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Abstract
We present EDRAX, an architecture for cryptocurrencies with
stateless transaction validation. In EDRAX, miners and validat-
ing nodes process transactions and blocks simply by accessing
a short commitment of the current state found in the most re-
cent block. Therefore there is no need to store off-chain and
on-disk, order-of-gigabytes large validation state. We present
two instantiations of EDRAX, one in the UTXO model and one
in the accounts model. Our UTXO instantiation uses sparse
Merkle trees, which are very fast and require no trusted setup.
Our accounts instantiation uses a distributed vector commit-
ment, a type of vector commitment that has state-independent
updates, meaning it can be synchronized by accessing only
update data (e.g., send 5 ETH from Alice to Bob). Towards
this goal, we build a new succinct distributed vector commit-
ment based on multiplexer polynomials and zk-SNARKs, that
scales up to one billion accounts. We perform an extensive ex-
perimental evaluation comparing to other (recently) proposed
approaches for stateless transaction validation, showing that
sparse Merkle trees and our new distributed vector commit-
ment offer excellent tradeoffs in this application domain.

1 Introduction

Decentralized cryptocurrencies and smart contracts such as
Bitcoin [32] and Ethereum [4] promise to remove trusted
online parties (e.g., banks and escrows) in sake of faster and
more secure financial transactions. Their underlying technol-
ogy, the blockchain, is an ever-growing hashchain built on
blocks of incoming transactions that is agreed upon by a dy-
namic set of nodes participating in the peer-to-peer cryptocur-
rency network. This ever-growing nature of the blockchain,
however, can limit the cryptocurrency scalability, not only
in terms of storage required to store all events since gene-
sis, but also in terms of increasing overheads for transaction
validation, blockchain verification and initial synchronization.

Most blockchain-based cryptocurrencies known to date
consist of two kinds of parties, clients that own coins (e.g.,

a secret key to a Bitcoin address) and nodes1 that validate
transactions created by the clients. To decide if an incoming
transaction is valid so that it can be included in the next block
or propagated to a peer, nodes store all the history of transac-
tions so far—namely the whole blockchain. For example, if a
new transaction appears requiring 5 bitcoins to be sent from
address A to address B, a node must query the blockchain to
check whether A has at least 5 bitcoins in his account. Only
if this is the case, this transaction is considered valid and is a
candidate for appearing on the blockchain.

The blockchain data structure, however, is large (as of May
2020, Bitcoin blockchain is around 280 GB and Ethereum
blockchain has exceeded 130 GB) and is growing contin-
uously. Therefore naively querying it will simply take too
long. For that reason, most cryptocurrency nodes are typically
stateful, maintaining an appropriate index called validation
state that is smaller than the blockchain and which is enough
for deciding transaction validity. In some cryptocurencies
(e.g., Bitcoin, ZCash, Komodo, Monero, Ergo) the validation
state is a set of immutable coins called UTXO (unspent trans-
action outputs), in Bitcoin jargon. In this UTXO model, a
transaction is valid if it spends coins which belong in UTXO.
Other cryptocurrencies (e.g., Nxt, Ethereum, Bitshares, NEM,
Tezos) organize the validation state as a set of mutable (and
potentially long-living) accounts. In this account model, a
transaction is valid if it is trying to spend no more tokens
than the available balance. Advantages and disadvantages of
both approaches are the focus of an ongoing debate in the
cryptocurrency community [41].

Challenges due to stateful validation. Locally maintain-
ing the validation state, however, is quite cumbersome. In
particular, the validation state is in the order of GBs (cur-
rently the UTXO set in Bitcoin is around 3.7 GB [27] and
the authenticated Patricia trie in Ethereum is around 14 GB)
and could grow substantially in the coming years. For exam-
ple, approximately 86,000 Ethereum new accounts/addresses

1Nodes are distinguished into miners proposing new blocks and validating
nodes that validate and propagate transactions/blocks in the network.
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are currently generated every day [24] and at this rate the
Ethereum validation state is expected to double in one year
from now. For a new node to enter the network, the vali-
dation state needs to be either downloaded and verified or
computed from scratch, making such synchronization an ex-
tremely slow process [25] (looking ahead, our approach en-
ables incoming miners to validate transactions instantly, by
just accessing the most recent block). Also, being in the order
of GBs, the validation state is stored on disk (e.g., the geth
Ethereum implementation stores the authenticated Patricia
Trie using Google’s levelDB [26]), leading to slow transac-
tion validation due to expensive I/Os [37]. This has facilitated
various DoS attacks like the one that affected Ethereum in
2016 [40], where adversarially-crafted transactions required a
large number of disk accesses causing block validation times
to reach 60 seconds! Finally, having to store such large state
to verify transactions can lead to disadvantaged miners that
cannot dedicate large storage resources [9]. Other practical
issues/system-level components (e.g., storage rent, sharding)
that can benefit via erasure of the validation state have been
extensively analyzed [25].

1.1 EDRAX architecture
We address the above by designing and implementing EDRAX,
a cryptocurrency protocol where all nodes can check the valid-
ity of transactions without having to store any local validation
state, i.e., validation state can be maintained, in the form of
a short cryptographic commitment, as part of the cryptocur-
rency blocks on-chain. EDRAX comes in two versions, one
supporting the UTXO model and one for the account model.
EDRAX’s architecture can be seen in Figure 1.
Block commitment, local proofs, transactions. In EDRAX,
each block b includes a constant-size block commitment of the
current validation state (the one that includes all transactions
up to block b). Clients, along with their coins, store short
local proofs that their coins can be spent with respect to the
aforementioned block commitment. A local proof is included,
with the traditional digital signature, in an EDRAX transaction,
enabling miners and validating nodes to verify transactions
by accessing the latest commitment.
Local proofs & commitment synchronization. In EDRAX,
Alice’s local proof for a coin with respect to commitment comt
at time t will be outdated at time t + 1, after Bob’s transac-
tions are incorporated in the blockchain and comt changes to
comt+1. EDRAX enables Alice to synchronize her local proofs
efficiently by accessing, from the blockchain, the updates that
took place between t and t + 1. (The synchronization cost
can be large, in particular when Alice has been offline for
a long time. In Section 7 where we discuss an optimization
using “proof-serving nodes".) Similarly, EDRAX allows min-
ers to easily synchronize the block commitment from comt
to comt+1 to incorporate new transactions. The new commit-
ment will be part of the new block.

comt+1

Alice
local proofs

① send txi with proof 

… ⑤ sync local proofs

tx1 proof

…
txN proof

comt 

Bob
local proofs

Miner

③ update comt à comt+1

④ propose block 
with verified txs

…

…

② verify transactions using 

Figure 1: EDRAX architecture. Transactions include proofs.
Miners verify transactions using the block commitment comt
stored at the last block t, an updated version of which is in-
cluded in the next block t +1. Clients synchronize their local
proofs after the new block is produced.

Bootstrapping & storage impact. To validate incoming
transactions, a newly spawned node in EDRAX just requires
the latest block commitment. Thus bootstrapping in EDRAX
just requires downloading block headers since the gene-
sis, which is just in MBs (This is in contrast to Bitcoin or
Ethereum where gigabytes must be downloaded to start veri-
fying transactions.) We also remark that, unlike transaction
signatures, proofs are not fundamentally necessary to verify
the EDRAX blockchain—they serve as an efficiency optimiza-
tion: A miner can simply use the proof to quickly verify an
incoming transaction and later discard the proof from his local
storage. Thus the size of the blockchain does not necessarily
increase.

1.2 EDRAX for UTXO via sparse Merkle trees

As warm-up, we show in Section 3 how to provide stateless
transaction validation in the UTXO model by using Merkle
trees. Recall that in the UTXO model, miners and validating
nodes are maintaining a set S of unspent transaction outputs.
Whenever a new transaction tx appears that has input x and
output y, nodes must first check whether input x belongs in S,
and if so, update set S by removing x and inserting the new
output y. Our construction represents S with a sparse Merkle
tree of 2W leaves where 2W is the maximum number of out-
puts that can ever be generated, e.g., W = 40. (In Section 7
we suggest an optimization with less leaves using authenti-
cated red-black trees.) At leaf i we store the i-th transaction
output that was inserted into set S. To delete a leaf j, we just
set the value of this leaf to be null. We then naturally define
the commitment to be the root of the underlying Merkle tree
and local proofs as Merkle tree proofs. The above approach
allows insertions and deletions to be performed by miners
and validating nodes only if the whole Merkle tree is stored
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as commitment which is very large. In Section 3 we show
how to append a new output y to S by having nodes access
only the local proof of the most recent output ever inserted
in S (of size O(W )). Similarly, deletion of Alice’s spent input
x from S can be performed by having nodes process Alice’s
local proof used to prove membership of x in S.

1.3 EDRAX for accounts via distributed vector
commitments

In the account model, nodes maintain a vector of all account
balances which serves as validation state. Whenever Alice
wishes to send δ tokens to Bob, she posts a transaction includ-
ing this information. To verify this transaction, nodes must
access the balances vector to check whether Alice has at least
δ tokens in her account.

