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Abstract

This paper describes ErgoScript, a powerful and protocol-friendly scripting language for
cryptocurrencies. Programs in ErgoScript are used to specify the conditions under which cur-
rency can be spent. The language supports a type of non-interactive zero-knowledge proofs
called Y-protocols and is flexible enough to allow for ring-signatures, multisignatures, multiple
currencies, atomic swaps, self-replicating scripts, and long-term computation.

1 Introduction

1.1 Background

Since its early days, Bitcoin [Nak08] has allowed more than simple money transfers between two
public keys: its Bitcoin Script scripting language has allowed participants to specify conditions for
how money could be spent. A program written in Bitcoin Script is attached to every transaction
output (i.e., amount received); this program protects the transaction by determining how the
transaction output can be used as an input to (i.e., spent in) a future transaction. The simplest
condition is specified by a program that contains the recipient’s public key and states that the
money can be spent by creating a signature that verifies under this key. However, more general
conditions are allowed by more sophisticated programs.

The Bitcoin Script language is a primitive stack-based language without loops [BSC|. To spend
an output protected by a program, a spending transaction must provide a program in the same
language, and the concatenation of the two programs must evaluate to true. The creator of the
spending transaction can be viewed as a prover (for example, proving knowledge of the secret key
by producing a signature), where the statement that needs to be proven is specified by the output
that is being spent. Transaction validity is verified by evaluating programs. Bounded validation
time is ensured by the absence of loops in the programming language and a maximum program
size of 10 kilobytes. Even so, some denial-of-service attacks exploiting script validation time have
appeared [Wik13l Ler17, [Khol6]. On the other hand, the deliberate simplicity of the programming
language limits the kinds of contracts that can be created on the Bitcoin platform.

On other end of the generality spectrum, Ethereum allows for arbitrary Turing-complete pro-
grams [Wool4|. This approach requires charging for computation, in order to prevent denial-of-
service attacks, because the running time of a Turing-complete program cannot, in general, be
estimated without actually running the program. It is also needed in this case to have gas limit per
block, otherwise, DoS is possible anyway, for example, a miner can do attack the network for free.



A variety of cryptocurrency languages have appeared. We do not survey them here, but refer
the reader to Scilla [IS18], Simplicity [O’C17], Marlowe [ST1§|, TypeCoin |CS15], and many other
languages.

1.2 Our Contribution: ErgoScript

In this paper we introduce a new language called ErgoScript that is specifically designed to be
friendly to cryptographic protocols and applications. ErgoScript is considerably more powerful
than Bitcoin Script. As ErgoScript contains no looping or recursive constructs, individual scripts
in ErgoScript are not Turing-complete. In fact, given a program in ErgoScript, it is easy to obtain
an estimate of its running time. However, because ErgoScript allows for self-replication, ErgoScript
can be used to create Turing-complete processes in a blockchain, as shown in [CKMIS8| (see also

Section .

Built-in Y-protocols Our new language incorporates proving and verifying as first-class primi-
tives, giving developers access to a subclass of cryptographic proof systems known as non-interactive
Y-protocols (pronounced “sigma-protocols”). Thus, a script protecting a transaction output can
contain statements (X-statements) that need to proven (by producing X-proofs) in order to spend
the output.

Conceptually, X-proofs [Cra96] are generalizations [CLO6| of digital signatures. In fact, Schnorr
signature scheme [Sch91] (whose more recent version is popularly known as EADSA [BDL™12,
JL17]) is the canonical example of a X-proof: it proves that the recipient knows the discrete loga-
rithm of the public key (the proof is attached to a specific message, such as a particular transaction,
and thus becomes a signature on the message; all X-proofs described here are attached to specific
messages). YL-protocols exist for proving a variety of properties and, importantly for ErgoScript, ele-
mentary X-protocols can be combined into more sophisticated ones using the techniques of [CDS94].
For an introduction to Y-protocols, we refer the reader to [Daml0] and [HL10, Chapter 6].

