure R12.16. Backorders are eventually converted into sales and
accounted for in the forecast, but lost sales are generally challenging to measure even
with the aid of demand unconstraining models. Underestimated lost sales result in
underestimated demand forecasts, then lower-than-needed inventory levels, stock-outs,

R12.5 multi-echelon control policies 499

and finally additional lost sales. This process can repeat itself, turning into a downward
spiral if not controlled properly.

Demand

Sales

Forecast

Inventory

Excess demand

Lost sales

Backorders

Unconstraining

Unaccounted lost sales

Figure R12.16: The impact of lost sales on the inventory management process.

The flow depicted in Figure R12.16 suggests that the problem of unaccounted lost
sales can be mitigated using backorders and demand unconstraining techniques. Back-
orders are commonly used in B2B environments, and B2B clients are generally accus-
tomed to it, but lost sales can still occur due to switching to alternative providers with
better SLAs, reputation damages, and other hard-to-measure factors. In B2C verticals,
such as retail, stock-outs are much more likely to result in lost sales due to the higher
availability of alternatives and less common use of backorders. Demand unconstraining
can help to correct the forecasts under such circumstances, but the problem is known
to be challenging because of complex long-term effects related to brand perception and
shifts in purchasing behavior.

r12.5 multi-echelon control policies

The models discussed in the previous sections help to optimize inventory decisions at
one node, but multi-echelon supply chains introduced in Section R12.1.4.2 generally
require the coordination of inventory decisions across the nodes. To see this, consider
a supply chain that includes three serially connected nodes: factory warehouse, dis-
tribution center, and retail location. These three nodes have different holding costs,
transaction costs, and lead time distributions. Depending on the ratios between these
parameters, it might be optimal to maintain safety stock only at the retail location and
keep no inventory at the factory and distribution center, or to maintain safety stock
only at the distribution center, or to evenly distribute safety stock across all three ech-
elons. We can optimize inventory control policies at each of these nodes in isolation
using single-echelon methods, but this requires freezing the service levels of the up-
stream nodes (suppliers) and demand levels of the downstream nodes (consumers).

500 inventory optimization

These levels, however, are determined by the policies used at the corresponding nodes,
and these policies are also the subjects of optimization. Consequently, all policies need
to be optimized simultaneously.

In this section, we discuss two approaches for managing supply chain systems with
multiple echelons. The first one is to operate each node using a standard single-echelon
policy such as a periodic review policy, but to jointly optimize the policy parameters
for all nodes with a goal to minimize the overall system cost or maximize profits. In the
traditional supply chain theory, there are two primary types of models for performing
such an optimization, stochastic service model and guaranteed-service model, and we con-
sider both of them in detail. The second option is dynamic policy learning based on
the interactions with the environment simulator using reinforcement learning, and we
build a prototype for this.

r12.5.1 Stochastic Service Models

In stochastic service models (SSMs), we assume that the nodes are controlled by peri-
odic review policies and, if a node runs out of stock, this impacts the lead times for
the downstream nodes. Since the stockout events are stochastic, each node provides
stochastic lead times to its successors even if the transportation time is constant. Al-
though we previously discussed how to optimize the periodic review policy given a
certain lead time distribution, these methods are not directly applicable to the multi-
echelon case because the lead time distributions are influenced by stockouts and cannot
be easily estimated. In this section, we develop a solution that addresses this challenge.

r12.5.1.1 Serial Network

Let us start with the serial topology and introduce additional notation to facilitate the
analysis. Assuming a serial network with n nodes, we label these nodes as shown in
Figure R12.17, so that the node adjacent to the consumer is 1 and the node adjacent to
the supplier is n. We also use the term echelon to refer to a node with all its successors,
so that the j-th echelon means a set of nodes j, j´ 1, . . . , 1.

...Supplier Consumer

Echelon n
Echelon n-1 Echelon 1

Node n Node n-1 Node 1

Figure R12.17: Serial multi-echelon network.

We denote the local on-hand inventory at node j as Ihj and inventory that is in-transit
from node j to j´ 1 as Itj . We also define the on-hand inventory of the j-th echelon as
a sum of the local and in-transit inventories within the echelon’s boundaries:

Iehj “

j
ÿ

i“1

´

Ihi ` I
t
i´1

¯

(R12.32)

R12.5 multi-echelon control policies 501

where It0 is assumed to be zero. We further define the local and echelon inventory
levels as follows:

Ilj “ I
h
j ´ I

b
j

Ielj “ Iehj ´ Ib1
(R12.33)

where Ibj is the inventory backordered by node j. Note that the echelon inventory
level accounts only for the backorders at node 1, but not the upstream nodes. The
echelon inventory position is defined as the sum of the inventory level and on-order
inventory:

I
ep
j “ Ielj ` I

o
j (R12.34)

Next, we denote the holding costs at node j as hj, and holding costs of the j-th
echelon as:

hej “ hj ´ hj`1 (R12.35)

We generally assume that hj ą hj`1 reflecting the fact that some value is added at
each stage of the value chain, so that the echelon holding cost can be interpreted as
the added value. The total holding cost can be expressed using either local or echelon
variables:

c “

n
ÿ

j“1

hej I
eh
j (using echelon variables)

“

n
ÿ

j“1

phj ´ hj`1q

j
ÿ

i“1

´

Ihi ` I
t
i´1

¯

“

n
ÿ

j“1

hj

´

Ihj ` I
t
j´1

¯

(using local variables)

(R12.36)

The last transition is performed by canceling out the terms inside the telescopic sum.
Finally, we define the lead-time demand dj at node j as the cumulative demand over
the time period R` Lj where R is the review period and Lj is the stochastic lead time.

r12.5.1.2 Periodic Review Policy for Serial Network

We assume that each echelon is associated with a periodic review policy. More specifi-
cally, each echelon has a fixed base-stock level Sej , and it places an order as needed to
bring its echelon inventory position Iepj equal to Sej at every review period. We also
assume that the review period is equal to one for all policies (inventory is reviewed
at every time step) and it is not the subject of optimization. Consequently, the control
parameters for the entire network can be represented as vector s “ pS1, . . . ,Snq.

502 inventory optimization

r12.5.1.3 Policy Optimization for Serial Network

It follows from definitions R12.33 and R12.36 that the expected cost of the system given
the base-stock levels can be expressed as follows:

cpsq “ E

»

–

n
ÿ

j“1

hej I
el
j ` pb` h1q

”

Iel1

ı´

fi

fl (R12.37)

where b is the stockout cost. In principle, the cost-minimizing parameters s˚ can be
determined by performing the grid search over the parameter space s and evaluating
the cost at each point using simulations. This brute force solution is not scalable as its
complexity grows exponentially with the size of the network. Fortunately, it is possible
to derive a recursive algorithm for computing the optimal base-stock levels [Clark and
Scarf, 1960; Chen and Zheng, 1994].

Let us define the echelon inventory-transit position as the echelon inventory level
plus the inventory shipped from the upstream node (or, alternatively, all items that
have been ordered from the upstream node but not yet received minus the backorders
at the upstream node):

I
etp
j “ Ielj ` I

t
j “ I

ep
j ´

”

Ilj`1

ı´
(R12.38)

We can formulate the following properties based on the above definitions:

1. If the supplier never has stockouts, then the n-th echelon’s inventory position is
equal to its base-stock levels at any time:

I
ep
n “ I

etp
n “ Sn (R12.39)

2. The inventory level at the end of a time interval is the difference between the
inventory-transit position (in-flow) at the beginning of the interval and demand
(out-flow):

Ielj pt` Ljq “ I
etp
j ptq ´ dj (R12.40)

3. Since we review the inventory at every time step, the inventory-transit position
I
etp
j is equal to the target level Sj unless the upstream inventory is insufficient to

cover the demand:

I
etp
j´1 “ min

”

Sj´1, Ielj
ı

(R12.41)

Next, let us introduce the following three functions that estimate the system cost
conditioned on specific states of the system:

cjpy | sq “ E
”

cpsq | Ietpj “ y
ı

pcjpx | sq “ E
”

cpsq | Ielj “ x
ı

cjpx | sq “ E
”

cpsq | Ielj`1 “ x
ı

(R12.42)

The total expected cost of the system is determined by the total amount of the inven-
tory contained in it which, in turn, corresponds to the inventory-transit position Ietpn

R12.5 multi-echelon control policies 503

of the last echelon. According to property R12.39, this position is equal to the eche-
lon’s base-stock level, so the total expected cost of the system is equal to cnpSn | sq.
Consequently, our goal is to obtain the vector of base-stock levels that minimizes this
cost.

We can obtain recursive formulas for functions R12.42. First, we set the base case as
follows:

c0px | sq “ pb` h1qx´ (R12.43)

This enables us to rewrite the cost of the first echelon conditioned on the inventory
level as:

pc1px | sq “ E

„

he1I
el
1 ` pb` h1q

”

Iel1

ı´ ˇ

ˇ Iel1 “ x

“ he1x` c0px | sq
(R12.44)

The cost conditioned on the echelon’s inventory-transit position can then be rewritten
using property R12.40 as:

c1py | sq “ E

„

he1I
el
1 ` pb` h1q

”

Iel1

ı´ ˇ

ˇ I
etp
1 “ y

“ Ed1

„

E

„

he1I
el
1 ` pb` h1q

”

Iel1

ı´ ˇ

ˇ Iel1 “ y´ d1

“ E rpc1py´ d1 | sqs

(R12.45)

Finally, a recursive expression for the cost conditioned on the inventory level can be
obtained using property R12.41:

c1px | sq “ E

„

he1I
el
1 ` pb` h1q

”

Iel1

ı´ ˇ

ˇ Iel2 “ x

“ E

„

he1I
el
1 ` pb` h1q

”

Iel1

ı´ ˇ

ˇ I
etp
2 “ min rS1, xs

“ c1pmin rS1, xs | sq

(R12.46)

These relationships hold for all other echelons, so we can state that a serial network
obeys the following cost equations:

pcjpx | sq “ hej x` cj´1px | sq

cjpy | sq “ E
“

pcjpy´ dj | sq
‰

cjpx | sq “ cjpmin
“

Sj, x
‰

| sq

(R12.47)

for any 1 ď j ď n. Since cj depends only on Sj´1, . . . ,S1, we can optimize the
base-stock levels one by one starting from the first echelon and moving toward the last
echelon. The complete optimization algorithm is presented in box R12.1. This algorithm
finds the cost-optimal vector of base-stock values s˚ in linear time for an arbitrary serial
network.

The vector of base-stock values s˚ can be interpreted in two ways. On the one hand,
it is a set of variables that support the operational reordering decisions. On the other
hand, we can view this vector as strategic guidance on where the inventory reserves
should be placed. This later formulation is known as the strategic safety stock placement
problem or SSSPP.

504 inventory optimization

Algorithm R12.1: Optimization of the base-stock levels in a serial multi-echelon
network

Assign c0pxq “ pb` h1qx´

for j “ 1, . . . , n do

pcjpxq “ h
e
j x` cj´1pxq

cjpyq “ E
“

pcjpy´ djq
‰

(Estimated using simulations or analytically)

S˚j “ argmin
y

cjpyq

cjpxq “ cj
´

min
”

S˚j , x
ı¯

end

Output s˚ “ pS˚1 , . . . , S˚nq as the optimal base-stock vector and cnpS˚nq as the
optimal system cost.

r12.5.1.4 Extensions and Limitations

The optimization of the policy parameters in the stochastic service model is a quite
challenging task even for the serial topology. It can also be shown that any assembly
network can be solved under certain assumptions by remodeling it as an equivalent se-
rial network, computing the optimal control parameters for this serial network using a
standard algorithm like R12.1, and mapping the results back to the initial assembly net-
work [Rosling, 1989]. However, the optimization of the distribution and tree topologies
is a much harder problem that usually requires the use of specialized heuristics [Sny-
der and Shen, 2019]. These challenges make the stochastic service model intractable for
many complex real-world scenarios. This motivates the development of the alternative
solutions discussed in the next section.

r12.5.2 Guaranteed-Service Models

The problem of inventory policy optimization in a multi-echelon environment can be
approached using the idea that, in order to meet the final customer service require-
ments, each echelon needs to guarantee certain service times. Safety stock at each node
can then be computed to ensure these guarantees. In this section, we discuss the imple-
mentation of this idea, known as the guaranteed-service model (GSM) [Simpson, 1958].

The guaranteed-service models aim to solve exactly the same problem as the stochas-
tic service models, which is to determine the optimal base-stock parameters for regular
review policies, but using a different mathematical framework operating with bound-
aries instead of expected values. This approach dramatically simplifies the analysis
compared to the stochastic service models and enables optimization of complex topolo-
gies.

R12.5 multi-echelon control policies 505

r12.5.2.1 Single-Node Model

To explain the main concepts of the guaranteed-service model, we start with defining
a basic single-node network. We further use this node model as a basic building block
to assemble more complex topologies.

Let us consider a single node that sources the items from the supplier and delivers
them to the consumer, as shown in Figure R12.18. The central assumption we make
in the guaranteed-service models is that demand over any time period τ is strictly
bounded by the finite and known value Dpτq. In real-world environments, this assump-
tion is often not valid, but, at the same time, it is often safe to assume that the demand
that exceeds the boundary can be handled outside of the model using means like out-
sourcing and overtime shifts. Consequently, the bounded demand assumption is gener-
ally practical. For example, assuming that the actual demand at any time step is drawn
from the normal distribution, that is dt „ Npµ,σ2q, we can set the demand boundary
for τ time steps as:

Dpτq “ µτ` zασ
?
τ (R12.48)

so that the demand above zα standard deviations above the mean is ignored by the
model, but is handled in a different way in the real network.

Supplier Consumer
ToutTin

L
dt Σdt ≤ D(τ)

τ

Figure R12.18: A single-node guaranteed-service model.

We further assume that the node guarantees to fulfill any demand that does not
exceed the boundary in Tout time steps which is called the service time of the node. The
supplier, in turn, is assumed to guarantee the service time T in to the node itself. Finally,
we denote the processing time at the node as L.

The difference between the replenishment time (supplier’s service time plus process-
ing time) and the service time of the node is known as the net lead time or critical
interval:

τc “ T in ` L´ Tout (R12.49)

This value determines the amount of stock that the node needs to hold in order to
meet the demand. For example, the base-stock level for a periodic review policy can be
computed using expression R12.25 for boundary R12.48 as follows:

S “ µτc ` zασ
?
τc (R12.50)

This amount of inventory guarantees that the node will always be able to meet any
bounded demand within its service time Tout. The first term in this expression corre-
sponds to the expected demand, and the second term corresponds to the safety stock:

Isα “ zασ
?
τc “ Dpτcq ´ µτc (R12.51)

506 inventory optimization

The safety stock computed using this formula is zero when Tout “ T in ` L, and
reaches its maximum Isα “ zασ

a

T in ` L when the immediate delivery, that is Tout “ 0,
is guaranteed.

The relationship between the service times and stock levels is visualized in Fig-
ure R12.19. We start at time t with some inventory position and place an order to
replenish the inventory up to the level S. The ordered inventory will be received, pro-
cessed, and ready by time t` T in ` L. The demand observed during the interval from
t to t` τc needs to be served by that time as well. If the realized demand is zero,
the inventory will simply be replenished up to S by the end of the processing time. If
the maximum demand of Dpτcq units is realized, it is will be fully covered using the
on-hand and received inventory.

Tin L

Toutτc

μτc

S = D(τc)

t

Safety
stock

Inventory
position

Time

Up-to S order
is placed

Order is received
and processed

Zero demand scenario Maximum demand scenario

Figure R12.19: Safety stock in the GSM model.

r12.5.2.2 Policy Optimization for Tree Topology

The distribution, assembly, and tree multi-echelon topologies can be modeled by com-
bining multiple GSM nodes. Let us consider a tree topology with a set of supply nodes,
a set of demand nodes, and a network of intermediate nodes, as shown in Figure R12.20.
We assume that node i requires φij units of inventory from upstream node j to pro-
duce one output unit, and denote the lead time needed to produce this unit provided
sufficient supply from all upstream nodes as Li. We also denote the holding costs at
node j as hj and sets of its upstream and downstream nodes as Aj and Bj, respectively.

We further assume that each demand node k P E observes demand values dk drawn
from a stationary process with mean µk:

dkptq „ ppdkq and E rdks “ µk (R12.52)

R12.5 multi-echelon control policies 507

Lj, hj

Aj BjSupply
nodes

Demand
nodes

(E)

Tk
client

φij
i

dk

j

Figure R12.20: Supply chain representation in the GSM model.

This demand is propagated back through the network proportionally to the bill of
materials coefficients φij, so that the demand at node j and its mean are as follows:

djptq “
ÿ

iPBj

φijdiptq

µj “
ÿ

iPBj

φijµj
(R12.53)

Similar to the single-node GSM model, we make assumptions about the demand
boundaries. First, we assume that the demand at each node is bounded by Djpτq:

djpt´ τ` 1q ` djpt´ τ` 2q ` . . .` djptq ď Djpτq (R12.54)

and this assumption holds for any time interval τ “ 1, . . . ,Mj where Mj is the
maximum replenishment time defined recursively as:

Mj “ Lj `max
“

Mi | i P Aj
‰

(R12.55)

Finally, we assume that each node j guarantees the same service time Tout
j to all

downstream nodes. The service time guarantee means that node j must fill the demand
requested by any of its successors i P Bj in Tout

j time steps or less, and, in particular,

each demand node k P E guarantees the service time of T client
k to its external clients. This

assumption implies that the time needed for node j to receive the inventory ordered
from the upstream nodes Aj is also limited by time T in

j . Consequently, the safety stock
at node j can be defined, analogously, to expression R12.51, as follows:

Isj,αpT
in
j , Tout

j q “ Dj

´

T in
j ` Lj ´ T

out
j

¯

´ µj ¨
´

T in
j ` Lj ´ T

out
j

¯

(R12.56)

The above assumptions allow us to formulate the optimization problem for service
times in mathematical programming terms as follows:

min
T in
j , T out

j

ÿ

j

hj ¨ I
s
j,αpT

in
j , Tout

j q

subject to T in
j ` Lj ´ T

out
j ě 0

Tout
i ď T in

j , i P Aj paq

Tout
j ď T client

j , j P E pbq

Tout
j , T in

j ě 0 and integer pcq

(R12.57)

508 inventory optimization

In this problem specification, the objective function corresponds to the total holding
costs for the safety stock. Constraint (a) requires that for any intermediate or demand
node j, all of its source nodes have to have service times less than their input time.
Constraint (b) requires service times at the demand nodes to meet the guarantees to
the external clients. Finally, constraint (c) requires the service times to be non-negative
integers.

In a general case, optimization problem R12.57 can be solved using mathematical
programming methods. The solution is a set of guaranteed service times that can be
used to determine the safety stocks at all nodes based on expression R12.56 and then
initialize the corresponding base-stock periodic review policies. The problem can also
be converted into a dynamic programming formulation to reduce the computational
complexity [Graves and Willems, 2000].

The general multi-echelon GSM model can be used to derive relatively simple rules
for some special cases such as serial supply chains, so that only a few policy combi-
nations might need to be evaluated instead of solving a general optimization problem.
The GSM approach, however, assumes a relatively simple environment model that does
not support several important features such as stochastic lead times. These gaps are
partly addressed in more specialized extensions and modifications of GSM [Humair
et al., 2013; Eruguz et al., 2016], but it is generally challenging to solve such advanced
cases using the analytical approach. One notable alternative to dealing with these com-
plexities analytically is to use general methods from control theory and reinforcement
learning. We spend the next section building a prototype that demonstrates both the
advantages and shortcomings of this approach.

r12.5.3 Control Using Reinforcement Learning

The complete reference implementation for this section is
available at https://bit.ly/45QDPBK

Thus far, we have discussed two principal approaches to inventory optimization;
analytical models and simulations. We have seen that the simulators can be used to
evaluate supply chain performance for specific combinations of parameters, and it is
also possible to build various value maps to graphically identify the optimal configura-
tions. We can further combine the simulators with parameter optimization algorithms
such as grid search or Bayesian optimization to automatically find optimal configura-
tions. This approach is feasible in practice, but searching through a multidimensional
space of parameters is computationally heavy, and this imposes certain limitations on
the problem size and level of sophistication of the control policies. The brute force ap-
proach becomes particularly challenging for multi-echelon problems where the number
of possible control configurations grows exponentially with the number of nodes.

We can attempt to improve the efficiency of the optimization process using rein-
forcement learning methods that are specifically designed to learn control policies in a
sample-efficient way by interacting with the simulation environment. We demonstrate

https://bit.ly/45QDPBK

R12.5 multi-echelon control policies 509

this approach using a custom environment that is substantially more complex than the
academic models we used previously. This environment includes multiple locations of
different types, production and transportation controls, seasonal demand changes, and
storage capacity constraints.

r12.5.3.1 Environment Specification

We start by defining the environment model that includes a factory, central factory
warehouse, and w distribution centers [Kemmer et al., 2018; Oroojlooyjadid et al., 2017].
An instance of such an environment with three warehouses is shown in Figure R12.21.

Factory

Factory
warehouse

Distribution
center 2

Distribution
center 1

Distribution
center 3

a0,t – production level at time t
z0 – production cost per unit

aj,t – number of products shipped to DC j at time t
zT – transporation cost per unit for DC j

qj,t – stock level at DC j at time t
cj – maximum capacity of DC j
zP – penalty cost at DC j
zS – storage cost at DC j
dj,t – demand at DC j and time t
p – product price for retailers

q0,t – stock level at the factory warehouse at time t
c0 – maximum capacity of the factory warehouse
zS – storage cost at the factory warehouse

Figure R12.21: Environment specification for multi-echelon inventory optimization using rein-
forcement learning.

We assume that the factory produces a product with a constant cost of z0 dollars per
unit, and the production level at time step t is a0,t. Next, there is a factory warehouse
with a maximum capacity of c0 units. The storage cost for one product unit for one
time step at the factory center is zS0 , and the stock level at time t is q0,t.

At any time t, the number of units shipped from the factory warehouse to the distri-
bution center j is aj,t, and the transportation cost is zTj dollars per unit. Note that the
transportation cost varies across the distribution warehouses.

Each distribution center j has maximum capacity cj, storage cost of zSj , and stock
level at time t equal to qj,t. Products are sold to retail partners at price p which is
the same across all warehouses, and the demand for time step t at warehouse j is
dj,t units. We also assume that the manufacturer is contractually obligated to fulfill
all orders placed by retail partners, and if the demand for a certain time step exceeds

510 inventory optimization

the corresponding stock level, it results in a penalty of zPj dollars per each unfulfilled
unit. Unfulfilled demand is carried over between time steps (which corresponds to
backordering), and we model it as a negative stock level.

Let us now combine the above assumptions and define the environment in reinforce-
ment learning terms. First, we obtain the following reward function for each time step:

r “ p

w
ÿ

j“1

dj ´ z0a0 ´

w
ÿ

j“0

zSj maxrqj, 0s

´

w
ÿ

j“1

zTj aj `

w
ÿ

j“1

zPj minrqj, 0s

(R12.58)

The first term is revenue, the second relates to production cost, the third is the total
storage cost, and the fourth is the transportation cost. The last term represents the
penalty cost and enters the equation with a plus sign because stock levels would be
already negative in case of unfulfilled demand.

We choose the state vector to include all current stock levels and demand values for
all warehouses for k previous steps:

st “
`

q0,t, q1,t, . . . , qw,t, dt´1, . . . , dt´k
˘

where

dt “
`

d1,t, . . . , dw,t
˘

(R12.59)

Note that we assume that the agent observes only past demand values, but not the
demand for the current (upcoming) time step. This means that the agent can potentially
benefit from learning the demand pattern and embedding the demand prediction ca-
pability into the policy. The state update rule will then be as follows:

st`1 “ pmin

»

–q0,t ` a0 ´

w
ÿ

j“1

aj, c0

fi

fl , (factory stock update)

min
“

q1,t ` a1,t ´ d1,t, c1
‰

, (DC stock updates)

. . . ,

min rqw,t ` aw,t ´ dw,t, cws ,

dt, (demand history shifts)

. . . ,

dt´k`1q

(R12.60)

In other words, the factory stock is updated by adding the inventory produced at
a given time step and subtracting the inventory shipped to the distribution centers,
but with a cap of c0 units. At the distribution centers, the stock is updated by adding
replenishment orders and subtracting the demand. Finally, the action vector consists of
production and shipping controls:

at “
`

a0,t, a1,t, . . . , aw,t
˘

(R12.61)

R12.5 multi-echelon control policies 511

Factory Factory
warehouse

DC 1

DC 2

DC 3

a0

a1

a2

a3

d1

d2

d3

q0

q1

q2

q3

RL agent

a s

statecontrol

Figure R12.22: Environment instance used for prototyping.

We instantiate the environment assuming three distribution centers, that is w “ 3.
The overall layout of this small environment and the mapping between the physical
entities and their action and state representations are shown in Figure R12.22.

We further assume episodes with 26 time steps (e.g. weeks), and holding and trans-
portation costs that vary significantly across the locations. The demand functions differ
across the distribution centers, and each function is defined using a baseline seasonal
curve with a random component added on top of it:

dj,t “
dmax

2

ˆ

1` sin
ˆ

4πpt` 2jq

T

˙˙

` ηj,t (R12.62)

where dj,t is the demand at distribution center j at time t, and η is a random vari-
able with a uniform distribution. This family of demand functions is visualized in
Figure R12.23. For the sake of simplicity, we also assume that fractional amounts of the
product can be produced or shipped (alternatively, one can think of it as measuring
units in thousands or millions, so that rounding errors are immaterial).

0 5 10 15 20 25
Time step

0

1

2

3

4

5

D
em

an
d

DC 1
DC 2
DC 3

Figure R12.23: Examples of demand realization for one episode.

512 inventory optimization

r12.5.3.2 Establishing the Baselines

The inventory flow in the above environment can, in principle, be managed using sep-
arate continuous or periodic review policies deployed at the factory warehouse and
distribution centers. This approach is not necessarily optimal even if the policy param-
eters are jointly optimized, but it helps to establish the baseline that can be used to
benchmark the reinforcement learning approach.

In the environment with one factory and three distribution centers, we need to opti-
mize four policies in a coordinated way. For the sake of prototyping, let us use continu-
ous review policies, so that we have to jointly optimize four pairs of parameters (s, Q).
This is a relatively small parameter space, and we use Bayesian optimization to find the
near-optimal point in this eight-dimensional parameter space. The optimization algo-
rithm basically performs multiple simulations and moves toward the profit-maximizing
point. An example simulation trace for the final set of parameters and achieved profit
is presented in Figure R12.24. This visualization shows how the inventory levels, ship-
ments, production levels, and profits change over time, allowing us to understand the
control dynamics.

In the environment we have specified, the random component of the demand is rel-
atively small, and it makes more sense to ship products on an as-needed basis rather
than to accumulate large safety stocks in the distribution centers. This is visible in Fig-
ure R12.24, where the shipment patterns loosely follow the oscillating demand pattern,
while stock levels do not develop a pronounced sawtooth pattern.

r12.5.3.3 Learning the Control Policy Using DDPG

Our next step is to implement a reinforcement learning-based solution. We have already
specified how the environment is represented in terms of the Markov decision process
in expressions R12.58, R12.59, and R12.61 for reward, state, and action, respectively.
This enables us to plug the environment simulator into standard reinforcement learning
algorithms and to train inventory control policies in a relatively straightforward way.
The specific choice of the algorithm, however, is influenced by the environment design.
We have defined the action vector as a real-valued vector of production and shipment
controls, and thus our choice is limited to continuous control algorithms. We choose
to use the DDPG algorithm introduced in Section 4.4.6.2. The policy trained by this
algorithm significantly outperforms the baseline we established in the previous section,
as illustrated in Figure R12.25.

The production and shipment patterns visualized in Figure R12.25 are significantly
different from the patterns of the regular continuous review policy in Figure R12.24.
One of the most curious facts about this result is that the policy recognizes the fact
that it can collect a large number of backorders towards the end of the episode and
artificially boost the profits this way.

The above prototype demonstrates the concept of supply chain optimization using
reinforcement learning, but the practical application of this idea faces a number of
challenges:

• First, reinforcement learning tends to produce irregular policies that can be diffi-
cult to interpret as well as to implement, because of constraints associated with
logistics, packaging, and contractual aspects.

R12.5 multi-echelon control policies 513

0

5

10

St
oc

k,
 F

ac
to

ry

0
5

0
5

0
5

10

0

10

20

Pr
od

uc
tio

n

0
2
4

0
2
4

0

5

10

0

1000

Pr
ofi
t

0 5 10 15 20 25
Time step

0
5000

10000
15000

Cu
m

ul
at

iv
e

pr
ofi
t

 W
H

 1
St

oc
k

 W
H

 2
 W

H
 3

 W
H

 1

Sh
ip

m
en

t

 W
H

 2
 W

H
 3

6865.0

Figure R12.24: Example of (s, Q) policy simulation.

• Second, such irregular policies tend to be unpredictable and unstable, so that ser-
vice levels and costs can have very high variance, and the policy can occasionally
make completely wrong decisions, with disastrous consequences.

• Third, the dimensionality (or cardinality) of the action space grows with the num-
ber of supply chain nodes. Most reinforcement learning algorithms are not de-
signed to handle large action spaces, and this problem is in general very chal-
lenging.

The first two issues can be partly mitigated by combining reinforcement learning
with parametric policies. For example, a reinforcement learning algorithm can be used
to manage the parameters of the periodic review policy which, in turn, is used to
make low-level ordering decisions. The third problem arises when a single-agent re-
inforcement learning algorithm is used to control a complex environment such as a
multi-echelon chain. The alternative approach is use multiple independent agents or
multi-agent algorithms where certain components are shared across the agents. For ex-

514 inventory optimization

0
5

St
oc

k,
 F

ac
to

ry
−5.0
−2.5

0.0
 W

H
 1

−10
−5

0

St
oc

k
 W

H
 2

−5

0

 W
H

 3

0

10

Pr
od

uc
tio

n

0.0
2.5
5.0

 W
H

 1

0.0
2.5
5.0

Sh
ip

m
en

t

 W
H

 2

0.0
2.5
5.0

 W
H

 3

0

1000

Pr
ofi

t

0 5 10 15 20 25
Time step

0
5000

10000
15000

Cu
m

ul
at

iv
e

pr
ofi

t

12687.3

Figure R12.25: Example of DDPG policy simulation.

ample, each supply chain node can be controlled by a separate policy. This solution
helps to avoid large action spaces, but imposes the problem of agent coordination. For
instance, consider a multi-echelon chain where each node is controlled by an indepen-
dent agent. Ideally, each agent should contribute towards maximizing the global profit,
and the reward function can be defined accordingly. This, however, can create a dead-
lock because the upstream agents (nodes that are closer to the supply side) will only
be making losses until the downstream agents (nodes that closer to the client side)
learn how to order and use the inventory properly. However, these downstream nodes
will not be able to learn until the upstream nodes deliver some inventory. Although
coordination problems like that can be alleviated using a number of techniques, the
development of stable and practical reinforcement learning solutions for supply chain
optimization is generally challenging.