Why Merkle trees are insufficient. One could consider us-
ing Merkle trees to provide stateless validation in the account
model as well: Build a Merkle tree on top of the account
balances, define the block commitment as the Merkle digest
and have the owner of account i maintain a Merkle proof for
the balance at position i as her local proof. However, there
is a fundamental problem with such an approach. Assume
Alice’s balance is vA tokens and Bob’s balance is vB tokens.
Whenever Alice wants to send, say, 5 tokens to Bob, Alice
needs to include a Merkle tree proof proving her current bal-
ance is vA ≥ 5. Once the miner verifies the proof, the miner
can process the verified proof to efficiently update the new
digest so as to reflect Alice’s new account balance as vA−5.
Unfortunately, due to the nature of Merkle trees, Alice’s local
proof does not suffice to update Bob’s new balance to vB +5
as well unless Alice includes Bob’s local proof in her transac-
tion. However, this would require Alice to contact Bob and
ask for his proof every time she sends money to him which is
not how cryptocurrencies work! (This is even worse if Alice’s
transaction has many recipients.) Instead Alice should be able
to send money to Bob by accessing a fixed public address.

Our approach: Distributed vector commitments. Our ob-
servation is that any instantiation of, what we call, distributed
vector commitments [17], [34], [29], addresses the above prob-
lem. In a distributed vector commitment (DVC), Alice stores a
constant-size commitmentC of an n-sized vector a. The vector
a itself is not stored by Alice but is distributed among n parties,
each party holding a proof πi with respect to C, in addition to
element ai. When Alice wishes to update a vector element at
index u by δ units, she should be able to update C to C′ easily
by having access only to the information (u,δ). That is, unlike
Merkle trees, updates are state-independent. Similarly, when
party i learns about the update (u,δ), he should be able to
efficiently update his proof to π′i with respect to the new com-
mitment C′, again only by accessing (u,δ). Distributed vector
commitments are fundamentally different than plain vector
commitments such as Merkle trees and accumulator-based

vector commitments [14]—these have updates that are not
state-independent (for details see Section 1.5 and Section 1.6).

Distributed vector commitments are perfect fit for imple-
menting EDRAX in the account model by naturally viewing
account balances as a vector v and by storing C= com(v) as
the block commitment: A SPEND transaction is of the form
[πi,vi, i→ j,δ] meaning a client i owning vi tokens wants to
send δ≤ vi tokens to client j; Proof πi enable miners to check
that δ ≤ vi; Information i→ j,δ allows miners to update C
to reflect vi = vi−δ and v j = v j +δ so as to include it in the
next block—it also allows all other clients to synchronize their
proofs πk accordingly. The detailed protocol is in Section 5.

1.4 New DVC via multiplexers and SNARKs
A thorough literature review of distributed vector commit-
ments revealed several inefficiencies of existing approaches
(see Section 1.6). Therefore we design and implement a new
distributed vector commitment for EDRAX—see Section 4.
Our construction uses the `-variate “multiplexer" polynomial
f (x) to represent a vector of n = 2` entries. For example, the
multilinear extension for the vector V = [5 2 8 3] is the polyno-
mial f (x1,x2)= 5 ·(1−x2)(1−x1)+2 ·(1−x2)x1+8 ·x2(1−
x1)+ 3 · x2x1. Which implies that, f (0,0) = V [0], f (0,1) =
V [1], f (1,0) =V [2], and f (1,1) =V [3]. The commitment is
then computed as g f (s), where g is a generator of an EC group
and s is a random point that is kept secret.

A proof for a vector element in the above construction
has size ` and takes O(`) time to verify. We reduce these
costs to constant (which translate in a significant reduction in
block sizes and miners and validating nodes computation) by
using a zk-SNARK on the verification algorithm. While this
sounds easy from a theory perspective, it is quite challenging
in practice since the verification computation that must be
“snarked" involves bilinear pairing operations.

Our construction finally features an O(`)-time algorithm2

for synchronizing proof πi for a point i ∈ {0,1}` given up-
date ( j,δ) where j is another point in {0,1}`—see Algorithm
DELTAPOL in Section 4.

1.5 Comparison with Boneh et al. [14]
The most closely-related work to EDRAX is the recent work
by Boneh et al. [14] which built RSA-based accumulators for
stateless transaction validation in the UTXO model. Unlike
our sparse Merkle-tree approach, their construction supports
proof batching, which can drastically decrease the block size
(For all transactions in the block, one constant-size proof is
required, while Merkle trees require one logarithmic-sized
proof per transaction.) Their construction can also be instanti-
ated with class groups, avoiding trusted setup, as our sparse
Merkle trees do. RSA operations and class groups are how-
ever costly compared to SHA-2 hashing and the practical

2Also, averaging over all j ∈ {0,1}` the update complexity for i is O(1).
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overhead can be large. In particular, RSA accumulators add
an overhead close to 17× when compared to sparse Merkle
trees. Also, when one focuses on no-trusted setup, the best
approach for UTXO settings, then Merkle trees is a clear win-
ner by a far bigger gap, since using class groups adds large
overhead (In this regime, a Bitcoin block validation has an
overhead of approximately 18× and miners have an over-
head of 13600× compared to sparse Merkle trees.) Boneh
et al. [14] also introduce a new vector commitment based
on their RSA accumulator construction and propose to apply
it for stateless transaction validation in the account model.
However, their vector commitment is not a distributed vector
commitment: To update C to C′, Alice requires, in addition to
(u,δ), the proof πu (this is also indicated in their definition as
“advice" τ). Therefore, their vector commitment is not suitable
for stateless validation for accounts as we explained before. A
detailed evaluation and comparison is presented in Section 6.

1.6 Comparison to other DVCs

Succinctly representing vectors using multilinear extensions
was introduced by Zhang et al. [42,43] for a different applica-
tion, where proofs are larger and no efficient proof synchro-
nization algorithms are presented.

Distributed vector commitments that can be used to imple-
ment EDRAX were also introduced by Catalano and Fiore [17],
one based on elliptic curve groups and one based on the RSA
cryptosystem. These approaches do not seem to scale. In
particular, the EC-based construction [17] has public param-
eters of quadratic size. Similarly while the RSA-based con-
struction [17] has better verification complexities than our
proposed commitment, it requires linear time for proof up-
date (and so does a recent RSA-based work by Campanelli et
al. [16]), leading to very slow proof synchronization (around
145 hours for 230 accounts). The DVC scheme by Krupp et
al. [28] is using [17] as a black-box (additionally offering a
“Chameleon" property), thus inheriting its inefficiency. The re-
cent work of Gorbunov et al. [22] introduces POINTPROOFS,
a DVC with update keys of linear size. Finally, subsequent
to this work, Tomescu et al. [39] present a new DVC that
supports aggregation of proofs and has short update keys.

All the above distributed vector commitments have trusted
setup. To the best of our knowledge there are two distributed
vector commitments with no trusted setup. The lattice-based
Merkle tree by Papamanthou et al. [34] (polylogarithmic
asymptotic costs) and the recent generalization of an RSA-
based DVC [17] to hidden order groups by Lai and Mala-
volta [29] (linear update proof costs). Both do not scale in
practice due to costs associated with lattices and class groups
respectively. We present a detailed comparison of the asymp-
totic costs of our construction with other distributed vector
commitments in Table 1, as well as detailed experimental
comparison of our distributed vector commitment with the
RSA-based one [17] in Section 6.

1.7 Implementation and evaluation
In Section 6 we implement both instantiations of EDRAX and
evaluate the performance. Our evaluation has three main find-
ings: First, for the UTXO setting, while sparse Merkle trees
increase the size of the block by a logarithmic factor, they sig-
nificantly (17×) outperform recently-proposed accumulator-
based approaches [14] in terms of computation (e.g., block
validation), especially when compared to their equivalent no-
trusted setup instantiations based on class groups (18×). Sec-
ond, for the accounts setting, while our vector commitment
verification is slower (6s more to verify a block) compared to
the only other practical distributed vector commitment [17],
it features a logarithmic-time algorithm (as opposed to linear)
for updating local coin proofs, which translates to several
orders of magnitude savings (5825×) from a cryptocurrency
client perspective.

2 Preliminaries

We now give background material on bilinear maps, multilin-
ear extensions, sparse Merkle trees and vector commitments.

Bilinear pairings. We denote by (p,G,GT ,e,g) ←
BilGen(1λ) generation of bilinear-map parameters, where G,
GT are groups of prime order p, with g a generator of G, and
where e :G×G→GT is an efficient map, i.e., for all P,Q∈G
and a,b∈Zp it is e(Pa,Qb) = e(P,Q)ab. To prove security we
will be using the q-Strong Bilinear Diffie-Hellman assump-
tion [13] (q-SBDH) on the groups G and GT that we formally
define in the Appendix—see Assumption 1.