ErgoScript provides two elementary Y-protocols over a group of prime order (such as an elliptic
curve), written here in multiplicative notation:

e A proof of knowledge of discrete logarithm with respect to a fixed group generator: given a
group element h, the proof convinces a verifier that the prover knows w such that h = g%,
where g is the group generator (also known as base point), without revealing w. This is the
same as a Schnorr signature with public key h.

e A proof that of equality of discrete logarithms (i.e., a proof of a Diffie-Hellman tuple): given
group elements g1, g2, u1, uo, the proof convinces a verifier that the prover knows w such that
up = gy and ug = g3, without revealing w

ErgoScript also provides the ability to build more sophisticated Y-protocols by using connectives
AND, OR, and THRESHOLD (also known as k-out-of-n). Crucially, the proof for an OR and
a THRESHOLD connective does not reveal which of the relevant values the prover knows: for
example, in ErgoScript a ring signature by public keys hq, ..., h, can be specified as an OR of 3-
protocols for proving knowledge of discrete logarithms of hq, ..., h,. The proof can be constructed
with the knowledge of just one such discrete logarithm, and does not reveal which one was used in
its construction.



Our implementation of these protocols is in Scala [SCL|] and Java [JAV]. The implementation
was informed by SCAPI [SCP], but does not use SCAPI code. We use Bouncy Castle [LBC] for big
integer and elliptic curve operations; the implementation of arithmetic in fields of characteristic 2
(for THRESHOLD connectives) is our own.

Rich context, enabling self-replication In addition to X-protocols, ErgoScript allows for
predicates over the state of the blockchain and the current transaction. These predicates can be
combined, via Boolean connectives, with >-statements, and are used during transaction validation.
The set of predicates is richer than in Bitcoin, but still lean in order to allow for efficient processing
even by light clients. Like in Bitcoin, we allow the use of current height of the blockchain; unlike
Bitcoin, we also allow the use of information contained in the spending transaction, such as inputs
it is trying to spend and outputs it is trying to create. This feature enables self-replication and
sophisticated (even Turing-complete) long-term script behaviour, as described in examples below.

ErgoScript is statically typed (with compile-time type checking) and allows the usual operations,
such as integer arithmetic.

2 ErgoScript Language Description

The language syntax is similar to Scala, and therefore many of the constructs are easy to read for
those familiar with Scala.

Before we describe the language, let us fix some terminology. A box (often called a “coin”
in other literature) contains some amount (value, measured in Ergo tokens) and is protected by a
script (boxes also contain additional information, such as other tokens; this information is described
in detail in Section . A transaction spends the value of boxes that are its inputs (which are
outputs of some earlier transaction) and produces boxes that are its outputs. In a given transaction,
the sum of the values of the inputs must equal the sum of the values of the outputs (as we describe
below, the scripting language is rich enough to allow for payment transactions fees and for minting
of new coins without violating this rule).

All the unspent transaction outputs (UTXO) at a given time represent the value stored in the
blockchain. A script for a box must evaluate to “true” when this box is used as an input to a
transaction. This evaluation is helped by a proof (for ¥-statements) and a context, which are part
of the transaction. The proof is produced by someone who knows the relevant secrets, such as
secret keys; the context contains information about the spending transaction, such as details of
its inputs and outputs, and the current state of the blockchain, such as the current height of the
blockchain and last 10 block headers from the blockchain.

2.1 Y-Statements

The simplest script allows the owner of a public key to spend an output box in a future transaction
by issuing a signature with the corresponding secret key. If the variable pk holds the public key,
then this script is specified simply as a string

pk

In order for the compiler to know what value the variable pk is referring to, the compiler needs
to be supplied with an environment, which, in this case, is a single-element map, mapping the



string "pk" to the object holding the public keyf_-] Thus, the constant public key is hardwired into
the script at compile time. When the script is later evaluated (i.e., when the box is used as a
transaction input), a X-proof of knowledge of the corresponding secret key must be supplied by the
prover.