R12.6 extensions and variations 515

r12.6 extensions and variations

In the previous sections, we have developed methods for controlling the inventory flow
at individual nodes of a supply chain, as well as controlling groups of nodes in a
coordinated way. All of this analysis, however, has been done for a relatively simple
environment. We assumed only one item, unlimited shelf life and product lifespan,
and a fairly abstract demand model. The simulation methods that we have developed
provide enough flexibility to replace these assumptions with more realistic business
logic if needed, and we spend this section discussing several common extensions in
greater detail.

r12.6.1 Seasonal and Perishable Items

The environment models used in this recipe assume that the products purchased from
suppliers can remain in the chain for unlimited time before they are delivered to the
external clients. In other words, the units purchased just recently are indistinguishable
from the units purchased a long time previously. Strictly speaking, this assumption is
never true, but it can be a more or less critical issue depending on the ratio between
the products’ shelf life and supply chain latency. It is clearly an important concern
for perishable products with a shelf life ranging from days to months such as foods
and beverages sold in supermarkets, meals prepared by catering companies and cafe-
terias, cosmetics, pharmaceutical drugs, and volatile chemicals. Some products such
as apparel and other fashion items might not be perishable, but their lifetime can be
strictly limited to one season, and this time can be comparable to the replenishment
time. Finally, there are products such as consumer electronics that are neither perish-
able nor strictly seasonal, but the length of the product’s life cycle can be comparable
to production and transportation times.

Overstocking of seasonal and replenishable items is associated not only with the
holding costs, but with value losses and disposal costs. This can be illustrated with the
newsvendor model which is, in fact, one of the oldest supply chain models [Edgeworth,
1888]. The newsvendor model considers a newspaper vendor who needs to decide how
many copies of the daily newspaper to procure given that the unsold copies will lose
all their value by the end of the day. This problem can be expressed as follows:

profitpqq “ pp´ cqminrd, qs ´ pc´ sqmaxrq´ d, 0s (R12.63)

where q is the purchased quantity (on-hand inventory in the beginning of the cycle),
p is the unit price, c is the unit procurement cost, d is the demand which is considered
to be a random variable, and s is the residual value of each unit. The residual value
s can be positive if the inventory retains some value at the end of the cycle, zero, or
negative if disposal costs are involved.

All stages of the inventory management process can be adjusted to incorporate value
losses and disposal costs. First, these costs can be accounted for at the aggregate plan-
ning stage. In particular, the allocation procedure developed in Section R12.3 explicitly
assumes the limited life cycle. Second, the profit equations R12.5 and R12.6 can be
extended with additional costs and all downstream algebraic optimization solutions
and simulation models can be updated accordingly. In particular, the profit function
specified by expression R12.63 can be maximized analytically, or multiple values of q

516 inventory optimization

can be evaluated using simulations to determine the optimal option assuming a certain
demand distribution. Finally, the profit function R12.63 is often maximized not only by
choosing the optimal value of q, but also by various manipulations with the price, de-
mand, and residual value. For example, apparel retailers commonly target to sell off the
inventory by the end of the season, and switch between regular prices and markdowns
to accelerate or decelerate the demand accordingly. In terms of equation R12.63, this
means to find a price schedule that minimizes the difference between the stock level
q and total demand d by the end of the season. If this difference is greater than zero,
the retailer can run a liquidation sale at discounted price s which is also optimized
based on the expected demand. We have discussed these categories of problems and
corresponding solutions at length in Recipe R10 (Price and Promotion Optimization).

More generally, price changes and promotion can be used to not only reduce losses
associated with the depreciation of perishable and seasonal items, but also to reduce
holding costs and mitigate other supply chain constraints. In many applications, re-
plenishment decisions and pricing decisions complement each other and need to be
closely coordinated. For example, it might not be possible to accurately determine the
optimal replenishment quantity because of uncertain demand, but the errors might be
efficiently corrected using revenue management techniques such as dynamic pricing.

r12.6.2 Multiple Sales Channels

The multi-echelon model assumes that one node can have two or more downstream
(client) nodes, and thus serve two or more demand streams. In practice, these streams
can have different priorities and require different SLAs, so we might need specialized
methods for tuning the trade-offs between the SLAs guaranteed to different clients that
share the same pool of inventory.

The problem of demand prioritization can be illustrated using the ship from store
(SFS) scenario. The SFS capability was implemented by many retailers as a part of their
omnichannel strategies to reduce shipment times for online orders and improve the
inventory turnover. It is usually implemented by routing of certain online orders to
physical stores where store associates collect the ordered items directly from the store’s
shelves, package them, and ship them to the customers. This means that the store as-
sociates compete with regular in-store customers for the inventory, and we generally
need to balance the SLAs for online customers and in-store customers. More specifi-
cally, the problem usually stems from the fact that the digital commerce system has an
accurate real-time view of the inventory on the shelves, so that it can keep accepting
orders even after the product is sold out. It can also be the case that the store associates
process the orders with a significant delay which also can lead to overselling. This is-
sue is often addressed by setting inventory reservation levels, so that a certain number
of units are reserved for in-store customers, and the remaining stock is considered as
available-to-promise (ATP) for online customers, as illustrated in Figure R12.26. These
reservation levels are assumed to be recomputed on a regular basis.

The SFS use case is very similar to another popular scenario known as buy online
pickup in store (BOPUS). The difference is that in the latter case the orders packaged
in stores are picked up by customers rather than being shipped to them.

R12.6 extensions and variations 517

Online
demand

In-store
demand

Reservation
level

Available-to-promise
(ATP)

Reserved

Figure R12.26: Environment model for SFS and BOPUS use cases.

The quality of the reservation algorithm can usually be assessed using the following
two metrics:

pick rate The ratio between the number of successfully fulfilled items and the total
number of ordered items over a certain time interval.

exposure rate The ratio between the number of items potentially available for on-
line ordering (the difference between on-hand inventory and true in-store de-
mand) and the actual ATP.

A retailer can balance these two metrics differently depending on their business goals,
the cost of fulfillment exceptions and the cost of underexposed inventory. For example,
some retailers can redirect SFS orders at a low cost from one store to another in case of
exceptions, and can thus accept a low pick rate to achieve high exposure rates. On the
other hand, some retailers might be concerned about customer dissatisfaction caused
by order fulfillment exceptions, and choose to maintain high pick rates at the expense
of exposure rates.

The pick and exposure rates are determined not only by the reservation level, but
also by the amount of the safety stock. One can clearly achieve both the near-perfect
pick and exposure rates by stocking enough inventory to cover any spikes in online
and offline demands combined. Safety stock, however, increases the holding costs and
reduces the inventory turnover, so we should assess the efficiency of the reservation
algorithm only in the context of a specific replenishment constraint. An example plot
that can support such an assessment is presented in Figure R12.27. In this plot, each
curve corresponds to a set of possible trade-offs between the pick and exposure rates
given a specific combination of two parameters; average on-hand inventory level Ih

and reservation algorithm a. An individual point on any curve corresponds to a spe-
cific reservation level r, and thus the trade-off between the pick and exposure rates
is determined by triplet pIh, a, rq. Assuming that the average inventory level Ih and
the reservation algorithm a are fixed, each curve can be viewed as a Pareto frontier,
and we can vary the reservation level to achieve appropriate trade-offs between pick
and exposure rates. The Pareto frontier achievable at any given inventory level is de-
termined by the demand variance, the accuracy of the forecast, and other properties of
the reservation algorithm.

The solid-line and dash-line curves in Figure R12.27 correspond to two different
reservation algorithms. The plot suggests that the algorithm that corresponds to the
solid-line curves strictly outperforms the algorithm that produces dash-line curves, pro-
viding better trade-offs between pick and exposure rates for all inventory levels.

518 inventory optimization

Exposure rate

Pick
rate

1.0

1.0
(I1, a1)h

(I2, a1)h

(I3, a1)h (I1, a1, r1)h

(I1, a2)h

(I2, a2)h

(I3, a2)h

(I1, a1, r2)h

Figure R12.27: Visualization of Pareto frontiers for SFS.

r12.6.3 Multiple Items: Policy Differentiation

In many industries, companies need to manage inventory on a large scale. For instance,
the average number of SKUs carried in a supermarket is estimated to be 30,000 and the
number of SKUs managed by large manufacturers and retailers can be in the hundreds
of thousands. Moreover, inventory is often managed at the regional level so that exactly
the same item in two different locations is treated as two different SKUs.

Inventory optimization on a large scale is challenging even with highly automated
systems because each item potentially requires investigating unique data issues, build-
ing a separate forecast, and performing some troubleshooting. The optimization pro-
cess can be made more manageable by introducing several categories of items and
providing different service levels for each of these categories. This approach is concep-
tually similar to the product categorizations used in Recipe R10 (Price and Promotion
Optimization) to differentiate price management and demand forecasting strategies.

One of the most basic approaches to strategy differentiation is known as ABC anal-
ysis. This approach is based on the observation that the revenue contribution of SKUs
typically has near-exponential distribution as shown in Figure R12.28.

The items with the highest contribution, commonly referred to as A items, generally
require close attention, which assumes a combination of decision-automation compo-
nents with manual reviews. This category can be split further into high-value slow-
moving items such as heavy machinery and low-value fast-moving items such as con-
sumer provisions. The next bucket, referred to as B items, can mainly be managed
by decision-automation systems, and relatively high revenue contribution justifies the
investments into the development of advanced optimization models. Finally, the re-
maining items, known as C items, can be managed using methods geared towards

R12.6 extensions and variations 519

0% 100%20% 40% 60% 80%
0%

20%

40%

60%

80%

100%

Total number of SKUs

To
ta

l s
al

es

A B C

Figure R12.28: ABC inventory categorization.

operational costs reduction and simplicity rather than precision. For example, it is com-
mon to group similar C items together and manage groups rather than individual SKUs
to reduce the total number of entities that need to be tracked. Items A usually consti-
tute about 10% of the total number of SKUs, items B account for about 20%, and the
remaining 70% are items C.

r12.6.4 Multiple Items: Coordinated Replenishment

In the previous sections of this recipe, we were developing models and methods under
the assumption that all SKUs are managed independently, do not share any resources,
and do not have any dependencies in terms of costs and logistical constraints. This
assumption is impractical in many real-world environments because SKUs often share
the same transportation and storage infrastructure, and procurement terms are often
negotiated for groups of SKUs. Consequently, inventory management might need to be
coordinated across multiple SKUs to achieve the following goals:

reduce purchase costs Coordinated procurement of multiple SKUs can help to
get quantity discounts through consolidation of multiple smaller orders into big-
ger ones.

reduce transportation costs Coordination of replenishment times and quanti-
ties can help to reduce transportation and shipping costs through better utiliza-
tion of vehicles and other resources.

reduce transaction costs In some scenarios, multiple related SKUs can be
grouped together to reduce production setup costs and other per-transaction
expenses. For example, a furniture item can include multiple SKUs of different
accent colors, and the setup cost can be reduced by grouping such SKUs into a
single batch.

520 inventory optimization

The above benefits, however, are often achieved at the expense of a higher average
inventory, lower inventory turnover, and more difficult exception handling compared
to independent SKU management. Consequently, optimization models for coordinated
inventory management generally aim to find the balance between the group costs (in-
cluding setup, transportation, and discounts) and metrics for individual SKUs includ-
ing holding costs and service levels.

Coordinated replenishment can be supported at all levels of the inventory manage-
ment process. In particular, coordination can be implemented using control policies
that have special mechanisms for grouping items together. This can be illustrated us-
ing the following classic policy, known as a can-order policy or (S, c, s) policy, that is
basically a multi-item extension of the continuous review policy [Balintfy, 1964]:

Assume a group of related items where each item i is associated with three parame-
ters: up-to level Si, can-order level ci, and must-order level si.

If item i’s level drops below si, place a replenishment order that includes

• the number of item i units needed to backfill this item up to level Si,

• for each item j that is currently below its can-order threshold cj, the number
of units needed to backfill this item up to level Sj

The parameters of the can-order policy can be optimized analytically or using simu-
lations. This policy provides a basic solution for reducing the setup costs, but it is not
feasible for solving more sophisticated problems such as unlocking discounts by meet-
ing certain volume conditions. Such scenarios often require custom control processes
that solve a mathematical programming problem at each reordering step to determine
the best subset of items to be ordered.

r12.7 summary

• Inventory buffers are needed to connect production and transportation processes
with different input and output batch sizes, lead times, and service level agree-
ments.

• Inventory buffers can be reduced and inventory availability can be increased in
several different ways including redesign of physical production processes, better
scheduling of manufacturing operations, and better algorithms for controlling the
levels of inventory in the buffers.

• The inventory management process can involve multiple stages including aggre-
gate planning, allocation, rebalancing, and replenishment.

• The single-echelon inventory optimization problem focuses on controlling an in-
dividual inventory node such as a warehouse. The inventory control policy aims
to minimize the operational costs (including holding costs, transactions fees, and
backorder penalties) given the target service levels guaranteed to the clients.

• The most common performance metrics for an inventory control policy include
cycle service level and fill rate.

• The multi-echelon problem formulation focuses on coordination across multiple
inventory nodes such as factories, central warehouses, and distribution centers.

R12.7 summary 521

• The main types of control policies include continuous review and periodic review
policies.

• The parameters of control policies can be optimized analytically or using sim-
ulations. The simulation-based approach provides more flexibility and helps to
model complex demand patterns, business rules, and logistical constraints that
are difficult to account for in analytical solutions.

• In multi-echelon systems, each node can be independently managed using a ded-
icated single-node policy, but the parameters of all policies should be optimized
jointly. This optimization can be performed using a probabilistic framework, but
this approach is challenging for complex topologies. Alternatively, the problem
can be expressed in mathematical programming terms provided special assump-
tions about the service time guarantees are made.

• Reinforcement learning can be used to learn control policies for arbitrary single-
echelon and multi-echelon environments. The main challenges of this approach
include irregularity and instability of the resulting policies.

• Specialized inventory control methods are used for multi-item environments, om-
nichannel commerce, and perishable products.

Part V
P R O D U C T I O N O P E R AT I O N S A N D I O T

The main focus of the Parts I to IV was on distribution channels and supply manage-
ment. The third major area of operations is production, which is the process of turning
inputs, such as raw materials and human resources, into outputs, which are products
and services. From the analytics standpoint, production operations are associated with
a wide range of planning and resource optimization tasks, as well as ongoing monitor-
ing and control.

In Part V, we provide recipes for intelligent monitoring of production processes and
assets including anomaly detection in IoT sensor data, predictive maintenance, and de-
fect detection using machine vision methods. Although our main focus is on production
operations, the same methods can be efficiently applied to a wider range of use cases
including transportation, chemical distribution, fleet management, and IT operations.

Recipe

13

A N O M A LY D E T E C T I O N

Detecting Anomalies and Preventing Failures Based on IoT Metrics

Many modern industrial environments, systems, and machines include IoT sensors
that measure physical quantities such as pressure, temperature, levels of liquids, or
voltage. These measurements can typically be represented as time series which can
be monitored and analyzed with a goal to detect and correct failures or degradations
that can potentially result in failures or outages. Examples of such applications include
the analysis of vibration sensor data in wind turbines with a goal to prevent bearing
failures, monitoring of flows in a petroleum production system, and monitoring of
energy consumption patterns in buildings to detect faulty appliances and theft.

In this recipe, we focus on the problem of building intelligent monitoring systems
that can automatically analyze sensor data streams, detect abnormal situations, pre-
scribe reactive or preventive actions, and reduce the amount of information that needs
to be processed by the operations teams. We discuss how some of these tasks can be
accomplished using relatively basic methods, and then demonstrate how more power-
ful solutions can be created using the representation learning methods introduced in
Chapter 2.

r13.1 business problem

We assume that our goal is to monitor a system that consists of multiple components,
and, for each component, we collect one or more metrics represented as time series. For
example, we can monitor a mechanical system that includes several bearings and attach
multiple accelerometers to each bearing in order to measure the vibrations along differ-
ent axes. We further assume that the components are interrelated in two ways. First, a
failure in one component can trigger failures in other components. Second, the overall
system health is determined by a combination of component states, so that individual
component failures do not necessarily represent a risk for the entire system. In other

525

526 anomaly detection

words, components can fail and be replaced without system downtimes provided that
certain requirements regarding the number and types of the functioning components
are met.

The raw data collected from the sensors can be enriched by the analysts. From this
perspective, we distinguish between the following three scenarios. First, we might have
only the raw data that potentially includes segments that correspond to both normal
and abnormal situations, but we do not have any ground truth labels or reliable rules
that allow us to identify specific segments as normal or abnormal and to differentiate
between them. Second, we might have a dataset that consists only of the metrics col-
lected in a normal system state, so that we can be certain that all abnormal observations
are removed. Finally, we might have a dataset with metric segments explicitly labeled
as normal or abnormal. These labels may be available for individual components, as
well as for the entire system. We might also have multiple classes of abnormal situa-
tions. For example, bearing failures can be categorized as inner race damage, outer race
damage, and ball damage. In practice, the creation of labeled datasets is often challenging
because of the rarity of abnormal observations, limited availability of domain experts
who can perform labeling, and other factors.

r13.1.1 Anomaly Monitoring, Scoring, and Detection

Our goal is to build a system that consumes and analyzes the inputs described above
and produces outputs that help to maintain and manage the components under mon-
itoring more efficiently. For brevity, we refer to such a system as an anomaly detection
system, although it can carry out several different functions, as outlined in Figure R13.1.
First, the system can perform various transformations of the input metrics with a goal
to reduce the amount of data that needs to be monitored by the operations team, as
well as reduce noises and remove irrelevant anomalies that complicate the downstream
monitoring processes. The transformed metrics can be monitored using conventional
tools such as dashboards and threshold-based alerting rules.

s1

s2 s3

Components

Anomaly
detection

system

Metrics

Dashboards

Health indicators
Anomaly detection
Anomaly classification

Analysts Operations

Labels

Feedback
Alerts and
insights

Figure R13.1: The anomaly detection environment.

The second common group of outputs is health indicators that can be computed for
the entire system under monitoring or individual components or metrics. Each health
indicator is a univariate time series that describes the dynamics of the system or com-

R13.1 business problem 527

ponent health. Health indicators are typically designed in a way that the health value
at any given time can be interpreted as an anomaly score, failure risk score, or remaining
useful life estimate.

The health indicators need to be monitored to detect abnormal situations and to take
preventive or corrective actions. Assuming that the indicators properly capture the level
of risk and represent it as a numerical score, the monitoring stage is required to man-
age alerting thresholds and provide the operations teams with relevant information
that facilitates the root cause analysis and troubleshooting. We refer to the problem of
converting health indicators into decisions (alerts) as anomaly detection. The anomaly
detection algorithms should optimally balance the costs of false positives (e.g. level of
effort associated with alert investigation) and false negatives (e.g. losses associated with
failure propagation). We assume that this can be done, in particular, using the feedback
on the relevancy of the alerts provided by the operations team. Once the alerts are gen-
erated, their operationalization, including root cause analysis and troubleshooting, can
be facilitated using granular component-level health indicators and automatic anomaly
classification.

r13.1.2 Predictive Maintenance

The general solution architecture described in the previous section can be used as a
template for implementing a wide range of use cases, and each use case requires mak-
ing multiple design choices regarding monitoring dashboards, health indicators, and
alerting algorithms. In this section, we discuss one particularly important group of use
cases which is collectively known as predictive maintenance, and formulate more specific
requirements for it.

Consider the problem of maintaining the system being monitored in working order.
The most basic approach to this problem is reactive maintenance that assumes that the
system runs to failure, and the maintenance operation is performed in response to
it. The metrics that describe system health or degradation can be collected, but they
are not supposed to influence the decisions with regard to the maintenance time, as
illustrated in Figure R13.2. The reactive strategy is typically associated with downtime,
and it cannot be applied in environments where failures are not acceptable because of
the safety or recovery costs considerations.

The alternative strategy is preventive maintenance. This approach aims to minimize the
probability of failures by planning and scheduling maintenance of equipment before
a problem occurs. One of the main problems in preventive maintenance is the sched-
ule optimization. Maintenance delays can result in failures, but excessively frequent
maintenance leads to the loss of usable time, as illustrated in Figure R13.2 (b). Preven-
tive maintenance can involve data-driven methods for the schedule optimization, but
it does not assume dynamic decision-making based on the current system conditions.

The third strategy is predictive maintenance that aims to dynamically optimize main-
tenance decisions based on the expected system trajectory. The central problem of pre-
dictive maintenance is the estimation of the remaining useful life (RUL) of the system.
This estimate is then used to determine the optimal maintenance timing, as shown in
Figure R13.2 (c). We consider the RUL a particular case of a health indicator that is
calibrated in time units (instead of the relative risk levels).

528 anomaly detection

Time

System health

Downtime

Time
Usable time

Time
Remaining useful life

Now

(a) Reactive
maintenance

System health

System health

(b) Preventive
maintenance

(c) Predictive
maintenance

Figure R13.2: Reactive, preventive, and predictive maintenance strategies.

We discuss the specialized RUL estimation methods later in this recipe. In real-world
predictive maintenance solutions, however, the RUL model is only one of many compo-
nents, and other general-purpose methods presented in this recipe are also applicable
to predictive maintenance tasks.

r13.2 solution options

One of the main challenges in the development of anomaly detection solutions is the
very high diversity and complexity of production processes and environments which
often requires devising a somewhat unique approach for each particular application.
In addition to that, the tasks outlined in the previous section, including the creation
of informative dashboards and detection of anomalous situations, are relatively open-
ended, and one can use a broad range of statistical and machine learning methods to
approach them, depending on their specific application.

To deal with these challenges, we first discuss the basic design principles that can
be used to correctly transform a domain-specific anomaly detection problem into a

R13.3 system models 529

machine learning problem that can be solved using standard methods. Next, we discuss
how health monitoring and anomaly detection tasks can be solved in the environments
where we observe only the normal state of the system and do have access to any labels
or feedback data. Finally, we discuss methods that can be applied in environments
where labels or feedback data are available. We generally aim to develop a toolkit of
methods that can be combined in many different ways to create specific solutions rather
than develop a universal template that fits all applications.

r13.3 system models

In Chapter 2, we discussed the situation that a stochastic process can initially be ob-
served as a complex and seemingly chaotic set of samples in the space spanned on
the observed dimensions, but that this set often lives on a low-dimensional surface
embedded into the observed space because the original representation is redundant.
We named such surfaces manifolds, and introduced several methods, including linear
and variational autoencoders, for learning manifold topology models. These methods
are relevant for our current discussion because we can attempt to learn a manifold of
normal systems states based on the available observations, and detect deviations from
these. We refer to a model that approximates the manifold of the normal states as the
model of normality and refer to samples that deviate from it as outliers.

A natural question that can be posed at this point is whether outliers and anomalies
refer to the same concept. We have previously stated that anomalies are the deviations
from the normal system behavior that represents relevant operational or business risks,
while outliers are the deviations from the normal manifold specified using some model.
This suggests that outliers can be interpreted as anomalies only if the model of normal-
ity correctly represents the physical, operational, or business model.

Let us review a simple example that illustrates the mismatch between the model of
normality and the physical constraints of the production process. Consider a terminal
at a chemical plant where some liquid product is loaded from a stationary tank to
tank cars, as depicted in the top part of Figure R13.3. The loading pipeline includes
two meters, one measuring the outflow from the stationary tank side, and another one
measuring the inflow on the tank car side. Assuming that the volume of the product
passed through each meter is reported at a regular time interval (e.g. every 30 minutes),
we can visualize the collected data using a scatter plot, as shown in Figure R13.3 (a).
In this example, we assume that the volume can vary significantly depending on the
demand, weather, time of the day, and other factors, but the measurements of the two
meters should match, otherwise we are likely to have a leak or some other dangerous
issue that needs to be urgently investigated.

It can now be seen that the dataset presented in Figure R13.3 (a), considered in
isolation, can be used to build multiple different models of normality, and a valid model
can be designed using only the context described above. For example, we can assume
that the measurement pairs px1, x2q should follow the bivariate normal distribution,
that is

px1, x2q „ Npµ, Σq (R13.1)

530 anomaly detection

x1 x2

x1

x2

(b) (c)

(a)

Figure R13.3: Designing an anomaly detection model for a basic setup with two metrics.

where the distribution parameters µ and Σ can be learned from the data. The
anomaly score for any specific observation x “ px1, x2q can then be computed as the
Mahalanobis distance between x and the distribution:

scorepxq “
b

px´ µqTΣ´1px´ µq (R13.2)

This solution is illustrated in Figure R13.3 (b) where the high-volume samples are
incorrectly scored as anomalies. In other words, the manifold model is constructed in
a way that the outliers do not correspond to meaningful anomalies.

The alternative solution is to leverage our knowledge about the physical process and,
more specifically, the fact that the difference between the measurements on two sides
of the pipeline should normally be zero. We can define a new metric x0 “ x1´ x2, and
use a univariate normal distribution model for it:

x0 „ Np0, σ2q (R13.3)

R13.4 monitoring 531

Each observation can then be scored using a one-dimensional Mahalanobis distance
for the corresponding x0, as illustrated in Figure R13.3 (c). This model is aligned with
the physical process, and the outliers generally match the anomalies.

Although the example with the loading of tank cars is fairly basic, it demonstrates
several important techniques that can be used to preprocess the input metrics, simplify
the anomaly detection models, and ensure the correctness of the solution:

computing invariants First, it is often beneficial to calculate and analyze invari-
ant values instead of the original metrics. The discrepancies between the metrics
that should normally match are one commonly used type of invariants. Another
common option is the frequency-domain representation of the original metrics
obtained using the Fourier transform where we expect the power spectral density
or other statistics to stay relatively stable over time. The invariants are typically
designed based on the physical laws and various constraints that command the
system under monitoring. The invariants usually provide more informative and
concise representation of the system state compared to the original metrics.

reducing dimensionality Second, we can use invariants and other derived met-
rics to reduce the dimensionality of the input data. In our example, we managed
to replace two separate time series with one series of differences.

cancelling external factors Finally, we can eliminate the impact of unknown
factors using properly constructed derived metrics. In the tank car loading ex-
ample, the bivariate normal distribution model is inadequate because the total
loaded volume can change arbitrarily depending on the unknown external fac-
tors such as demand and weather. We worked around this issue by computing a
derived value where these factors cancel each other out.

We refer to the model that leverages the knowledge about the physical and busi-
ness principles and constraints of the monitored system to compute more convenient
derived metrics as a system model. In the overall architecture of an anomaly detection
solution, system models can be viewed as feature engineering blocks that produce ap-
propriate inputs for the downstream models and processes. System models can signif-
icantly simplify monitoring, anomaly detection, and predictive maintenance tasks, but
the development of such models is not always feasible in complex environments with
a large number of metrics. The methods we develop in the next sections do not assume
that the input metrics are preprocessed using system models, although preprocessing
can improve their performance.

r13.4 monitoring

The ability to visualize the system metrics and provide the operations teams with dash-
boards that enable the monitoring and analysis of the data is usually one of the first
steps towards the development of a comprehensive anomaly detection solution. This
capability does not necessarily involve advanced modeling, but statistical methods can
be used to enhance the input metrics and reduce the operational effort. We have already
discussed that, in some environments, we can reduce the number of metrics and im-
prove their semantics using system models. In this section, we discuss more advanced
methods of metric preprocessing.

532 anomaly detection

One transformation that is commonly used for metric preprocessing is noise reduction,
also referred to as anomaly removal. The goal of this operation is to suppress noises that
are considered irrelevant for monitoring purposes. For example, the observed time se-
ries can include multiple spikes and missed values because of the sensor connectivity
issues which are considered normal, and we might want to filter them out. This prob-
lem can be approached using basic smoothing techniques and other heuristics, but we
can also approach it from the manifold learning perspective, and build a model that
removes the outliers by projecting the observed series on the normal manifold.

We can implement this idea using autoencoders introduced in Section 2.6.2. For the
sake of illustration, let us review a toy example that demonstrates how anomalies can
be removed from multivariate time series using principal component analysis (PCA)
which can be viewed as a particular type of linear autoencoder.

We assume that the input metrics are represented as mˆ p matrix X where m is
the number of metrics and p is the number of time steps. A small example of such
data is shown in the leftmost column of Figure R13.4 where each metric includes a
trend, periodic component, additive noise, and spikes. Such spikes, for example, can
be a result of sensor connectivity issues. We perform the standard PCA transformation
of this matrix to determine the principal components v1, . . . , vm, each of which is a
t-dimensional vector. In our example, such components are visualized in the middle
column of Figure R13.4. In PCA, the components are ordered by the variance they
capture, so we can build the model of normality that captures the major patterns in
the observed series by selecting top k ă m components. We can stack them into tˆ k
matrix V:

Vk “ PCAkpXq “ pv1, . . . , vkq (R13.4)

We can further compute the projection of the input metrics on the principal compo-
nents as Zk “ XVk, and this projection can be viewed as an embedding of the input
series. We can then reconstruct the original series from this embedding as pX “ ZkVTk .
The result of such a reconstruction for our numerical example and two principal com-
ponents (k “ 2) is shown in the rightmost column of Figure R13.4. This example demon-
strates how the autoencoding operation helps to remove the undesirable zero-valued
outliers highlighted in red in the leftmost column of Figure R13.4 from the observed
metrics.

The reference implementation for the noise reduction
example is available at https://bit.ly/3R0kmud

The second preprocessing operation that is commonly used for the monitoring pur-
poses is dimensionality reduction. The purpose of this operation is to reduce the number
of metrics that need to be monitored. The ability to solve this problem using statisti-
cal methods is important for complex environments where thousands of metrics can
be collected. From the machine learning perspective, this problem can be approached
from several angles. One option is to use unsupervised methods such as autoencoders
to learn a transformation that maps the input metrics to a low-dimensional represen-

https://bit.ly/3R0kmud

R13.4 monitoring 533

−2

−1

0
Input series

−1
0
1

Principal components

−2
−1
0

Reconstructed series

0

1

−1
0
1

0

1

0

1

−0.5
0.0
0.5

0

1

0

1

−0.5
0.0
0.5

0

1

0 20 40 60 80 100

0

1

2

0 20 40 60 80 100

−0.5
0.0
0.5

0 20 40 60 80 100

0

2

Figure R13.4: Example of noise reduction using a linear autoencoder (PCA).

tation (embedding) that preserves the most important information about the input sig-
nals. However, this approach is typically not feasible for monitoring purposes because
the dimensions of such a representation are semantically meaningless. In our previous
example using PCA, the top two principal components presented in Figure R13.4 pre-
serve enough information to accurately reconstruct the original series, but they do not
have any meaning from the domain standpoint.

The alternative solution is to keep the original semantically meaningful metrics, but
to remove the non-informative series. Assuming that we have ground truth anomaly
labels available, this can be done by building a supervised anomaly detection model
that predicts such labels based on the input metrics, and then ranking the metrics based
on their feature importance scores. The metrics that do not have significant predictive
power with regard to the anomalies can then be deemed to be non-informative.