Multilinear extension polynomial of vectors. Let F be a
field (e.g., Zp) and let n = 2`. Let i ∈ {0, . . . ,n− 1} and
let ik denote its bit at position k in binary. For a vector
a = [a0, . . . ,an−1] with elements in the field F, we define its
multilinear extension polynomial fa : F`→ F as a polynomial
of ` variables that servers as a multiplexer for the vector a,
i.e.,

fa(x1, . . . ,x`) =
n−1

∑
i=0

(
ai ·

`

∏
k=1

selectik(xk)

)
, (1)

where

selectik(xk) =

{
xk if ik = 1
1− xk if ik = 0

. (2)

Note that polynomial fa is the unique multilinear polynomial
such that for all i with binary representation i`, . . . , i1 it is
fa(i1, . . . , i`) = ai. For example, for a = [5 2 8 3] the polyno-
mial fa(x1,x2) equals

5 · (1− x2)(1− x1)+2 · (1− x2)x1 +8 · x2(1− x1)+3 · x2x1 .

To simplify, we sometimes represent point (x1, . . . ,x`) as x.
The following polynomial decomposition from [42] is useful.
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Lemma 2.1. For any multilinear polynomial f : F` → F
and for t ∈ F`, there exist polynomials qi such that f (x)−
f (t) = ∑

`
i=1(xi− ti)qi(x). Moreover, all qi can be computed

in O(2`) = O(| f |) time.

Preprocessing zk-SNARKs. Let L be an NP relation such
that x ∈ L if and only if there exists a witness w such that
L(x,w) = 1. A (zero-knowledge) Succinct Noninteractive
ARgument of Knowledge (zk-SNARK) [36] for L allows a
verifier to efficiently verify that x∈L , without using w, but via
a small proof provided by an untrusted prover. A zk-SNARK
consists of three polynomial-time algorithms, (G ,P ,V ):

1. (PK,V K)← G(1λ,L): Key generation algorithm gener-
ates the proving and verifying key for the program L .

2. π← P (PK,x,w): The prover generates a succinct proof
π to prove that there exists w such that L(x,w) = 1.

3. {0,1}←V (V K,π,x): The verifier checks if the proof π

is valid for x using the verifying key V K.

Informally, zk-SNARKs have two properties: First, zero-
knowledge, meaning that a verifying proof π does not re-
veal anything beyond the validity of the statement; Second,
knowledge-soundness, meaning that if the verifier accepts a
proof for x, the prover “knows" a witness w for x and therefore
x ∈ L (moreover the witness w can be extracted by inspecting
the prover’s tape). For our application we will not be using
the zero-knowledge property. We give the formal definition
of knowledge-soundness in the Appendix—see Definition 3.
Sparse Merkle trees. Sparse Merkle trees are Merkle
trees [30] built over key-value pairs (ki,vi) whose keys ki
are drawn from a large domain [0,1, . . . ,2W −1]. In particu-
lar, data item (ki,vi) is stored at the ki-th leaf of the tree (the
tree has a total of 2W leaves). We define a natural labeling for
all nodes of the sparse Merkle tree: Root takes label ε, his left
child takes label 0, his right child takes label 1, his leftmost
grandchild takes label 00 and so on.

For W -bit leaf ki that stores the data element (ki,vi) we de-
fine the commitment of leaf ki as com(ki) = ki||vi. For leaves
` that do not store a key we set com(`) = null. For every
internal node u of the Merkle tree we define the commitment
of u as com(u) = H(com(v)||com(w)), if either com(v) or
com(w) is not null and com(u) = null otherwise. Here, v is
the left child of u and w is the right child of u and H is a
collision-resistant hash function such as SHA-2.

Single item verification and deletion. For data item (k,v)
let path(k) be the ordered set of nodes on the path from k
to the root ε and let sib(k) be the ordered set of siblings
of nodes on path(k). Recall that the proof π(k) for (k,v),
with respect to the commitment of the root com(ε) is the set
com(k)∪{com(v) : v ∈ sib(k)}. In particular, to verify the
proof, one can run a verification algorithm

d← verifyMerkle(k,v,π(k)) (3)

that recomputes the commitment of the root. If d = com(ε)
the verification is successful and one can be assured (ex-
cept with negligible probability) that (k,v) is the k-th leaf
of the sparse Merkle tree. After a successful verification,
the verification algorithm can also be used to update com(ε)
when (k,v) is deleted from the tree. In particular one can run
verify(k,null,π(k)) to output the new commitment d′. The
proof size is O(W ) and the verification complexity is O(W ).

Batch verification and deletion. The above approach
can be generalized for verifying a set of data items S =
{(k1,v1), . . . ,(kt ,vt)} at once. In particular let path(S) be
the union of path(ki) and let sib(S) be the union of sib(ki).
The proof π(S) for all (k1,v1), . . . ,(kt ,vt) in S, with re-
spect to the commitment of the root com(ε) is the set
∪icom(ki)∪{com(v) : v ∈ sib(S)}. In this case we can call
verifyMerkle(S,π(S)) to recompute the commitment of the
sparse Merkle tree and verify all elements in S, as well as
verifyMerkle({(k1,null), . . . ,(kt ,null)},π(S)) for the batch
deletion of all data elements in S.
Distributed vector commitments. We now give the defini-
tion of a distributed vector commitment.

Definition 1 (Distributed Vector Commitment). A distributed
vector commitment DVC consists of six PPT algorithms:

1. pp←Gen(1λ,n): Given security parameter λ and vector
length n, it outputs public parameters pp.

2. C← Compp(a0, . . . ,an−1): Given a = (a0, . . . ,an−1), it
outputs a commitment C.

3. πi ← Openpp(i,v,a): Given index i, value v and a, it
outputs proof πi.

4. {0,1} ← Verpp(C, i,v,π): Given commitment C, an in-
dex i, a value v and a proof π it either accepts or rejects.

5. C′← UpdateCompp(u,δ,C): Given update (u,δ)3 and
commitment C, it outputs the updated commitment C′.

6. π′i← UpdateProofpp(u,δ,πi): Given update (u,δ) and
a proof πi, it outputs the updated proof π′i.

The correctness definition for DVC is in the Appendix—
Definition 4. We now present the soundness definition.

Definition 2 (Soundness of distributed vector commitment).
Consider the following experiment that takes as input the
security parameter λ and outputs vector a, index i, value a
and a bit b.

• Let n be output by the adversary A;

• pp← Gen(1λ,n);

• Let a = [a0, . . . ,an−1] be output by A;

3Value δ can be either positive or negative indicating credit or debit for
account u.
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• C← Compp(a);

• for i = 1, . . . , t = poly(λ)

– A outputs (u,δ) and let a be the updated vector;

– C← UpdateCompp(u,δ,C);

• A outputs i,a,π and let b← Verpp(C, i,a,π).

• return (a, i,a,b);

A distributed vector commitment scheme is sound if for all
PPT adversaries A , the probability b = 1 and a 6= ai, where
ai is the value at i is negligible.

3 EDRAX in UTXO model

Recall the UTXO-based model follows the design of Bitcoin-
like cryptocurrencies, where validating a transaction tx de-
pends on whether its inputs belong to a set of unspent trans-
action outputs (or UTXO) that is maintained by the miners.
Once this condition is verified, the spent inputs of tx are re-
moved from UTXO and the new outputs of tx are added to
UTXO. We first describe a version of EDRAX in this model.

Representing UTXO as a sparse Merkle tree. We will rep-
resent the UTXO set as a sparse Merkle hash tree. A similar
approach has been used in Zcash [10]—unlike Zcash, how-
ever, here we remove a transaction output from the Merkle
tree after it is spent by marking is as null, see Figure 2. In
particular each element of the UTXO is of the form (i, [pk,v])
where i is the an increasing timestamp/counter indicating
when this output was added to the UTXO (and serves as the
“key" in the sparse Merkle tree) and [pk,v] contains the public
key pk and EDRAX units v that this output can be spent to
(and serves as the “value" in the sparse Merkle tree).

Block commitment. Every block b at time t (t refers to the
rank of the block in the blockchain) in UTXO EDRAX con-
tains the following information as block commitment.

1. The UTXO commitment comt which is the root com-
mitment of the sparse Merkle tree built on transaction
outputs that have been generated up to block b, block b
included (for outputs that have already been spent we
mark them as null);

2. The Merkle tree proof of the most recent entry in the
UTXO, i.e., the Merkle tree proof corresponding to the
last output of the last transaction in the last block b. We
call this proof most recent proof and we denote it as πt .

Client state. A EDRAX client stores the list L of his unspent
transaction outputs (i, [pki,vi]) (ones for which he knows re-
spective secret keys ski) and respective Merkle proofs π(i).

SPEND transaction. For simplifying exposition, suppose Al-
ice wants to create a transaction tx that spends a transaction
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Figure 2: Evolution of the sparse Merkle tree on the UTXO
set. In Tree A, the UTXO set contains 4 unspent outputs that
were added with timestamps 0, 4, 5 and 7. The outputs that
were added with timestamps 1, 2, 3 and 6 have already been
spent (and thus deleted/nullified). We highlight with green
color the nodes that constitute the most recent proof π(7). In
Tree B a new transaction tx with input 4 appears in the system
(thus 4 must be deleted from the tree), causing the most recent
proof π(7) to change one of its hashes to H(null||dig(5)),
indicated with dark green color. The output of tx is added in
Tree C at the next position 8, causing the update of the most
recent proof from π(7) to π(8). Note π(8) in Tree C can be
computed from π(7) in Tree B using Algorithm 3.

output (x, [pk,v]) in her local list L to a specific public key PK
(we can trivially generalize the SPEND transaction for multiple
inputs and outputs). Let sk be the corresponding secret key to
pk. Alice constructs and signs, using sk, the transaction:

[(x, [pk,v]),π(x),PK] .