A slightly more complex script may allow either one of two people to spend an box. If Alice
owns public key pkA and Bob owns public key pkB (with corresponding secret key skA and skB),
then the script that would allow either one of them to spend the box is

pkA || pkB

Again, pkA and pkB need to be mapped to public key objects by an environment map. Note that
Alice and Bob individually can construct the proof necessary to spend this box using just one of
the two corresponding secret keys, and, by the zero-knowledge property of ¥-protocols, the proof
will not reveal whether skA or skB was used. This construct is known as a ring signature.

Naturally, this approach can be extended to more than two keys. If Carol’s public and secret
keys are pkC and skC, then a three-key ring signature can be similarly constructed as

pkA || pkB || pkC

For syntactic convenience, multiple keys can be placed into a collection, and any0f operator
can be used instead of ||, as follows:

any0f (Coll (pkA, pkB, pkC))
A conjunction is also possible: the script
pkA && pkB

requires Alice and Bob to use secret keys corresponding to pkA and pkB in order to spend the box.
Note that Alice and Bob will have to communicate to produce the proof: separate signatures by
Alice and Bob will not be sufficient (but Alice and Bob will not have to reveal their secret keys to
each other; see Section . Similarly to | |, multiple && can be used in sequence, and the operator
all0f can be used for collections.

Using these operators, it is possible to produce more sophisticated scripts. For example, here
is a script stating that the box can be spent either by Carol or by a collaboration between Alice
and Bob:

(pkA && pkB) || pkC

A valid proof (contained in the spending transaction) will not reveal which of two possibilities
was used.

Operators al10f and any0f are actually special cases of the operator atLeast (bound, collection),
which requires the prover to know secrets for bound elements of the collection (just in like in
any0f, which secrets the prover used will not be revealed by the proof). allOf(collection) is
the same as atLeast(collection.size, collection) and anyOf (collection) is the same as
atLeast (1, collection).

For example, here is a script stating that the box can be spent by any 3 out of the following 6
possibilities: Alice, Bob, Charlie, David and Edie, Fran and George, Helen and Irene:

!This map is an object in Scala, and is passed to the compiler as a parameter together with the script (which is
passed in as a string) when the compiler is invoked from within Scala code. We defer the discussion of how to invoke
the compiler outside of Scala code to another article.



atLeast (3, Coll (pkA, pkB, pkC, pkD && pkE, pkF && pkG, pkH && pkI))

The same result could be achieved by writing an any0f of all possible 3-out-of-6 (twenty) combi-
nations.

2.2 Mixing >-statements with other statements

ErgoScript allows combining statements that require proofs with other boolean statements. These
statements can refer to the context, which has predefined variables with information about the
transaction in which the script is evaluated (i.e., the box is spent). For example,

pkA || pkB || (pkC && HEIGHT > 500)

uses the predefined variable HEIGHT, which is the sequential block number (since the beginning of
the blockchain, starting at 1) of the block in which the script is evaluated. This script allows Alice
or Bob to spend the box before HEIGHT reaches 501, and Alice, Bob, or Carol to spend the box
after that. If the height has not reached 501 and the box is spent, then the proof reveals that skA
or skB was used in its construction, but does not reveal which one of the two. If HEIGHT is greater
than 500, then the proof does not reveal which of the three secret keys was used. Thus, depending
on the value of HEIGHT, the script becomes either equivalent to pkA || pkB or equivalent to pkA
Il pkB || pkC.

In general, script evaluation reduces the script to a Y-statement by first evaluating all the
Boolean predicates that are not Y-statements. As we saw in the above example, the resulting -
statement will, in general, depend on the values of the Boolean predicates (such as whether HEIGHT
> 500).

We emphasize that this evaluation is not the same as the usual left-to-right lazy evaluation of
logical expressions, because expressions involving Y-statements are not treated the same way as
usual boolean expressions: they are evaluated last and in zero-knowledge. In fact, pkA is not of type
Boolean. It is of type GroupElement; the compiler automatically converts it to proveDlog(pkA),
which is of type ProveDlog inherited from basic type SigmaBoolean. Type SigmaBoolean is special
because it is used differently by the prover (who constructs the proof) and the verifier (who checks
it); moreover, variables of this type cannot be stored in boxes (Section or context extensions

(Section [2.4).