The methods described above can be combined in a multistage metric preprocessing
pipeline as shown in Figure R13.5. Such a pipeline helps to leverage the domain knowl-
edge and labeled data to improve the quality of the dashboards and efficiency of the
operations teams.

s1
System
model

Noise
reduction

Dimensionality
reduction

Dashboards

Figure R13.5: Example of a multistage metric preprocessing pipeline.

534 anomaly detection

r13.5 anomaly scoring

The preprocessing methods described in the previous section help to reduce the amount
and complexity of the information that needs to be monitored. However, ideally, we
want the metrics to be summarized into a single score that can be interpreted as a risk
of failure, time to failure, or some other integral indicator of the system or component
health. In this section, we discuss how the basic indicators can be created using un-
supervised methods. We refer to such indicators as health scores or anomaly scores. In
the next sections, we discuss how the indicators can be used to make anomaly detec-
tion decisions and how more informative indicators can be produced using supervised
techniques.

r13.5.1 Basic Models of Normality

Assuming that we can build a model of normality that describes the expected behavior
of the system, the difference between the actual observed state and the state predicted
by the model can be deemed as a measure of system health. In the most basic cases,
we can manually specify the model of normality based on the domain knowledge. Let
us illustrate this using a simple example where we leverage the knowledge that the
observations can be described using the binomial distribution.

Consider an assembly line that produces electronic components which may have a
defect with known probability p. As a part of the quality control process, we regularly
sample a batch of n components, test each of them, and count the number of defective
items. This number is a random variable that follows the binomial distribution, and
which we denote as k. Since the expected number of defective items is np, the probabil-
ity that the difference between the expected and observed number of defects does not
exceed threshold δ can be expressed as follows:

pp|k´np| ď δq “

np`δ
ÿ

i“np´δ

ˆ

n

i

˙

pip1´ pqn´i (R13.5)

This expression can be interpreted as a function of δ for fixed n and p. Assuming that
we observe a specific value k, the above probability can be evaluated for δ “ |k´ np|,
and the result can be interpreted as a risk score, that is the probability of the assembly
line being in an anomalous state. This score is the lowest for δ “ 0, and it grows
monotonically as δ grows approaching the value of one. Since we perform the quality
check on a regular basis, the score values form a time series that can be monitored as
an indicator of system health.

r13.5.2 State Prediction Models

A more general method for creating models of normality based on the time series
data is forecasting. As we discussed in Section 2.4.2, forecasting models are usually
designed to predict the future state of the time series based on the previous states
(lags) and external features. Provided that the capacity of the model and the number
of input lags are limited, the forecast describes the normal behavior of the system, and
deviations can be deemed as anomalies.

R13.5 anomaly scoring 535

A high-level design of an anomaly scoring solution that uses the forecasting approach
is shown in Figure R13.6. Assuming that we observe a multivariate time series with
m metrics, the system state at time t can be described as mˆ p matrix Xt where p
is the number of lags. This state representation can be preprocessed using a system
model ψ to obtain an enhanced representation Ut. We have already discussed that
such a representation can be obtained by computing system invariants, and we will
discuss more advanced methods in one of the next sections. The future state then can
be described as mˆ q matrix Xt`1 where q is the number of forecasted samples. This
matrix can also be preprocessed using the transformation ψ to obtain the representation
Ut`1. The forecasting model M is then trained based on the normal dataset to predict
the future state based on the current state using a standard loss such as the MSE.
Finally, the trained model can be used to score the ongoing data. We compute the
anomaly score at time t as the difference between the prediction made based on the
previous state and actual observation:

scoreptq “
∥∥∥pUt ´Ut

∥∥∥2 (R13.6)

Internally, the model can map the system state to embedding zt and generate the
output prediction pUt`1 based on it. These embeddings can be captured, and the em-
bedding space can be visualized to assess the separation of anomalous states from the
normal manifold, as well as the separation of different classes of anomalies from each
other. For instance, we can use the state vector of LSTM models to perform such an
analysis.

The main limitation of the forecasting-based approach is that the future state has
to be predictable based on the previous state and other known contextual variables.
This generally requires the system to be isolated from unpredictable external factors.
For example, this assumption holds true for many types of rotating machinery such
compressors and turbines. If the system is exposed to unknown external factors that
impact the future state, the forecasting-based approach might not be applicable. The
loading terminal described in Section R13.3 is an example of such a system because
the liquid flow is impacted by the tank car traffic which is considered to be random. In
such cases, the state prediction approach can be applied only if we manage to develop
a system model that cancels out the external factors by computing some kind of invari-
ants. Alternatively, we can collect additional metrics to ensure the completeness of the
context which is used to make state predictions [Sezer et al., 2018; Cook et al., 2020].
For example, we might not be able to reliably predict the telemetry metrics for a train
until we have a sensor that allows us to differentiate between the train moving on flat
ground and ascending an incline in a rural area.

The state prediction approach, however, has important advantages. First, we can use
a wide range of off-the-shelf forecasting models which helps to reduce the development
effort. Second, the ability to predict the trajectory of the system provides an additional
validation of the model correctness. For example, we can deliberately choose to use
the forecasting approach to score the health of an isolated rotating machine because its
future state must be predictable based on the known metrics.

536 anomaly detection

Loss Anomaly
score

External
factors

External
features

ψ

M

Xt Xt+1

Ut

Ut+1

Ut+1

ψ

zt

Figure R13.6: Anomaly scoring using forecasting models.

The complete reference implementation of the prototypes
for this and next sections is available at
https://bit.ly/3PmZzjj

We illustrate the state prediction approach using a basic example from the energy
domain. We create a synthetic dataset that simulates energy generation data received
from smart sensors installed on residential solar panels [Pereira and Silveira, 2018].
This dataset includes several daily patterns such as normal operations, spikes, major
failures, cloudy conditions, and snowfalls, as shown in Figure R13.7. The shape of the
curves corresponds to the intuitive expectations about the changes in the energy output
under various weather conditions.

We build a standard LSTM forecasting model for univariate time series that predicts
the energy production level based on a sliding window of 80 time steps. This model
is trained using only the normal data, and it is then used to produce the forecast
on the test dataset that includes both normal and anomalous instances, as shown in
Figure R13.8. Finally, the anomaly score for each time step is computed as the squared
forecasting error. This basic solution correctly identifies small anomalies, but fails to
properly handle major deviations such as snow conditions.

https://bit.ly/3PmZzjj

R13.5 anomaly scoring 537

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0 20 40 60 80 100 120 140 160
0.0

1.0

Normal

Spike

Failure

Cloudy

Snow

Figure R13.7: Examples of anomalies in solar energy production data.

0

1

0

1

0

1

0

1

0 20 40 60 80 100 120 140

0

1

Observed Forecast

160

Normal

Spike

Failure

Cloudy

Snow

Health score

Figure R13.8: Anomaly scoring using an LSTM forecasting model.

r13.5.3 State Manifold Models

The state prediction approach is not valid for unknown external factors that potentially
impact the future state. The alternative solution is to learn the manifold of the current

538 anomaly detection

states using an autoencoder model and to evaluate the health score based on the devi-
ation from this manifold. More specifically, we can autoencode the current state with a
proper information bottleneck, and evaluate the health score as the state reconstruction
error. This design is illustrated in Figure R13.9 where Xt is the segment of the original
multivariate series that represents the state at time t, Ut is the state representation ob-
tained using preprocessing transformation ψ, M is the autoencoder model, and pUt is
the reconstruction of the state.

Loss Anomaly
score

ψ

M

Xt

Ut

Ut

zt

Figure R13.9: Anomaly scoring in time series using autoencoders.

The manifold learning approach requires the future state to be predictable based
on the current state and known external features, so it can be used in environments
where the external factors are not explicitly observed, but collectively shape a learnable
manifold of the observed states. In general, we can use a wide range of autoencoder
architectures to implement anomaly scoring. In particular, we can use the linear au-
toencoder discussed in Section R13.4. This is a relatively basic design, but it can be
successfully used in practice for strongly correlated metrics such as web traffic time
series [Lakhina et al., 2004].

A more advanced option is variational autoencoders. As discussed in Section 3.2,
variational autoencoders provide a powerful solution for learning regular embedding
spaces that are suitable for computing distances between the entities, so we can expect
this architecture to be efficient for computing the health scores which are basically the
distances between the normal and anomalous states [Pereira and Silveira, 2018].

For the sake of illustration, we implement a basic prototype of the variational autoen-
coder and evaluate it on the solar energy generation dataset introduced in the previous
section. We use a sliding window of 80 time steps as the input vector which we denote
as xt. This input is encoded using a stack of two convolution layers to obtain the dis-
tribution parameters µt and σt, each of which is a two-dimensional vector. The state
embedding is then sampled from the normal distribution

zt „ Npµt, diagpσ2t qq (R13.7)

R13.5 anomaly scoring 539

and decoded using two upconvolution layers to obtain the reconstruction pxt. The
model is trained on a large number of normal series, and then used to score the test
instances as shown in Figure R13.10. At each time step t, the health score is computed
as the MSE between the observed state xt and its reconstruction pxt.

0

1

0

1

0

1

0

1

0

1

0 20 40 60 80 100 120 140

Observed Reconstruction

160

Normal

Spike

Failure

Cloudy

Snow

Health score

Figure R13.10: Anomaly scoring using a variational autoencoder model.

Variational autoencoding is a probabilistic method that can be conveniently used
not only for projecting the observed state on the normal manifold and assessing the
distance between the state and projection, but also for assessing the probability of
observing a specific state. This capability is essential for anomaly detection, and we
continue to discuss this topic in the corresponding section later in this recipe.

r13.5.4 Metric Preprocessing

In the previous sections, we assumed that the raw metrics can be transformed using
some preprocessing operation to obtain the inputs for the state prediction or state man-
ifold models. Such a preprocessing operation can be performed using a hand-crafted
system model, but we can also leverage a wide range of methods developed in the
signal processing domain and other fields. We review several commonly used transfor-
mations in this section.

r13.5.4.1 Frequency-domain Representations

Many mechanical and electrical systems include oscillating components, which are the
components that perform the repetitive or periodic variation around a central value or
between two or more different states. The metrics collected from such systems often

540 anomaly detection

represent a mix of multiple oscillations that add up to a complex pattern. For example,
an accelerometer attached to a rotating machine can record a superposition of the vi-
brations produced by a motor shaft and multiple bearings. The individual oscillations
might not be distinguishable in the time domain representation, but the frequency do-
main analysis can help to separate them and reveal patterns that are characteristic for
normal and anomalous behaviors. Consequently, the metrics collected in such envi-
ronments are often preprocessed using short-time Fourier transform (STFT), wavelet
transform (WT), and other frequency-domain methods.

We can illustrate the frequency-domain transformation using our running example
with the solar energy generation data, and visualize the result of the STFT for the
test samples in Figure R13.11. This figure demonstrates that each type of anomaly
has a characteristic pattern in the frequency domain, although the frequency domain
representation is not particularly insightful for this type of data.

0

1

0

5

0

1

0

5

0

1

0

5

0

1

0

5

0

1

0

5

0 20 40 60 80 100 120 140 160

Normal

Spike

Failure

Cloudy

Snow

Figure R13.11: Example of time series representation in the frequency domain.

The frequency domain transforms usually increase the dimensionality of the data to
capture both the time-related and frequency-related features. For example, the STFT
of a one-dimensional signal is a two-dimensional spectrogram, as illustrated in Fig-

R13.6 anomaly detection and classification 541

ure R13.11. This impacts the design of the state prediction and state manifold models,
but the adjustments are usually straightforward because the standard RNN and CNN
layers are readily applicable to multidimensional inputs [Verstraete et al., 2017]. For ex-
ample, the LSTM state prediction model introduced in Section R13.5.2 can consume the
spectrogram as a sequence of vectors, and the autoencoder developed in Section R13.5.3
can process the spectrogram provided that the one-dimensional convolution layers are
replaced by two-dimensional layers.

r13.5.4.2 Representations for Multivariate Time Series

The methods described in the previous sections are generally able to process multi-
variate time series and capture the dependencies between the individual metrics to
assess the health status of the entire system. For instance, multivariate time series can
be directly consumed by LSTM models and autoencoders with two-dimensional con-
volutional layers. These general solutions, however, might not be sufficient to properly
capture the inter-correlations between the metrics, and specialized features might be
engineered to enhance the model inputs.

One possible option is to represent a multivariate time series as a sequence of corre-
lation matrices. Assuming that the input is k-variate time series, we can compute the
elements of a kˆ k correlation matrix Mt for every time step t as follows:

mij,t “
1

w

w
ÿ

τ“0

xi,t´τ xj,t´τ (R13.8)

where xt are the normalized samples of the input time series, indexes i and j iterate
over all pairs of metrics, and w is the length of the correlation window. This layout is il-
lustrated in Figure R13.12. The original multivariate time series can then be represented
as a three-dimensional tensor (stack of correlation matrices) in which anomalies can be
scored using the forecasting and autoencoding methods [Song et al., 2018; Zhang et al.,
2019].

r13.6 anomaly detection and classification

The anomaly scoring methods developed in the previous sections evaluate the devia-
tions from the normal manifold, and we assumed that the output of this process was a
continuous score. This score, however, does not explicitly prescribe when to take an ac-
tion in response to the degradation in system health, or what action specifically needs
to be taken. In this section, we focus on converting anomaly scores into actions and
designing advanced scores that facilitate automatic decision-making and operational-
ization.

r13.6.1 Thresholding

In most applications, it is not feasible to track anomaly scores manually, and we need to
automatically make a binary decision on whether a given system state is a significant
anomaly or not based on a continuous anomaly score. We refer to this problem as

542 anomaly detection

xtxt-w

Mt

Figure R13.12: Representing multivariate time series using correlation matrices.

anomaly detection. The anomaly detection decisions can trigger the creation of alerts or
the execution of other actions.

The most basic approach to anomaly detection is thresholding. We set a certain numer-
ical threshold, continuously compare the ongoing anomaly scores with it, and flag all
samples that exceed the threshold as anomalies. The threshold is typically computed
based on the empirical distribution of the anomaly scores for the normal observations.
For instance, we can compute the alerting threshold as follows:

threshold “ β ¨ qk (R13.9)

where β is a scaling parameter, qk is the k-th percentile of the anomaly scores on
normal samples, and k is typically chosen to be high. The scaling parameter β is chosen
heuristically or optimized using backtesting on a labeled dataset. The primary objective
of this process is to identify the threshold that achieves the optimal balance between the
false positive and false negative rates, and this optimization might need to assess not
only the detection accuracy, but also the costs associated with the incident investigation
and system failures.

r13.6.2 Reconstruction Probability

The threshold-based anomaly detection has several limitations. First, this approach
requires managing data-specific detection thresholds using various heuristics which
makes it prone to misconfigurations. Second, it does not take into account the distribu-
tion of the anomaly score on the sample under test; that is the distribution of the state
prediction or reconstruction error. We can address these limitations by taking a more
rigorous probabilistic approach to anomaly scoring. We start to develop this approach
by revisiting the variational autoencoder model created in Section R13.5.2.

R13.6 anomaly detection and classification 543

As we discussed in Section 3.2, the standard variational autoencoder model assumes
that both the encoder and decoder operations are specified using multivariate normal
distributions with independent variables. On the encoder side, this means that the
embedding vector z is drawn from the normal distribution qpz | xq whose parameters
are estimated using the encoding network g based on the input x:

pµz, σzq “ gpxq

z „ qpz | xq “ qpz | µz,σzq “ Npµz, diagpσ2zqq
(R13.10)

On the decoder side, the reconstruction px is drawn from the isotropic normal dis-
tribution ppx | zq with the mean estimated using the decoder network f based on the
embedding z and constant variance:

µx “ fpzq

px „ ppx | zq “ ppx | µxq “ Npµx, c ¨ Iq
(R13.11)

Finally, we estimate the anomaly score as the reconstruction error. This error is an
unnormalized proxy for the likelihood of observing a specific input because of the
normality assumption:

scorepxq “ ‖x´ µx‖2 9 Ez„q r logppx | zq s (R13.12)

This perspective on the regular variational autoencoder suggests that we can obtain
the normalized probability of observing a specific input. First, we can modify the de-
coder network to estimate all parameters of the input distribution instead of estimating
only the mean. This leads to replacing expression R13.11 with the following:

pµx, σxq “ fpzq

px „ ppx | zq “ ppx | µx,σxq “ Npµx, diagpσ2xqq
(R13.13)

Second, we can estimate the probability of observing a specific input by sampling
multiple embedding values and accurately evaluating the log likelihoods. This leads
to the algorithm presented in box R13.1 where the distributions q and p are given by
expressions R13.10 and R13.13, respectively. This estimate is known as the reconstruction
probability [An and Cho, 2015; Pereira and Silveira, 2018].

The final anomaly detection decision is made by comparing the reconstruction prob-
ability with the threshold. The reconstruction probability approach has several advan-
tages over the deterministic reconstruction error discussed in the previous sections.
First, it is a normalized probabilistic measure, and thus the detection threshold can be
set in a data-independent way. Second, the reconstruction probability incorporates the
variability of the data which helps to improve the expressive power of the anomaly
score. For instance, anomalous samples typically have higher variance than the nor-
mal samples, and this can drive the corresponding reconstruction probabilities lower.
Finally, this approach is flexible enough to support arbitrary parametric distributions
instead of the normal distributions we used in this section.

544 anomaly detection

Algorithm R13.1: Reconstruction probability evaluation

inputs:
x – input sample at a specific moment of time

parameters:
L – sampling size
g and f – trained encoder and decoder functions

pµz, σzq “ gpxq (Embedding distribution parameters)
for i “ 1, 2, . . . ,L do

z „ qpz | µz,σzq (Embedding sampling)
pµx, σxq “ fpzq (Input distribution parameters)
si “ logppx | µx,σxq (Log-likelihood of the input)

end
scorepxq “ 1

L

řL
i“1 si (Reconstruction probability)

r13.6.3 Supervised Detection and Classification

In the previous sections, we focused on unsupervised anomaly scoring and detection
methods that do not require ground truth anomaly labels or feedback data to be avail-
able. In this section, we discuss the collection and usage of such data.

The creation of labeled datasets for anomaly detection is associated with several chal-
lenges. First, it can be difficult or impossible to collect enough anomalous samples to
create properly balanced datasets that outline the boundary of the normal manifold. It
can be related to both the rarity of anomalous events and unfeasibility to enumerate
all possible types of anomalies in advance. This problem can sometimes be alleviated
using data augmentation, that is the generation of artificial anomalous instances. This
strategy is particularly efficient when it is possible to build a system model that allows
one to simulate failures or other anomalous scenarios in accordance with the laws of
physics that govern the actual system. The second challenge is the labeling of the col-
lected data. In many applications, the metrics can be properly labeled only by domain
experts which makes the process slow and expensive. This problem is often mitigated
by creating custom labeling tools with domain-specific features that improve the pro-
ductivity of the domain experts.

Assuming that the balanced data is collected and labeled, a wide range of architec-
tures can be used to build supervised anomaly detection and classification models. For
example, one can use convolutional neural networks to perform the classification of
spectrograms introduced in Section R13.5.4.1 to identify specific types of anomalies or
failures [Verstraete et al., 2017]. The quality of such models can be evaluated using
standard metrics such as accuracy and precision.

The supervised methods can also be used to enhance the unsupervised solutions in
the environments where only a limited number of labels can be collected. For exam-
ple, we might not have labeled historical data available during the development of an
anomaly detection system, but, once the system is deployed to production, the opera-
tions team can start to provide the feedback on the generated alerts, tagging them as

R13.7 remaining useful life prediction 545

true and false positives. This feedback can be used to create a supervised model that
post-processes the anomaly detection decisions made by the unsupervised part of the
solution with a goal to suspend false positives.

r13.7 remaining useful life prediction

The anomaly scoring, detection, and classification methods discussed in the previous
sections can help to evaluate the magnitude of the deviation from the normal manifold
and make a decision as to whether a specific deviation needs to be investigated. These
capabilities, however, are not sufficient for predictive maintenance purposes where we
need to estimate the remaining useful life (RUL) measured in time units. In this section,
we develop specialized solutions for this problem.

r13.7.1 Solution Approach

For the predictive maintenance setup, we assume the availability of historical run-to-
failure data. These data typically consist of multiple trajectories each of which represents
a multivariate time series that ends with the failure event and, optionally, collection of
attributes that characterize the entire trajectory. For example, consider the problem of
developing a predictive maintenance model for aircraft jet engines. In this setup, the
training dataset can include records for multiple engines where each engine is rep-
resented by sensor data and static attributes such as initial wear and manufacturing
variation. The sensor data for one engine, that is the engine’s trajectory, is a multi-
variate time series where each variable corresponds to one sensor and each time step
corresponds to one operational cycle or time interval. It is essential that each series
ends with a failure event, so that the RUL for the i-th trajectory can be calculated at
any time t as

RULpi, tq “ tfi ´ t (R13.14)

where tfi is the time of the failure event for trajectory i. The failure event might
correspond to the actual system or component failure or achieving a certain safety
condition.

In the above setup, our goal is to predict the RUL value based on a given segment of
the trajectory. This is essentially a regression problem, but it can be approached in sev-
eral different ways. One common strategy is to calculate a single health indicator based
on the input metrics, and then estimate the RUL based on it. The health indicator is
a univariate time series that is designed to characterize the system degradation over
time. For example, we can compute a regular anomaly score using an autoencoder, as
described in Section R13.5.3. We can then use this score as a health indicator under the
assumption that the metric patterns deviate increasingly from the normal manifold as
the system health degrades [Gugulothu et al., 2017]. The RLU can then be estimated
using the second model that maps the health score to time-to-failure. For example, we
can use the nearest neighbors approach and estimate the distribution of the RUL or ex-
pected RUL for a given system by looking up the most similar historical health profiles
and averaging their time-to-failures. This approach is illustrated in Figure R13.13. The

546 anomaly detection

advantage of this strategy is that the health indicator can be designed, visualized, and
analyzed separately from the RUL estimation.

100 150 200 250 300 350 400 450
0.4

0.5

0.6

0.7

0.8

0.9

1.0
H

ea
lth

 in
di

ca
to

r

Time

Historical trajectories
Given trajectory
Nearest neighbors
Failures

Expected RUL

Figure R13.13: RUL estimation using the nearest neighbor search based on the health indicator.

The alternative strategy is to build a regression model that predicts the RUL directly
based on the input metrics. In the next section, we examine this approach in more
detail and develop a prototype that estimates the RUL using a convolutional network
[Li et al., 2018].

r13.7.2 Prototype

The complete reference implementation for this section is
available at https://bit.ly/3LuJLZB

We start with a subset of the Turbofan Engine Degradation Simulation dataset that
includes 100 run-to-failure trajectories for turbofan engines. Each trajectory is a multi-
variate time series that includes numerical measurements from 26 sensors and 3 addi-
tional real-valued variables that characterize the operational settings. Each time step in
the series corresponds to one operational cycle.

https://bit.ly/3LuJLZB

R13.7 remaining useful life prediction 547

Turbofan Engine Degradation Simulation Dataset

The Turbofan Engine Degradation Simulation dataset was developed at the
NASA Ames Research Center in 2008 [Saxena et al., 2008]. It consists of multiple
multivariate time series each of which represents a run-to-failure trajectory of
one engine obtained using a physics-based simulation model. All engines are
assumed to be of the same type, but the dataset includes four different groups
of trajectories for four different operational modes and degradation scenarios.
Each group includes from 100 to 250 train and test trajectories.

We preprocess the original dataset to remove the metrics that are known to be non-
informative for the RUL prediction purposes, which leaves us with 15 metrics. Exam-
ples of such metrics for one of the engines are shown in Figure R13.14. These plots
suggest that the system health degradation typically manifests itself through exponen-
tial growth or decline of individual metrics.

0.0
2.5

−2.5
0.0

−1.5
−0.5

0.0
2.5

0255075100125150175200
−2.5
0.0

RUL

Sensor 2

Sensor 7

Sensor 14

Sensor 17

Sensor 21

Failure

Figure R13.14: A subset of normalized metrics for one of the trajectories (engines) from the Turbo-
fan Engine Degradation Simulation dataset.

The design of the RUL prediction model is shown in Figure R13.15. We start by cut-
ting the preprocessed multivariate time series into segments of 30 time steps each using
a sliding time window, as shown in the lower part of the figure. For each segment, we
assign a training label equal to the number of time steps between the latest sample of
the segment and failure event; this value corresponds to the RUL defined by expres-
sion R13.14. We also limit the maximum label value, so that all system states with the
RUL of more than 150 operational cycles are considered healthy. The resulting RUL
curve computed according to this logic is shown in the upper part of the figure.

The model is designed to predict the RUL value based on one input segment. The
model represents a small stack of one-dimensional convolution layers (temporal convo-
lutions) followed by two dense layers that produce the final RUL estimate, as shown
the middle of Figure R13.15. The model is trained to minimize the regular MSE loss,

548 anomaly detection

and can then be used to estimate the RUL curve for a given segment of a trajectory. An
example of the predicted RUL curve for one of the engines in the test dataset is shown
in Figure R13.16.

0255075100125150175200

−2

0

2

M
et

ric
s

0255075100125150175200

0

50

100

150

RU
L

Failure

Failure

RUL

[30 x 15]

[30 x 1]

[30 x 15]

[1 x 1]

1D convolution layer Dense layer Healthy state Window

Figure R13.15: The design of the RUL prediction model.

0255075100125150175

0
25
50
75

100
125
150
175

True RUL
Predicted RUL

Failure

Figure R13.16: The predicted and ground truth RUL curves for one of the engines in the test
dataset.

The prototype described above demonstrates one particular way of predicting the
RUL based directly on the input time series. In practice, we would normally need
to customize both the network architecture and loss function. From the architecture

R13.8 summary 549

perspective, we can use a variety of components with sequential inputs including con-
volutional and recurrent networks, as well as transformers. The loss function is often
chosen to be asymmetrical to account for the difference between the underestimation
and overestimation costs. Underestimation of the RUL translates into the unused equip-
ment resource, while overestimation results in failures and downtimes [Li et al., 2018].

r13.8 summary

• Anomaly detection in IoT metrics generally requires developing data visualiza-
tion capabilities, health indicators, and decision-making components for anomaly
detection and classification.

• Health indicators are the measures of deviation from the manifold of the normal
states. System health can be measured using abstract scores, normalized proba-
bilities of observing a specific deviation, or semantically meaningful units such
as the remaining useful life in days. Health indicators measured in time units are
important in applications that require preventive actions to be determined.

• Generic statistical methods can detect outliers in the raw data, but these outliers
do not necessarily relate to defects, failures, and other events of interest (anoma-
lies). The input metrics might need to be preprocessed using a system model to
ensure that statistical outliers can be interpreted as meaningful anomalies.

• Monitoring is a challenging problem in most IoT environments because of the
large number of devices, sensors, and metrics. The efficiency of monitoring can
be improved using noise removal and dimensionality reduction techniques.

• In environments where only the normal observations are available, we can use
time series forecasting and autoencoding methods to score the deviations from
the normal manifold.

• The original time series are not necessarily the optimal input representations
for forecasting and autoencoding models. It is common to preprocess the input
metrics using frequency-domain and correlation analysis methods.

• Anomaly scores can be converted to actionable decisions such as alerts using
thresholding. The thresholds are usually data-dependent for distance-based
scores and data-independent for normalized scores obtained using probabilistic
methods.

• Anomaly detection and classification can be performed using regular supervised
methods in environments where labeled anomaly events or feedback data are
available. In particular, regression models with sequential inputs can be used to
predict the remaining useful life of a system and its components.

Recipe

14

V I S U A L Q U A L I T Y C O N T R O L

Identifying Production Defects Using Computer Vision

Production yield and quality are the main performance metrics for most manufactur-
ing companies. Quality issues can incur significant financial and operational losses
resulting from reworked parts, reduced yield, shortened service life of the final prod-
uct, safety risk, reputation damages, post-sale recalls, and warranty claims. The ability
to mitigate these risks is an important enterprise capability, and companies usually in-
clude multiple quality control steps in their manufacturing processes to identify defects
and discard defective parts.

Manufacturers use a wide range of quality control methods including electromag-
netic and ultrasonic testing, X-ray scanning, spectroscopy, and visual inspections. Vi-
sual inspection, that is an inspection of an asset’s appearance in the visual spectrum
made using the naked eye, microscopic device, or photographic image is one of the
most basic, but also the most versatile techniques. It is used in many industries in-
cluding automotive, electronics, semiconductor, and general-purpose manufacturing
to inspect paint surfaces, welding seams, semiconductor wafers, printed circuit boards,
fabrics, and packaging.

Traditional visual inspection is a highly manual process that can be expensive, time-
consuming, and prone to errors and inconsistencies related to variations in the oper-
ator’s perception and experience. Computer vision methods can solve many of these
challenges and help to create fully automated, consistent, and accurate quality control
solutions. In this recipe, we discuss the details of the visual inspection problem and
develop several methods for the detection of defects.

r14.1 business problem

We consider the case of a manufacturing process that produces discrete objects or a
continuous flow of material that can be photographed. The captured images can then be

551

552 visual quality control

analyzed to detect defects such as spots, holes, and scratches. The outputs of the defect
detection system can be integrated with the manufacturing machines to automatically
remove defective parts, stop certain processes, or perform other actions. In the next
sections, we discuss a high-level architecture of the defect detection solution, typical
properties of the input images, and solution objectives.

r14.1.1 Environment

The conceptual architecture of the defect detection solution is presented in Figure R14.1.
We utilize cameras or sensors that produce images of the objects that need to be
inspected. This requires some synchronization between the production and image-
capturing processes, so that the objects are regularly photographed at specific stages
of production. For example, images might be captured at the end of the object coating
operation, but not when the operation is in progress. The synchronization can be pre-
cisely done by using coordinating signals, or various computer vision methods that can
detect the right moments for capturing static images from continuous video streams.

Control

Edge

Model
traning

Data
preparation

Model
evaluation

Analytics

Model

Images

Decision

Image
to evaluate

Camera/
sensor

Preprocessing and
normalization

Figure R14.1: Conceptual architecture of the defect detection solution and its integrations.

The captured images often need to be preprocessed to detect the objects of interest
in the image, separate them from the background, and to normalize the object orienta-
tion and scale. In many environments, the preprocessing is a challenging problem that
requires involving multiple computer vision methods. In this recipe, we consider the
synchronization and preprocessing tasks to be out of scope and assume that the input
images have been properly captured and prepared for the defect detection stage.

The captured images are often consolidated and preprocessed on edge servers that
are collocated with the production equipment and then forwarded to the centralized
analytics system where the data are further prepared for modeling. We assume that
the captured images are labeled as normal and defective at the preparation step and,

R14.1 business problem 553

optionally, defect type labels and defect location labels (bounding boxes or masks) can
be created.

