

Alex Chepurnoy and Amitabh Saxena

ZeroJoin: Combining
Zerocoin and
CoinJoin

Privacy in the UTXO model
● ZeroJoin works only in the UTXO model
● Similar to other protocols it is based upon

– Zerocoin
– CoinJoin

What do we mean by privacy?
● Informally: unlinkability

● For security parameter k
Pr[guessing link] < 1/2k

State of the art
Monotonic
UTXO set

Interaction
needed

Generic NIZKs/
range proofs

Eavesdropping
attack

CoinJoin no yes no yes

Zerocoin yes no yes no

Zcash yes no yes no

Monero yes no no no

MimbleWimble no no yes yes

OWAS (CS) no no no yes

Quisquis no no yes no

Confidential Tx no no yes yes

ZeroJoin no no no no

Canonical CoinJoin

Zerocoin

2-Coin (hypothetical)

A B

F

H

L

C D

G

M

J

K

E

Half spent (1st)
Fully spent (2nd)

Pool to pool (internal)
Deposits (from external)
Withdraws (to external)

● Users can add boxes to pool

● Each box in pool can be spent twice

– First is called half-spent

– Second is called fully spent

● Fully spent boxes removed from pool

● Of the two spents

– One is by owner

– Other is by random partner

I

2-Coin primitive

A
(2-pool)

B
(2-pool)

O
0

(2-pool)

O
1

(2-pool)

Bob adds box to pool

Alice adds box to pool

Bob spends his and Alice’s boxes
to create a box spendable by him

Alice spends her and Bob’s boxes
to create a box spendable by her

Both boxes are indistinguisble to outsiders

Quisquis primitive

A
(Q-pool)

B
(Q-pool)

O
0

(Q-pool)

O
1

(Q-pool)

Bob adds box to pool

Alice adds box to pool

Bob spends his and Alice’s boxes
to create two new boxes, one

spendable by Alice and other by Bob

Both boxes are indistinguisble to outsiders

ZeroJoin primitive

A
(pool)

B

O
0

O
1

Alice adds box to pool

Bob spends his and Alice’s boxes
to create two new boxes, one

spendable by Alice and other by Bob

Both boxes are indistinguisble to outsiders
Compared to 2-coin/Quisquis:

New boxes not part of pool
(need another tx to add to pool)

Only one input of tx from pool

Quisquis vs ZeroJoin
Similarities

● Alice adds a box A to pool
● A teqhnique for Bob to spend A with one of his own box B to create two boxes s.t:

– One spendable only by Alice and other only by Bob
– Outsiders cannot distinguish which belongs to whom

● Above works assuming Bob follows certain rules (“Honest-but-curious”)
– Because boxes are indistinguishable, not possible to publicly verify if Bob is misbehaving

● Rest of the protocol designed to ensure that Bob follows rules (via ZK proofs)
– Proof that boxes are constructed properly without leaking any other info

Differences in underlying ZK proofs
● Generic NIZKs in Quisquis (several kilobytes and few hundred exponentiations to verify)
● Sigma proofs in ZeroJoin (several bytes and 8 exponentiations to verify)

A B

O
0

O
1

ZeroJoin

Notation
● Setup: s is a “statement”, x is the secret witness for s

– Prover (P) is given (s, x)
– Verifier (V) is given s

● Sigma proof of knowledge of x such that s(x) is true:
– Prover sends a comitment z to Verifier (commit)
– Verifier sends a challenge c to Prover (challenge)
– Prover sends a response w to Verifier (response)

Verifier accepts if (z, c, w) is an “accepting transcript”

We call this PK3(x) s.t. s(x) because its a 3-round protocol
● We also denote PK(x) s.t. s(x) as a protocol:

– Prover sends a tuple (z, c, w) to Verifier

Verifier accepts if (z, c, w) is an “accepting transcript”

s\

P V

P V

P V

P s\P V

(s, x) s

z

c

w

(z, c, w)

(s, x) s

Primitives
● [Schnorr] PK3(x) s.t: u = gx

● [Schnorr] PK3(x) s.t: u = gx and v = hx

● [CDS94]
 PK3(x) s.t: foo(x)
+ PK3(x) s.t: bar(x)

= PK3(x) s.t: (foo(x) or bar(x))