To be valid, π(x) must refer to the last block, i.e., at time t.

New block creation. Suppose the last block that was com-
puted is block t and miners are competing for block t +1. For
that miners collect incoming SPEND transactions of the type

[(x, [pk,v]),π(x),PK],sig

and decide using the block commitment at block t whether to
include a transaction in block t +1 as follows:

1. (transaction signature verification) Check that signature
sig is valid under public key pk;

2. (verifying membership of transaction input in UTXO)
Run

verifyMerkle(x, [pk,v],π(x))

as in Relation 3 to output a hash d. If d equals comt
(part of the block commitment), then the miner is assured
(x, [pk,v]) exists in the UTXO set and thus can be spent.

The time required for verifying a transaction is O(W ) since
one Merkle tree proof must be verified per transaction. The
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transactions that satisfy the above checks are candidates for
the next block. The block has size O(m ·W ) where m is the
number of transactions in the block. Finally, in the new block
t +1, miners must also include the updated UTXO commit-
ment, i.e., comt+1 and the new most recent proof πt+1. We
describe this procedure next.

Creating the new block commitment. We first show how to
create the new block commitment comt , πt for one transac-
tion [(x, [pk,v]),π(x),PK] with one input and one output and
then we generalize to multiple transactions—see Figure 2. In
particular, to compute comt+1 and πt+1 given comt and πt the
miners perform the following steps:

1. (deleting transaction input from UTXO) Update
the UTXO commitment comt to d′ to not contain
spent input (x, [pk,v]) anymore by running d′ ←
verifyMerkle(x,null,π(x)) as we described in Section 2;

2. (updating most recent proof due to deletion) Let cnt be
the timestamp corresponding to the most recent proof
πt . For every node v ∈ sib(cnt)∩ path(x) replace every
commitment com(v) in the most recent proof πt with
the new commitments com(v) as computed by running
algorithm verifyMerkle(x,null,π(x)) above leading to a
new proof π′—see Tree B in Figure 2.

3. (adding transaction output to UTXO) The new transac-
tion output should now be stored at leaf cnt +1 as (cnt +
1), [PK,v]). Because of the addition of the new leaf, the
most recent proof π′ = π(cnt) computed above must be
updated to πt = π(cnt +1). Intuitively this can be done
since πt is “to the right" of π′—see UPDATEMOSTRE-
CENTPROOF (Algorithm 3 in the Appendix) for the de-
tailed pseudocode and Tree C in Figure 3. After πt+1 is
computed, miners can finally update the UTXO commit-
ment by running verifyMerkle(cnt+1, [PK,v],πt) which
will output the final commitment comt+1.

Processing multiple inputs and outputs. To process a block
with more than one transactions with more than one inputs
and outputs (as it typically happens in practice), miners must
perform batch verification and batch deletion to verify and
delete the inputs from the UTXO, as described in Section 2.
This not just an optimization, but it is needed for correctness
(otherwise proofs will be out-of-sync). Finally, to add the new
outputs to the UTXO, the miners run Step (3) above as many
times as the number of new outputs generated in the block.
Updating the block commitment with the above steps takes
O(m ·W ) time where m is the total number of transaction
inputs and outputs in the block.

Proof computation & synchronization. For an unspent out-
put (x, [pk,v]) in the UTXO, let π(x) be the proof stored lo-
cally by the client with respect to time t. To synchronize π(x)
for time t +1, the client must process all transactions in the

block at time t +1 by performing the same steps as the min-
ers above. But instead of outputting commitment comt+1 at
time t + 1 and most recent proof πt+1 at time t + 1, he just
replaces the affected commitments in π(x), due batch deletion
and addition of the new outputs. In general, to synchronize
between t1 and t2, he repeats this process t2− t1 times.

4 DVC Construction

We now present our new distributed vector commitment
construction used in the implementation of account-based
EDRAX. We present all algorithms in detail, as defined in Def-
inition 1, then we show correctness as defined in Definition 4
in Appendix and soundness, as required by Definition 2.

4.1 Detailed construction
Our construction, among other things, will be using a zk-
SNARK as a black box, on an NP relation of logarithmic
size (therefore the prover will be quite efficient). We formally
describe this relation in the following.

The NP relation Lg. Let now (p,G,GT ,e,g) be the output
of BilGen(1λ) and let `= logn. Let now g = [g1, . . . ,g`] be `
fixed group elements of G. Consider now the following NP
relation Lg that contains elements (C, i,v) ∈ (G×Zp×Zp)
iff there exists group elements w1, . . . ,w` in G such that

e(C ·g−v,g) =
`

∏
k=1

e(gk ·g−ik ,wk)

i =
`

∑
k=1

ik2k−1

ik(1− ik) = 0 for k = 1, . . . , `

i.e., i1, . . . , i` is the binary representation of i. Note now that
the witness in the above relation is (w1, . . . ,wk, i1, . . . , ik). We
now describe the DVC algorithms in detail.

pp← Gen(1λ,n): Let (p,G,GT ,e,g) be the output of
BilGen(1λ). Let ` = logn and let S be the powerset of
{1,2, . . . , `}. Select s1, . . . ,s` randomly from F and set

prk=
{

g∏i∈S si : S ∈ S
}

and g = [gs1 , . . . ,gs` ] .

Also for all u = 0, . . . ,n− 1, we define the update key for
position u to contain the following ` group elements, i.e.,

upku =
{

g∏
t
k=1 selectuk (sk) : t ∈ [`]

}
=
{
upku,t : t ∈ [`]

}
.

where selectuk(sk) is by Equation 2.4 For example, for `= 3,
public parameters pp will contain

g,gs1 ,gs2 ,gs1s2 ,gs1s3 ,gs2s3 ,gs1s2s3 ,

4Note each update key upku can be constructed from prk in linear time,
so update keys need not be part of the public parameters. However, since
Gen has access to s1, . . . ,s`, each update key can be computed faster within
Gen. That is why we explicitly make them part of the public parameters.
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Algorithm 1 Algorithm for computing the polynomials that are required to update the proof at position i on update (u,δ).

1: procedure [∆`(X), . . . ,∆1(X)]← DELTAPOL(u,δ, i, `)
2: if ` > 0 then
3: if msb of u is 0 and msb of i is 1 then return

[
−δ ·∏`−1

k=1 selectuk(xk),0, . . . ,0
]
;

4: if msb of u is 1 and msb of i is 0 then return
[
+δ ·∏`−1

k=1 selectuk(xk),0, . . . ,0
]
;

5: if msb of u is 0 and msb of i is 0 then return
[
−δ ·∏`−1

k=1 selectuk(xk),DELTAPOL(u mod 2`,δ, i mod 2`, `−1)
]

;

6: if msb of u is 1 and msb of i is 1 then return
[
+δ ·∏`−1

k=1 selectuk(xk),DELTAPOL(u mod 2`,δ, i mod 2`, `−1)
]

;

while the update key upk0 will contain

{g1−s1 ,g(1−s1)(1−s2),g(1−s1)(1−s2)(1−s3)} .

Let now (PK,V K)← G(1λ,Lg), where G generates public
parameters of the zk-SNARK for Lg. All prk, upku (u =
0, . . . ,n− 1) and (PK,V K) comprise the parameters pp of
the distributed vector commitment.

C← Compp(a0, . . . ,an−1): Set C = g fa(s1,...,s`) , where fa
is the multilinear extension polynomial of the vector a =
[a0, . . . ,an−1] as defined in Equation 1.

πi← Openpp(i,v,a): Let i`, . . . , i1 be the binary representa-
tion of i. As v = fa(i1, . . . , i`), using polynomial decomposi-
tion, compute polynomials q1, . . . ,q` such that

fa(x)− v =
`

∑
k=1

(xk− ik)qk(x) .

Compute elements {gq1(s), . . . ,gq`(s)}. To compute polynomi-
als q1, . . . ,q`, we divide fa(x)− fa(i1, . . . , i`) by x`− i` and set
q` as the quotient polynomial of the division, which is a multi-
linear polynomial with variables x1, . . . ,x`−1. The remainder
is a multilinear polynomial with variables x1, . . . ,x`−1, which
we divide by x`−1− i`−1 to get q`−1. We repeat recursively un-
til we get q1. Let now C= g fa(s1,...,s`). Note that (C, i,v) ∈ Lg
with witness {w1 = gq1(s), . . . ,w` = gq`(s)}. The final proof is

πi← P (PK,(C, i,v),{w1, . . . ,w`}) .

We note here that {w1, . . . ,w`} would suffice as proof of v at
index i but consists of logn elements. zk-SNARKs allow us
to compress the proof to a constant number of elements.

{0,1}← Verpp(C, i,v,π): To verify that v is the opening at
position i of C, we verify the zk-SNARK proof π by invoking
{0,1}← V (V K,π,(C, i,v)).