The prepared data are used to train the defect detection model, and this model is
typically deployed on the edge devices collocated with the cameras to perform the
evaluation of the incoming images in near real time. The results of the evaluation, such
as anomaly scores and binary decisions, are fed into services that control the production
flow and maintenance operations.

r14.1.2 Data

The examples of images that can be produced by industrial cameras installed on man-
ufacturing machines are provided in Figure R14.2. In the figure, each row corresponds
to a separate manufacturing process, the leftmost column contains examples of non-
defective outputs, and the other three columns contain examples of defective outputs.
In this particular dataset, defective items are identified by labels stating the type of
defect, such as bent, cut, or hole, but we do not assume that such labels are necessarily
available.

Normal Anomaly: bent Anomaly: broken Anomaly: thread

Normal Anomaly: cut Anomaly: hole Anomaly: thread

Normal Anomaly: cut Anomaly: crack Anomaly: hole

G
rid

Ca
rp

et
H

az
el

nu
t

Figure R14.2: Examples of defective and nondefective instances from the MVTec AD dataset
[Bergmann et al., 2019].

Datasets used for the development of defect detection algorithms typically exhibit
two main characteristics of anomaly detection problems which we discussed in
Recipe R13 (Anomaly Detection). First, defects are usually quite rare events, so it can
be challenging to collect a representative set of defective instances. At the same time,

554 visual quality control

collecting a large number of nondefective instances is a much more straightforward
task. Consequently, we commonly need to deal with highly imbalanced datasets.
Second, it is usually challenging to unambiguously specify or enumerate all possible
defect types and appearances. We can sometimes define a reasonably comprehensive
categorization of the previously observed defects and collect image examples for each
category, but it is seldom possible to guarantee that all future instances will follow the
same patterns.

r14.1.3 Objectives

Our primary objective is to build a model that can discriminate between defective
and nondefective samples. We usually want such a model to produce a continuous
defect likelihood score for a given image that can be thresholded to make the final
binary decision (defect or no defect). This approach enables us to manage the trade-off
between false positives and false negatives, and to set the threshold value based on
operational needs, risks, and cost considerations. Consequently, we can evaluate the
quality of the defect detection model using a receiver operating characteristic curve, or
ROC curve, as illustrated in Figure R14.3. Each point on the ROC curve corresponds
to a specific decision threshold value and false positive rate achieved at this threshold,
and the entire curve characterizes the Pareto frontier achievable by the model.

As the datasets for defect detection are often imbalanced, the precision-recall (PR)
curve is often a more appropriate choice than the ROC curve. We can also use the
integral metics derived from the PR curve, such as the F1 score and area under the PR
curve (PR AUC), to summarize the model’s performance in a single number and to
compare different models1.

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.20.0 0.4 0.6 0.8 1.0

0.2

0.0

0.4

0.6

0.8

1.0
Pareto frontier
(ROC curve)

Detection
threshold

Figure R14.3: Evaluating the performance of the defect detection model using a ROC curve.

The second common objective is to localize the defect in the image. This can be ac-
complished by building a model that produces a bounding box or pixel-level segmenta-
tion mask, similar to what we did in Recipe R5 (Visual Search) in the context of visual

1 See Appendix B for a detailed discussion of this topic.

R14.2 solution options 555

search tasks. Bounding boxes and segmentation masks can help to operationalize the
outputs of the defect detection system, facilitating the analysis and troubleshooting of
the issues. Assuming that we have ground truth bounding boxes or pixel-level segmen-
tation masks, the quality of segmentation can be evaluated using the intersection over
union (IoU) metric defined in expression R5.3.

r14.2 solution options

The problem of defect detection requires estimating the manifold of nondefective im-
ages, so that all images outside of the boundaries of this manifold can be deemed to
be defective. In the next sections, we discuss how a model of the normal (nondefec-
tive) manifold can be learned using supervised and unsupervised methods, and how
such models can be used to assess images under test. We will also discuss how transfer
learning can be used to extract image features and to create representations that help
to learn manifolds more efficiently.

r14.3 supervised defect classification models

In principle, the problem of defect detection can be solved by training a regular image
classification model on a dataset with labeled defective and nondefective instances.
However, this requires the creation of a dataset that contains enough samples of both
classes to explicitly outline the boundaries of the normal manifold. Creating such a
dataset can be challenging for several reasons:

• First, all possible defect types are usually not known in advance, making it diffi-
cult to cover the boundaries of the normal manifold in the training dataset.

• Second, the scrap rates might be too low to produce enough defective instances
for training deep learning-based image classification models.

• Finally, image labeling often requires deep domain knowledge and experience, so
it can be done only by domain experts, which makes the process expensive and
slow.

Despite of these challenges, supervised defect defection is a very common approach
in practice, and companies invest heavily in creating appropriate training datasets and
advanced tools that improve the labeling efficiency. The above problems can also be
mitigated using data augmentation methods, that is by artificially generating defective
samples from the normal samples, as shown in Figure R14.4. This approach enables
us to create a balanced training dataset and fit a supervised model even if defective
instances are not available. On the other hand, this solution is not particularly efficient
because we have to explicitly generate a cloud of defective instances around the normal
manifold solely to ascribe the problem to the supervised form. As we discuss in the next
sections, we can fit a manifold model directly on the normal samples, bypassing the
data generation.

556 visual quality control

Figure R14.4: Defective samples generated for data augmentation.

r14.4 anomaly detection models

The problem of defect detection can be approached as the problem of learning the
model of normality which can be used to identify instances that are significantly dif-
ferent from the norm. These instances can then be interpreted as anomalies (defects).
Since the model of normality aims to approximate the distribution of the nondefective
images, we can attempt to fit it using exclusively nondefective instances without de-
marcating the boundaries of the nondefective manifold with defective samples, as we
discussed in the previous section.

One of the most usual ways of creating a model of normality is to train an autoen-
coder that maps the input image to a low-dimensional embedding and then recon-
structs the input based on the limited information contained in the embedding vector.
Assuming that x is a wˆ h input image with k channels, z is the d-dimensional em-
bedding vector, and px is the reconstructed image, the transformation performed by the
autoencoder can be expressed as follows:

z “ Epxq

px “ Dpzq
(R14.1)

where E : hˆwˆ k Ñ d and D : d Ñ hˆwˆ k are the encoder and decoder
functions, respectively. As we discussed in Section 2.6.2, the dimensionality of the em-
bedding vector controls the capacity of the model, and we can capture the curvature of
the normal manifold in smaller or greater detail by varying the size of the embedding
vector.

The training process optimizes the parameters of the autoencoder model based on
the loss function Lpx, pxq that evaluates the difference between the input and recon-
structed images, as shown in Figure R14.5 (a). Once the model is trained, a test image
can be assessed by computing its reconstruction which basically represents the closest
point on the normal manifold, and then computing the loss function for the input and
reconstructed images, as shown in Figure R14.5 (b).

The loss function is usually computed by averaging the pixel-level differences be-
tween the images. However, the pixel-level difference matrix Rpx, pxq, referred to a resid-
ual map, is also commonly used to analyze the location of the defect and thus create a
segmentation mask. The loss function and residual maps can be computed in several
different ways, and these design choices significantly influence the accuracy of the de-
fect detection, as well as the quality and usefulness of the segmentation maps. In the
next section, we discuss the design of the autoencoder model, residual maps, and loss
functions in more detail.

R14.4 anomaly detection models 557

Loss
Update

Autoencoder

Normal image
instance

Reconstructed
image

Loss
Autoencoder

Input image

Reconstructed
image

Detection
(thresholding)

(a) Training (a) Scoring

Residual
map

Segmentation

Figure R14.5: Anomaly detection in images using autoencoders.

r14.4.1 Model Architecture

Autoencoders for anomaly detection in images can use standard convolutional archi-
tectures with contracting and expanding subnetworks. Let us consider one commonly
used architecture presented in Figure R14.6 as an example [Bergmann et al., 2018]. This
model assumes a 128ˆ128 input single-channel (grayscale) image. This input is pro-
cessed by a stack of convolution layers that gradually decrease the size of the feature
maps from the original 128ˆ128 down to 8ˆ8 and, at the same time, increase the num-
ber of channels. The size of the feature maps is controlled using strides, and no pooling
layers are used. The output of this stack is processed by an additional convolution layer
with 100 filters and a linear activation function to produce a 100-dimensional embed-
ding vector. This vector is then expanded back to 128ˆ128ˆ1 output using a stack of
upconvolution layers that basically represent the reversed version of the contracting
stack. Similar to the contracting path, the expanding path also controls the size of the
feature maps using strides.

Conceptually, the specification presented in Figure R14.6 is sufficient to train the
model and score test images provided that we define an appropriate loss function. In
practice, we might need to extend this design with additional pre- and post-processing
components to support images of different sizes and levels of detail. We discuss this
topic later in the solution prototype section.

558 visual quality control

128 × 128 × 1

Convolution Uponvolution
(Linear)

Upconvolution
(ReLu)

64 × 64 × 32

32 × 32 × 32

32 × 32 × 32

16 × 16 × 64

16 × 16 × 64

8 × 8 × 128

8 × 8 × 64

8 × 8 × 32

1 × 1 × 100

8 × 8 × 32

8 × 8 × 64

8 × 8 × 128

16 × 16 × 64

16 × 16 × 64

32 × 32 × 32

32 × 32 × 32

64 × 64 × 32

128 × 128 × 1

4 × 4 2

4 × 4 2

3 × 3 1

4 × 4 2

3 × 3 1

4 × 4 2

3 × 3 1

3 × 3 1

8 × 8 1

8 × 8 8

3 × 3 1

3 × 3 1

4 × 4 2

3 × 3 1

4 × 4 2

3 × 3 1

4 × 4 2

4 × 4 2

Kernel
size

StrideOutput

Input image

Reconstructed image

Figure R14.6: Example architecture of the autoencoder for anomaly detection in images.

r14.4.2 Structural Similarity

The autoencoder is trained to reconstruct the input image as accurately as its capacity
allows, and this process is guided by the loss function. The most straightforward choice
for the loss function is the mean squared error (MSE):

MSEpx, pxq “
h
ÿ

i“1

w
ÿ

j“1

`

xij ´ pxij
˘2

(R14.2)

R14.4 anomaly detection models 559

and the corresponding residual map is a matrix of pixel-wise distances:

rij “
`

xij ´ pxij
˘2 (R14.3)

The MSE loss is a simple and computationally efficient measure that works reason-
ably well for our purposes, but it has disadvantages as well. The main problem with
MSE is its sensitivity to common reconstruction artifacts such as small image shifts or
blurring that are generally irrelevant for the defect detection purposes and should be
ignored. This issue stems from the fact that SME is a sum of per-pixel distances which
are computed independently, so that cross-pixel correlations typical for reconstruction
artifacts cannot be detected and properly accounted for. This suggests that we can cre-
ate a more robust model by using a loss function that assesses the distance between
image patches rather than individual pixels.

One commonly used distance measure that satisfies the above requirement is struc-
tural similarity (SSIM). This measure was originally introduced in the context of image
processing problems to assess the quality of images in a way consistent with human
perception which also has low sensitivity to minor shifts, blurs, and other transforma-
tions alike [Wang et al., 2004]. The SSIM score is defined for a pair of kˆ k image
patches a and b as a product of three terms called luminance lpa, bq, contrast cpa, bq,
and structure spa, bq:

SSIMpa, bq “ lpa, bqαcpa, bqβspa, bqγ (R14.4)

where α, β, and γ are the term weights that are usually set to 1. The luminance
component is the normalized difference between mean intensities µa and µb of the
patches:

lpa, bq “
2µaµb ` c1

µ2a ` µ
2
b ` c1

(R14.5)

where c1 is a small constant added for numerical stability. In a similar vein, the
contrast component is the difference between patch variances σa and σb:

cpa, bq “
2σaσb ` c2

σ2a ` σ
2
b ` c2

(R14.6)

Finally, the structure component is evaluated based on the covariance σab of two
patches:

spa, bq “
2σab ` c3
2σaσb ` c3

(R14.7)

The SSIM residual map for the entire image x and its reconstruction px is computed by
sliding a kˆ k window over the image and evaluating expression R14.4 at each pixel.
The overall SSIM loss can then be obtained as the sum of all elements of the residual
map.

The difference between MSE and SSIM losses is illustrated by the example in Fig-
ure R14.7. We take an image of a fabric patch with a hole, prepare its reconstruction
where the hole is mainly removed, and also shift this reconstructed version by two
pixels. The MSE residual map has a lot of background noise created by the shift that

560 visual quality control

almost masks the location of the defect, but the SSIM map is more robust and clearly
highlights the defect. The component-level breakdown presented in the lower part of
Figure R14.7 also indicates that, in this particular example, the contrast term makes the
largest contribution to the residual map.

Defect Reconstructed

SSIM MSE

Luminance Contrast Structure

Figure R14.7: Comparison of SSIM and MSE residual maps for the same pair of images. SSIM is
computed using 11ˆ11 patches.

r14.4.3 Anomaly Detection with Transfer Learning

The autoencoder-based solution developed in the previous section assumes that the
model is trained from scratch based on nondefective images, and the encoding part
of the network learns how to extract meaningful feature maps which can be further
condensed into the embedding vector. This approach is not necessarily optimal because,
as we discussed in Recipe R5 (Visual Search), high-quality feature maps can typically
be extracted using pretrained computer vision networks which sharply reduces the
amount of data needed for training. In this section, we explore how pretrained models

R14.4 anomaly detection models 561

can be used in anomaly detection applications to efficiently extract image features and
reduce the overall complexity of the solution.

To understand how transfer learning can help with the anomaly detection task, let
us assume that we have a pretrained network that produces a high-quality image rep-
resentation which we can flatten into a d-dimensional feature vector. In principle, we
can create a decoding network that reconstructs the input image based on this vector
and train it using the SSIM loss function, in the same way as we train the complete au-
toencoder model. This solution produces the same outputs as the autoencoder trained
from scratch, including the residual maps that can be used for defect segmentation, but
it achieves lower complexity and higher data efficiency. On the other hand, the decoder
network can still require a considerable amount of data and computational resources
to be trained. The alternative solution is to leverage the fact that the image is already
converted to a representation where the normal manifold is better separated than in
the original image space. We can then build a relatively simple model of normality that
can be used to score the test images just as we did with the basic defect classification
models in Section R14.3.

One possible solution is to approximate the normal manifold with a multivariate
Gaussian distribution [Rippel et al., 2021]. Assuming that images are represented by
d-dimensional feature vectors, the probability density of the normal manifold can be
specified as

pµ,Σpxq “
1

a

p2πqd detpΣq
exp

ˆ

´
1

2
px´ µqTΣ´1px´ µq

˙

(R14.8)

where µ is the d-dimensional mean vector and Σ is the d ˆ d covariance matrix.
Assuming that we have a training set with n nondefective images, and these images are
transformed into feature vectors x1, . . . , xn by the pretrained network, the distribution
parameters can be estimated as follows:

pµ “
1

n

n
ÿ

i“1

xi

pΣ “
1

n´ 1

n
ÿ

i“1

pxi ´ pµqpxi ´ pµqT

(R14.9)

Once the manifold model is fitted, the anomaly score of a given image represented
by feature vector x can be evaluated as the distance between the point x and the distri-
bution. The standard measure of the distance between a point and distribution is the
Mahalanobis distance defined as follows:

Mµ, Σpxq “
b

px´ µqTΣ´1px´ µq (R14.10)

The Mahalanobis distance is basically a generalization of the idea of measuring how
many standard deviations the point is from the mean of the distribution. We can evalu-
ate this measure for any test image provided that parameters µ and Σ were estimated
based on the training set as described above.

The anomaly scoring method described above relies on the assumption that we have
a model for mapping images to a proper feature space. This mapping can be done by

562 visual quality control

capturing feature maps produced by intermediate layers of a generic image classifica-
tion model pretrained on a standard dataset such as ImageNet.

To illustrate this approach, let us consider one specific design which is based on the
EfficientNet-B0 model1 [Rippel et al., 2021]. The EfficientNet-B0 network includes nine
major blocks, and we can capture the output of each block and compute nine feature
vectors by averaging each output across spatial dimensions, as shown in Figure R14.8.
Consequently, each of nine feature vectors x1, . . . , x9 has as many dimensions as
channels in the output of the corresponding block. We compute these vectors for each
image in the training set, and then independently fit nine Gaussian models according
to expressions R14.8 and R14.9.

224 × 224 × 1

112 × 112 × 32

56 × 56 × 24

112 × 112 × 16

28 × 28 × 40

14 × 14 × 80

7 × 7 × 192

14 × 14 × 112

7 × 7 × 320

7 × 7 × 1280

1 × 1

Global average
pooling

x1
x2
x3
x4

x5

x6

x7

x8

x9

Input image

Figure R14.8: Feature extraction for anomaly detection using EfficientNet-B0.

A test image x is then scored by computing and summing nine Mahalanobis dis-
tances for each of its feature vectors:

scorepxq “
9
ÿ

i“1

Mµi, Σipxiq (R14.11)

The above solution leverages the pretrained feature extraction networks to simplify
the model of normality, reduce the training complexity, and improve the accu-
racy. These properties can give the EfficientNet-B0 solution an advantage over the
autoencoder-based methods in applications that do not require defect segmentation.
However, the advantages of pretrained computer vision models should be carefully
assessed for each particular application. Industrial images are fundamentally different
from the standard image datasets such as ImageNet used for pretraining, and the
gains delivered by pretraining can be small or negligible.

1 See Recipe R5 (Visual Search) for more details about the EfficientNet models.

R14.5 prototype 563

r14.5 prototype

The complete reference implementation for this section is
available at https://bit.ly/45UWLiQ

In this section, we build a prototype of an anomaly detection solution based on
the autoencoder architecture described in Section R14.4.1 and SSIM loss measure. For
training and evaluation, we use the MVTec dataset which we previewed in Figure R14.2
at the beginning of this recipe.

MVTec AD Dataset

MVTec Anomaly Detection (AD) is a dataset for benchmarking visual quality
control methods [Bergmann et al., 2019]. The dataset contains 15 categories of
industrial objects and textures such as grid, carpet, and screw, and each category
includes nondefective and defective instances. The dataset contains more than
5000 images.

One of the practical challenges that we need to address in our prototype is a rela-
tively small number of images for individual object categories. Most categories contain
around 200-300 nondefective instances which might not be sufficient for training a high-
capacity autoencoder. At the same time, the images have a relatively high resolution,
and the size of anomalies in defective instances can be small compared to the image
size. This also represents a challenge because we can lose important details if we sim-
ply resize all images to match the relatively small input shape (128ˆ128 pixels) of the
autoencoder network.

These two problems can be alleviated by cutting large images into smaller patches
and processing these patches independently [Bergmann et al., 2018]. First, we create
the training dataset by sampling patches with random offsets from the available non-
defective images, as shown in Figure R14.9. This technique allows us to augment the
original dataset and create an arbitrary number of training samples for each category.
We choose to sample 10,000 patches per category, and then train autoencoders indepen-
dently for each category using the SSIM loss function.

We then use the trained autoencoders to reconstruct test images and compute the
residual maps. Since the autoencoders are trained on patches, we have to cut each
input image into patches, reconstruct each patch separately, and assemble these recon-
structions into the final output image. Although we can use nonoverlapping patches,
this approach is not optimal because reconstructed artifacts tend to create seams in the
final image. A better solution is to sample overlapping patches with a fixed or random
stride and sum their reconstructions into the final image, as shown in Figure R14.10.

We use this process to analyze defective images from several categories as shown in
Figure R14.11. The left-hand column contains the input (defective) images, the middle
column visualizes the reconstructions produced by the autoencoders, and the right-

https://bit.ly/45UWLiQ

564 visual quality control

...

...

Input images Training dataset

Figure R14.9: Sampling training patches from the input dataset.

... ...

Input
image

Patches Reconstructed
patches

Reconstructed
image

Autoencoding

Figure R14.10: Reconstructing a large image patch by patch.

hand column contains the SSIM maps for input and reconstructed images. The SSIM
maps highlight the location of defects in all three categories, although the autoencoding
process does not necessarily remove the defects perfectly, and reconstructed images
might contain defect-like features.

r14.6 extensions and variations

The methods developed in the previous sections aim at learning the model of normality
based on nondefective images and using it to evaluate the likelihood of a test image
being defective. We discussed both unsupervised methods that can learn based exclu-
sively on nondefective images and classification methods that can incorporate a basic
supervision signal if it is available. In many visual inspection applications, however,
we have access to more detailed and comprehensive ground truth information. This

R14.6 extensions and variations 565

Input image Reconstructed image Loss

G
rid

Ca
rp

et
H

az
el

nu
t

Figure R14.11: Examples of reconstructed images and SSIM maps created using the prototype.

can be leveraged to produce more accurate results or deal with complex environments
where regular anomaly detection methods cannot be applied. In this section, we briefly
discuss two examples that illustrate the extended usage of ground truth data.

The first use case we consider is the verification of printed circuit boards (PCBs). In
this scenario, it is usually possible to precisely compare test images of newly produced
PCBs with a reference image, referred to as a template, and detect defects based on the
pixel-wise difference. The verification procedure can include the following steps:

1. The test and reference images are first aligned to ensure rotation, scale, and trans-
lation invariance of the input images. This can be done using interest point detec-
tion algorithms or models that identify matching points in the test and reference
images and then performing any necessary geometric transformations.

2. The residual map for the aligned test and reference images is computed, and
defect locations are identified based on the clusters of large residual values.

The second example is planogram verification which is an important use case for
retailers and manufacturers of consumer packaged goods. In this scenario, the ground
truth is a planogram which specifies how items should be placed on shelves, and test
images are often captured on smartphone cameras by merchandisers in stores. The key
challenges in planogram verification are the low quality of test images that can be taken
from different angles, in changeable lighting conditions, and with high variability in

566 visual quality control

item appearance including rotated and fallen packages, items at the back of shelves,
and different products with similar package designs. The planogram verification flow
can include the following steps:

1. Bounding boxes or segmentation masks for individual items are estimated using
object detection or instance segmentation models.

2. Image patches with individual items are cut out, and items are identified using
classification models.

3. The sequences of identified items are compared with the planogram and discrep-
ancies are reported.

These two use cases demonstrate that visual quality control can be implemented us-
ing very different techniques depending on the quality of the input images, the number
of objects that need to be analyzed, and the availability of ground truth data. Conse-
quently, one often needs to combine multiple models and algorithms to build an end-
to-end solution, and unsupervised anomaly detection is only one of the tools we can
use.

r14.7 summary

• Automated visual inspection is an important enterprise capability that can be
used across multiple stages of the manufacturing process to control the quality,
prevent losses, and reduce risks.

• Visual quality control can be performed using image classification models that
discriminate between defective and nondefective instances. Collecting a suffi-
ciently large number of defective samples can be a challenge in many manu-
facturing environments.

• The alternative approach is to learn a model of normality using only nondefective
instances. The model of normality approximates the distribution (manifold) of
nondefective images.

• The model of normality can be created using an autoencoder network that is
trained to reconstruct the input image based on the embedding vector of a limited
size. The difference between the input and reconstructed images can be used to
identify defect location and compute an integral anomaly score.

• The choice of the loss function is an important aspect of the autoencoder design.
In many applications, structural similarity (SSIM) produces better results than
generic loss measures such as mean squared error.

• The model of normality can be constructed based on features produced by pre-
trained image classification models. This can help to reduce the number of in-
stances needed for training and simplify the design of the model.

Appendix

A

L O S S F U N C T I O N S

This appendix provides an overview of the loss functions used in this book and some
of their alternatives. These loss functions have several common applications. First, loss
functions are used to guide the model parameter optimization during the training
process. Second, all functions presented in this appendix can be used as evaluation
metrics to assess the quality of the trained models. Additional evaluation metrics that
are typically not used as optimization objectives are reviewed in Appendix B. Finally,
specialized loss functions are used to learn entity representations (embeddings) with
desirable properties. In enterprise applications, the design of the loss functions is very
important because they are a tool for translating the business goals into the formal
optimization objectives.

a.1 loss functions for regression

We assume a training dataset that consists of n independent and identically distributed
samples pxi, yiq where xi is the model input, yi is a real-valued output label, and
index i iterates from 1 to n. We consider the following two problem statements:

• In a general case, we are looking to estimate the complete label distribution model
pmodelpyi | xi, θq specified by the parameter vector θ.

• In a narrower formulation, we are looking to estimate specific statistics of the label
distribution such as the mean. For example, the model that estimates the mean
label value pyi is a scalar valued function fmodel of the input xi and parameters θ:

pyi “ E rpmodelpyi | xi, θqs “ fmodelpxi, θq (A.1)

567

568 loss functions

The model parameters can be estimated using different optimality criteria. We further
assume the maximum likelihood criteria that are required to maximize the sum of the
log-probabilities of the observed label values:

θML “ argmax
θ

n
ÿ

i“1

logpmodelpyi | xi, θq (A.2)

These fundamental criteria can be converted to different loss functions depending
on our assumptions about the data distribution and additional corrections we might be
willing to incorporate. We discuss these functions one by one in the next sections.

In the next sections, we also illustrate and compare the loss functions using a data
sample presented in Figure A.1. In this sample, input x is one-dimensional and labels y
are obtained by adding asymmetric noise to the base function y “ sincpxq. We compare
the loss functions by training the same fully-connected network (model) with five dense
layers and visualizing the estimates py for each of the functions.

−4 −2 0 2 4
x

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

y

Data
sinc(x)

Figure A.1: Data sample used for evaluation of the regression loss functions.

a.1.1 Mean Squared Error

The maximum likelihood criteria A.2 can be reduced to the mean squared error (MSE) loss
function under the assumption that the label is normally distributed. More specifically,
let us assume that the label follows the normal distribution with the mean estimated
using model fpx, θq and some fixed variance σ2:

ppy | x, θq “ N
´

y; fpx, θq, σ2
¯

(A.3)

A.1 loss functions for regression 569

The maximum likelihood estimate of the model parameters can then be reduced to
the minimization of the mean squared error:

θML “ argmax
θ

n
ÿ

i“1

log
„

1

σ
?
2π

exp
ˆ

´
pyi ´ fpxi, θqq2

2σ2

˙

“ argmax
θ

log
1

σ
?
2π
´

n
ÿ

i“1

pyi ´ fpxi, θqq2

2σ2

“ argmax
θ

´

n
ÿ

i“1

pyi ´ fpxi, θqq2

“ argmin
θ

LMSEpy1:n, py1:nq

(A.4)

where y1:n is a shortcut for ty1, . . . ,ynu and LMSE is the MSE loss defined as follows:

LMSEpy1:n, py1:nq “
1

n

n
ÿ

i“1

pyi ´ pyiq
2 (A.5)

The plots of the normal distribution and corresponding MSE loss function are pre-
sented in Figures A.2 (a) and (b), respectively.

−3 −2 −1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
e

0

2

4

6

8

LMSEN(0,1)

(a) (b)

Figure A.2: Assuming the normal distribution of the target variable (a), the maximum likelihood
criteria can be reduced to the MSE loss function (b). We denote prediction error as
e “ y´ py.

The main properties of the MSE loss include the following:

sensitivity to outliers The MSE loss is by definition sensitive to outliers with
large squared error values. We illustrate this by fitting the model on the test data
sample from Figure A.1 and visualizing the estimates in Figure A.4. The dataset
contains a significant number of major outliers which results in an overestimate
of the base function.

570 loss functions

mean-unbiased estimator The minimization of the MSE loss leads to the mini-
mization of the average prediction error. We can show this by taking the deriva-
tive of the loss and equating it to zero:

BLMSE
Bpy

“
B

Bpy

1

n

n
ÿ

i“1

pyi ´ pyiq
2 “

2

n

n
ÿ

i“1

pyi ´ pyiq “ 0 (A.6)

This means that the MSE loss tends to produce predictions where the positive
and negative errors cancel each other out:

n
ÿ

i“1

yi “

n
ÿ

i“1

pyi (A.7)

For example, assuming that values yi represent a demand time series, the total
demand estimated by the model would tend to match the total actual demand.

a.1.2 Root Mean Squared Error

From the evaluation and interpretability perspectives, MSE is not always convenient
because it is measured in units that are the square of the target variable. The square
root of MSE, or root mean square error (RMSE), is often a more convenient choice because
it is measured in the same units as the target variable:

LRMSEpy1:n, py1:nq “

g

f

f

e

1

n

n
ÿ

i“1

pyi ´ pyiq
2 (A.8)

From the optimization perspective, the RMSE loss function maintains the same prop-
erties as MSE.

a.1.3 Mean Absolute Error

The mean absolute error (MAE) loss function can be derived from the maximum likeli-
hood criteria A.2 based on the assumption that the label follows the Laplace distribu-
tion:

ppy | x, θq “ Laplacepy | x, bq

“
1

2b
exp

ˆ

´
| y´ fpx, θq |

b

˙ (A.9)

where b is the scale parameter that is assumed to be fixed. Performing the algebraic
manipulations similar to expression A.4, we can reduce the maximum likelihood esti-
mate of the model parameters to the following:

θML “ argmin
θ

LMAEpy1:n, py1:nq (A.10)

where LMAE is the MAE loss defined as follows:

LMAEpy1:n, py1:nq “
1

n

n
ÿ

i“1

| yi ´ pyi | (A.11)

A.1 loss functions for regression 571

The plots of the Laplace distribution and corresponding MAE loss function are pre-
sented in Figures A.3 (a) and (b), respectively.

−3 −2 −1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

N(0, 1)

−3 −2 −1 0 1 2 3
e

0.0
0.5
1.0
1.5
2.0
2.5
3.0

LMAELaplace(0, 2-1/2)

(a) (b)

Figure A.3: Assuming the Laplace label distribution (a), the maximum likelihood criteria can be
reduced to the MAE loss function (b). Both the normal and Laplace distributions pre-
sented in plate (a) have a zero mean and unit variance.

The main properties of the MAE loss are as follows:

robustness to outliers The MAE loss is more robust to outliers than MSE be-
cause it penalizes the absolute error values instead of the squared errors. The
higher robustness of MAE can also be justified by comparing the normal and
Laplace distributions. As shown in Figure A.3 (a), the Laplace distribution gen-
erally has “fatter” tales than the normal distribution with the same mean and
variance which suggests that the MAE loss is better suited for the data with out-
liers than MSE. These statements are illustrated in Figure A.4 where the same
network is trained on the same data using the MSE and MAE losses, and the
MAE-driven model demonstrates much lower sensitivity to the outliers.

median-unbiased estimator The minimization of the MAE loss leads to the esti-
mate that contains as many positive errors as it contains negative errors. We can
show this by taking the derivative of the loss function and equating it to zero:

BLMAE
Bpy

“
B

Bpy

1

n

n
ÿ

i“1

| yi ´ pyi | “
1

n

n
ÿ

i“1

δi “ 0 (A.12)

where δi is defined for all samples where pyi ‰ yi as follows:

δi “

$

&

%

`1, yi ą pyi,

´1, yi ă pyi

(A.13)

In other words, the optimal constant value that minimizes the MAE is the median
of a training set. The optimization towards the median instead of the mean is
another way of explaining the robustness of the MAE.