● [Fiat-Shamir]
 PK3(x) s.t: foo(x) => PK(x) s.t: foo(x)

proveDlog

proveDHTuple

What we finally have
● Let (g, u , h , v) be a tuple of form

 (g, gx, gy, gxy) [Alice knows x, Bob knows y]

– PK(x) s.t. u = gx ProveDlog(g, u)

– PK(y) s.t. h = gy ProveDlog(g, h)

– PK(x) s.t. u = gx and v = hx ProveDHTuple(g, h, u, v)

– PK(y) s.t. h = gy and v = uy ProveDHTuple(g, u, h, v) (‘Dual’)

– PK(x or y) s.t. (u = gx and v = hx) or (h = gy) ProveDHTuple(g, h, u, v) || ProveDlog(g, h)

● More clearly written as:
– PK(?) s.t. h = g? and v = u?

– PK(?) s.t. (u = g? and v = h?) or (h = g?)

Bob

Alice and Bob

Basic protocol
● Alice selects secret x publishes coin with u = gx
● Bob selects secrets y and bit b
● Bob picks Alice’s coin and spends it to generate two equal value coins O0, O1 such that:

– Ob has two registers (alpha, beta) = (gy, gxy)

– O1-b has two registers (alpha, beta) = (gxy, gy)

● Both O0, O1 are protected by:
 PK(?) s.t. ((u = g? and beta = alpha?) or (beta = g?))

● Thus, the statements become:

– Ob : PK(?) s.t. ((gx = g? and gxy = gy?) or (gxy = g?))

– O1-b : PK(?) s.t. ((gx = g? and gy = gxy?) or (gy = g?))

(only) Alice can spend Ob using x and (only) Bob can spend O1-b using y.

Complete Protocol
Enforce Bob to behave correctly

● Bob picks Alice’s coin and spends it to generate two equal value
coins O0, O1 such that:

– Ob has two registers (alpha, beta) = (gy, gxy)

– O1-b has two registers (alpha, beta) = (gxy, gy)

● For Bob’s correct behavior. We need to ensure that
– One of (alpha, beta) or (beta, alpha) is of the form (gy, gxy)

● This can be done by requiring Bob to prove:
PK(?) s.t.((alpha = g? and beta = alpha?) or (beta = g? and alpha = beta?))

Ergo Platform
● UTXO based general-purpose blockchain (launched 2019)

– Smart contract in Scala-like language (ErgoScript)
– Nonoutsourceable proof-of-work (Autolykos)
– Storage rent (on-chain garbage collection) – prevent blockchain bloat in the long term
– Data inputs (use other boxes without spending them)

● Advanced context information for smart contracts
– Entire transaction, with inputs and outputs

● ErgoMix: ZeroJoin at smart contract layer with fee
– Implemented as a 2-stage protocol
– 1st stage (Alice’s box) encodes rules for 2nd stage (mixed boxes)
– Mining fee using secondary tokens and “emission boxes”

Fee in ErgoMix
● Solution 1: suitable for many use-cases

– Altrustic approach: fee free if remixing
– No free-loaders: free fee only if remixing
– Fee-emission box: fee emitted if transaction conforms to above

● Multiple fee-emission boxes to allow parallel usage

● Solution 2: long-term solution with actual fee
– In any mix tx, each party must provide some non-zero number of fee-tokens
– For any mix tx, fee emission box requires destruction of one fee-token
– Remining tokens distributed equally among two outputs
– One party could pay less fee as long as:

● All parties start with fixed number of fee-tokens, say 1000
● Parties can use up fee-tokens only in successive remixes

– If some box has less tokens, then it has higher privacy

ErgoScript code
https://tinyurl.com/ergomix

https://tinyurl.com/ergomix

Handling fee: Summary
● Approximate Fairness via fee tokens (ErgoMix)

– Bob may pay less fee if he uses “highly mixed” coin

● Altruistic fee (ErgoMix)
– Free if remixing (fee paid by sponsors)

● Range proofs to hide amounts (but inefficient)

Conclusion
● ZeroJoin

– Like CoinJoin but non-interactive
● Secure from eveasdropping attacks

– Like Zerocoin but with non-monotonic UTXO set
● ZK proofs to spend unlinkably

– Like Quisquis but with much shorter and faster proofs
● Sigma protocols instead of NIZKs

● Open problems
– Can we have 2-coin structure (pool-to-pool transactions)?

● Right now we need an extra tx to add to half-mix pool

– Better fee approach than approximate fairness?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