2.3 Accessing the Context and Box Contents

In addition to the predefined variable HEIGHT, the context contains predefined collections INPUTS
and OUTPUTS, which refer to the inputs and outputs of the spending transaction. Elements of these
collections are of type Box. The script also has access to its own box via the context variable SELF
of type Box. Note that SELF is also an element of the INPUTS collection, because the script is
executed when the box is being spent.

To access information inside a box b, scripts can use b.value for the amount, b.propositionBytes
for the protecting script, and b.id for the identifier of the box, which is the BLAKE2b-256 hash
of the contents of the box. Boxes include additional information in registers; each box is unique,
because one of its registers includes the transaction id in which it was created as an output, and
its own index in the outputs of the transaction which created the box, accessible through b.R3 (see
Section for more on registers).



Example: two boxes together Access to this information allows us, for example, to create an
output box that can be spent only in the same transaction as another known box, and only if no
other inputs are present in the transaction. If friend stands for an already existing box (per the
environment mapping), then we create a new box that can be spent only together with friend and
no other input by the following script (note that it uses the collection property size and collection
indexing, starting at 0, denoted by parentheses):

INPUTS.size == 2 && INPUTS(0).id == friend.id

Note that the script does not prevent the friend box from being spent on its own, in which
case the output box protected by the script above will become not spendable.

We can be more permissive and allow for other inputs in addition to the friend box. To do so,
we will examine the input collection using the exists operator, which applies a boolean function
to each collection element until it finds one that satisfies the function or finds that none exists. To
define a function, we use lambda syntax; the argument type (in this case Box) is specified with a
colon after the argument name inputBox. We name the function using the val keyword.

{
def isFriend = { (inputBox: Box) => inputBox.id == friend.id }
INPUTS.exists (isFriend)

}

This is our first example of a script with more than one statement; note that such scripts
require braces, and their output is determined by the last statement. It can also be written in one
statement, as follows:

INPUTS.exists { (inputBox: Box) => inputBox.id == friend.id }

Example: crowdfunding Access to the context allows us to create a script for the follow-
ing crowdfunding situation: a project backer (with key backerPubKey) wishes to give money
to a project (with key projectPubKey), but only if the project raises enough money (at least
minToRaise) from other sources by a deadline (expressed in terms of HEIGHT).

To give money to the project, the backer will create an output box protected by the following
script. The script contains two conditions: one for the case the deadline has passed (enabling the
backer to get the money back) and one for the case it succeeded (enabling the project to spend
the money if the amount is at least minToRaise before the deadline). In order to ensure enough
money has been raised, the script will search the output collection for a box with a sufficient
value going to the projectPubKey. To check where the value of the output box is going, the
script will read the script protecting the output box and compare it to the script corresponding to
proveDlog(projectPubKey); this script can be obtained by projectPubKey.propBytes.

{
val fundraisingFailure = HEIGHT >= deadline && backerPubKey
val enoughRaised = {(outBox: Box) =>
outBox.value >= minToRaise &&
outBox.propositionBytes == projectPubKey.propBytes



val fundraisingSuccess = HEIGHT < deadline &&
projectPubKey &&
OUTPUTS. exists(enoughRaised)

fundraisingFailure || fundraisingSuccess

}

As before, the values of deadline, minToRaise, and the two public keys are defined by the
environment map and hardwired into the script at compile time.

2.4 Context Extension and Hashing

A context can also contain typed variables that can be retrieved by numerical id using the oper-
ator getVar. These variables are supplied by the prover specifically for a given input box (via a
ContextExtension) together with the proof for that box. The id can be any one-byte value (from
-128 to 127) and is scoped for each box separately (so variable with id 17 for one input box in a
transaction is not the same as variable with id 17 for another input box in the same transaction).