C′← UpdateCompp(u,δ,C): Compute new commitment as

C′ = C ·
[
g∏

`
k=1 selectuk (sk)

]δ

= dig ·
[
upku,`

]δ
.

From the above note upku,` is sufficient to update the digest.

π′i← UpdateProofpp(u,δ,πi): Assume the witness w used to
generate πi is available as w1, . . . ,w` (in practice this can be
proof metadata used only for updating the proof, but not for
verification). For i = 1 to ` set

w′i = wi ·g∆i(s) ,

where ∆`(x), . . . ,∆1(x) are the polynomials computed by call-
ing DELTAPOL(u,δ, i, `) (see Algorithm 1). Note that it is
very easy to modify DELTAPOL to output the terms g∆i(s)

directly by allowing it to access the update key upku of
u (so instead for computing, for example, the polynomial
−δ ·∏`−1

k=1 selectuk(xk) it can just directly output [upku,`−1]
−δ).

To output the new proof, we can call

π
′
i← P (PK,(C′, i,v),{w′1, . . . ,w′`}) ,

where C′ is computed C′← UpdateCompp(u,δ,C).

4.2 Correctness and security analysis

To prove correctness of our scheme according to Definition 4,
we need to prove correctness of Algorithm DELTAPOL (Algo-
rithm 1). We give the proof in the Appendix—see Lemma 7.1.
Correctness of the rest of the scheme follows by inspection.

Concerning security, our distributed vector commitment
can be viewed as an application of the selectively-secure
verifiable polynomial delegation scheme in [33], for the mul-
tilinear polynomial of Relation 1. While selective security is
very weak in general, we show it is enough for our application.
This is because a vector commitment requires evaluating the
polynomial on a fixed number of points, i.e., on the hypercube
{0,1}` and not on arbitrary (exponentially-many) points in
Z`

p. We provide the detailed proof in the following.

Theorem 4.1. The distributed vector commitment scheme
presented above is sound (according to Definition 2) under
Assumption 1 and assuming knowledge-soundness of the un-
derlying zk-SNARK as defined in Definition 3.

Proof. We now prove the soundness of the distributed vector
commitment. First an `-SBDH instance

((p,G,GT ,e,g),gs, . . . ,gs`)
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Table 1: Comparison of our EDRAX DVC with existing DVCs that have short keys for updating proofs. n is the size of the vector.
Scheme Gen |π| Open UpdateComm UpdateProof Trusted Setup Aggregation

[17] (EC) O(n2) O(1) O(n) O(1) O(1) yes no
[17] and [16] (RSA) O(n) O(1) O(n logn) O(1) O(n) yes yes

[39] (EC) O(n logn) O(1) O(n) O(1) O(1) yes yes
[34] (lattices) O(1) O(logn) O(n) O(logn) O(logn) no no

[29] (class groups) O(1) O(1) O(n logn) O(1) O(n) no yes
EDRAX O(n) O(1) O(n) O(1) O(logn log logn) yes no

is given to adversary A1. Then A1 picks random b ∈ {0,1}`
(such that 2` is poly(λ)) and implicitly computes s1 = s and
si = ri · (s−b1)+bi where ri are random. Now, given

gs, . . . ,gs` ,

A1 can easily compute pp, which he all gives to A2. Moreover,
these keys are indistinguishable from Gen’s output since the
ri’s have been picked at random. We now show that if A2
is able to break soundness as defined in Definition 2 (by
providing a forgery (x,a,π) to A1) then A1 will be able to use
that forgery and break Assumption 1.

Indeed, given a vector a and the corresponding commitment
C, suppose A2 is able to output a forgery (x,a,π) such that it
holds 1←Verpp(C,x,a,π) and a 6= ax, where ax is the current
value at index x of a after a possible sequence of updates.
Let us assume that the index x that A2 chose to forge is the
index b that A1 picked previously to compute the secrets
si—namely x = b. Note that the probability of that event
is 1/2` = 1/poly(λ). Now, since 1←V (V K,π,(C,x,a)), by
the knowledge-soundness of the zk-SNARK (see Definition 3)
there exists an extractor that can retrieve w1, . . . ,w` such that

e(g fa(s1,...,s`)−a,g) =
`

∏
i=1

e(gsi−bi ,wi)

⇔ e(g fa(s1,...,s`)−ax+(ax−a),g) =
`

∏
i=1

e(gsi−bi ,wi)

⇔ e(g∑
`
i=1(si−bi)qi(s1,...,s`)+(ax−a),g) =

`

∏
i=1

e(gsi−bi ,wi)

⇔ e(g,g)ax−a =
`

∏
i=1

e
(

g,
wi

gqi(s1,...,s`)

)si−bi

= e
(

g,
w1

gq1(s1,...,s`)

)s−b1 `

∏
i=2

e
(

g,
wi

gqi(s1,...,s`)

)ri(s−b1)

⇔ e(g,g)
ax−a
s−b1 = e

(
g,

w1

gq1(s1,...,s`)

) `

∏
i=2

e
(

g,
wi

gqi(s1,...,s`)

)ri

.

Therefore A1 can compute e(g,g)1/(s−b1) with probability
1/poly(λ) which breaks Assumption 1.

4.3 Asymsptotics of vector commitment
Gen runs is time O(n), since some elements of prk share
parts of the exponent and some update keys across indices are
the same. E.g., indices that differ only in the msb will share
`−1 update keys. Producing the public parameters of the zk-
SNARK does not add to the asymptotic cost of Gen since the
NP relation used is of logarithmic size. Com runs in time O(n)
since one exponentiation per vector element is required. The
size of pp is O(n), again due to overlap of update keys. Now,
due to the use of zk-SNARKs, verification costs (verification
key, proof size and verification time) are all O(1). The running
time of Open is O(n), due to Lemma 2.1. UpdateCom runs
in O(1) time and UpdateProof runs in O(logn log logn) time
in the worst case (the extra log logn factor come from the
SNARK prover). We present a detailed comparison of the
asymptotics of our construction with other DVCs in Table 1.

4.4 Fixed update key for updating all proofs
Note that as in the EC distributed vector commitment con-
struction of Catalano and Fiore [17] (that has public param-
eters of quadratic size), our UpdateProof algorithm allows
for fixed update key for an index i, that can be used to update
all proofs π j, irrespective of the index j. This is contrast to
other constructions, such as the RSA-based construction of
Calalano and Fiore [17] and the recent one by Lai and Mala-
volta [29], where for each combination of i and j a different
update key is required. This would be cumbersome in our
application of stateless validation: When one would wish to
post a transaction, he would have to include the n update keys
for the sender and n update keys for the recipient, so that any
party j can update their proofs π j to reflect the decrease in
the sender’s balance and the increase in the recipient’s bal-
ance. Since this is not possible, to update the proof π j, party j
would have to compute his “custom" update key, which leads
to linear computation time for synchronizing the local proofs
(as opposed to our UpdateProof’s logarithmic).

5 EDRAX in account model

We now describe our version of EDRAX stateless cryptocur-
rency that uses balances (such as Nxt, Ethereum, Bitshares,
NEM, Tezos). Recall in such systems the miners maintain a
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database with balances and transaction validity is checked
against this database (instead of UTXO). To implement
EDRAX in the account-based model, we can in theory use
any distributed vector commitment scheme (as given in Def-
inition 1) as a black box. Our evaluation uses the scheme
described in Section 4, which, to the best of our knowledge,
is the most efficient both asymptotically and in practice.

Setup. Just like Zcash [10], EDRAX requires an one-time
setup phase. In particular given an upper bound n on the
number of accounts that EDRAX can support5 and the secu-
rity parameter λ, algorithm Gen(1λ,n) is executed outputting
the public parameters pp. Recall that the public parameters
contain prover key prk, the verification key vrk and update
keys upki—all these are hardcoded into the EDRAX reference
software client. As an optimization one can just hardcode a
Merkle tree digest of these parameters (since they can be quite
large) and retrieve them as required during the build—this
technique is used in Zcash, for example. Finally, to mitigate
the risk of trapdoor leakage during execution of Gen, we can
use a secure multiparty computation protocol as in [15].

Block commitment. For each block b at time t EDRAX min-
ers include, along with transaction data, two constant-size
values, that comprise the block commitment:

1. The account commitment comt which is a summary
(hash) of the account balances in the system up to
block b, block b included. It is computed using a DVC
scheme as in Definition 1. It is initialized by running
C← Compp(0, . . . ,0) which, in our implementation, is
g0 = 1, where 1 denotes the identity element of group
G. In general the commitment comt will be on a vector
a that stores mappings of public keys to balances. Our
implementation does that by storing mappings of the
type

i→ [h(PK)||balance]

where i is in {0,1, . . . ,n−1} and is assigned by miners
for a specific public key PK—this assignment is triggered
via a special INIT transaction serving as “registration"
for a new user and is described in the following.6 7

2. The account counter cntt that indicates how many
INIT transactions have occurred up to block b, block
b included—roughly speaking this indicates how many
accounts are in the system. It is initialized as 0.

5E.g., for Ethereum the number of accounts now is approximately 30
million; we will show experiments for 1 billion accounts.