572 loss functions

−4 −2 0 2 4

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
MSE
MAE

y

x

Figure A.4: Evaluation of the MSE and MAE loss functions.

a.1.4 Mean Absolute Percentage Error

In many applications, we are concerned about the relative prediction errors rather than
the absolute error values. For example, it is common to evaluate demand forecasts in
terms of the percentage error. This objective can be expressed using the mean absolute
percentage error (MAPE) loss function which is defined as follows:

LMAPEpy1:n, py1:nq “
1

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

yi ´ pyi
yi

ˇ

ˇ

ˇ

ˇ

(A.14)

The MAE and MAPE loss functions are not directly proportional, and generally lead
to different optimization results.

a.1.5 Huber Loss

The MSE and MAE losses provide two sharply different trade-offs in terms of their ro-
bustness to noise. The Huber loss fills the gap between these two options by providing
a continuous family of functions that can vary from near-MAE to near-MSE behavior:

LHuberpy1:n, py1:nq “
1

n

n
ÿ

i“1

$

&

%

1
2 pyi ´ pyiq

2, for | yi ´ pyi | ď δ

δp| yi ´ pyi | ´
1
2δq, otherwise

(A.15)

where δ is the hyperparameter. The examples of the Huber loss functions are pre-
sented in Figure A.5.

Two models fitted using Huber loss functions with different values of the hyperpa-
rameter are presented in Figure A.6. This figure demonstrates the ability to approxi-
mate the mean-unbiased and median-unbiased behaviors similar to what is presented
in Figure A.4.

A.1 loss functions for regression 573

−3 −2 −1 0 1 2 3
e

0.0

0.1

0.2

0.3

lo
ss

−3 −2 −1 0 1 2 3
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3
e

0

1

2

3

4

Huber, δ=0.1 Huber, δ=1.0 Huber, δ=10.0

Figure A.5: Huber loss functions.

−4 −2 0 2 4

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Huber, δ = 0.1
Huber, δ = 10

y

x

Figure A.6: Evaluation of the Huber loss functions.

a.1.6 Pinball Loss

The analysis of the MSE and MAE losses performed in the previous sections suggests
that the loss functions can be intentionally engineered to approximate various statistics
of the training set such the mean or median. From a practical perspective, the ability
to estimate the confidence intervals around the mean would be particularly important.
We can implement this ability by engineering a family of loss functions that produces
quantile-unbiased estimates. It is worth noting that this family needs to include the
MAE loss as a particular case because the median is the 2nd quantile.

Recall that τ-th quantile of a real-valued random variable y with cumulative distri-
bution function Fpyq is a value, denoted as yτ, such that Fpyτq “ τ. Let us make a
proposition that a specific quantile yτ can be found by minimizing the expected loss of
y´ a with respect to a, that is:

yτ “ argmin
a

E rρτpy´ aqs (A.16)

where ρτ is a loss function defined for τ P p0, 1q as follows:

ρτpeq “

$

&

%

pτ´ 1qe, e ă 0,

τe, e ě 0

(A.17)

574 loss functions

This function is commonly referred to as a check function, pinball loss, or quantile loss
[Koenker and Bassett, 1978]. The pinball loss is plotted for different values of τ in
Figure A.7.

−3 −2 −1 0 1 2 3
e

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

−3 −2 −1 0 1 2 3
e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

−3 −2 −1 0 1 2 3
e

0.0

0.5

1.0

1.5

2.0

2.5

Pinball, τ=0.1 Pinball, τ=0.5 Pinball, τ=0.9

Figure A.7: Pinball loss functions.

We can prove proposition A.16 by computing the derivative of the expected loss and
equating it to zero:

0 “

ż 8

´8

ρ 1τpy´ aqdFpyq

“ pτ´ 1q

ż a

´8

dFpyq ` τ

ż 8

a
dFpyq

“ pτ´ 1qFpaq ` τp1´ Fpaqq

“ τ´ Fpaq

(A.18)

This implies that Fpaq “ τ and thus a is the quantile yτ we are looking for. The
pinball loss for a data sample can then be defined as follows (note that this expression
reduces to MAE when τ “ 0.5):

Lτpy1:n, py1:nq “
2

n

n
ÿ

i“1

ρτpyi ´ pyiq (A.19)

The result of evaluating two pinball loss functions with different values of τ on our
test dataset is presented in Figure A.8. In this example, the band between the lower and
upper quantiles corresponds to the 60% confidence interval.

The pinball loss has a number of applications beyond the quantile regression. In
particular, it can be used as an asymmetric version of MAE in applications that re-
quire different penalties for positive and negative errors. For example, the cost of the
demand underestimation can be higher than the cost of the overestimation, and this
consideration can be modeled by a proper selection of the loss hyperparameter τ.

a.1.7 Poisson Loss

In the previous sections, we constructed a number of loss functions assuming a real-
valued target variable. This assumption might not hold true in enterprise applications
that deal with count data, that is non-negative integer variables that come from count-
ing some elements. The number of smartphones sold by an online retailer during a

A.1 loss functions for regression 575

−4 −2 0 2 4

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

 Pinball, τ = 0.2

Pinball, τ = 0.8

x

y

Figure A.8: Evaluation of the pinball loss functions.

week, the number of defective parts detected at a production line during a day, and the
number of calls received by a call center in an hour are typical examples of count data.
We can model the count data using the real-value loss functions provided that round-
ing errors are acceptable, but specialized losses might need to be used in applications
where the discrete label values are essential.

One of the most commonly used solutions can be obtained under the assumption
that the labels are Poisson-distributed:

ppy | x, θq “ Poissonpy | λq

“
λy

y!
expp´λq

“
λfpx, θq

y!
expp´fpx, θqq

(A.20)

where λ is the distribution parameter that is equal to the expected value of y, and
we estimate it as a function of the input vector x. The maximum likelihood estimate of
the model parameters can then be reduced to the following:

θML “ argmax
θ

n
ÿ

i“1

logppyi | xi, θq

“ argmax
θ

n
ÿ

i“1

´ logpyi!q ` yi log fpxi, θq ´ fpxi, θq

“ argmin
θ

LPoissonpy1:n, py1:nq

(A.21)

where LPoisson is the Poisson loss function defined as:

LPoissonpy1:n, py1:nq “
1

n

n
ÿ

i“1

pyi ´ yi log pyi (A.22)

576 loss functions

a.2 loss functions for classification

In classification problems, we assume that the label y is a categorical variable, that is a
variable that can take one of a limited number of possible discrete values c1, . . . , ck.
These values are commonly referred to as classes. A specific observation yi “ cj can
be interpreted as a discrete distribution over the classes where the probability of the
observed class is one and the probabilities of all other classes are zeros, that is the
deterministic distribution.

The model fpx,θq is usually constructed to estimate the discrete distribution over
the classes as well. Consequently, a classification loss function for one sample can be
viewed as a distance between the two discrete distributions.

a.2.1 Binary Cross-Entropy

In the most basic case, we have only two classes, which we can label as 0 and 1

for the sake of specificity. Consequently, the observed labels y P t0, 1u are Bernoulli-
distributed:

ppy | x, θq “ Bernoullippq “ Bernoullipfpx, θqq (A.23)

where the model output is a valid probability value p P r0, 1s that specifies the
Bernoulli distribution:

py “ p “ ppy “ 1q “ 1´ ppy “ 0q “ fpx, θq (A.24)

It is essential that the model is designed to produce a valid probability value, and this
is usually achieved by applying a sigmoid function to the intermediate non-normalized
real-valued output. The maximum likelihood estimate of the model parameters can
then be expressed as:

θML “ argmax
θ

n
ÿ

i“1

logppyi | xi, θq

“ argmin
θ

LBCEpy1:n, py1:nq

(A.25)

where LBCE is a binary cross-entropy loss function defined as follows:

LBCEpy1:n, py1:nq “ ´
1

n

n
ÿ

i“1

yi log pyi ´ p1´ yiq logp1´ pyiq (A.26)

In other words, we take the estimated log-probability of class 1 if the true class of
this instance is 1 and the log-probability of class 0 if the true class is 0. This expression
corresponds to the negative log-likelihood of the Bernoulli distribution. We can also
view the loss for each sample i as the distance between the deterministic distribution
specified by yi and Bernoulli distributions specified by pyi.

A.2 loss functions for classification 577

a.2.2 Categorical Cross-Entropy

In a general case, we assume k classes, and thus labels yi P tc1, . . . , cku are drawn from
the categorical (multinoulli) distribution:

ppy | x, θq “ Catpp1, . . . ,pkq (A.27)

where pj are the true class probabilities. The categorical distribution over k classes
can be represented as a k-dimensional probability vector, and we can construct a model
to estimate this vector for each sample i as follows:

pyi “ ppyi1, . . . , pyikq “ fpxi, θq (A.28)

where each element is the probability of the corresponding class:

pyij “ ppyi “ cj | xi, θq and
k
ÿ

j“1

pyij “ 1 (A.29)

The maximum likelihood estimate of the model parameters for this setup can be
obtained by minimizing the following loss function:

LCCEpy1:n, py1:nq “ ´
1

n

n
ÿ

i“1

k
ÿ

j“1

Ipyi “ cjq log pyij (A.30)

where I is an indicator function that takes value 1 when its argument is true and
value 0 otherwise. This function is known as a categorical cross-entropy loss.

We can further encode each ground truth label using one-hot encoding, so that each
label is represented by a binary k-dimensional vector yi where the element that corre-
sponds to the observed class is equal to one and other elements are zeros. The categor-
ical cross-entropy loss function can then be rewritten as

LCCEpy1:n, py1:nq “ ´
1

n

n
ÿ

i“1

k
ÿ

j“1

yij log pyij (A.31)

This expression reduces to the binary cross-entropy loss defined in expression A.26

for k “ 2. Similar to the binary cross-entropy, the categorical cross-entropy loss corre-
sponds to the negative log-likelihood of the categorical distribution, and it can also be
viewed as the sample-wise distance between the categorical distributions specified by
yi and pyi.

The network for estimating the probability vector pyi is usually designed to produce a
non-normalized real-valued vector first and then to normalize its linear transformation
using the softmax operation to obtain a valid probability vector. Assuming this design,
expression A.30 can be rewritten as follows:

LSoftmaxpy1:n, py1:nq “ ´
1

n

n
ÿ

i“1

log
exppWT

yiziq
řk
j“1 exppWT

j ziq
(A.32)

where z is the non-normalized d-dimensional vector produced by the network, W
is a dˆ k matrix of learnable parameters, and Wj is the j-th column of the W. This
version is commonly referred to as the softmax loss.

578 loss functions

a.2.3 Kullback-Leibler Divergence

In the previous two sections, we derived the binary and categorical cross-entropy loss
functions based on the maximum likelihood expressions for the Bernoulli and cate-
gorical distributions, respectively. We also mentioned that these loss functions can be
viewed as sample-wise distances between the observed and estimated distribution. In
this section, we elaborate on the last statement by reconsidering the problem from
the information theory standpoint and defining the distance between two distributions
more rigorously.

In information theory, the entropy of a discrete random variable y with a distribution
ppyq is defined as:

Hppq “ Ey„p r ´ logppyq s “ ´
ÿ

y

ppyq logppyq (A.33)

The entropy can be interpreted as the measure of uncertainty associated with a ran-
dom variable. In particular, it can be shown that among discrete distributions the max-
imum entropy is achieved by the uniform distribution and the minimum entropy of
zero is achieved by the deterministic distributions.

The cross-entropy of the distribution q relative to a distribution p is defined as follows:

Hpp, qq “ Ey„p r ´ logqpyq s “ ´
ÿ

y

ppyq logqpyq (A.34)

The cross-entropy can be interpreted as the expected message length per datum when
the encoding schema is designed assuming a wrong distribution q while the data actu-
ally follows a distribution p. It can be shown that the cross-entropy is minimized when
the true distribution is assumed, and this minimum corresponds to the regular entropy
Hppq “ Hpp,pq. Consequently, cross-entropy can be used as a similarity measure for a
pair of probability distributions.

The cross-entropy expression A.34 matches the categorical cross-entropy loss A.31

assuming that the distribution p is a categorical distribution represented as a k-
dimensional vector y, and distribution q is represented as a vector py. Consequently, the
minimization of the cross-entropy loss means the minimization of the cross-entropy of
the modeled distribution relative to the data distribution which, in turn, agrees with
the maximum likelihood method.

Finally, the Kullback-Leibler divergence or KL divergence is the standard measure for the
similarity of two probability distributions p and q. Assuming that the distributions are
discrete, the KL divergence is defined as:

dKL pp || qq “ Ey„p

„

log
ppyq

qpyq

“
ÿ

y

ppyq log
ppyq

qpyq
(A.35)

This definition can be rewritten using the entropy functions as follows:

dKL pp || qq “
ÿ

y

ppyq logppyq ´ ppyq logqpyq

“ ´Hppq `Hpp,qq
(A.36)

A.2 loss functions for classification 579

Consequently, the KL divergence can be interpreted as the additional message length
needed to encode the data provided that the model q mismatches the true data distri-
bution p.

We illustrate the cross-entropy and KL divergence metrics using an example in Fig-
ure A.9. We generate 21 pairs of binomial distributions ranging from identical to almost-
non-overlapping. The probability mass functions for three of these pairs (full overlap,
intermediate overlap, and minimum overlap) are visualized in the top of the figure. We
further compute the entropy, cross-entropy, and KL divergence metrics for each pair,
and visualize them in the bottom part of the figure. This figure confirms that the cross-
entropy value increases as the two distributions become increasingly dissimilar. The KL
divergence behaves similarly, but it is offset by the entropy of the first distribution so
that the divergence for a pair of identical distributions is zero. Note that, in a general
case, the KL divergence is asymmetric (dKL pp || qq ‰ dKL pq || pq), so it is not a distance
measure in a strict mathematical sense.

0 10 20 30 40 50
.00
.02
.04
.06
.08
.10

p = Binomial(50, 0.5)
q = Binomial(50, 0.5)

0 10 20 30 40 50
.00
.02
.04
.06
.08
.10

0 10 20 30 40 50
.00
.02
.04
.06
.08
.10
.12

0

1

2
H(p)

0

10

20

H(p, q)

0 5 10 15 20
0
5

10
15

KL(p || q)

p = Binomial(50, 0.4)
q = Binomial(50, 0.6)

p = Binomial(50, 0.3)
q = Binomial(50, 0.7)

Figure A.9: Entropy, cross-entropy, and KL divergence metrics for pairs of binomial distributions
with different degrees of overlap.

In principle, the KL divergence can be used as a loss function just like the cross-
entropy. In the context of the classification problem considered in this section, the KL
divergence loss produces the same optimization result as the cross-entropy loss because
the term Hppq in equation A.36 that corresponds to the data distribution entropy is not

580 loss functions

dependent on the model parameters that we are seeking to optimize. This is the reason
why the simpler and more stable cross-entropy loss function is the standard choice for
classification problems in practice. However, the KL divergence is an essential concept
in many other applications such as the variational autoencoders.

a.3 loss functions for representation learning

In many applications, the regression and classification networks are trained not to ob-
tain regression or classification models, but to learn low-dimensional representations
(embeddings) of the input entities such as users or products. The quality of such em-
beddings can be evaluated using special criteria that are important for downstream
applications such as the nearest neighbor search. The loss functions discussed in the
previous sections do not necessarily optimize these criteria because they are engineered
to minimize the regression and classification errors. In this section, we discuss special-
ized loss functions that are designed to ensure high quality of the learned embeddings.

a.3.1 Contrastive Loss

Let us consider a classification model that uses an arbitrary transformation to map
input x to a low-dimensional representation z, and then maps this representation to
class label y using a simple transformation such as the softmax function. We do not
make any specific assumptions about the architecture of this model, so it could be a
single embedding lookup unit, or a recurrent, convolutional, or transformer network.
We would normally train this model using the categorical cross-entropy loss function
to minimize the classification error. The cross-entropy loss guides the training process
towards the construction of the embedding space where the samples of the same class
are clustered together and linearly separable. This also means that the features of the
embedding vectors z are optimized to be discriminative with regard to the class labels.
The cross-entropy loss, however, does not provide any specific guarantees regarding the
separability of the classes or parameters that control the embedding properties. We can
attempt to design a loss function that explicitly accounts for separability, and guides
the training process towards creating tightly clustered embeddings.

Let us assume a training set X that consists of samples pxi, yiq. We can set the goal
of constructing an embedding space where the samples of the same class are clustered
together and separated from samples of other classes by a certain margin α ą 0. This
concept can be implemented by evaluating distances between pairs of embeddings and
separately penalizing the pairs of the same class for being dissimilar and pairs from
different classes for being similar. We can express this as the following loss function
that takes a pair of embeddings as an argument:

LContpzi, zjq “ Ipyi “ yjq
∥∥zi ´ zj

∥∥2 ` Ipyi ‰ yjqmax
`

0, α´
∥∥zi ´ zj

∥∥˘2 (A.37)

where α is a hyperparameter that imposes the distance between embeddings from
different classes to be larger than α, and I is the indicator function. The total loss for
the training set X can then be computed by summing the pairwise losses for multiple
pairs generated from it. This loss is known as the contrastive loss [Chopra et al., 2005;
Hadsell et al., 2006].

A.3 loss functions for representation learning 581

More generally, we use the term contrastive representation learning for learning of em-
bedding spaces in which similar sample pairs stay close to each other while dissimilar
ones are far apart. Consequently, the loss functions discussed in the next sections are
often also referred to as contrastive losses.

a.3.2 Triplet Loss

The pairwise contrastive loss developed in the previous section is only one possible
way of imposing margins between the embedding clusters. Another alternative is to
evaluate both the distances to the same-class and different-class embeddings for each
sample. Assuming an input dataset X of samples pxi,yiq, let us define a set of all
possible triplets pxa, xp, xnq that meet the following conditions:

1. Samples xa and xp have the same class label ya.

2. Sample xn has a different class label yn ‰ ya.

3. All three samples are distinct, that is xa ‰ xp ‰ xn.

We refer to the first element of the triplet as an anchor, the second element as positive,
and the last one as negative. The desirable embedding space should then satisfy the
following property:∥∥∥zaj ´ zpj

∥∥∥2 `α ă ∥∥∥zaj ´ znj
∥∥∥2 (A.38)

where index j iterates over all triples that satisfy the above conditions, and vectors
zaj , zpj , and znj are the embeddings of the anchor, positive, and negative samples, re-
spectively. An example of the perfect separation by margin α is shown in Figure A.10.

za zp

zn

α

Figure A.10: Desirable separation of the embedding clusters.

The per-sample loss function that penalizes the violations of the separation condi-
tion A.38 can then be defined as follows:

LTripletpx
a, xp, xnq “ max

´

0, ‖za ´ zp‖2 ´ ‖za ´ zn‖2 `α
¯

(A.39)

582 loss functions

This loss is known as the triplet loss [Schultz and Joachims, 2004; Weinberger et al.,
2006; Schroff et al., 2015]. For a batch of nb triplets, the triplet loss is a sum of per-
sample losses:

LTripletpXq “

nb
ÿ

j“1

LTripletpx
a
j , xpj , xnj q (A.40)

The direct evaluation of expression A.40, however, requires us to enumerate all valid
triplets for the training dataset which is infeasible in most real-world applications. This
approach is also highly redundant because most triplets would satisfy constraint A.38

and, consequently, would not contribute towards the optimization of the network pa-
rameters. These issues can be mitigated by selecting only the triplets that are most
likely to violate constraint A.38. For example, we can generate only one triplet for each
anchor sample by selecting the most distant positive and nearest negative samples, as
illustrated in Figure A.11. This leads to the following training procedure:

1. Randomly choose nc classes from the set of all classes, and sample nk instances
of each class from the training dataset. This creates a minibatch of nb “ nc ¨ nk
samples.

2. For each sample xa in the minibatch, determine the most distant positive (hard
positive) and nearest negative (hard negative) in the space of the corresponding
embeddings:

xphard “ argmax
xp

‖za ´ zp‖2

xnhard “ argmin
xn

‖za ´ zn‖2
(A.41)

and add triplet pxa, xphard, xnhardq to the minibatch of triplets. The total number of
triplets per minibatch is the same as the number of samples, that is nb.

3. Evaluate the loss function and train the model using the generated minibatch of
triplets.

4. Sample the next minibatch and repeat the process until convergence.

The above procedure can be modified in several ways to improve stability and conver-
gence in specific applications. For example, it may be beneficial to include all anchor-
positive pairs for each anchor instead of selecting only one hard positive, or apply
additional constraints to exclude outliers from hard negatives [Schroff et al., 2015].

a.3.3 Multi-class N-pair Loss

The triplet loss can be generalized to include multiple negative samples for each anchor.
Assuming n negative samples, we can specify the following per-sample loss function:

LNPairpxa, xp, xn1:nq “ ´ log
exppsimpza, zpqq

exppsimpza, zpqq `
řn
j“1 exppsimpzp, znj qq

(A.42)

where simpa, bq “ aTb{ ‖a‖ ‖b‖ is the cosine similarity function, and z are the embed-
dings of the corresponding input samples x. This loss corresponds to the categorical

A.3 loss functions for representation learning 583

za

Sample minibatch from
the training dataset and

compute embeddings

{ (xa, xp, xn) }, 1 ≤ i ≤ nb

zn

zp

Minibatch
(nb samples)

i i i

Train the model

Figure A.11: Online triplet generation (hard positives and hard negatives).

cross-entropy loss for a classifier that predicts which sample from the set of n`1 classes
(concatenation of xp and xn1:n) is the positive to the given anchor xa. In other words, we
construct an auxiliary classification problem for each anchor by creating a set of n` 1
samples where exactly one sample is positive and the other samples are negative. This
loss is known as the multi-class N-pair loss, and it allows for a computationally efficient
implementation [Sohn, 2016].

a.3.4 InfoNCE Loss

In some applications, both the target labels and input entities can be represented as em-
beddings. For example, we can be training a model that predicts textual labels for input
images using a dataset that consists of text-image pairs, and both texts and images can
be represented as embeddings. A contrastive loss function for such applications can be
designed using the concepts similar to the multi-class N-pair loss.

Let us assume a batch of n entity pairs pxai , xbi q where we can view xa and xb as
target labels to each other. For each value xai , we can treat xbi as a positive sample and
all other xbj , j ‰ i as negative samples. Consequently, the per-sample loss function can
be defined as follows:

L
paÑbq
InfoNCEpx

a, xb1:nq “ ´ log
exppsimpza, zbq{τq

řn
j“1 exppsimpza, zbj q{τq

(A.43)

584 loss functions

where simpa, bq is the cosine similarity function, z are the embeddings of the corre-
sponding input samples x, and τ is a fixed or learnable temperature parameter. This
loss function is known as InfoNCE where NCE stands for the noise-contrastive estima-
tion [Oord et al., 2018]. Similar to the multi-class N-pair loss, the InfoNCE loss can
also be interpreted as a classifier that predicts the correct match among N alternatives
(classes).

The per-sample loss LpaÑbqInfoNCE defined by expression A.43 interprets xb as the target
labels for xa. However, the labeling problems are often symmetrical. In the above ex-
ample with the text-image mapping, we can both view texts as attributes for images
and images as attributes for the texts. Consequently, we can also define the reverse
per-sample loss LpbÑaqInfoNCE, and then define the symmetrical total loss for a batch as fol-
lows [Zhang et al., 2020b]:

Lpxa1:n, xb1:nq “
1

n

n
ÿ

i“1

´

λL
paÑbq
InfoNCEpx

a
i , xb1:nq ` p1´ λqL

pbÑaq
InfoNCEpx

b
i , xa1:nq

¯

(A.44)

where λ P r0, 1s is a symmetry hyperparameter. The computational schema for the
InfoNCE loss is summarized in Figure A.12. The InfoNCE loss is commonly used in
information retrieval and language-image models.

z1 z2 zn...

z1

z2

zn

x1:n x1:n
a b

b b b

a

a

a

...

L(a b)

L(b a)

sim(zi, zj)

Figure A.12: Computing the InfoNCE loss for a batch of n entity pairs.

a.3.5 ArcFace Loss

The practical implementation of the triplet loss is challenging because the naïve imple-
mentation is prone to a combinatorial explosion in the number of triplets and sophis-
ticated optimizations are required to work around this issue. The alternative approach
is to modify the categorical cross-entropy loss discussed in Section A.2.2 to incorporate
the margin penalty.

A.3 loss functions for representation learning 585

One possible way to implement the above idea is to normalize the embedding vectors
to a fixed length, so that all embeddings live on a hypersphere, and enforce large
geodesic distance between the classes. We can start with the softmax loss function
defined in expression A.32, and decompose the linear transformation of the embedding
as follows:

WT
j zi “

∥∥Wj

∥∥ ‖zi‖ cos θj (A.45)

where θj is the angle between the weight vector Wj and embedding vector zi. We
further assume that both the weight and embedding vectors are normalized, so that∥∥Wj

∥∥ “ 1 and ‖zi‖ “ s where s is a fixed constant. This assumption means that all
embeddings live on a hypersphere with a radius of s, and the predictions produced
by the model depend only on the angle between the embedding and weight vectors.
Inserting these definitions into expression A.32, we obtain the modified softmax loss:

LSoftmaxMod “ ´
1

n

n
ÿ

i“1

log
expps cos θyiq

expps cos θyiq `
řk
j“1,j‰yi expps cos θjq

(A.46)

where

θj “ arccospWT
j zi{sq (A.47)

The margin penalty can then be imposed by adding a constant m ą 0 to the angle
between the embedding vector and weight vector of the true class:

LArcFace “ ´
1

n

n
ÿ

i“1

log
expps cospθyi `mqq

expps cospθyi `mqq `
řk
j“1,j‰yi expps cos θjq

(A.48)

This function is known as an additive angular margin loss or ArcFace loss [Deng et al.,
2019]. The ArcFace loss implies that the i-th sample can be classified correctly only if
angle θyi is smaller than the angles of other classes by a margin ofm, not just the small-
est angle among the classes. This simultaneously promotes the inter-class compactness
and inter-class separation. The constantm can also be interpreted as a geodesic distance
that needs to separate the classes on a hypersphere. Unlike the triplet loss, ArcFace is
a computationally simple extension of the regular softmax function.

For the purpose of illustration, we evaluate the difference between the softmax and
ArcFace losses using a simple experiment. First, we specify a convolutional network
that consumes small images and produces three-dimensional embedding vectors. Sec-
ond, we train this network on the same datasets using the softmax and ArcFace heads
to obtain two different models. More specifically, we use the standard MNIST dataset
that consists of labeled images belonging to 10 classes [LeCun and Cortes, 2010]. Fi-
nally, we use the trained networks to compute the embeddings for the test part of the
dataset, normalize them to a unit length, and visualize the results in Figure A.13. This
experiment demonstrates how the ArcFace loss achieves better intra-class compactness
and inter-class separation compared to the regular softmax loss.

The triplet and ArcFace losses belong to a relatively large group of loss functions
that were designed specifically to improve the separability of embeddings [Wen et al.,

586 loss functions

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

(a) Softmax loss (b) ArcFace loss

Figure A.13: Example embeddings spaces obtained using softmax and ArcFace loss functions.
Color coding corresponds to the true class labels.

2016; Liu et al., 2017; Wang et al., 2018]. These loss functions are particularly impor-
tant in applications with an extremely large number of classes that need to be dis-
tinguished. For example, a face recognition system might need to be able to reliably
distinguish between the faces of thousands or even millions of individuals. In practice,
the embedding-shaping losses are widely used to compute high-quality embeddings
even in applications with a relatively small number of classes.

Appendix

B

E VA L U AT I O N M E T R I C S

All loss functions described in Appendix A can be used both as objectives for guiding
the model parameter optimization and as metrics for evaluating the quality of the
trained model. In this appendix, we discuss metrics that are designed specifically for
model evaluation. In principle, many of these metrics can be used as optimization
objectives as well, but practical implementation of this idea is usually challenging and
requires various approximations and modifications because most of the metrics are not
differentiable.

b.1 metrics for regression

In regression problems, the model is typically evaluated using a test dataset that con-
sists of n independent and identically distributed samples pxi,yiq where xi is the
model input and yi is the real-valued label (ground truth). We assume that the regres-
sion model estimates the expected (mean) output value pyi or probability distribution
ppy | xiq for each sample based on the input xi. Consequently, the regression metrics
aim to evaluate the distance between the set of ground truth labels y1:n and the set of
predictions py1:n or p1:npy | xq.

In many applications, the regression loss functions described in Appendix A.1 such
as root mean squared error (RMSE) and mean absolute percentage error (MAPE) are the ap-
propriate evaluation metrics as well. However, these functions are not always optimal
and sufficient for evaluation purposes, and more specialized metrics might need to be
used. We describe several common options in the next sections. In enterprise applica-
tions, these metrics are most helpful in time series forecasting applications.

587

588 evaluation metrics

b.1.1 Weighted Average Percentage Error

The MAPE metric defined in expression A.14 sums up the percentage errors of the
predictions in relation to the actual values. This makes it prone to producing misleading
results when the actual values have a large variance. This issue can be mitigated by
weighting the error by the total of the actual absolute values. This leads us to the
following metric known as the weighted average percentage error or WAPE:

LWAPEpy1:n, py1:nq “

řn
i“1 | yi ´ pyi |
řn
i“1 | yi |

(B.1)

The difference between MAPE and WAPE is illustrated in Table B.1, using an example
where both metrics are computed for a small dataset with an outlier. In this example,
MAPE is significantly distorted by a high relative error in one of the samples, but
WAPE is robust to it.

i 1 2 3 4 5

yi 100 120 110 2 130

pyi 105 121 105 10 140

| pyi ´ pyiq{yi | 5.0% 0.8% 4.5% 400.0% 7.7% MAPE = 83.6%

| yi ´ pyi | 5 1 5 8 10 WAPE = 6.30%

Table B.1: Example that illustrates the difference between MAPE and WAPE on a small dataset
with five samples.

b.1.2 Weighted Quantile Loss

Let us assume that probabilistic predictions ppy | xiq are available. We generally want to
achieve statistical consistency, also referred to as calibration, between these distribution
estimates and observations. One possible way to assess such consistency is to evaluate
multiple individual quantiles derived from the distribution estimate – if all quantile
estimates are accurate, we can assume that the distribution estimate is consistent.

Let us denote the τ-th quantile estimate for sample i as pq
pτq
i where τ P p0, 1q. By the

definition of quantile, we expect that the ground truth observations yi are less than
the corresponding quantile estimates in τ percent of cases. For example, observations
yi should be less than quantile pq

pτq
i 50% of the time when τ “ 0.5. Consequently,

the consistency assessment can be performed by computing the following statistics,
referred to as empirical levels, for various values of τ and comparing them with the
expected percentages:

apτq “
1

n

n
ÿ

i“1

Ipyi ă pq
pτq
i q (B.2)

where I is the indicator function that takes value 1 when its argument is true and
value 0 otherwise.