Such context enxtensions can be useful, for example, for requiring a spending transaction to
produce hash preimages (the BLAKE2b-256 and SHA-256 hash functions can invoked in ErgoScript,
using keywords blake2b256 and sha256). For example,

pPkA && blake2b256(getVar [Coll[Byte]](1).get) == hashOutput

says that spending can be done only using the signature of Alice, and only if the preimage of
hashQOutput is written in the context. Specifically, the script requires that the context extension
should contain a variable (with id 1), which is a collection of bytes that hashes to the value of
hashOutput (the value of hashOutput, like pkA, is defined in the environment and is hardwired into
the script at compile time). Note that although the script requires both the secret key corresponding
to pkA and the hash preimage corresponding to hashOutput, there is the stark difference between
how these two values are used: the secret key is not revealed in the proof (by the zero-knowledge
property of X-proofs), while the hash preimage is explicitly written into the context extension and
can be seen by anyone once the transaction takes place.

Example: atomic transactions and cross-chain trading Suppose there are two separate
blockchains, for two different asset types. Alice wants to receive some assets in her blockchain in
exchange for giving some assets to Bob in his blockchain. ErgoScript allows to accomplish in a
simpler way than proposed for Bitcoin, for example, in [Noll13].

Alice creates a random secret x of 256 bits (32 bytes), hashes it to obtain the value hx, and
creates a transaction in Bob’s blockchain with the output box protected by the following script:

any0f ( Coll(

HEIGHT > deadlineBob && pkA,

pkB && blake2b256 (getVar [Coll[Bytel] (1).get) == hx
)

Bob can receive the value of this box only upon presentation of a hash preimage of hx. Alice can
reclaim it after deadlineBob.

From this output, Bob learns hx. He creates a transaction in Alice’s blockchain with an output
box protected by the following script:



any0f ( Coll(
HEIGHT > deadlineAlice && pkB,
all0f ( Coll(
pKA,
getVar[Coll[Bytel] (1) .get.size < 33,
blake2b256 (getVar [Coll [Byte]] (1) .get) == hx
)
)

If Alice is satisfied with the amount Bob is giving her, she claims the value of this box by
revealing x. Alice is protected as long as the hash function is one-way and she keeps her x secret
until she claims the value of this box. (She should be careful to submit her transaction in enough
time before deadlineAlice to make sure it gets processed before Bob can reclaim this money,
because once she submits the transaction, x is public and thus, if the deadlineAlice passes before
the transaction is processed, Bob can both reclaim this box and claim the box Alice left in his
blockchain.)

Bob is protected, because in order for Alice to claim the value of this box, she must present
a hash preimage of hx as a context extension in the transaction that uses this box as input. But
once she does, Bob also learns this hash preimage, and is able to claim the value of the box that
Alice placed into his blockchain. Note that Bob needs to choose deadlineAlice early enough to
make sure that he is able to learn the preimage of hx from the transaction in Alice’s block chain,
and create a transaction in his blockchain, all before deadlineBob that Alice chose. Note also that
HEIGHT in the two scripts is with respect to two different blockchains, which may be growing at
a different rate. Bob also needs to make sure that he can use Alice’s x as a context extension; to
make sure Alice cannot cheat by making this x so long that it will not be allowed as a context
extension in his blockchain, he uses the constraint getVar [Coll[Byte]] (1) .get.size < 33.

The same approach can be used to trade different assets on the same blockchain, in case of
multiasset blockchains. However, for transactions on a single blockchain, an alternative approach
is also possible. We describe it below.

2.5 Box Registers and Additional Tokens

In addition to its value and protecting script, a box can contain up to 10 numbered registers, RO
through R9. The first four of these have fixed meaning, as follows. For a box b, b.RO is the same
as b.value and b.R1 is the same as b.propositionBytes.