6EDRAX cannot map public keys directly to balances as the vector com-
mitment supports only a polynomial number of indices and the domain of
public keys is exponential.

7EDRAX stores the mapping i→ [h(PK)||nonce||balance], where nonce
shows how many payments have been made out from PK, as in Ethereum.
This is necessary to distinguish between two separate payments from the
same public key and a replay attack of the same payment. For simplicity, we
do not include nonce in our exposition.

Client state. Apart from a public and a secret key required in
other cryptocurrencies, an EDRAX client is required to store
the local proof π for the value of his balance with respect to
the account commitment comt . Since this is a zk-SNARK
proof for the relation Lg, the client also stores the NP witness
w1, . . . ,w`. In our implementation, proof π is small, around
268 bytes. Also in our implementation each proof is initialized
by running the zk-SNARK prove algorithm on the witness
(1, . . . ,1) where 1 is the group identity element.

INIT transaction. Just like in Bitcoin and Ethereum, the first
time Alice ever wants to use EDRAX, she creates a pair of pri-
vate and public keys (ska, pka) (e.g., using elliptic curve cryp-
tography). Recall however that EDRAX represents accounts as
integers in {0,1, . . . ,n−1} (where, in our implementation n is
around 230) and therefore a mechanism to map Alice’s public
key pka to an integer i ∈ {0, . . . ,n−1} must exist. To achieve
that, EDRAX offers an INIT transaction for Alice to map her
public key pka to the next available index i. In particular Alice
constructs and signs, using ska, the transaction

[INIT, pka] .

Looking forward, after registering a mapping of an index i to
pk, this transaction will implicitly define Alice’s public key
PKa as [pka||i||upki,l ] where recall that upki,` is the update key
of the distributed vector commitment scheme. For example,
for `= 2 and i = 0, upk0,` = g(s1−1)(s2−1).

SPEND transaction. Let us assume that Alice has public key
PKa = [pka||i||upki,l ], corresponding secret key ska and cur-
rent balance equal to v′ EDRAX units. She wants to send v≤ v′

EDRAX units to Bob with public key PKb = [pkb|| j||upk j,l ].
Alice constructs and signs the following transaction:

[PKa,PKb,v,πi,v′] ,

meaning that public key PKa wishes to send v EDRAX units to
public key PKb and πi is her local proof proving that PKa has
enough funds v′≥ v (wrt the latest account commitment comt )
to support this transaction. Note the transaction overhead is
independent of the accounts number n.

New block creation. Again, assume the last block that was
computed is block t and miners compete for block t +1. Min-
ers then collect new INIT and SPEND transactions of the type

[INIT, pk],sig and [PKa,PKb,v,πi,v′],sig

respectively. For an INIT transaction to be candidate for inclu-
sion in block t +1, it is enough that its signature verifies. To
decide if a SPEND transaction [PKa,PKb,v,πi,v′],sig can be
included in the next block the miner performs the following:

1. Parse PKa as [pka||i||upki,l ] and check whether sig is a
valid signature under pka;

2. Check whether v≤ v′;
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3. Check whether 1←Verpp(comt , i,h(PKa)||v′,πi) where
comt is the account commitment of the block at time t.

The new block has size O(m) where m is the number of trans-
actions included in the block. Finally, in the new block t +1,
miners must also include the updated account commitment
comt+1 and the new account counter cntt+1. We describe how
miners compute these values next.

Creating the new block commitment. To update the block
commitment the miners initially set cnt ← cntt and com←
comt . Then they consider INIT transactions first and SPEND
transactions later. In particular for every verified INIT trans-
action [INIT, pk],sig sent by Alice to be included in block
t + 1 the miners set cnt = cnt + 1 and implicitly assign the
updated index cnt to pk8. Then they set

com← UpdateCompp(com,cnt,δ)

where δ = h(PK)||0 (we assume Alice begins with 0 balance)
and where PK= [pk||cnt||upkcnt,l ]. This operation essentially
registers Alice’s public key to a specific index cnt. Then for
every verified SPEND transaction [PKa,PKb,v,πi,v′],sig the
miners set

com← UpdateCompp(com, i,−v) ,

and then again

com← UpdateCompp(com, j,+v) .

Note from the public parameters pp only upki,` and upk j,`
are required to perform the above, already contained in the
transactions. The above operation updates the sender and
receiver balances. Finally the miners set cntt+1 ← cnt and
comt+1← com and output the new block commitment.

Proof synchronization. Let π be Alice’s local proof that cor-
responds to the state of the system up until block t. Now
assume some transactions are taking place and block t + 1
is created. Alice’s local proof π is no longer valid and Alice
must synchronize her proof to make sure it incorporates all
updates (u1,δ1),(u2,δ2), . . . ,(up,δp) that were included in
block t +1. To do that she executes Algorithm 2 by running
π← SYNCPROOF((u1,δ1), . . . ,(up,δp),π) and outputs a new
synchronized proof π. Note that since the SPEND transactions
only contains element upki,`, Alice can fetch the rest of the
update keys (e.g., upkui,1, . . . ,upkui,`−1) from an untrusted
server, verify them using the hash of the reference software,
and then update the local proof. Note also that Alice does not
have to synchronize her proof at every new block. She just has
to synchronize her proof whenever she wants to spend some
EDRAX units to someone else in which case she must process
all the blocks since her proof was last synchronized in the
same way as above. Note that the time to synchronize after p
updates is O(p logn), due to the efficiency of DELTAPOL.

8This defines Alice’s public key as [pk||cnt||upkcnt,l ].

6 EDRAX Evaluation

In this section, we present the evaluation of EDRAX in both
UTXO and accounts model. In subsection 6.1, we compare the
Sparse Merkle Tree (SMT) of EDRAX with RSA groups and
class groups used in [14]. And in subsection 6.2, we compare
the performance of our distributed vector commitment scheme
used in the accounts model with other DVCs.

Experimental setup. We implement the sparse Merkle tree
scheme in Scala using the Scrypto library [8]. And we imple-
ment our DVC in C++ using standard cryptographic and arith-
metic precision libraries. Recall that our distributed vector
commitment scheme comprises of multiplexer polynomials
and zk-SNARKs. We implement the multiplexer polynomial
using the GMP library [5] and the libff [2] for field arithmetic
and elliptic curve pairings. We implement the zk-SNARK
for the NP language Lg defined in Section 4, using the zk-
SNARK by Groth [23], implemented in libsnark [12].

We perform the experiments of our schemes on an Amazon
EC2 c4.4xlarge machine with 30GB of RAM and an Intel
Xeon E5-2666v3 CPU with 16 2.9GHz virtual cores. We
perform 10 runs and report their average for each data point
of running time, unless stated otherwise.

zk-SNARK for NP language Lg. A zk-SNARK consisting
of (G ,P ,V ) instantiated by an elliptic curve E defined over
a field Fq proves satisfiability of NP statements over Fr,
where Fr = #E(Fq). But recall that membership verification
Lg involves pairing computations over Fq and therefore our
SNARK logic should encode operations over field Fq, rather
than Fr. As noted in prior works [11], it is impossible to find
a curve where q = r. We adopt the MNT curves approach
from [11] and thus we instantiate the polynomial evaluation
scheme with a curve E1 over Fq1 and the SNARK scheme
with a curve E2 over Fq2 such that #E2(Fq2) = Fq1 . In particu-
lar, in our implementation, the polynomial evaluation scheme
produces witnesses that are elements over the MNT6 curve
and our zk-SNARK scheme is instantiated over MNT4 curve.

Arithmetic circuit for verifying membership in Lg. It can
been seen from Section 4 that verifying membership in Lg
consists of performing pairing operations (whose primary
components are the Miller algorithm and the final exponen-
tiation), exponentiating group elements to values i1, . . . , ik,
checking to see that i1, . . . , ik are bits and in particular that
they constitute the binary representation of value i. . The en-

Algorithm 2 Algorithm for synchronizing the proof so that
updates (u1,δ1), . . . ,(ut ,δt) are included.

1: procedure π← SYNCPROOF((u1,δ1), . . . ,(up,δp),π)
2: for i = 1, . . . , p do
3: π← UpdateProofpp(ui,δi,π);

4: return π;
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Table 2: Sparse merkle trees vs. groups of unknown order.
(Time taken for 1000 runs of the same operation)

primitive
trusted
setup

proof
(bytes)

verify
(ms)

update local
proof (ms)

RSA Yes 256 471 707
class groups No 768 6095 9142

SMT
(W = 40) No 371 39 15

Table 3: Mining and validation per block of 1000 transactions.

Accumulator
EDRAX

(ms)
RSA
(ms)

class groups
(ms)

Mining 264 21850 3590387
Validation 264 4646 4925

tire verification consists of 787K multiplication gates and the
peak memory usage is 2,214 MB even for `= 30.

6.1 Evaluation of sparse Merkle tree
A sparse Merkle tree (SMT) can be considered as a form
of cryptographic accumulator. In this subsection, we com-
pare our construction with other accumulators proposed by
the concurrent work of Boneh et al. [14] which is based on
groups of unknown order (RSA and class groups). We com-
pare the performance of bare-bone primitives that make up
the accumulators (micro-benchmarks) and the performance
of the accumulators in the blockchain setting with available
optimizations enabled (macro-benchmarks).