B.2 metrics for classification 589

Instead of computing the empirical levels, it may be more convenient to define a
metric that is minimized when the quantile estimates match the actual quantiles. The
quantile loss function derived in Section A.1.6 does exactly that, so we can specify the
quantile consistency metric as a weighted version of the quantile loss:

LwQL py1:n, p1:npy | xqq “
2

řn
i“1 | yi |

n
ÿ

i“1

ρτ

´

yi ´ pq
pτq
i

¯

(B.3)

where ρτ is a check function defined in expression A.17. This metric is referred
to as weighted quantile loss (wQL) or τ-risk metric [Seeger et al., 2016; Salinas et al.,
2020]. The overall quality of the probabilistic predictions can be assessed by computing
wQL for various values of τ. In applications with asymmetric underestimating and
overestimating costs, wQL values for different quantiles may have different importance.

b.1.3 Sharpness

In many applications, we want the probabilistic predictions to be certain. For example,
we might be able to efficiently operationalize the demand forecast when the uncertainty
ranges around the mean are narrow, but a highly uncertain forecast might not be ac-
tionable. One possible way to assess the certainty is to compute the average distance
between the lower and upper quantiles:

sβpp1:npy | xqq “
1

n

n
ÿ

i“1

pq
p0.5`β{2q
i ´ pq

p0.5´β{2q
i (B.4)

This metric is known as sharpness. The sharpness values can be computed for differ-
ent values of the parameter β, known as the coverage rate, and the relationship between
β and sharpness can be studied.

b.2 metrics for classification

In classification problems, we usually evaluate the model using a test dataset that con-
sists of n independent and identically distributed samples pxi,yiqwhere xi is the model
input and yi is the output categorical label that can take one of possible discrete val-
ues c1, . . . , ck known as classes. We assume that the model estimates the categorical
distribution over the classes for each sample, and this estimate can be converted to
the discrete label estimate pyi using thresholding. Different thresholding strategies and
parameters can produce different label estimates based on the same distribution esti-
mates. The metrics described in this section evaluate the discrepancy between the set
of n ground truth labels yi and one or multiple sets of the corresponding estimates pyi
obtained from the fixed set of distribution estimates.

b.2.1 Confusion Matrix and Related Metrics

Let us assume a binary classification problem where yi P t0, 1u, a model that estimates
probability ppy “ 1 | xq “ 1´ ppy “ 0 | xq, and a fixed thresholding algorithm that

590 evaluation metrics

maps this estimate to a binary label such as pyi “ Ipppyi “ 1 | xiq ą 0.5q. We refer to
instances with yi “ 1 as the positives and instances with yi “ 0 as the negatives.

Once the labels pyi are estimated for all instances in the test dataset, we can count
the number of true positives (yi “ 1 and pyi “ 1), true negatives (yi “ 0 and pyi “ 0),
false positives (yi “ 0 and pyi “ 1), and false negatives (yi “ 1 and pyi “ 0). We denote
these four numbers as TP, TN, FP, and FN, respectively. The total number of instances
is equal to the sum of these counters:

TP` TN` FP` FN “ n (B.5)

These counters are usually represented as a confusion matrix as shown in Figure B.1.
The confusion matrix can be viewed as a composite evaluation metric that enables the
assessment of the quality of the classifier.

Truth

Estimate

y=1 y=0

y=1^

y=0^

TP FP

FN TN

Figure B.1: The structure of the confusion matrix for binary classification.

The counters in the confusion matrix can be inconvenient to work with because they
depend on the dataset size, so it is typical to compute size-independent ratios. The true
positive rate (TPR), also referred to as sensitivity, recall, or hit rate, is defined as follows:

TPR “
TP

TP` FN
« pppy “ 1 | y “ 1q (B.6)

The false positive rate (FPR) is defined as

FPR “
FP

FP` TN
« pppy “ 1 | y “ 0q (B.7)

The true negative rate (TNR) or specificity is defined as

TNR “
TN

FP` TN
“ 1´ FPR « pppy “ 0 | y “ 0q (B.8)

The precision is defined as

Precision “
TP

TP` FP
« ppy “ 1 | py “ 1q (B.9)

Higher TPR and TNR are considered better since they indicate fewer false positives
and negatives, respectively. FPR is considered better when it is smaller since it indicates
fewer false positives. Higher precision is considered better because it indicates a large
share of true positives among the predicted positives.

The interpretation and usage of the above metrics is different for balanced and im-
balanced datasets. Consider an imbalanced dataset with a relatively small number of

B.2 metrics for classification 591

positives and a large number of negatives. In such a dataset, the FPR tends to stay small
even if the number of false positives is much higher than the number of true positives
because the total number of negatives (the denominator in the FPR formula) is large.
This is illustrated in the example in Figure B.2. In this example, a model has a low FPR,
but it is not able to properly distinguish between the classes and is biased toward the
negative class. At the same time, precision is not affected by a large fraction of negative
instances, and thus better characterizes the actual model performance.

Truth

Estimate

y=1 y=0

y=1^

y=0^

100
(TP)

1000
(FP)

100
(FN)

10000
(TN)

TPR = 100/200 = 0.5

FPR = 1000/11000 = 0.09

Precision = 100/1100 = 0.09

Figure B.2: Example of a confusion matrix for an imbalanced dataset that consists of 200 positive
and 11000 negative instances.

The accuracy is defined as the fraction of correct predictions out of all predictions:

Accuracy “
TP` TN

n
(B.10)

and the error rate or misclassification rate is the fraction of incorrect predictions:

Error rate “ 1´Accuracy “
FP` FN

n
(B.11)

Similar to FPR, accuracy might not be informative for imbalanced datasets. In Fig-
ure B.2, the model achieves seemingly high accuracy of 0.902 = 10100/11200, but fails
to reliably identify the minority (positive) class.

b.2.2 ROC Curve and AUC

The confusion matrix and various metrics derived from it assume a fixed thresholding
rule that produces discrete label predictions pyi. However, different thresholding rules
can lead to different values of TP, TN, FP, and FN counters in the confusion matrix and,
consequently, different TPR, FPR, precision, and accuracy metrics. The dependency
between the thresholding rule and these metrics can be explored by evaluating the
discrete labels for different values of the threshold τ:

pyi “ Ipppyi “ 1 | xiq ą τq (B.12)

The metrics can then be evaluated for each set of labels and visualized as functions
of τ. One of the most powerful visualizations is a plot of the TPR vs FPR as an implicit
function of τ. This plot is known as a receiver operator characteristic or ROC curve.

An example of an ROC curve is presented in Figure B.3 where TPRs and FRPs are
computed for four values of τ. Point 1 corresponds to a model that always predicts
negatives (pyi “ 0 for all i) and point 4 corresponds to a model that always predicts

592 evaluation metrics

positives (pyi “ 1 for all i). The ROC curve always connects these two extreme points.
The ROC curve can be viewed as a collection of trade-offs between TPR and FPR that
can be achieved by the classifier.

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

False positive rate
(1 - Specificity)

Tr
ue

 p
os

iti
ve

 ra
te

(S
en

si
tiv

ity
, R

ec
al

l)

1

2

3

4

Figure B.3: Example of an ROC curve spanned on four points.

An ROC curve of a classifier that assigns the labels randomly is a straight line that
connects the extreme points, as shown in Figure B.4 (a). This can be viewed as a baseline
for determining whether a given classifier is useful: a classifier that performs better than
a random baseline should have an ROC curve above the diagonal. A perfect classifier
that makes no errors has a step function ROC curve with a TPR of 1 at all points except
for the lower extreme point, as shown in Figure B.4 (a).

An ROC curve can be aggregated into one numerical value by computing the area
under the curve or AUC, as shown in Figure B.4 (b). Higher AUC is considered better be-
cause we generally want the ROC curve to be as convex as possible. A perfect classifier
has an AUC of 1.

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te Better

Perfect

Worse

Random

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUC

(a) (b)

Figure B.4: Model evaluation using an ROC curve: baseline and ideal profiles (a), example of
AUC (b).

One classifier can be considered better than another if it achieves higher TPR values
at all points, as shown in Figure B.5 (a). This also implies that the better classifier has a
higher AUC value. However, the ROC curves of two classifiers can intersect as shown

B.2 metrics for classification 593

in Figure B.5 (b), so that the classifiers outperform each other at different ranges of
FPR. In particular, two intersecting ROC curves can have the same AUC scores. Such
ROC curves are often compared based on domain-specific considerations. For exam-
ple, many applications such as customer churn detection or threat detection require
identifying high-risk or high-value positives with a low false positive rate. Given the
situation depicted in Figure B.5, classifier B may be preferable over classifier A for such
applications.

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

A
B

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

A

B

(a) (b)

Figure B.5: Model comparison using ROC curves: model B outperforms model A (a), two models
with identical AUC but different performance trade-offs (b).

The ROC and AUC metrics are based on FPR which, as we discussed in Section B.2.1,
might not be informative for imbalanced datasets. Consequently, ROC and AUC might
also not be optimal for evaluating the classifiers that are designed to detect the minority
class in imbalanced datasets. We address this scenario in the next section.

b.2.3 Precision-Recall Curve

The performance trade-offs that can be achieved by a given classifier can be evaluated in
the space of precision and recall metrics. Similar to ROC, we can visualize the precision-
recall or PR curve as an implicit function of the detection threshold τ.

The PR approach replaces FPR with precision which helps to alleviate some of the
limitations associated with FPR [Davis and Goadrich, 2006; Saito and Rehmsmeier,
2015]. In particular, it helps to reveal issues with the minority class misclassification in
imbalanced datasets. This feature is illustrated in Figure B.6. The top row shows that
the ROC curves of the random and perfect classifiers are same for a balanced dataset
and an imbalanced dataset with 10% of positives. The bottom row shows the PR curves
to be substantially different for two datasets because the random classifier achieves the
precision level of 0.5 in the balanced case and only 0.1 in the imbalanced one.

Similar to ROC, the PR curve can be summarized into one numerical metric by com-
puting the area of the PR curve. This metric is typically referred to as PR AUC.

594 evaluation metrics

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

Recall

Pr
ec

is
io

n

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

Recall

Pr
ec

is
io

n

npositives = nnegatives
(TP + FN = FP + TN)

npositives = 0.1 × nnegatives
(TP + FN = 0.1 × (FP + TN))

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

 (R
ec

al
l)

0.00 1.000.50 0.750.25

0.00

1.00

0.50

0.75

0.25

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

 (R
ec

al
l)

Perfect Good Random

ROC

PR

Figure B.6: Comparison of the ROC and PR curves for balanced (left) and imbalanced (right)
datasets.

b.2.4 F1 Score

Precision and recall provide a convenient metric space for imbalanced problems where
we are most concerned about the detection of the minority (positive) class. Assuming
a fixed detection threshold, we can aggregate these two values into a single metric by
computing the harmonic mean of precision and recall:

F1 “
2

Precision´1 `Recall´1
“
2ˆ PrecisionˆRecall

Precision`Recall
(B.13)

This metric is known as the F1 score. The harmonic mean is used instead of the
arithmetic mean as it handles the class imbalance better. Let us take as an example an
imbalanced dataset with 1% of positives and a constant classifier that always predicts
the positive class label. This classifier has a recall of 1 and precision of 0.001. Con-
sequently, the arithmetic mean of precision and recall is (0.001 + 1)/2 « 0.5 which is
not informative. The harmonic mean is only (2 ˆ 0.001 ˆ 1)/(1 + 0.001) « 0.002 which
indicates the poor quality of the classifier.

B.3 metrics for retrieval 595

b.3 metrics for retrieval

In many enterprise information retrieval problems such as document search or product
recommendations, we are interested in identifying a relatively small number of relevant
items in a comparatively large collection of available items. This is an instance of the
imbalanced classification problem, and thus precision, recall, precision-recall curves,
and F1 scores are commonly used to evaluate the quality of the retrieved set of items.
However, in the context of information retrieval applications, these metrics have slightly
different interpretations.

Assuming a specific retrieval context such as a search query, we can manually label
the items in the collection as relevant or irrelevant. Let us denote the number of relevant
items as n, and irrelevant items as m, so that the total size of the collection is n`m.
Assuming that a retrieval system returns a set of k “ nr `mr items where nr is the
number of retrieved relevant items and mr is the number of retrieved irrelevant items,
the precision and recall can be expressed as follows:

Precision “
nr

k

Recall “
nr

n

(B.14)

This perspective on the precision and recall metrics, as well as their relationship with
the confusions matrix elements, is illustrated in Figure B.7. In this interpretation, we
assume that k is determined by the system and it cannot be changed by the system
user or evaluator.

All items

Irrelevant
items (m)

Relevant
items (n)

Retrieved
items (k)

Retrieved
irrelevant
items (mr)

Retrieved
relevant
items (nr)

True negatives

False positives

True positives

False negatives

Figure B.7: Precision and recall in the context of information retrieval.

Alternatively, we can assume that k can be varied by the user or evaluator, and the
retrieval system selects the top k items based on a continuous relevance score. In this
case, we can evaluate the overall system performance using the precision-recall curve.
Similar to classification tasks, this involves calculating precision and recall values for

596 evaluation metrics

each 1 ď k ď n`m and plotting these trade-off points. Precision-recall curves can
be constructed for each retrieval context (query), and the average performance can be
characterized by aggregating the curves across the queries.

b.4 metrics for ranking

The metrics discussed in the previous section assume that the retrieval results are pre-
sented to the user as a set, which is an unordered collection of items. However, the
items are usually presented to the user as an ordered list, and more granular metrics
are needed to evaluate the quality of ranking within the list.

In this section, we assume that the test dataset consists of n samples pxi, Viq where
xi is the model input, Vi “ pvi1, . . . , vimq is the output ground truth list of items,
and index i iterates from 1 to n. For example, the input can be a search query and the
output can be a list of m products retrieved for this query, ranked according to their
relevance.

The model produces a list V 1ipkq “ pv 1i1, . . . , v 1ikq for each input xi that can be
compared with the ground truth. We assume that the list length k can be varied from
1 to m, so that we can evaluate the quality of the results for k “ 1, 2, . . . ,m separately.
The output length k is often referred to as a cut-off value for this reason. This setup is
presented in Figure B.8. In the next subsections, we introduce several specific ways of
performing the evaluation.

v1

v2

vk

vm

...
...

1

2

k

m

v’1

v’2

v’k

v’m

...
...

V V’

Evaluation
function

samples
i = 1,...,n

Figure B.8: The inputs of the ranking evaluation function.

b.4.1 Hit Ratio

Assuming one specific sample and a corresponding pair of lists V and V 1pkq, the hit
ratio is the percentage of ground truth items that appear in the output list:

HRpkq “
1

m

ˇ

ˇ V 1pkq X V
ˇ

ˇ “
1

m

m
ÿ

j“1

qj (B.15)

B.4 metrics for ranking 597

where qj is equal to one if item vj is in set V 1pkq and zero otherwise. The hit ratio is
a function of the cut-off value k because we can generally increase the number of hits
by increasing the number of output items. Two models can be compared in terms of
their hit ratios computed for some fixed value of k and averaged across all samples in
the test set.

b.4.2 Mean Average Precision

The hit ratio quantifies the completeness of the output compared to the ground truth.
The complementary metric is the precision with which the percentage of relevant items
in the output list is determined:

Precisionpkq “
1

k

k
ÿ

j“1

rj (B.16)

where rj is equal to one if item v 1j is in set V and zero otherwise. The overall per-
formance of a model is usually assessed using mean average precision or MAP which is
obtained by averaging precision values across all cut-off values up to k and all samples:

MAPpkq “
1

n

n
ÿ

i“1

1

k

k
ÿ

j“1

Precisionipjq (B.17)

Similar to the hit ratio, the precision and MAP metrics are also the functions of the
number of items k.

b.4.3 Discounted Cumulative Gain

The MAP metric does not account for the positions of the ground truth items in the
recommended list. In practice, the probability that a user will review a certain item in
the output list decreases exponentially as a function of the position of the item in the
list. We can account for this phenomenon using metrics that assign higher weights to
the hits at the top of the list.

One specific example of such a metric is the normalized discounted cumulative gain
(NDCG) defined as follows:

NDCGpkq “ ck
k
ÿ

j“1

2rj ´ 1

log2pj` 1q
(B.18)

where ck is the normalization coefficient that ensures that the perfect ranking has
the value of one. The NDCG measure places a strong emphasis on retrieving relevant
items by using a power function in the numerator and penalizes highly relevant items
appearing lower in the recommended list by using a logarithmic reduction factor in the
denominator.

598 evaluation metrics

b.5 metrics for natural language generation

Examples of natural language generation (NLG) tasks include machine translation, ab-
stractive summarization, and question answering. In these tasks, we need to evaluate
the quality of the generated output based on the input (context) and, in some cases,
manually created reference outputs. For instance, the quality of machine translation
can be evaluated based on the original text in the source language, one or multiple gen-
erated candidate translations in the target language, and, optionally, reference transla-
tions in the target language.

The gold standard for assessing the quality of NLG models is human evaluation by
crowd-source or expert annotators. This approach requires creating unambiguous eval-
uation instructions, defining the evaluation dimensions (metrics), creating systems and
interfaces for the annotators, hiring sufficiently qualified annotators, and performing
statistical analysis of the collected results [Schuff et al., 2023]. An example interface for
evaluating abstractive summarization models presented in Figure B.9 illustrates how
the evaluation instructions and dimensions can be designed.

In this task you will evaluate the quality of summaries written for a news article.
To correctly solve this task, follow these steps:

1. Carefully read the news article, be aware of the information it contains.
2. Read the proposed summaries A-F (6 in total).
3. Rate each summary on a scale from 1 (worst) to 5 (best) by its relevance,
consistency, fluency, and coherence.

Instructions

Definitions

Relevance:
The rating measures how well the summary captures the key points of the article.
Consider whether all and only the important aspects are contained in the summary.

Consistency:
The rating measures whether the facts in the summary are consistent with the facts in
the original article. Consider whether the summary does reproduce all facts accurately
and does not make up untrue information.

Fluency:
This rating measures the quality of individual sentences, are they well-written and
grammatically correct. Consider the quality of individual sentences.

Coherence:
The rating measures the quality of all sentences collectively, to the fit together and
sound naturally. Consider the quality of the summary as a whole.

Article Evaluation

{article}

Summaries

{summary}

Relevance 1 2 3 4 5

Consistency 1 2 3 4 5

Fluency 1 2 3 4 5

Coherence 1 2 3 4 5

worst best

A

B

C

D

E

F

Figure B.9: Example of the interface used by crowd-source or expert annotators to evaluate the
quality of news articles summarization [Fabbri et al., 2021].

B.5 metrics for natural language generation 599

The main disadvantages of human evaluation include high costs and long evaluation
time. Consequently, we would like to create automated metrics that can be used as
cheap, low-latency, and accurate proxies for human evaluation. Designing such metrics
is a challenging task that can be approached in several different ways, and we present
several standard options in the next sections.

b.5.1 Exact Match Precision and Recall

Let us assume that we have one reference text and one candidate text. For example, in
machine translation we might have a manually created translation of the source text and
one translation generated by the model. A simple approach for evaluating the quality
of the candidate is to count the number of n-grams that occur in both the reference and
the candidate. Similar to the information retrieval applications, we might be interested
in measuring both the precision (how often the words or n-grams in the generated text
appeared in the reference text) and recall (how frequently the words or n-grams in the
reference text appeared in the generated text). These metrics are complementary, and
we generally need to compute both of them to evaluate a particular model. However,
some applications such as machine translation, are more focused on precision, while
others, such as abstractive summarization, are more focused on recall. We can define
the exact match precision and exact match recall for a specific value of n (length of the
n-grams) as follows:

precisionn “

ř

gnPc
countpr, gnq

ř

gnPc
countpc, gnq

and recalln “

ř

gnPr
countpc, gnq

ř

gnPr
countpr, gnq

(B.19)

where r is the reference, c is the candidate, gn iterates the n-grams, and countpx, gq
counts the number of times n-gram g appears in x.

b.5.2 BLEU

The bilingual evaluation understudy (BLEU) is a precision-based metric that improves the
quality and robustness of the evaluation compared to the exact match precision [Pap-
ineni et al., 2002]. The metric allows for multiple reference texts and multiple candidate
texts. For example, in machine translation, we might have several manually created
translations of the source text and several translation versions generated by the model.

Let us start with defining the modified n-gram precision for a specific value of n as
follows:

pn “

ř

cPC

ř

gnPc
countclippc, gnq

ř

cPC

ř

gnPc
countpc, gnq

(B.20)

where C is the set of all candidates, gn enumerates all n-grams in a particular can-
didate, and function countclippc, gnq counts the occurrences of a specific n-gram gn in
the candidate text c, but clips it to the maximum number of occurrences of this n-gram
in any single reference:

countclippc, gq “ min
„

countpc, gq, max
rPR

rcountpr, gqs

(B.21)

600 evaluation metrics

where R is the set of all references. To better understand the rationale behind the
clipped n-gram counting, let us consider an example of the unigram precision (n “ 1)
calculation for a machine translation task. Consider the following input:

Reference 1: the cat is on the mat
Reference 2: there is a cat on the mat
Candidate 1: a cat sat on the mat
Candidate 2: the cat the cat the cat the the cat cat
Candidate 3: the cat

The first candidate has six unigrams, and the clipped unigram matching count is five
because word “sat” has zero occurrences in the references. Consequently, the modified
unigram precision of the first candidate considered separately is p1 “ 5{6. The second
candidate has five “the” and five “cat” unigrams. The clipped unigram matching count
of “the” is two because the first reference has two “the” unigrams. The clipped unigram
count of “cat” is one. Consequently, the modified unigram precision of the second
candidate considered in isolation is p1 “ 3{10. In other words, the first candidate has
a much higher modified precision score than the second one which is aligned with the
fact that the first candidate is a reasonable translation meanwhile the second candidate
is not. However, the third candidate has a modified unigram precision of p1 “ 2{2 “ 1
which is an inadequately high score.

The issue with improper scoring of short candidates can be fixed by adding the
brevity penalty factor defined as follows:

BP “

$

&

%

1, if |C| ą |R|

expp1´ |R|{|C|q otherwise
(B.22)

In this definition, |C| is the total length of the candidates and |R| is the effective
reference length specified as total length of references that best match the candidates:

|C| “
ÿ

cPC

|c|

|R| “
ÿ

cPC

ˇ

ˇ

ˇ

ˇ

ˇ

argmin
rPR

| |c| ´ |r| |

ˇ

ˇ

ˇ

ˇ

ˇ

(B.23)

The final BLEU-N metric is then computed as the weighted sum of modified n-gram
precisions for n “ 1, . . . ,N:

BLEU-N “ BP ¨ exp

˜

N
ÿ

n“1

wnpn

¸

(B.24)

where wn are the weights. These weights are usually set to wn “ 1{N, but non-flat
weights can be used as well.

b.5.3 ROUGE

Precision-based metrics such as BLEU might not be sufficient for evaluating the quality
of the generated text when we are concerned about the recall. In some applications,

B.5 metrics for natural language generation 601

such as abstractive summarization, the recall can be more important than precision.
We can address this gap by developing recall-based metrics.

One widely used group of recall-based metrics is recall-oriented understudy for gisting
evaluation (ROUGE) [Lin, 2004]. This group includes several metric variants that evalu-
ate the generated candidate against a set of references. The basic ROUGE-N metric is
defined as an n-gram recall between candidate c and a set of references R:

ROUGE-N “

ř

rPR

ř

gnPr
countpr, c, gnq

ř

rPR

ř

gnPr
countpr, gnq

(B.25)

where n stands for the length of the n-gram, and countpr, c, gnq is the number of
co-occurrences of gn in the reference r and candidate c.

b.5.4 BERTScore

Metrics such as BLEU and ROUGE are based on counting n-gram overlap between the
candidates and the references. This is a simple and general approach, but it fails to
account for semantic diversity (e.g. synonymy) and dependencies between the distant
parts of the text. A fundamentally different approach that addresses this limitation is
to convert the reference and candidate texts into embeddings using a language model
and then to measure the similarity in the embedding space.

One particular implementation of this idea is the BERTScore metric [Zhang et al.,
2020a]. BERTScore assumes one reference text r and one candidate text c, and computes
the quality score using the following steps (see Figure B.10 for the illustration):

1 . embeddings . The reference and candidate are tokenized and converted into se-
quences of token embedding vectors:

rÑ pr1, . . . , rkq

cÑ pc1, . . . , cmq
(B.26)

It is assumed that the embeddings are contextual, that is the model computes
an embedding for a specific token, taking into account the surrounding tokens,
and the same token can be mapped to different embeddings in different contexts.
The original BERTScore design uses the BERT model [Devlin et al., 2018] for
computing the embeddings.

2 . similarity scores . The similarity between two embeddings is evaluated using
a dot product. To compute the recall score, we find the best-matching token in
the candidate for each token in the reference and average the corresponding dot
products. To compute the precision score, we find the best-matching token in the
reference for each token in the candidate:

recall “
1

|r|

ÿ

riPr
max
cjPc

rTi cj and precision “
1

|c|

ÿ

cjPc
max
riPr

rTi cj (B.27)

3 . importance weighting . The basic precision and recall scores defined in B.27

are modified to boost the importance of rare words. This is implemented using
inverse document frequency (IDF) weights computed over a corpus of references.

602 evaluation metrics

Reference:
the weather is
cold today

Candidate:
it is freezing today

the

weather

is

cold

today

it is freezing today

0.347 0.361 0.307 0.913

0.479 0.454 0.796 0.343

0.635 0.858 0.441 0.441

0.462 0.393 0.515 0.326

0.713 0.597 0.428 0.408

8.88

7.90

1.82

7.94

1.27

IDF
weights

recall =BERT
(0.713 × 1.27) + (0.515 × 7.94) + ...

1.27 + 7.94 + 1.82 + 7.90 + 8.88

Figure B.10: Example of the computation of the BERTScore [Zhang et al., 2020a].

More specifically, given a set of reference sentences rp1q, . . . , rpnq, the IDF of a
token w is computed as

IDFpwq “ ´ log
1

n

n
ÿ

i“1

Irw P rpiqs (B.28)

where I is an indicator function. The IDF values are then used as weights for
the dot products in the expressions in B.27 to compute the modified recall and
precision scores:

recallIDF “
1

ř

riPr
IDFpriq

ÿ

riPr

IDFpriqmax
cjPc

rTi cj

precisionIDF “
1

ř

ciPc
IDFpciq

ÿ

ciPc

IDFpciqmax
rjPr

rTi cj
(B.29)

4 . rescaling . Assuming that the embeddings are normalized, the modified preci-
sion and recall are also in the range between -1 and 1. In practice, the actual
observed range can be smaller which makes the score values less readable. This
is fixed by linearly rescaling the scores using their empirical lower bounds com-

B.5 metrics for natural language generation 603

puted on a large set of reference-candidate pairs. For example, the final recall
score for the empirical lower bound b is defined as follows:

recallBERT “
recallIDF ´ b

1´ b
(B.30)

Empirically, BERTScore is more robust and correlates better with human judgment
than n-gram-based metrics on a number of important tasks such as machine translation.

b.5.5 G-Eval

Reference-based metrics, such as BLUE, ROUGE, and BERTScore, require one to collect
reference outputs, which is a costly and time-consuming task. The quality of these
metrics, that is the correlation with human judgments, can also be relatively low for
open-ended tasks such as abstractive summarization. The alternative approach is to
use LLMs as reference-free proxies for human annotators.

G-Eval is an LLM-based evaluation framework that can be used to implement a broad
range of metrics such as relevance, consistency, fluency, and coherence1 [Liu et al., 2023].
The G-Eval evaluation process includes the following steps:

1 . evaluation task and dimensions . The process starts with creating a prompt
which includes the task description and definition of the evaluation dimensions
(criteria). For example, the prompt for evaluating the coherence of the summary
can be as follows:

You will be given one summary written for a news article. Your task is to
rate the summary on one metric.

Please make sure you read and understand these instructions carefully. Please
keep this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Coherence (1-5) - the collective quality of all sentences. We align this
dimension with the DUC quality question of structure and coherence whereby
"the summary should be well-structured and well-organized. The summary
should not just be a heap of related information, but should build from
sentence to sentence, to a coherent body of information about a topic."

2 . auto-generated evaluation steps . The LLM is tasked to generate a detailed
step-by-step evaluation instruction based on the initial prompt. For example, we
can add a line “Evaluation steps:” to the initial prompt provided above to trigger
the generation of the following instruction:

1. Read the news article carefully and identify the main topic and key points.

2. Read the summary and compare it to the news article. Check if the summary
covers the main topic and key points of the news article, and if it presents
them in a clear and logical order.

3. Assign a score for coherence on a scale of 1 to 5, where 1 is the lowest
and 5 is the highest based on the Evaluation Criteria.

3 . scoring . The prompt with auto-generated evaluation steps is concatenated with
the input context (e.g. article to be summarized) and candidate to the evaluated

1 See Figure B.9 for the definitions of these standard metrics.

604 evaluation metrics

(e.g. summary produced by another LLM). This input is fed into an LLM, and the
probabilities of output tokens that correspond to the valid scores are captured.
In the above example, the valid coherence scores are integers from 1 to 5, so we
capture the probabilities of these five tokens at the LLM output. More generally,
we denote the set of valid scores as ts1, . . . , snu and corresponding probabilities
as pps1q, . . . , ppsnq. The final score for a specific dimension is then computed as
the expected score value:

score “
n
ÿ

i“1

ppsiq ¨ si (B.31)

This approach improves the robustness and accuracy compared to just using the
final discrete (highest-probability) token outputted by the LLM.

The LLM-based approach both reduces the evaluation complexity and improves the
evaluation performance in terms of correlation with human judgment compared to the
reference-based metrics.