The third register, b.R2, is for specifying additional, secondary tokens contained in the box
(the primary token amount is specified in b.value). b.R2 contains a collection of pairs, the first
element of each pair specifying the token id (as a byte string of 32 bytes) and the second element
specifying the amount (as a long constant). The maximum number of tokens in a box is set to
4. For every token id, the sum of amounts in inputs boxes be no less than the sum of amounts in
output boxes. There is one exception to this rule for the creation of new tokens. When a new token
type gets created in a transaction, its id is equal to the id of the input box 0. Thus, the exception
for the creation of new tokens is that if the token id in some output box is equal to the id of input
box 0, then an arbitrary amount of this token can be output. Because each box has a unique id
(see Section this exception can be applied exactly once per token type. A newly created token
can be emitted in a time-controlled fashion—see Section 2.6



The fourth register, b.R3, contains a pair of integer and 34-byte collection (its type then is
(Int,Coll[Byte])). The collection specifies the 32-byte unique transaction id where this box appears
as an output followed by a 2-byte sequence number of this box in the OUTPUTS collection of that
transaction. This ensures that each box has unique R3 and therefore a unique id as long as there
are no hash collisions (because the id of the box is computed by hashing its content, including R3).
The first element of the pair contains creation height provided by user created the box. This height
could only be less or equal than real inclusion height (a transaction could not be included into
the blockchain if it contains an output with creation height being no more than current blockchain
height).

The remaining six registers can be used arbitrarily.

To access a register, the type of the register needs to be specified in brackets following the register
number (for example, b.R4[Int]). Note that b.R4[T] is of type Option[T]; b.R4[T].isDefined
indicates whether it actually contains a value of type T, and b.R4[T] .get obtains this value.

In addition to registers, scripts can access two serialized versions of the box: b.bytes is a
serialization of the entire box including all its registers, and b.byteWithNoRef, which the same but
without the transation identifier and the output index (so that a box can be viewed independently
of where it appeared.

Example: atomic exchange on a single block chain These box registers provide additional
capabilities to ErgoScript. Consider, for example, Alice and Bob who want to exchange tokens:
they agree that Alice will give Bob 60 tokens of type token1 (this type is mapped an actual token
id in the environment map) in exchange for 100 Ergo tokens. Alice could create an output box
with value 100 and protect it with following script:

(HEIGHT > deadline && pkA) || {
val tokenData = OUTPUTS(0).R2[Coll[(Coll[Bytel, Long)]].get(0)
al10f (Col1(
tokenData._1 == tokenl,
tokenData._2 >= 60L,
OUTPUTS(0) .propositionBytes == pkA.propBytes,
OUTPUTS (0) .R4[Col1 [Byte]].get == SELF.id
)
}

This script ensures that the box can be spent only in a transaction that produces an output with
60 tokens of type tokenl and gives them to Alice (Alice can reclaim the box after the deadline).
Moreover, the last condition (OUTPUTS(0) .R4[Col[Byte]].get == SELF.id) ensures that if Alice
has multiple such boxes outstanding at a given time, each will produce a separate output that
identifies the corresponding input. This condition prevents the following attack: if Alice has two
such boxes outstanding but the last condition is not present, then they can be both used in a single
transaction that contains just one output with 60 tokens of type “tokenl” — the script of each
input box will be individually satisfied, but Alice will get less only half of what owed to her.

Bob, similarly, could create an output box with value about 0 and 60 tokens of type tokenl
and protect it by the following script:

(HEIGHT > deadline && pkB) ||



all0f ( Coll(
OUTPUTS (1) .value >= 100L,
OUTPUTS(1) .propositionBytes == pkB.propBytes,
QUTPUTS (1) .R4[Coll [Bytel].get == SELF.id,
)

A transaction containing these two boxes as inputs must produce two outputs: the first giving
at least 60 tokens of typel to Alice and the second giving at least 100 tokens of type2 to Bob. Once
the two boxes are on the blockchain, anyone can create such a transaction using the two boxes
as inputs, and thus effect the exchange between Alice and Bob. Unlike the cross-chain trading
example above using hashing (which requires one side to go first), there are no potential problems
with synchronization here, because the exchange will happen in a single transaction or will not
happen at all.

2.6 Self-Replicating Code

Access to box registers allow us to create self-replicating boxes, because a script can check that an
output box contains the same script as SELF. As shown in [CKM18], this powerful tool allows for
Turing-completeness as computation evolves from box to box, even if each individual script is not
Turing-complete. We will demonstrate two examples of complex behavior via self-replication.