In all our experiments, we set the height of the SMT to W =
40, as this value is sufficient to support the total number of
transaction outputs ever generated in Bitcoin—right now this
number is about 765 million (computed using the BlockSci
tool [6]). We also instantiate the RSA accumulator and the
class group accumulator at accepted 2048-bit security level
across all experiments. Also in our experiments, we assume
a block size of 1000 transactions, each with single input and
single output coin.

Microbenchmarks. In Table 2, we micro-benchmark the per-
formance of SMT with other primitives. The accumulators
based on RSA and class groups are space efficient, as a mem-
bership proof is just one group element. Thus they add mini-
mal storage overhead when compared to sparse Merkle trees.
However, it is computationally cheaper to verify the mem-
bership of an element in SMT over other primitives, as the
overhead of hashing using a lightweight SHA-2 hash function
is lower than the cost exponentiating in RSA or class group.
Similarly it is cheaper to update the local membership proofs
in SMT than other primitives. Note that in our experiments,
we consider an update as either an addition of element to
the accumulated set (requires one exponentiation) or deletion
of an element from the set (requires two exponentiations).
Moreover, SMTs do not require trusted setup, unlike RSA-
based accumulators. Even though class groups do not require
a trusted setup, it is simply too expensive to perform group
operations. Due to the lack of a standard library to perform

Table 4: One-time setup in our DVC for various values of `.
The notation ∗ means estimation due to long running times.
Time taken can be reduced by a factor of 10× using Lim-Lee
exponentiation [7]. Alternative EC representations can reduce
the size of the keys [23].

`
KeyGen memory prk vrk & upk

usage size size
25 5,519s 20GB 5.3GB 11.8KB
26 11,122s 30GB 10.5GB 12.3KB
28 45,556s 30GB 41.4GB 13.2KB
29 96,965s 30GB 83.6GB 14.2KB
30 230,453s∗ 40GB 165GB 14.7KB

operations using class groups, we use the VDF implemen-
tation from Chia Network to estimate the overhead of class
group [3]. Thus the numbers reported in Table 2 is a conser-
vative evaluation (lower bound) of the overhead of classgroup
operations.

Macrobenchmarks. In Table 3, we macro-benchmark the
performance of EDRAX with the accumulator construction
proposed by Boneh et al. [14] in the blockchain setting with
optimizations such as batching and aggregation. We extend
the implementation of the rust accumulators library [1] to
measure the performance of RSA accumulators [14].

Note that the mining costs are substantially higher (com-
pared to validation) in groups of unknown order as every
miner must: (i) verify every transaction in the block first (re-
quires expensive group exponentiations); (ii) aggregate the
proofs using the batching techniques (requires multiplication
of large primes and computing Bezouts coefficients for every
TX); (ii) add new coins to the accumulated set; (iv) generate
membership proofs for element added to the set by factorizing
the aggregate membership proof.

6.2 Evaluation of our vector commitment
In this section, we evaluate the performance of our new dis-
tributed vector commitment scheme and justify its practical-
ity over other DVC schemes listed in Table 1. Due to the
impracticality of class group objects, we exclude [29] from
our comparison. Thus we limit the comparison only with
the lattice-based vector commitment from [38] and the RSA-
based vector commitment from Catalano et al. [17].

One-time setup. The costliest part of our vector commitment
scheme is the one-time setup to generate the prover, update,
and verification keys. Such an expensive setup is not present in
the lattice-based scheme (whose setup involves just a constant-
time sampling of two lattice-based hash functions) but is
required for the RSA-based DVC [17] whose linear-time setup
involves generating primes for each vector index. Moreover
using Lim-Lee [7] exponentiation techniques, setup time can
be reduce by a factor of 10×.

Results for our scheme are provided in Table 4. As shown
in the table, it takes 5,519s to generate the keys for a vector of
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Figure 3: Proof size and verification times.

32 million elements, which is close to the current number of
accounts in Ethereum [18]. Most of the time in key generation
is spent on computing exponentiations in the base group,
which can be easily parallelized.

Moreover, our implementation stores the prover key on
disk, so it can scale to a larger ` as long as the disk size is
larger than the proving key size. The overhead for disk I/O
is already included in the key generation time reported in
Table 4. We remark that EDRAX nodes do not require the
multilinear polynomial evaluation scheme’s prover key—just
the update key and verification key are sufficient to function
in the distributed setting. Both the verification key and the
update key for one element are less than 15KB for `≤ 30 and
grow logarithmically with the elements in the vector.

Proof size and verification time. Figure 3 shows the com-
parison of proof size and the verification time. Our scheme is
asymptotically better than the lattice scheme and comparable
to the RSA scheme. In practice, the proof size is less than
0.15KB for ` ≤ 32 in our scheme, while it is 62–78KB in
the lattice scheme and it is 0.256 KB in the RSA scheme.
This is because the the SNARK proof is three group elements
whereas the proof of the RSA scheme is one group element.

For verification time, our scheme outperforms lattice-based
schemes both in asymptotics and practice (7ms vs 210ms).
However, despite the comparable asymptotics with the RSA-
based scheme, in practice RSA-based schemes fare better than
our approach. This is because our verifier performs expensive
pairings to verify the proof, whereas the RSA based scheme
performs cheaper modular exponentiations to verify the proof.

Digest update and proof synchronization. Figure 4 shows
the time to update the digest and to synchronize a local proof.
Our scheme requires 35µs to update the digest and 89µs (amor-
tized) to synchronize the proof for one element. Recall that
our proof update algorithm is logarithmic in the vector size.
In the lattice based schemes, both updating the digest and the
proof takes around 790 ms for `= 25 and grows logarithmi-
cally with `. On the contrary, proof update in RSA-based VC
is very expensive: It features a linear-time algorithm, which
involves computing the product of primes associated with
each position of the vector and performing modular exponen-
tiations. In reality the RSA-based VC requires around 14.5
hours to update the proof of a single position in the vector of
size 230 (which is the number of accounts in eth now).

Main finding. To summarize, our DVC is the pragmatic
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Figure 4: Time for digest update and proof synchronization.
RSA scheme [17] is not shown: it takes 14.5 hr to synchronize.

choice, as it outperforms other DVCs both asymptotically
and practically in one of the most crucial operations in the
stateless blockchain setting, the proof update. Our DVC also
has comparable asymptotic proof size and verification time.

6.3 Security of EDRAX

The security of EDRAX is based on the security of the un-
derlying sparse Merkle tree (for UTXO) and the underlying
vector commitment (for accounts setting). In particular we
note that EDRAX satisfies the security definition presented
in Section 2 of [20] (which appeared in EUROCRYPT [21]):
The only difference between EDRAX and the protocol proved
secure in [20] is the way the validation predicate V (XC) (page
13) is implemented: Instead of maintaining a large state vari-
able for accounts/UTXO to implement V (XC), EDRAX saves
space by maintaining just a small digest of accounts/UTXO
and validates XC using client provided proofs. Clearly, for the
same XC, both implementations of V (XC) output the same bit
with overwhelming probability, due to DVC/SMT soundness.
Therefore, EDRAX’s real-world execution almost never devi-
ates from the protocol proved secure in [20] and as such it is
secure based on [20].

7 Conclusions and discussion

In this paper we presented EDRAX, an architecture (and two
different implementations) for stateless transaction validation
in cryptocurrencies. Our concrete implementations are first
steps —in future more practical authenticated structures or
vector commitments can be used as replacement, leading to
even better performance. Here we outline future research.

Authenticated balanced trees instead of sparse Merkle
trees. The fixed structure of sparse Merkle trees allows flexi-
ble updates even without the need for storing the entire tree
locally. However, they have proofs, O(W ), irrespective of the
current size of the UTXO. We believe one can implement
the EDRAX UTXO using an authenticated balanced tree that
maintains a proof size O(logn), where n is the current size
of the UTXO. Prior works have studied authenticated skip
lists and authenticated trees, but it is not clear how these data
structures can be updated with just the most recent proof
[31, 35]. UTREEXO [19], that appeared after the first version
of EDRAX, solves this problem by using a series of trees that
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have a number of leaves that are powers of two, depending
on the current size of UTXO.

Proof-serving nodes. Unlike existing cryptocurrencies,
EDRAX clients are required to synchronize their proof before
posting a new transaction. This changes the user experience
for clients and introduces a modest cost. To alleviate this cost,
we can extend the EDRAX architecture to contain untrusted
proof-serving nodes9 (e.g., an Amazon machine) that do not
participate in the blockchain consensus, which are responsi-
ble for storing and serving up-to-date proofs. Note that there is
no requirement that they serve correct proofs: If the provided
proof is correct (which can be checked by using blockchain
digest), then this proof can be readily used, otherwise the
client can always use the “default" setting and synchronize
his proof by using the algorithms presented before.