I N D E X

Symbols

ε-greedy policy, 163

(R, S) policy, 486

(S, c, s) policy, 520

(s, Q) policy, 486

A
ABC analysis, 518

Accuracy, 591

Activation function, 39

Actor-critic methods, 186

Additive angular margin loss, 584

Adjacency matrix, 101

Agent, 154, 339

Aggregate planning, 478

Algorithmic pricing, 423

Anomaly classification, 527

Anomaly detection
in images, 556

in IoT metrics, 527

Anomaly removal, 532

Anticipation inventory, 476

ArcFace loss, 92, 584

Area under the curve (AUC), 592

Area under the PR curve (PR AUC),
554, 593

Artificial intelligence (AI), 3

Assembly network, 481

Attention mechanism, 72

Attention weight, 73

Attribute discovery, 328

Attribute harmonization, 329

Attribute recognition, 328

Autoencoder, 92, 556

Automated machine learning
(AutoML), 18

Autoregression, 57

Average inter-demand interval (ADI),
389

B
Backbone network, 90

Backorder, 479

Base-stock policy, 486

Bayesian optimization, 512

Behavior sequence transformer (BST),
313

Bellman equation, 171

BERTScore, 601

Bilinear layer, 51, 321

Bilingual evaluation understudy
(BLEU), 599

Binary cross-entropy, 576

Bounding box, 287, 554

Brevity penalty, 600

Business analytics (BI), 9

Buy online pickup in store (BOPUS),
516

Buy plan, 417

C
Calendar-based features, 384

Calibration, 588

Can-order policy, 520

Cascaded diffusion models, 355

Catalog coverage, 408

Categorical cross-entropy, 34

Categorical variable, 576

Causal attention, 77, 144

Censoring, 405

Chatbot, 153

Check function, 574

Churn, 13

Classification
Multi-label, 37

Single-label, 34

Click-through rate (CTR), 52, 231

Client2Vec, 215

CLIP model, 348

Coherency, 343

605

606 INDEX

Cohort analysis, 8

Cold start problem, 216, 232

Collaborative filtering, 235, 296

Competitive pricing analysis, 416

Composable model, 396

Computer vision (CV), 4, 551

Conditional diffusion model, 139

Conditional variation autoencoder
(CVAE), 130

Confusion matrix, 590

Congestion stock, 476

Constant-elasticity model, 437, 470

Constrained demand, 371, 405

Content-based filtering, 235, 296

Context-free optimization, 233

Continuous review policy, 486

Contrastive learning, 581

Contrastive loss, 92, 580

Control policy, 161

ControlNet model, 363

Conversational interface, 153, 326

Conversational retrieval, 338

Convolution, 61

Two-dimensional, 81

Convolution layer, 60

Two-dimensional, 82

Convolutional neural network (CNN),
63

Cost-benefit analysis, 159

Count data, 574

Counterfactual evaluation, 240

Counterfactual policy evaluation
(CPE), 189

Cross effect, 386

Cross-attention, 144

Customer attrition, 13

Customer embedding, 204

Customer2Vec, 215, 246

Cycle inventory, 476

Cyclical feature, 384

D
Data augmentation, 555

Deconvolution, 84

Decoupling inventory, 476

Deep deterministic policy gradient
(DDPG), 188, 512

Deep Q-Networks (DQN), 179, 450

Deep reinforcement learning, 174

DeepAR model, 393

DeepVAR model, 393

Defect detection, 552

Degree (graph theory), 102

Demand, 434, 479

Demand cannibalization, 421

Demand model, 458

Demand rate, 490

Demand sensing, 374

Demand unconstraining, 405, 426, 498

Denoising diffusion probabilistic
models (DDPM), 133

Cascaded, 355

Latent, 355

U-Net backbone, 353

Dense layer, 39

Deterministic distribution, 576

Diffusion probabilistic models, 133

Forward process, 134

Reverse process, 135

Diffusion process, 134

Dimensionality reduction, 532

Direct to consumer, 454

Distribution network, 481

Dot product layer, 51

Double exponential smoothing, 378

Downweighting, 111

DreamBooth model, 362

Dynamic control, 17

Dynamic pricing, 458

Dynamic programming, 171

E
Economic order quantity (EOQ), 490

Edge server, 552

EfficientNet, 282, 562

Eigenvector centrality, 102

Embedding, 23

Entropy, 578

Erratic demand, 371

Error rate, 591

Event history, 198

Every day low price (EDLP), 415, 431

Evidence lower bound (ELBO), 125,
284

Execution forecasting, 374

Expanding window statistics, 385

Expectation-maximization (EM), 406

Expected SARSA, 176

INDEX 607

F
F1 score, 554, 594

Faithfulness, 343

False negative, 590

False positive, 590

False positive rate, 590

Feature engineering, 15

Feature map, 86, 272

Few-shot learning, 116, 150

Filler items, 430

Fine-tuning, 117, 141, 271

Fitted Q Iteration (FQI), 178, 254

Fluency, 343

Forecast reconciliation, 402

Bottom-up, 403

MinT, 403

Top-down, 403

Forecasting, 56

Forecasting horizon, 56

Foundation model, 19, 115, 141

Fully connected layer, 39

Fully connected neural network, 39

G
G-Eval, 603

Generative AI, 18, 121

Global pooling, 64

Gradient boosted decision tree
(GBDT), 201

Granger causality, 410

Graph, 99

Graph convolutional matrix
completion (GC-MC), 320

Graph factorization, 103

Graph neural networks (GNNs), 107,
320

Greedy policy, 162

Gross margin, 419

Grounding, 152

Growth accounting, 6

Guaranteed-service model (GSM), 504

H
Hallucinations (in LLMs), 151

Halo effect, 421

Health indicators, 526

Hidden layer, 39

Hidden state vector, 70

Hierarchical time series, 401

Hierarchical variation autoencoder
(HVAE), 131

High-low pricing (Hi-Lo), 431, 449

Hit rate, 590

Hit ratio, 596

Holt’s linear method, 378

Holt-Winters’ method, 379

Huber loss, 572

Hyperparameter, 21

I
ImageNet, 275, 562

Imbalanced dataset, 110

Importance sampling, 190

Imputation, 404

In-context learning, 116, 150

In-transit inventory, 480

InfoNCE loss, 92, 348, 583

Information bottleneck, 92

Information retrieval, 335, 595

Instance segmentation, 288

Instruction fine-tuning, 152

Integer programming (IP), 442

Interest point detection, 565

Intermittent demand, 371

Intersection over union (IoU), 289, 555

Intervention, 112

Inventory echelon, 479

Inventory level, 480

Inventory position, 479

Inventory turnover, 419, 482

Item2Vec, 215, 218

Iterative policy evaluation, 172

J
Jaccard index, 289

Jensen’s inequality, 126

Just-in-time manufacturing, 477

K
Key value items (KVIs), 429

Knowledge management, 325

Kullback-Leibler (KL) divergence, 125,
578

KVI score, 430

L
Lag, 56

Language model, 141

608 INDEX

Large language models (LLMs), 18,
148, 327

Agents, 154, 339

Chains, 153

Fine-tuning, 152

Guardrails, 340

Memory, 153

Latent diffusion models, 355

Latent space, 23

Lead time, 479

Lifetime value (LTV), 8

Uplift, 251

Likelihood, 29

Linear autoencoder, 92

Linear programming (LP), 443

Linear relaxation, 443

LinUCB, 235

Log-linear model, 437

Long short-term memory (LSTM), 68,
203

with attention, 72

Look-alike modeling, 200

Lookback horizon, 385

Lookup embeddings, 47

Lost sales, 479

Lumpy demand, 371

M
Machine learning (ML), 5

Mahalanobis distance, 561

Manifold, 22

Manufacturer-sponsored promotions,
454

Market response, 434

Markov chain Monte Carlo (MCMC),
469

Markov decision process (MDP), 169

Masked language modeling, 142

Material requirements planning
(MRP), 477

Mathematical programming, 160

Maximum likelihood (ML), 29

Mean absolute error (MAE), 570

Mean absolute percentage error
(MAPE), 572

Mean average precision (MAP), 597

Mean squared error (MSE), 33, 568

Micromoment, 216

Minimum advertised price (MAP), 420

Misclassification rate, 591

Mixed networks, 481

Model of normality, 529, 556

Modified n-gram precision, 599

Monte Carlo sampling, 175

Most popular items, 297

Multi-armed bandit (MAB), 161

Multi-class N-pair loss, 582

Multi-echelon supply chain, 481

Multi-task learning (MLT), 52

Multihead network, 52

Multihead self-attention, 76

Multitower network, 52

Multivariate time series, 370

MVTec AD dataset, 563

Myopic optimization, 248

N
Natural language processing (NLP), 4

Negative sampling, 98

Net inventory, 479

Net lead time, 505

Net marketing contribution, 424

Neural collaborative filtering, 307

Neural Fitted Q (NFQ), 179

Neural message passing framework,
107

NeuralProphet model, 397

Newsvendor model, 515

Node2Vec, 223

Noise reduction, 532

Non-redundancy, 343

Normalized discounted cumulative
gain (NDCG), 597

O
Object detection, 287

Object localization, 287

Observational study, 113

Off-policy learning, 177

Off-policy policy learning, 189

On-hand inventory, 479

On-order inventory, 479

On-policy learning, 177

One-hot encoding, 47

Operational forecasting, 374

Out-of-stock (OOS), 420

Out-the-door price (OTD), 419

Outlier, 529

INDEX 609

Over-sampling, 111

P
Pareto frontier, 5, 493

Periodic review policy, 486

Pinball loss, 573

Pipeline inventory, 476

Pixel accuracy, 289

Plan-to-sell process, 417

Planogram verification, 565

Pointwise mutual information (PMI),
318

Poisson loss, 574

Policy, 170

Policy gradient, 183

Policy improvement, 172

Policy iteration, 172

Pooling function, 63

Pooling layer, 63

Position embedding, 79, 89

Position encoding, 80

Precision, 590, 595

Precision-recall (PR) curve, 554, 593

Predictive maintenance, 527

Pretraining, 115, 141

Preventive maintenance, 527

Price elasticity of demand, 436

Price management
Consumer goods, 454

Industrial goods, 454

Retail, 452

Services, 453

Price management process, 414

Price positioning, 415

Price scraping, 416

Price waterfall, 419

Pricing index, 419

Pricing plan, 417

Pricing ROI, 424

Principal component analysis (PCA),
93, 532

Prior knowledge, 21

Priority items, 429

Probabilistic forecasting, 372

Probabilistic programming, 469

Product churn, 425

Product discovery, 267

Promotion pressure, 386

Propensity score matching, 114

Propensity scoring, 197

Pull-forward effect, 421

Q
Q-learning, 175

Quantile loss, 574

R
Random walk, 104

Randomized experimentation, 113

Ranking, 596

ReAct agent, 339

Reactive maintenance, 527

Recall, 590, 595

Recall-oriented understudy for gisting
evaluation (ROUGE), 600

Receiver operating characteristic
(ROC), 554

Reconstruction probability, 542

Rectified linear unit (ReLu), 39

Recurrent layer, 64

Recurrent neural network (RNN), 65,
203

Regression, 33

REINFORCE algorithm, 183

Reinforcement learning, 28, 161

Relevancy, 343

Remaining useful life (RUL), 527, 545

Reparametrization trick, 46, 127

Replenishable items, 418

Representation learning, 15

Resampling, 111

Residual connection, 42

Residual map, 556

Retrieval-augmented generation
(RAG), 335

Return, 161

Return on investment (ROI), 424

ROC curve, 591

Rolling window statistics, 385

Root mean squared error (RMSE), 570

S
Safety stock, 476, 494

Sample efficiency, 55

SARSA, 176

Scenario, 5

Seasonal items, 418

Segmentation mask, 554

610 INDEX

Selection bias, 113

Self-attention, 74

Causal, 77, 144

Sell-through rate, 419

Semantic segmentation, 287

Semantic space, 23

Sensitivity, 590

Sensitivity analysis, 17, 491

Sequence-to-sequence learning, 54, 65

Serial network, 481

Session2Vec, 215

Shapley values, 202

Sharpness, 589

Ship from store (SFS), 516

Short-time Fourier transform (STFT),
540

Shortcut connection, 42

Simple exponential smoothing, 377

Single-echelon supply chain, 479

Skip connection, 42

SMOTE algorithm, 112

Softmax function, 35

Softmax loss, 577

Softplus function, 44

Sparse autoencoder, 95

Specificity, 590

Squared coefficient of variation (CV2),
389

Stable diffusion models, 360

Stacked autoencoder, 94

State space model (SSM), 376

Stochastic bandit, 161

Stochastic gradient descent (SGD), 127

Stochastic service models (SSM), 500

Stock-keeping unit (SKU), 479

Stockpiling effect, 421

Strategic optimization, 248

Strategic safety stock placement
problem (SSSPP), 503

Structural similarity (SSIM), 559

Super-resolution diffusion model, 355

Synthetic media, 346

T
t-SNE, 209, 229, 257, 276, 283, 343

Tail items, 430

Temporal difference error, 176

Temporal difference learning, 176

Text generation, 148

Text retrieval, 267

Text-to-SQL generation, 332

Thompson sampling, 165, 464

Time series, 54

Tomek link, 111

Trajectory, 5, 170

Trajectory decomposition, 16

Transfer learning, 25, 116, 278

Transformer, 74

Decoder-encoder, 144

Decoder-only, 147

Encoder-only, 142

Two-dimensional, 89

Transformer block, 78

Transformer decoder, 144

Transition, 170

Transition function, 169

Transposed convolution, 84

Treatment, 112

Tree networks, 481

Triple exponential smoothing, 379

Triplet loss, 92, 581

True negative, 590

True negative rate, 590

True positive, 590

True positive rate, 590

U
U-Net model, 87

Uncertainty propagation, 446

Under-sampling, 111

Univariate time series, 370

Upconvolution layer, 84

Uplift modeling, 251

Upper confidence bound (UCB), 164

Upweighting, 111

User2Vec, 215

Utility map, 5

Utility space, 5

V
Value function, 171

Value map, 5

Variational autoencoder, 123, 284

Variational inference (VI), 469

VGG model, 273

Vision transformer (ViT), 90

Visual inspection, 551

Visual search, 269

INDEX 611

W
Wavelet transform (WT), 540

Weighted average percentage error
(WAPE), 588

Weighted quantile loss (wQL), 588

What-if analysis, 17

Word2Vec, 97, 220

Z
Zero-shot learning, 116, 150

B I B L I O G R A P H Y

A. Agarwal. Multi-echelon supply chain inventory optimization: An industrial perspec-
tive. 2014.

A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola. Dis-
tributed large-scale natural graph factorization. In Proceedings of the 22nd International
Conference on World Wide Web, WWW ’13, pages 37–48, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

J. An and S. Cho. Variational autoencoder based anomaly detection using reconstruc-
tion probability. volume 2, pages 1–18, 2015.

R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa,
P. Bailey, Z. Chen, et al. PaLM 2 technical report, 2023.

S. Arora and D. Warrier. Decoding fashion contexts using word embeddings. In KDD
Workshop on Machine learning meets fashion, 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

L. Baldassini and J. A. R. Serrano. client2vec: Towards systematic baselines for banking
applications. 2018.

J. L. Balintfy. On a basic class of multi-item inventory problems. Management science, 10

(2):287–297, 1964.

J. Barbour. Learning node embedding in transaction networks. 2020.

O. Barkan and N. Koenigstein. Item2vec: neural item embedding for collaborative filter-
ing. In 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing
(MLSP), pages 1–6. IEEE, 2016.

R. Behnia, M. R. Ebrahimi, J. Pacheco, and B. Padmanabhan. EW-tune: A framework
for privately fine-tuning large language models with differential privacy. In 2022
IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2022.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks and Learning Systems, 5(2):
157–166, 1994. ISSN 1045-9227.

P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger. Improving unsupervised
defect segmentation by applying structural similarity to autoencoders. arXiv preprint
arXiv:1807.02011, 2018.

613

614 bibliography

P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. MVTec AD – A comprehen-
sive real-world dataset for unsupervised anomaly detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9592–9600,
2019.

L. Bernardi, T. Mavridis, and P. Estevez. 150 successful machine learning models: 6

lessons learned at Booking.Com. KDD19. Association for Computing Machinery,
2019.

D. Bertsekas. Nonlinear Programming. Athena Scientific, 3 edition, 2016.

N. Bloom, M. Floetotto, N. Jaimovich, I. Saporta-Eksten, and S. J. Terry. Really uncertain
business cycles. Econometrica, 86(3):1031–1065, 2018.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020.

J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986.

S. Cao, W. Lu, and Q. Xu. GraRep: Learning graph representations with global struc-
tural information. In Proceedings of the 24th ACM International on Conference on Infor-
mation and Knowledge Management, CIKM ’15, pages 891–900, New York, NY, USA,
2015. Association for Computing Machinery.

R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

A. Cavallo. More Amazon effects: online competition and pricing behaviors. Technical
report, National Bureau of Economic Research, 2018.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1):321–
357, jun 2002.

F. Chen and Y.-S. Zheng. Lower bounds for multi-echelon stochastic inventory systems.
Management Science, 40(11):1426–1443, 1994.

Q. Chen, H. Zhao, W. Li, P. Huang, and W. Ou. Behavior sequence transformer for e-
commerce recommendation in Alibaba. In Proceedings of the 1st International Workshop
on Deep Learning Practice for High-Dimensional Sparse Data, DLP-KDD ’19, New York,
NY, USA, 2019. Association for Computing Machinery.

W. C. Cheung, D. Simchi-Levi, and H. Wang. Dynamic pricing and demand learning
with limited price experimentation. Operations Research, 65(6):1722–1731, 2017.

R. Child. Very deep VAEs generalize autoregressive models and can outperform them
on images. In International Conference on Learning Representations, 2021.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546, 2005.

bibliography 615

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. PaLM: Scaling language modeling with path-
ways, 2022.

W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff func-
tions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 208–214.
JMLR Workshop and Conference Proceedings, 2011.

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. De-
hghani, S. Brahma, et al. Scaling instruction-finetuned language models, 2022.

A. J. Clark and H. Scarf. Optimal policies for a multi-echelon inventory problem. Man-
agement Science, 6(4):475–490, 1960.

A. A. Cook, G. Misirli, and Z. Fan. Anomaly detection for iot time-series data: A survey.
IEEE Internet of Things Journal, 7(7):6481–6494, 2020.

P. Covington, J. Adams, and E. Sargin. Deep neural networks for YouTube recommen-
dations. In Proceedings of the 10th ACM Conference on Recommender Systems, New York,
NY, USA, 2016.

J. D. Croston. Forecasting and stock control for intermittent demands. Operational
Research Quarterly (1970-1977), 23(3):289–303, 1972.

J. Davis and M. Goadrich. The relationship between precision-recall and roc curves.
ICML ’06, pages 233–240. Association for Computing Machinery, 2006.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

J. Deng, J. Guo, N. Xue, and S. Zafeiriou. ArcFace: Additive angular margin loss for
deep face recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4685–4694, 2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding, 2018.

J. Ding, S. Ma, L. Dong, X. Zhang, S. Huang, W. Wang, and F. Wei. LongNet: Scaling
transformers to 1,000,000,000 tokens, 2023.

J. Donnellan. Merchandise Buying and Management. Fairchild Books, 4 edition, 2013.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods. Oxford Uni-
versity Press, 2012.

F. Y. Edgeworth. The mathematical theory of banking. Journal of the Royal Statistical
Society, 51(1):113–127, 1888.

616 bibliography

C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet, M. Ulrich, and
J. Leskovec. Pixie: A system for recommending 3+ billion items to 200+ million users
in real-time. In Proceedings of the 2018 world wide web conference, pages 1775–1784,
2018.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

A. S. Eruguz, E. Sahin, Z. Jemai, and Y. Dallery. A comprehensive survey of guaranteed-
service models for multi-echelon inventory optimization. International Journal of Pro-
duction Economics, 172:110–125, 2016. ISSN 0925-5273.

A. R. Fabbri, W. Kryscinski, B. McCann, C. Xiong, R. Socher, and D. Radev. SummEval:
Re-evaluating summarization evaluation. Transactions of the Association for Computa-
tional Linguistics, 9:391–409, 04 2021.

K. Ferreira, B. Lee, and D. Simchi-levi. Analytics for an online retailer: Demand fore-
casting and price optimization. Manufacturing and Service Operations Management, 18,
11 2015.

K. J. Ferreira, D. Simchi-Levi, and H. Wang. Online network revenue management
using Thompson sampling. Operations research, 66(6):1586–1602, 2018.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189 – 1232, 2001.

R. Ganti, M. Sustik, Q. Tran, and B. Seaman. Thompson sampling for dynamic pricing.
arXiv preprint arXiv:1802.03050, 2018.

E. S. Gardner Jr and E. McKenzie. Forecasting trends in time series. Management science,
31(10):1237–1246, 1985.

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

J. Gauci, E. Conti, Y. Liang, K. Virochsiri, Y. He, Z. Kaden, V. Narayanan, X. Ye, Z. Chen,
and S. Fujimoto. Horizon: Facebook’s open source applied reinforcement learning
platform, 2019.

X. Geng and H. Liu. OpenLLaMA: An open reproduction of LLaMA, May 2023. URL
https://github.com/openlm-research/open_llama.

S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong. DiffuSeq: Sequence to sequence text
generation with diffusion models. In The Eleventh International Conference on Learning
Representations, 2023.

C. W. J. Granger. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica, 37(3):424–438, 1969.

S. C. Graves and S. P. Willems. Optimizing strategic safety stock placement in supply
chains. Manufacturing & Service Operations Management, 2(1):68–83, 2000.

https://github.com/openlm-research/open_llama

bibliography 617

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber. LSTM: A
search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28

(10):2222–2232, 2017. ISSN 2162-2388.

A. Grigoriev. Clothing dataset. https://github.com/alexeygrigorev/

clothing-dataset, 2020.

M. Grogan, M. Hudon, D. Mccormack, and A. Smolic. Automatic palette extraction for
image editing. 2018.

A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep Q-learning with model-
based acceleration, 2016.

N. Gugulothu, V. TV, P. Malhotra, L. Vig, P. Agarwal, and G. Shroff. Predicting remain-
ing useful life using time series embeddings based on recurrent neural networks. In
Proceedings of the 2nd ML for PHM Workshop at SIGKDD 2017, Halifax, Canada, 2017.

S. Guo and M. Fraser. Propensity Score Analysis. SAGE, 2015.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735–1742, 2006.

W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Eng. Bull., 40(3):52–74, 2017.

F. M. Harper and J. A. Konstan. The MovieLens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455.

F. W. Harris. How many parts to make at once. Factory, the Magazine of Management, 10

(2):135–136, 1913.

A. C. Harvey and N. Shephard. Structural time series models, volume Vol. 11:Economet-
rics, pages 261–302. North Holland, Amsterdam, (edited by g.s. maddala, c.r. rao and
h.d. vinod) edition, 1993.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’16, pages 770–778. IEEE, 2016.

P. He, X. Liu, J. Gao, and W. Chen. DeBERTa: Decoding-enhanced BERT with disentan-
gled attention. 2020.

X. He, T. Chen, M.-Y. Kan, and X. Chen. Trirank: Review-aware explainable recommen-
dation by modeling aspects. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pages 1661–1670, 2015.

X. He, K. Zhao, and X. Chu. AutoML: A survey of the state-of-the-art. Knowledge-Based
Systems, 212:106622, 2021.

https://github.com/alexeygrigorev/clothing-dataset
https://github.com/alexeygrigorev/clothing-dataset

618 bibliography

M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. Azar, and D. Silver. Rainbow: Combining improvements in deep rein-
forcement learning, 2017.

B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommendations
with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. Cascaded diffusion
models for high fidelity image generation. 2021.

S. Hochreiter and J. Schmidhuber. Long short-term memory, 1995.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:
1735–1780, 1997.

C. Holt. Forecasting seasonals and trends by exponentially weighted averages. ONR
Memorandum, 52, 1957.

J. Hsu. A quantitative approach to product market fit. 2019.

L. Huang, D. Chen, Y. Liu, S. Yujun, D. Zhao, and Z. Jingren. Composer: Creative and
controllable image synthesis with composable conditions. 2023.

S. Humair, J. Ruark, B. Tomlin, and S. Willems. Incorporating stochastic lead times into
the guaranteed service model of safety stock optimization. Interfaces, 43:421–434, 09

2013.

R. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. 3 edition, 2021.

R. Hyndman, A. Koehler, J. Ord, and R. Snyder. Forecasting with Exponential Smoothing:
The State Space Approach. Springer Series in Statistics. Springer Berlin Heidelberg,
2008.

V. Isaev. Identifying screws, a practical case study for visual search, 2019.

F. Jacobs, W. Berry, D. Whybark, and T. Vollmann. Manufacturing Planning and Control
for Supply Chain Management: The CPIM Reference. McGraw-Hill Education, 2 edition,
2018. ISBN 9781260108392.

W.-C. Kang and J. J. McAuley. Self-attentive sequential recommendation. pages 197–206.
IEEE Computer Society, 2018.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. Scaling laws for neural language models. 2020.

L. Kemmer, H. von Kleist, D. de Rochebouët, N. Tziortziotis, and J. Read. Reinforce-
ment learning for supply chain optimization. In European Workshop on Reinforcement
Learning, volume 14, 2018.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2013.

bibliography 619

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46(1):33–50, 1978.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

M. Kuhn and K. Johnson. Feature Engineering and Selection: A Practical Approach for
Predictive Models. Chapman & Hall/CRC Data Science Series. CRC Press, 2019. ISBN
9781351609463.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. ACM
SIGCOMM computer communication review, 34(4):219–230, 2004.

Y. Lan, Y. Zhu, J. Guo, S. Niu, and X. Cheng. Position-aware ListMLE: A sequential
learning process for ranking. UAI’14, pages 449–458, Arlington, Virginia, USA, 2014.
AUAI Press.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. ALBERT: A lite
BERT for self-supervised learning of language representations. 2019.

T. Lang and M. Rettenmeier. Understanding consumer behavior with recurrent neural
networks. In Workshop on Machine Learning Methods for Recommender Systems, 2017.

C. Langley, R. Novack, B. Gibson, and J. Coyle. Supply Chain Management: A Logistics
Perspective. Cengage Learning, 2020. ISBN 9780357442135.

Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. URL http://yann.

lecun.com/exdb/mnist/.

Y. LeCun et al. Generalization and network design strategies. Connectionism in perspec-
tive, 19:143–155, 1989.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,
and L. Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension, 2019.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kuttler, M. Lewis,
W. tau Yih, T. Rocktaschel, S. Riedel, and D. Kiela. Retrieval-augmented generation
for knowledge-intensive nlp tasks, 2021.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to person-
alized news article recommendation. Proceedings of the 19th international conference on
World wide web, 2010.

X. Li, Q. Ding, and J.-Q. Sun. Remaining useful life estimation in prognostics using
deep convolution neural networks. Reliability Engineering and System Safety, 172:1–11,
2018.

X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto. Diffusion-LM improves
controllable text generation. Advances in Neural Information Processing Systems, 35:
4328–4343, 2022.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning, 2015.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

620 bibliography

B. Lim, S. O. Arik, N. Loeff, and T. Pfister. Temporal fusion transformers for inter-
pretable multi-horizon time series forecasting. International Journal of Forecasting, 37

(4):1748–1764, 2021.

C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81, Barcelona, Spain, 2004. Association for Computa-
tional Linguistics.

Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang. STAMP: Short-term attention/memory
priority model for session-based recommendation. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’18,
pages 1831–1839, New York, NY, USA, 2018. Association for Computing Machinery.

T. Liu, A. W. Moore, A. G. Gray, and K. Yang. An investigation of practical approximate
nearest neighbor algorithms. In NIPS, volume 12, 2004.

W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere em-
bedding for face recognition. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6738–6746, 2017.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. RoBERTa: A robustly optimized BERT pretraining approach. 2019.

Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu. G-Eval: NLG evaluation using GPT-4
with better human alignment. March 2023.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hi-
erarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10012–10022, 2021.

Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the
2020s. arXiv preprint arXiv:2201.03545, 2022.

S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B. Zoph,
J. Wei, et al. The flan collection: Designing data and methods for effective instruction
tuning. arXiv preprint arXiv:2301.13688, 2023.

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cam-
bridge University Press, Cambridge, UK, 2008.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representa-
tions in vector space, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013b.

T. Mills. Applied Time Series Analysis: A Practical Guide to Modeling and Forecasting. Aca-
demic Press, 2019.

S. Mistry. Transformer-based real-time recommendation at Scribd. 2021.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. nature, 518(7540):529–533, 2015.

bibliography 621

C. Molnar. Interpretable Machine Learning. Leanpub, 2020. ISBN 9780244768522.

E. Nijkamp, H. Hayashi, T. Xie, C. Xia, B. Pang, R. Meng, W. Kryscinski, L. Tu, M. Bhat,
S. Yavuz, C. Xing, J. Vig, L. Murakhovs’ka, J. Wu, Y. Zhou, S. R. Joty, and C. Xiong.
Long sequence modeling with XGen: A 7B LLM trained on 8K input sequence length.
Salesforce AI Research Blog, 2023. URL https://blog.salesforceairesearch.com/

xgen.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. 2018.

A. Oroojlooyjadid, M. Nazari, L. Snyder, and M. Takáč. A deep Q-network for the
beer game: A deep reinforcement learning algorithm to solve inventory optimization
problems. arXiv preprint arXiv:1708.05924, 2017.

A. F. Osman and M. L. King. A new approach to forecasting based on exponential
smoothing with independent regressors. Monash Econometrics and Business Statis-
tics Working Papers 2/15, Monash University, Department of Econometrics and Busi-
ness Statistics, 2015.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stanford InfoLab, November 1999.

N. Pakhomova. Detecting and correcting e-commerce catalog misattribution with im-
age and text classification using Google TensorFlow, 2017.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: A method for automatic evalua-
tion of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 311–318, USA, 2002. Association for Computational
Linguistics.

J. Pereira and M. Silveira. Unsupervised anomaly detection in energy time series data
using variational recurrent autoencoders with attention. In 2018 17th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), pages 1275–1282, 2018.

V.-T. Phi, L. Chen, and Y. Hirate. Distributed representation based recommender sys-
tems in e-commerce. In DEIM Forum, 2016.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language under-
standing by generative pre-training. 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models
are unsupervised multitask learners. 2019.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models
from natural language supervision, 2021.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67, 2020.

https://blog.salesforceairesearch.com/xgen
https://blog.salesforceairesearch.com/xgen

622 bibliography

S. S. Rangapuram, L. D. Werner, K. Benidis, P. Mercado, J. Gasthaus, and
T. Januschowski. End-to-end learning of coherent probabilistic forecasts for hierarchi-
cal time series. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 8832–8843. PMLR, 18–24 Jul 2021.

M. Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages
317–328. Springer, 2005.

O. Rippel, P. Mertens, and D. Merhof. Modeling the distribution of normal data in
pretrained deep features for anomaly detection. In 2020 25th International Conference
on Pattern Recognition (ICPR), pages 6726–6733, 2021.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image
synthesis with latent diffusion models, 2021.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical
image segmentation. Medical Image Computing and Computer-Assisted Intervention -
MICCAI 2015, 2015.

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observa-
tional studies for causal effects. Biometrika, 70(1):41–55, 04 1983.

K. Rosling. Optimal inventory policies for assembly systems under random demands.
Operations Research, 37(4):565–579, 1989.

A. Ruggiero and J. Haedt. Evaluating the impact of pricing actions to drive further
actions. In The ROI of Pricing: Measuring the Impact and Making the Business Case, 2014.

N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. DreamBooth: Fine
tuning text-to-image diffusion models for subject-driven generation. 2022.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour,
R. Gontijo-Lopes, B. K. Ayan, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi. Photo-
realistic text-to-image diffusion models with deep language understanding. In A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information
Processing Systems, 2022.

T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than the roc
plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, 10:1–21,
03 2015.

J. Salch. Unconstraining passenger demand using the EM algorithm. In Proceedings of
the INFORMS Conference, 1997.

D. Salinas, M. Bohlke-Schneider, L. Callot, R. Medico, and J. Gasthaus. High-
dimensional multivariate forecasting with low-rank gaussian copula processes. Ad-
vances in neural information processing systems, 32, 2019.

bibliography 623

D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. DeepAR: Probabilistic fore-
casting with autoregressive recurrent networks. International Journal of Forecasting, 36

(3):1181–1191, 2020.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. 2019.