Example: time-controlled coin emission In this example, we will create a self-replicating box
that emits new coins at each time step in order to add to the total amount of currency available.
This box appears as an output in the genesis block (at height 0) of the blockchain; all "new” coins
come from this box or its descendants, thus maintaining the invariant that for every transaction
after the genesis block, the combined value of all inputs is equal to the combined value of all outputs.

The value of this box initially is equal to the total amount of currency that will eventually
be available. This value will go down by a prespecified amount each time this box is transacted.
Because in each transaction, the sum of input values must equal the sum of output values, when
the value of this box goes down, the difference must be claimed by someone. The box is set up to
allow to the difference to go anyone—presumably, it will be claimed by the miner who created the
block that contains the transaction. This box will store, in R4, the height at which it was created.
Using this information, it will be able to determine how much value to emit. The box will be set to
emit a fixed amount specified by fixedRate per block until HEIGHT reaches fixedRatePeriod, and
a linearly decreasing amount thereafter. The script will verify that the output box has the same
script as itself, and that the new height stored in R4 and the new value are correctly computed
(and that the height has increased, so that a miner cannot emit more than once per block). The
following script accomplishes this goal:

{
val epoch = 1 + ((HEIGHT - fixedRatePeriod) / epochLength)
val out = OUTPUTS(0)
val coinsToIssue = if (HEIGHT < fixedRatePeriod) fixedRate
else fixedRate - (oneEpochReduction * epoch)
val correctCoinsConsumed = coinsToIssue == (SELF.value - out.value)
val sameScriptRule = SELF.propositionBytes == out.propositionBytes
val heightIncreased = HEIGHT > SELF.R4[Int].get
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val heightCorrect = out.R4[Int].get == HEIGHT
val lastCoins = SELF.value <= oneEpochReduction
all0f (Coll(

heightCorrect,

heightIncreased,

sameScriptRule,

correctCoinsConsumed) )
|| (heightIncreased && lastCoins)

Example: arbitrary computation via a simple cellular automaton The example in the

paragraph is not meant for practical implementation; rather, it is here merely to demonstrate the
Turing-complete power of self-replication. It implements the so-called “rule 110” one-dimensional

cellular automaton [Wol86], which is known to be Turing-complete [Coo04] (with only polynomial-

time overheard — i.e., P-complete [NWOQG]). See [CKMIS| for more details. The code for this

example is too complex to be put here; it is available at https://github.com/ScorexFoundation/
sigmastate-interpreter/blob/master/src/test/scala/sigmastate/utxo/examples/Rulel10Specificatio:
scalal

3 Implementation

A script is converted to an abstract syntax tree using standard compilation techniques. At evalua-
tion time, values from the context are substituted for relevant variables and the tree is evaluated.
There are two significant differences from standard compilation and evaluation techniques:

e We estimate the time required to process the script and, if it exceeds a certain bound, refuses
to evaluate it in order to prevent a denial-of-service attack.

e The evaluation converts the script not to a Boolean value, but to a -statement. This
statement is a tree, with proveDlog or proveDHtuple nodes for leaves, and AND (&&), OR
(1'l), or THRESHOLD for non-leaves. The prover (when trying to use in a transaction the
box that is protected by the script) generates a proof this X-statement. The verifier verifies
it, obtaining a Boolean value.

We describe the latter non-standard step in Appendix [A] while the former will be described in
a separate upcoming document.

4 Further Work

The next steps we plan to do (and have partially done) after releasing this document are:

1. More examples, including non-interactive and fully on-chain tumbler for mixing the coins,
cold wallets, oracles, initial coin offering scenario, multi-state contract defined as a finite
state machine, and so on. We already have code for such the examples done, and writing
documentation about them at the moment.