Supporting smart contracts in the stateless setting. In the
smart contract setting, the flow of money will depend of the
execution of some contract code on the current contract state.
Hence for Alice to post a contract-triggering transaction she
must provide a proof of correctness of the current contract
state for EDRAX nodes to execute on. Two challenges are:
(i) who is storing the contract state as any client can post
transactions to trigger a contract execution; (ii) how to avoid
including the contract state as part of the transaction (the
contract state might be too large). We leave this a future work.
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Appendix

7.1 Correctness of DELTAPOL

The proof of correctness of our new vector commitment
scheme lies upon proving the correctness of DELTAPOL used
to update the witness for an index i, when another update
(u,δ) takes place on an index u. To see why DELTAPOL cor-
rectly performs this task, note that before the update (u,δ),
witness wi consists of {gq1(s), . . . ,gq`(s)} where polynomi-
als qi(x) satisfy fa(x1, . . . ,x`)− ai = ∑

`
k=1(xk − ik) · qk(x).

Due to the update (u,δ), the digest fa(x1, . . . ,x`) increases by
δ ·∏`

k=1 selectuk(xk) and therefore polynomials qi(x) should
be adjusted to qi(x)+∆i(x) to accommodate this change, as
described in the following lemma:

Lemma 7.1. Algorithm DELTAPOL(u,δ, i, `) correctly com-
putes polynomials ∆`(x), . . . ,∆1(x) such that

δ ·
`

∏
k=1

selectuk(xk) =
`

∑
k=1

(xk− ik) ·∆k(x) , if u 6= i (4)

or

δ ·
`

∏
k=1

selectuk(xk)−δ =
`

∑
k=1

(xk− ik) ·∆k(x) , if u = i , (5)

where ik is the k-th bit of i.
Proof. By induction on `. For the base case, note that Algo-
rithm DELTAPOL(u,δ, i,1) outputs ∆1(x) = −δ in case u is
0 and i is 1 or both u and i are 0 and ∆1(x) = δ in case u is 1
and i is 0 or both u and i are 1. Indeed ∆1(x) does satisfy the
relations above as we prove in the following by considering
all four possible cases.

1. u = 0 and i = 1. In this case Relation 4 is indeed satisfied
as δ · (1− x1) = (x1−1) · (−δ).

2. u = 0 and i = 0. In this case Relation 5 is indeed satisfied
as δ · (1− x1)−δ = x1 · (−δ).

3. u = 1 and i = 0. In this case Relation 4 is indeed satisfied
as δ · x1 = (x1−0) ·δ.

4. u = 1 and i = 1. In this case Relation 5 is indeed satisfied
as δ · x1−δ = (x1−1) ·δ.

For the inductive hypothesis, assume DELTAPOL(u,δ, i, `−
1) outputs polynomials ∆`−1(x), . . . ,∆1(x) that satisfy either
Relation 4 or Relation 5 (depending whether u = i or not). We
prove the same claim for DELTAPOL(u,δ, i, `) by considering
the following cases.

1. If msb of u is 0 and msb of i is 1, then the algorithm
returns ∆`(x) = −δ ·∏`−1

k=1 selectuk(xk) and ∆i(x) = 0 for all
i < `. Since u 6= i, these polynomials must satisfy Relation 4
which can be rewritten as

δ ·(1−x`)·
`−1

∏
k=1

selectuk(xk)= (x`−1)·∆`(x)+
`−1

∑
k=1

(xk−ik)·∆k(x) .

It is easy to see that this is indeed the case by simple substitu-
tion.

2. If msb of u is 0 and msb of i is 0, then the algorithm returns
∆`(x) =−δ ·∏`−1

k=1 selectuk(xk) along with ∆`−1(x), . . . ,∆1(x)
as output by DELTAPOL(u mod 2`,δ, i mod 2`, `−1). We dis-
tinguish two subcases.

(a) u 6= i. In this case polynomials ∆`(x), . . . ,∆1(x) must
satisfy Relation 4 which can be rewritten as

δ ·(1−x`)·
`−1

∏
k=1

selectuk(xk)= x` ·∆`(x)+
`−1

∑
k=1

(xk−ik)·∆k(x) .

By substituting the output polynomials and by using our
inductive hypothesis that states δ · ∏`−1

k=1 selectuk(xk) =

∑
`−1
k=1(xk− ik) ·∆k(x) it is easy to see that this is indeed the

case.

(b) u = i. In this case polynomials ∆`(x), . . . ,∆1(x) must
satisfy Relation 5 which can be rewritten as

δ ·(1−x`)·
`−1

∏
k=1

selectuk(xk)−δ= x` ·∆`(x)+
`−1

∑
k=1

(xk−ik)·∆k(x) .

By substituting the output polynomials and by using our
inductive hypothesis that states δ ·∏`−1

k=1 selectuk(xk)−δ =

∑
`−1
k=1(xk− ik) ·∆k(x) it is easy to see that this is indeed the

case.

3. If msb of u is 1 and msb of i is 0, then algorithm returns
∆`(x) = δ ·∏`−1

k=1 selectuk(xk) and ∆i(x) = 0 for all i< `. Since
u 6= i, these polynomials must satisfy Relation 4 which can
be written as

δ · x` ·
`−1

∏
k=1

selectuk(xk) = x` ·∆`(x)+
`−1

∑
k=1

(xk− ik) ·∆k(x) .

It is easy to see that this is indeed the case by simple substitu-
tion.

4. If msb of u is 1 and msb of i is 1, then the algorithm returns
∆`(x) = δ ·∏`−1

k=1 selectuk(xk) along with ∆`−1(x), . . . ,∆1(x)
as output by DELTAPOL(u mod 2`,δ, i mod 2`, `−1). We dis-
tinguish two subcases.

(a) u 6= i. In this case polynomials ∆`(x), . . . ,∆1(x) must
satisfy Relation 4 which can be rewritten as

δ · x` ·
`−1

∏
k=1

selectuk(xk) = x` ·∆`(x)+
`−1

∑
k=1

(xk− ik) ·∆k(x) .
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By substituting the output polynomials and by using our
inductive hypothesis that states δ · ∏`−1

k=1 selectuk(xk) =

∑
`−1
k=1(xk− ik) ·∆k(x) it is easy to see that this is indeed the

case.

(b) u = i. In this case polynomials ∆`(x), . . . ,∆1(x) must
satisfy Relation 5 which can be rewritten as

δ ·(1−x`)·
`−1

∏
k=1

selectuk(xk)−δ= x` ·∆`(x)+
`−1

∑
k=1

(xk−ik)·∆k(x) .

By substituting the output polynomials and by using our
inductive hypothesis that states δ ·∏`−1

k=1 selectuk(xk)−δ =

∑
`−1
k=1(xk− ik) ·∆k(x) it is easy to see that this is indeed the

case.

7.2 Assumptions and definitions
Assumption 1 ( [13] q-Strong Bilinear Diffie-Hellman
(q-SBDH)). For any PPT adversary A , the following proba-
bility is negligible:

Pr


(p,G,GT ,e,g)← Gen(1λ);

s R← Z∗p;
σ = ((p,G,GT ,e,g),gs, . . . ,gsq

) :
(x,e(g,g)

1
s+x )← A(1λ,σ)

 .

Definition 3 (Knowledge-soundness of zk-SNARK). We say
that the a zk-SNARK (G ,P ,V ) has knowledge-soundness if
for any PPT A and any NP relation R , there is a polynomial
time extractor E such that the probability

Pr

 1← V (V K,π,x)

∣∣∣∣∣∣∣∣
(PV,V K)← G(1λ,R );
(x,π)← A(PK,V K);

w← E(PK,V K);
R (x,w) 6= 1


is negligible.

Correctness definition of a vector commitment
scheme

Definition 4 (Correctness of distributed vector commitment).
A distributed vector commitment is correct, if for all λ∈N and
n = poly(λ), for all public parameters pp← Gen(1λ,n), for
all vectors a = [a0, . . . ,an−1], if C is computed by Compp(a)
and πi, for all i, is a proof generated Openpp(i,a,ai), then
for a polynomial number of updates (u,δ) if C and πi, for
all i, are produced by calls to UpdateCompp(u,δ,C) and
UpdateProofpp(u,δ,πi) respectively then for all i it is Pr[1←
Verpp(C, i,ai,πi)] = 1, where ai is the value at index i after
all updates took place.
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Algorithm 3 Algorithm for updating most recent proof when a new output [PK,v] is generated.
1: procedure π(cnt +1)← UPDATEMOSTRECENTPROOF(π(cnt),PK,v)
2: Parse π(cnt) as d0, . . . ,dW where d0 is cnt||[pk,v′];
3: Initialize π(cnt +1) as δ0, . . . ,δW

where δ0 is (cnt +1)||[PK,v] and δi = null for i > 0;
4: Let the binary representations of cnt and cnt +1

be B||bk, . . . ,b0 and B||βk, . . . ,b0 respectively, where B is their common prefix;
5: Set q = |B|−1;
6: Copy the last q hashes from π(cnt) to the last q positions of π(cnt +1);
7: Let π contain the first W −q hashes of π(cnt);
8: Run d← verifyMerkle(cnt, [pk,v],π);
9: Set δW−q+1 = d and δi = null for all 0 < i <W −q+1 ;

10: return π(cnt +1);
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