A. Saxena, K. Goebel, D. Simon, and N. Eklund. Damage propagation modeling for air-
craft engine run-to-failure simulation. In 2008 International Conference on Prognostics
and Health Management, pages 1–9, 2008.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face
recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 815–823, 2015.

H. Schuff, L. Vanderlyn, H. Adel, and N. T. Vu. How to do human evaluation: A brief
introduction to user studies in NLP. Natural Language Engineering, pages 1–24, 2023.

C. Schuhmann, R. Beaumont, R. Vencu, C. W. Gordon, R. Wightman, M. Cherti,
T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. R. Kundurthy,
K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev. LAION-5B: An open large-
scale dataset for training next generation image-text models. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems, volume 16. MIT Press, 2004.

M. W. Seeger, D. Salinas, and V. Flunkert. Bayesian intermittent demand forecasting
for large inventories. Advances in Neural Information Processing Systems, 29, 2016.

I. Seleznev, I. Irkhin, and V. Kantor. Automated extraction of rider’s attributes based
on taxi mobile application activity logs. 2018.

O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu. Context-aware computing, learning, and
big data in internet of things: A survey. IEEE Internet of Things Journal, 5(1):1–27, 2018.

R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications. Springer
International Publishing, 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Determinis-
tic policy gradient algorithms. In Proceedings of the 31st International Conference on
Machine Learning, pages 387–395, 2014.

E. Silver, D. Pyke, and D. Thomas. Inventory and Production Management in Supply Chains.
CRC Press, forth edition, 2016.

H. Simon and M. Fassnacht. Price Management: Strategy, Analysis, Decision, Implementa-
tion. Springer International Publishing, 2018.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale im-
age recognition, 2014.

624 bibliography

K. F. Simpson. In-process inventories. Operations Research, 6(6):863–873, 1958.

L. Snyder and Z. Shen. Fundamentals of Supply Chain Theory. Wiley, 2 edition, 2019.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Ma-
chine Learning, pages 2256–2265. PMLR, 2015.

K. Sohn. Improved deep metric learning with multi-class N-pair loss objective. In
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016.

K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28,
2015.

J. Sokolowsky. Starbucks turns to technology to brew up a more personal connection
with its customers. 2019.

D. Song, N. Xia, W. Cheng, H. Chen, and D. Tao. Deep r-th root of rank supervised
joint binary embedding for multivariate time series retrieval. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’18, pages 1129–2238, New York, NY, USA, 2018. Association for Computing
Machinery.

S. Stiebellehner, J. Wang, and S. Yuan. Learning continuous user representations
through hybrid filtering with doc2vec. arXiv preprint arXiv:1801.00215, 2017.

F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang. BERT4Rec: Sequential recom-
mendation with bidirectional encoder representations from transformer. CIKM ’19,
pages 1441–1450, New York, NY, USA, 2019. Association for Computing Machinery.

R. Sun, S. O. Arik, H. Nakhost, H. Dai, R. Sinha, P. Yin, and T. Pfister. SQL-PaLM:
Improved large language model adaptation for text-to-SQL, 2023.

M. Syntetos, J. Boylan, and J. Croston. On the categorization of demand patterns. Jour-
nal of the Operational Research Society, 56, 05 2005.

K. Talluri and G. van Ryzin. The Theory and Practice of Revenue Management. Kluwer
Academic Publishers, Norwell, MA, USA, 2004.

M. Tan and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 6105–6114. PMLR, 09–15

Jun 2019.

L. Tang and H. Liu. Relational learning via latent social dimensions. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’09, pages 817–826. Association for Computing Machinery, 2009.

S. J. Taylor and B. Letham. Forecasting at scale, 2017.

J. Teo. Can a neural network perform PCA?, 2020.

bibliography 625

B. K. Tepper and M. Greene. Mathematics for Retail Buying. Fairchild Books, 9th edition,
2020.

G. Theocharous, P. S. Thomas, and M. Ghavamzadeh. Personalized ad recommendation
systems for life-time value optimization with guarantees. IJCAI 15, pages 1806–1812.
AAAI Press, 2015.

I. Tomek. Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics,
7(2):679–772, 1976.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample.
LLaMA: Open and efficient foundation language models, 2023a.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Ba-
tra, P. Bhargava, S. Bhosale, et al. LLaMA 2: Open foundation and fine-tuned chat
models, 2023b.

O. Triebe, H. Hewamalage, P. Pilyugina, N. Laptev, C. Bergmeir, and R. Rajagopal.
Neuralprophet: Explainable forecasting at scale, 2021.

A. Vahdat and J. Kautz. NVAE: A deep hierarchical variational autoencoder. Advances
in neural information processing systems, 33:19667–19679, 2020.

R. van den Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion.
CoRR, 2017.

N. Vandeput. Data Science for Supply Chain Forecasting. De Gruyter, Berlin, Boston, 2

edition, 2021. ISBN 9783110671124.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

D. Verstraete, A. Ferrada, E. L. Droguett, V. Meruane, and M. Modarres. Deep learn-
ing enabled fault diagnosis using time-frequency image analysis of rolling element
bearings. Shock and Vibration, 2017:5067651, Oct 2017.

E. Wang. How we use AutoML, multi-task learning and multi-tower models for Pinter-
est ads. 2020.

H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. CosFace:
Large margin cosine loss for deep face recognition. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5265–5274, 2018.

R. Wang, B. Fu, G. Fu, and M. Wang. Deep & cross network for ad click predictions. In
Proceedings of the ADKDD’17, pages 1–7. 2017.

Y.-A. Wang and Y.-N. Chen. What do position embeddings learn? an empirical study
of pretrained language model positional encoding. arXiv preprint arXiv:2010.04903,
2020.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
From error visibility to structural similarity. Trans. Img. Proc., 13(4):600–612, 2004.
ISSN 1057-7149.

626 bibliography

K. Q. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin near-
est neighbor classification. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in
Neural Information Processing Systems, volume 18. MIT Press, 2006.

R. Wen, K. Torkkola, B. M. Narayanaswamy, and D. Madeka. A multi-horizon quantile
recurrent forecaster. In NeurIPS 2017, 2017.

Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for
deep face recognition. In ECCV (7), Lecture Notes in Computer Science, pages 499–
515. Springer, 2016. ISBN 978-3-319-46477-0.

L. Weng. LLM-powered autonomous agents. lilianweng.github.io, Jun 2023.

S. L. Wickramasuriya, G. Athanasopoulos, and R. J. Hyndman. Optimal forecast recon-
ciliation for hierarchical and grouped time series through trace minimization. Journal
of the American Statistical Association, 114(526):804–819, 2019.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. In Machine Learning, pages 229–256, 1992.

R. H. Wilson. A scientific routine for stock control. Harvard Business Review, 1934.

C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. Recurrent recommender
networks. In Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, WSDM ’17, pages 495–503, New York, NY, USA, 2017. Association for
Computing Machinery.

S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan. Session-based recommendation with
graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33

(01):346–353, 2019.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms, 2017.

C. Yang, X. Shi, L. Jie, and J. Han. I know you’ll be back: Interpretable new user
clustering and churn prediction on a mobile social application. pages 914–922, 2018.

W. Yang, P. Luo, and L. Lin. Clothing co-parsing by joint image segmentation and
labeling. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2013.

Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang. Understanding Negative Sam-
pling in Graph Representation Learning, pages 1666–1676. Association for Computing
Machinery, New York, NY, USA, 2020.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. ReAct: Synergizing
reasoning and acting in language models, 2023.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 974–983, 2018.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

bibliography 627

C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen,
and N. V. Chawla. A deep neural network for unsupervised anomaly detection and
diagnosis in multivariate time series data. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, pages 1409–1416. AAAI Press, 2019.

L. Zhang and M. Agrawala. Adding conditional control to text-to-image diffusion
models, 2023.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. BERTScore: Evaluating text
generation with BERT, 2020a.

Y. Zhang, H. Jiang, Y. Miura, C. D. Manning, and C. P. Langlotz. Contrastive learning
of medical visual representations from paired images and text. 2020b.

R. Zhong, T. Yu, and D. Klein. Semantic evaluation for text-to-SQL with distilled test
suites. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 396–411. Association for Computational Linguistics, 2020.

K. Zolna and B. Romanski. User2vec: user modeling using LSTM networks. 2016.

������������� ��� ����� ���������� �������������
��
��	�����
���
�� ����������� �������������� ����� ��� �������� ��
��
��������
���� ��������� ��������� ���� ��� �������� ������
��
��������������������
����������������������������
����������� ����������� ��� ���������������� �����������
���� ����
����� ���������� ���� ����� ���� ��� ������� ���
���
�����������

���� ������� ���� ��������� ��� ����������� �� ��� ��������
��
����������� �������� ���������� ����� ����������
����������� ���� ���� ������������� �����������������
����� ��� ��������� �������� ��� �������� ����
����� ����
��
��
��
��	��� ���� �������� ����� ��� ���������� ������� ���
��
�
�������������������
��������������������������������
�����
���
������� ��������� ���� ������������� ����������
�
���� ���� �	������� ���� �������� ��� ���� ������
������
� ������ �������
� �� ������� ���� ���������
��

�����������������������������
���� ����
��������
�����������������������
��������������������������
�������
� ���������� ��� ������ ������������� ��
��
������ ���� ����������� �� ����� �������� ���� ���
�������� ����� ����� ��������� ������� ��������
�	����������� ��������� ���������� ���� ��
������
���������� ����� �� ������� ����
�������� ��
��
���
������������ ��� ��� ���� ������ �� “����������� ��
����������� ����������� ���������� ������������� ���
�������������������”��������

��
	�����������
�������������������������������������
���������������������	������������������
������
��������������
���������������	��������������������
�����	���������������	��������������������������������
��
���
�������������������
��������������	���	����������
��	���
�	�����	���

�����������
������������������������������

���������������������������������	���������
�������
���
����������	���
����������������������������������
���������������
�� �������	�������	�������������������������������
�����������������
���������������������������������
��
�����������������
���
����������������������
���
��������������������������������������	�����������������
����
������������	����������������������	���������
������

�������
�����
�������������������

���������������� ������

���������������������������

������������������
��
���������������	��������������
�����������	�����
�����������	�������	������������������

�	����������
���

���� ���

��
�������
�
���
���������������������������������
��
����������������
������������������������������

������
�������

	Contents
	Preface
	Preface
	Building Blocks
	1 Decision and Process Automation in Enterprise Operations
	1.1 Scenario Planning Framework
	1.1.1 Strategy: Enterprise as a Whole
	1.1.2 Tactics: Departments, Services, and Products
	1.1.3 Execution: Customers, Devices, Transactions, and Interfaces

	1.2 Modeling Capabilities
	1.3 Impact of AutoML and Foundation Models
	1.4 Summary

	2 Predictive Models
	2.1 Overview from the System Engineering Perspective
	2.1.1 Semantic Representations
	2.1.2 Predictive Models
	2.1.2.1 Specifying the Manifolds
	2.1.2.2 Extracting the Semantic Representations

	2.1.3 Generative Models
	2.1.4 Control Models

	2.2 Maximum Likelihood Method
	2.2.1 Likelihood Estimation
	2.2.2 Conditional Likelihood Estimation
	2.2.3 Likelihood Maximization Using Gradient Descent

	2.3 Models with Vector Inputs
	2.3.1 Linear Layer
	2.3.1.1 Regression
	2.3.1.2 Single-label Classification
	2.3.1.3 Multi-label Classification

	2.3.2 Nonlinear Layers
	2.3.2.1 Stacking Multiple Layers
	2.3.2.2 Activation Functions
	2.3.2.3 Regression and Classification Networks
	2.3.2.4 Example of a Deep Network

	2.3.3 Residual Blocks and Skip Connections
	2.3.4 Distribution Estimation Layers
	2.3.5 Sampling Layers
	2.3.6 Embedding Lookup Layer
	2.3.7 Interaction Layers
	2.3.8 Multihead and Multitower Architectures

	2.4 Models with Sequential Inputs
	2.4.1 Sequence Modeling Problems
	2.4.2 Sliding Window Approach
	2.4.2.1 Internal and External Features
	2.4.2.2 Design Options

	2.4.3 Convolution Layer
	2.4.4 Recurrent Layers
	2.4.5 Long Short-Term Memory Layer
	2.4.6 Attention Mechanism
	2.4.7 Transformer Layer
	2.4.7.1 Self-attention
	2.4.7.2 Causal Attention
	2.4.7.3 From Self-attention to Transformer

	2.5 Models with Multidimensional Inputs
	2.5.1 2D Convolution Operation
	2.5.2 2D Convolution Layer
	2.5.3 2D Upconvolution Layer
	2.5.4 Deep 2D Convolutional Networks
	2.5.4.1 Model Types
	2.5.4.2 U-Net Model

	2.5.5 2D Transformer Layer

	2.6 Models for Representation Learning
	2.6.1 Loss Functions for Supervised Representation Learning
	2.6.2 Autoencoders
	2.6.2.1 Linear Autoencoder
	2.6.2.2 Stacked Autoencoders
	2.6.2.3 Loss Functions and Regularization
	2.6.2.4 Applications and Limitations

	2.6.3 Representation of Elements

	2.7 Models with Graph Inputs
	2.7.1 Machine Learning Tasks on Graphs
	2.7.2 Learning Node Representations
	2.7.2.1 Basic Methods
	2.7.2.2 Encoder-Decoder Framework
	2.7.2.3 Proximity Measures Using Random Walks
	2.7.2.4 Usage and Limitations

	2.7.3 Graph Neural Networks
	2.7.3.1 Neural Message Passing Framework
	2.7.3.2 Network Architecture
	2.7.3.3 Model Training

	2.8 Model Correctness
	2.8.1 Imbalanced Data
	2.8.2 Observational Data

	2.9 Foundation Models
	2.9.1 Pretraining Strategies
	2.9.2 Transfer Strategies
	2.9.3 Fine-tuning Methods

	2.10 Summary

	3 Generative Models
	3.1 Regularization of the Semantic Space
	3.2 Variational Autoencoder
	3.2.1 Models with Latent Variables and Their Estimation
	3.2.2 Scalable Model Estimation Using ELBO
	3.2.3 Normality Assumptions
	3.2.4 Variational Autoencoder Network
	3.2.5 Limitations of the Basic VAE
	3.2.6 Conditional Variational Autoencoder
	3.2.7 Hierarchical Variational Autoencoder

	3.3 Denoising Diffusion Probabilistic Models
	3.3.1 Forward Process
	3.3.2 Reverse Process
	3.3.3 Training
	3.3.4 Sampling
	3.3.5 Conditional Diffusion Models

	3.4 Large Language Models
	3.4.1 Language Modeling
	3.4.2 Foundation Language Models
	3.4.3 Scalable Model Architectures
	3.4.3.1 Encoder-Only Models
	3.4.3.2 Encoder-Decoder Models
	3.4.3.3 Decoder-Only Models

	3.4.4 Properties of Large Language Models
	3.4.4.1 Consistent Text Generation
	3.4.4.2 Unsupervised Multi-task Learning
	3.4.4.3 Zero-shot and Few-shot Learning
	3.4.4.4 Elements of Common Sense and Mathematical Reasoning
	3.4.4.5 Limitations

	3.4.5 Instruction Fine-tuning
	3.4.6 Model Chains
	3.4.6.1 Chains with Memory
	3.4.6.2 Agents

	3.5 Summary

	4 Control Models
	4.1 Basic Decision-making Techniques
	4.2 Learning Based on Interactions
	4.3 Reinforcement Learning: Bandit Case
	4.3.1 Greedy Policies
	4.3.2 Upper Confidence Bound Policy
	4.3.3 Thompson Sampling
	4.3.4 Non-stationary Environments

	4.4 Reinforcement Learning: General Case
	4.4.1 Markov Decision Process
	4.4.2 Policies and Value Functions
	4.4.3 Policy Optimization Using Dynamic Programming
	4.4.4 Value-based Methods
	4.4.4.1 Monte Carlo Sampling
	4.4.4.2 Temporal Difference Learning
	4.4.4.3 On-policy vs Off-policy Learning
	4.4.4.4 Fitted Q Iteration (FQI)
	4.4.4.5 Deep Q-Networks (DQN)

	4.4.5 Policy-based Methods
	4.4.5.1 REINFORCE

	4.4.6 Combined Methods
	4.4.6.1 Actor-Critic Approach
	4.4.6.2 Deep Deterministic Policy Gradient (DDPG)

	4.5 Counterfactual Policy Evaluation
	4.5.1 Importance Sampling
	4.5.1.1 Evaluation
	4.5.1.2 Learning

	4.5.2 Action Rejection Sampling

	4.6 Summary

	Customer Intelligence
	R1 Propensity Modeling
	R1.1 Business Problem
	R1.1.1 Scoring
	R1.1.2 Event Attribution

	R1.2 Solution Options
	R1.3 Models with Aggregated Features
	R1.4 Event Sequence Modeling
	R1.4.1 Scoring
	R1.4.2 Event Attribution

	R1.5 Prototype
	R1.6 Case Study
	R1.7 Extensions and Variations
	R1.7.1 Advanced Sequential Models
	R1.7.2 Convolutional Models
	R1.7.3 Target Label Design
	R1.7.4 Operationalization

	R1.8 Summary

	R2 Customer Feature Learning
	R2.1 Business Problem
	R2.2 Solution Options
	R2.3 Learning from Event Sequences
	R2.3.1 Learning Product Embeddings
	R2.3.2 Mixing Behavioral and Content Features
	R2.3.3 Learning Customer Embeddings
	R2.3.4 Learning Embeddings from Logs

	R2.4 Learning from Graphs, Texts, and Images
	R2.5 Semi-supervised Methods
	R2.6 Autoencoding Methods
	R2.7 Prototype
	R2.8 Case Study
	R2.9 Summary

	R3 Dynamic Personalization
	R3.1 Business Problem
	R3.2 Solution Options
	R3.3 Context-Free Recommendations
	R3.4 Contextual Recommendations
	R3.4.1 UCB with Warm Start
	R3.4.2 LinUCB

	R3.5 Evaluation and Bootstrapping
	R3.6 Prototype
	R3.7 Summary

	R4 Next Best Action
	R4.1 Business Problem
	R4.1.1 Objectives and Reward Design
	R4.1.2 Action Design
	R4.1.3 Modeling and Experimentation

	R4.2 Solution Options
	R4.3 Advanced Score Design
	R4.4 Conditional Propensities
	R4.5 Reinforcement Learning
	R4.6 Prototype
	R4.7 Case Study
	R4.7.1 Business Problem
	R4.7.2 Solution Architecture
	R4.7.3 Algorithms
	R4.7.4 Design of Actions, States, and Rewards

	R4.8 Summary

	Content Intelligence
	R5 Visual Search
	R5.1 Business Problem
	R5.2 Solution Options
	R5.3 Search by Image Style
	R5.3.1 Style Embeddings
	R5.3.2 Prototype

	R5.4 Search in a Custom Semantic Space
	R5.4.1 Custom Images Embeddings and Attributes
	R5.4.2 Prototype

	R5.5 Unsupervised Embedding Learning
	R5.6 Object Localization and Segmentation
	R5.6.1 Semantic Segmentation
	R5.6.1.1 Evaluation Metrics
	R5.6.1.2 Network Design

	R5.6.2 Prototype

	R5.7 Summary

	R6 Product Recommendations
	R6.1 Business Problem
	R6.1.1 High-level Environment Overview
	R6.1.2 Environment Types
	R6.1.3 Evaluation and Optimization Metrics
	R6.1.3.1 Offline Evaluation: Basic Metrics
	R6.1.3.2 Offline Evaluation: Advanced Techniques
	R6.1.3.3 Online Evaluation

	R6.2 Solution Options
	R6.2.1 System Architecture
	R6.2.2 Model Architecture
	R6.2.2.1 Continuous Feedback
	R6.2.2.2 Unary Feedback

	R6.3 Feedback Prediction Models
	R6.3.1 Basic Factorization
	R6.3.2 Neural Collaborative Filtering
	R6.3.3 Case Study

	R6.4 Interaction Prediction Models
	R6.5 Sequence Models
	R6.5.1 Behavior Sequence Transformer
	R6.5.2 Case Study

	R6.6 Graph Models
	R6.6.1 Case Study: Recommendations Using Node2Vec
	R6.6.2 Recommendations Using GNNs

	R6.7 Extensions and Variations
	R6.8 Summary

	R7 Knowledge Management
	R7.1 Business Problem
	R7.2 Solution Options
	R7.3 Data Preprocessing
	R7.3.1 Attribute Discovery
	R7.3.2 Attribute Extraction
	R7.3.3 Attribute Harmonization

	R7.4 Querying Structured Data
	R7.5 Querying Unstructured Data
	R7.5.1 Querying Using a Single Prompt
	R7.5.2 Querying Using Map-Reduce
	R7.5.3 Retrieval-Augmented Generation
	R7.5.4 Conversational Retrieval
	R7.5.5 Agents

	R7.6 Security and Data Privacy
	R7.7 Quality Evaluation
	R7.7.1 Data Preprocessing
	R7.7.2 Structured Data Querying
	R7.7.3 Unstructured Data Querying

	R7.8 Summary

	R8 Synthetic Media
	R8.1 Business Problem
	R8.2 Solution Options
	R8.3 Language-Image Models
	R8.3.1 CLIP Model
	R8.3.2 Prototype

	R8.4 Text-to-Image Generative Models
	R8.4.1 Denoising Diffusion Models for Images
	R8.4.1.1 U-Net Backbone
	R8.4.1.2 Cascaded Diffusion Models

	R8.4.2 Latent Diffusion Models
	R8.4.2.1 Image Encoding and Decoding
	R8.4.2.2 Conditioning Mechanism
	R8.4.2.3 Training
	R8.4.2.4 Structure of the Latent Space

	R8.5 Advanced Control Mechanisms
	R8.6 Summary

	Revenue and Inventory Management
	R9 Demand Forecasting
	R9.1 Business Problem
	R9.1.1 Environment
	R9.1.2 Demand Patterns
	R9.1.3 Tasks
	R9.1.4 Applications
	R9.1.5 Evaluation Metrics

	R9.2 Solution Options
	R9.3 State Space Models
	R9.3.1 Simple Exponential Smoothing
	R9.3.1.1 Weighted Average Form
	R9.3.1.2 Component Form
	R9.3.1.3 Model Fitting

	R9.3.2 Double Exponential Smoothing
	R9.3.3 Triple Exponential Smoothing
	R9.3.4 Decomposition
	R9.3.5 Probabilistic Forecast

	R9.4 Time Series Regression
	R9.4.1 Probabilistic Forecast
	R9.4.2 Model Scope
	R9.4.3 Multiple Forecasting Horizons
	R9.4.4 Calendar-based Features
	R9.4.5 Lag Features
	R9.4.6 Product Features
	R9.4.7 Pricing Features
	R9.4.8 Case Study

	R9.5 Sequence Models
	R9.5.1 DeepAR Model
	R9.5.1.1 Encoder and Training
	R9.5.1.2 Decoder and Forecasting
	R9.5.1.3 Feature Engineering and Scaling

	R9.5.2 Case Study

	R9.6 Composable Models
	R9.6.1 NeuralProphet Model
	R9.6.1.1 Trend
	R9.6.1.2 Seasonality
	R9.6.1.3 Autoregression
	R9.6.1.4 Covariates

	R9.6.2 Case Study

	R9.7 Hierarchical Models
	R9.7.1 Hierarchical Time Series
	R9.7.2 Hierarchical Forecasting Using Reconciliation
	R9.7.3 Hierarchical Forecasting Using DeepVAR

	R9.8 Imputation Techniques for Demand Analytics
	R9.8.1 Demand Unconstraining
	R9.8.2 Product Similarity Analysis

	R9.9 Extensions and Variations
	R9.9.1 Causal Effects
	R9.9.2 Dealing with Disruptions

	R9.10 Summary

	R10 Price and Promotion Optimization
	R10.1 Business Problem
	R10.1.1 Price Management Process
	R10.1.2 Revenue Model
	R10.1.3 Strategic Analysis
	R10.1.3.1 Price Strategy Differentiation
	R10.1.3.2 Competitive Pricing Analysis

	R10.1.4 Planning and Evaluation
	R10.1.4.1 Planning Process
	R10.1.4.2 Planning Process Variations
	R10.1.4.3 Variables
	R10.1.4.4 Objectives
	R10.1.4.5 Constraints
	R10.1.4.6 Cross Effects
	R10.1.4.7 Designing the Decision Support Tools

	R10.1.5 Execution
	R10.1.6 Measurement
	R10.1.6.1 Uplift Metrics
	R10.1.6.2 Demand Decomposition

	R10.2 Solution Options
	R10.3 Price Strategy Differentiation
	R10.3.1 Price Strategy Differentiation by Product
	R10.3.2 Price Strategy Differentiation by Client

	R10.4 Market Response Modeling
	R10.4.1 Linear Model
	R10.4.2 Constant-Elasticity Model
	R10.4.3 Modeling the Cross-Effects
	R10.4.4 Time-Dependent Response Models

	R10.5 Optimization Using Mathematical Programming
	R10.5.1 Multiple Products
	R10.5.2 Multiple Time Intervals
	R10.5.3 Optimization Under Uncertainty
	R10.5.3.1 Modeling the Uncertainty
	R10.5.3.2 Uncertainty Propagation
	R10.5.3.3 Optimization Problems

	R10.6 Optimization Using Reinforcement Learning
	R10.6.1 Motivation
	R10.6.2 Prototype

	R10.7 Extensions and Variations
	R10.7.1 Retail
	R10.7.2 Consumer Services
	R10.7.3 Consumer Goods
	R10.7.4 Industrial Goods and Services

	R10.8 Summary

	R11 Dynamic Pricing
	R11.1 Business Problem
	R11.2 Solution Options
	R11.3 Limited Price Experimentation
	R11.3.1 Solution Design
	R11.3.2 Prototype

	R11.4 Continuous Experimentation
	R11.4.1 Solution Design
	R11.4.2 Prototype

	R11.5 Variations and Extensions
	R11.5.1 Bayesian Demand Models
	R11.5.1.1 Poisson-Gamma Model
	R11.5.1.2 Constant-Elasticity Model
	R11.5.1.3 Cross-Product Dependencies

	R11.5.2 Multiple Products and Inventory Constraints

	R11.6 Summary

	R12 Inventory Optimization
	R12.1 Business Problem
	R12.1.1 Inventory in the Context of Production Processes
	R12.1.2 Inventory Optimization Strategies
	R12.1.3 Inventory Management Process
	R12.1.4 Environments
	R12.1.4.1 Single-Echelon Environment
	R12.1.4.2 Multi-Echelon Environment

	R12.1.5 Performance Metrics

	R12.2 Solution Options
	R12.3 Aggregate Planning
	R12.4 Single-Echelon Control Policies
	R12.4.1 Inventory Policies
	R12.4.2 Environment Simulator
	R12.4.3 Scenario 1: Constant Demand, Zero Lead Time
	R12.4.4 Scenario 2: Constant Demand and Lead Time
	R12.4.5 Scenario 3: Stochastic Demand, Constant Lead Time
	R12.4.6 Scenario 4: Stochastic Demand and Lead Time
	R12.4.7 Lost Sales and Demand Unconstraining

	R12.5 Multi-Echelon Control Policies
	R12.5.1 Stochastic Service Models
	R12.5.1.1 Serial Network
	R12.5.1.2 Periodic Review Policy for Serial Network
	R12.5.1.3 Policy Optimization for Serial Network
	R12.5.1.4 Extensions and Limitations

	R12.5.2 Guaranteed-Service Models
	R12.5.2.1 Single-Node Model
	R12.5.2.2 Policy Optimization for Tree Topology

	R12.5.3 Control Using Reinforcement Learning
	R12.5.3.1 Environment Specification
	R12.5.3.2 Establishing the Baselines
	R12.5.3.3 Learning the Control Policy Using DDPG

	R12.6 Extensions and Variations
	R12.6.1 Seasonal and Perishable Items
	R12.6.2 Multiple Sales Channels
	R12.6.3 Multiple Items: Policy Differentiation
	R12.6.4 Multiple Items: Coordinated Replenishment

	R12.7 Summary

	Production Operations and IoT
	R13 Anomaly Detection
	R13.1 Business Problem
	R13.1.1 Anomaly Monitoring, Scoring, and Detection
	R13.1.2 Predictive Maintenance

	R13.2 Solution Options
	R13.3 System Models
	R13.4 Monitoring
	R13.5 Anomaly Scoring
	R13.5.1 Basic Models of Normality
	R13.5.2 State Prediction Models
	R13.5.3 State Manifold Models
	R13.5.4 Metric Preprocessing
	R13.5.4.1 Frequency-domain Representations
	R13.5.4.2 Representations for Multivariate Time Series

	R13.6 Anomaly Detection and Classification
	R13.6.1 Thresholding
	R13.6.2 Reconstruction Probability
	R13.6.3 Supervised Detection and Classification

	R13.7 Remaining Useful Life Prediction
	R13.7.1 Solution Approach
	R13.7.2 Prototype

	R13.8 Summary

	R14 Visual Quality Control
	R14.1 Business Problem
	R14.1.1 Environment
	R14.1.2 Data
	R14.1.3 Objectives

	R14.2 Solution Options
	R14.3 Supervised Defect Classification Models
	R14.4 Anomaly Detection Models
	R14.4.1 Model Architecture
	R14.4.2 Structural Similarity
	R14.4.3 Anomaly Detection with Transfer Learning

	R14.5 Prototype
	R14.6 Extensions and Variations
	R14.7 Summary

	A Loss Functions
	A.1 Loss Functions for Regression
	A.1.1 Mean Squared Error
	A.1.2 Root Mean Squared Error
	A.1.3 Mean Absolute Error
	A.1.4 Mean Absolute Percentage Error
	A.1.5 Huber Loss
	A.1.6 Pinball Loss
	A.1.7 Poisson Loss

	A.2 Loss Functions for Classification
	A.2.1 Binary Cross-Entropy
	A.2.2 Categorical Cross-Entropy
	A.2.3 Kullback-Leibler Divergence

	A.3 Loss Functions for Representation Learning
	A.3.1 Contrastive Loss
	A.3.2 Triplet Loss
	A.3.3 Multi-class N-pair Loss
	A.3.4 InfoNCE Loss
	A.3.5 ArcFace Loss

	B Evaluation Metrics
	B.1 Metrics for Regression
	B.1.1 Weighted Average Percentage Error
	B.1.2 Weighted Quantile Loss
	B.1.3 Sharpness

	B.2 Metrics for Classification
	B.2.1 Confusion Matrix and Related Metrics
	B.2.2 ROC Curve and AUC
	B.2.3 Precision-Recall Curve
	B.2.4 F1 Score

	B.3 Metrics for Retrieval
	B.4 Metrics for Ranking
	B.4.1 Hit Ratio
	B.4.2 Mean Average Precision
	B.4.3 Discounted Cumulative Gain

	B.5 Metrics for Natural Language Generation
	B.5.1 Exact Match Precision and Recall
	B.5.2 BLEU
	B.5.3 ROUGE
	B.5.4 BERTScore
	B.5.5 G-Eval

	Index
	Bibliography