2. Detailed description of used type system, cost estimation procedure, safety guarantees, and
abstract syntax tree format.
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A Implementation of Noninteractive Y-protocols for an arbitrary
And/Or/Threshold composition

A.1 Background

In this section, we explain in detail how the X-protocol proving and verifying is implemented.
Consider the tree after the evaluation process, as described in Section [3| reduces it to only -
protocol nodes. Then the leaves of the tree are atomic X-protocols, and non-leaves are of one of
three types: AND (corresponding to && or all0f in ErgoScript), OR (corresponding to | | or any0f
in ErgoScript), or THRESHOLD(k) (corresponding to atLeast in ErgoScript).
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The meaning of the proof corresponding to THRESHOLD (k) is “the prover knows witnesses for at
least k children of this node”. Semantically, AND and OR are simply special cases of THRESHOLD:
the meaning of the proof corresponding AND (respectively, OR) is “the prover knows witnesses for
all children (respectively, at least one child) of this node”. However, AND and OR are implemented
differently from THRESHOLD for efficiency.

For the purposes of this description, it does not matter what specific atomic ¥-protocols are
used at the leaves. They can be, for example, proveDlog(x) for proving knowledge of the discrete
logarithm w of x = g%, or proveDHtuple(gl, g2, ul, u2) for proving that (g1, g2, u1,u2) form a
Diffie-Hellman tuple, i.e., Jw such that u; = ¢g{” A ug = hy. In general, we will assume the prover
has some secret w and wants to prove some property of it.

A >-protocol consist of three messages:

e a commitment a sent from the Prover to the Verifier (computed using the witness w and some
freshly generated secret randomness r by the Prover’s first step algorithm);

e a uniformly random challenge e sent from the Verifier to the Prover;

e and a response z sent from the Prover to the Verifier (computed using the randomness r, the
challenge e, and the witness w by the Prover’s second step algorithm).

The verifier then checks that the triple (a, e, z) satisfies some formula and, if so, accepts the proof.

In order to make an atomic X-protocol non-interactive using the so-called Fiat-Shamir heuristic,
the Prover would compute e by hashing a, and the Verifier would check that e is indeed a hash of a.
However, once atomic X-protocols are composed using AND, OR, and THRESHOLD, the challenge
computation becomes more involved, as we describe below.

Y-protocols have the property of special honest-verifier zero-knowledge. For the purposes of this
description, it means that given a random e, it is possible to compute a and z without knowing the
secret witness w that is normally needed by the prover. This computation is called “simulation”.
Moreover, the triple (a, e, z) computed via simulation is distributed identically to the triple (a, e, z)
that results form a ¥ protocol that is run by the honest prover (who knows the secret witness
w) and verifier (who generates a uniform e). The trick that makes simulation possible is that the
response z is chosen by the simulator before commitment a, in contrast to the prover, who is forced
to choose a before z.

Y-protocols used in this work must also satisfy a property of special soundness, which means
that given two triples (a1, e, 21) and (ag, €2, z2) that are both accepted by the verifier, and a; = as
while e1 # eo, it is possible to compute the Prover’s secret witness w in polynomial time and thus
directly verify that the statement claimed by the Prover is true. Note that this computation is
never performed, because the Prover will never actually answer two different challenges e; # ey for
the same commitment a; = as.

In order for composition of 3-protocols using AND, OR, and THRESHOLD to work, the challenge
e in all protocols must be a binary string of the same length, which we will call ¢. (This implies
that if the Verifier performs arithmetic modulo ¢ on e, then 2! < ¢; else it would be trivial to have
e1 # eo by letting e = e1 + ¢, and the same z would work for both e; and es, violating the special
soundness property mentioned above, because such a, e1, z can be computed without knowledge of
the witness w by using the simulator.) Note that ¢ is the soundness parameter: the probability
that a malicious Prover can fool the Verifier in a single attempt is 27°.
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For ease of description, we will also impose the following limitation on the ¥ protocols: in the
interactive version, the verification code must proceed by computing o’ from z and e, and then
checking if @’ = a. That means that in the noninteractive version, the Prover needs to transmit
only z and e (omitting a) to the Verifier, who will compute o’ from z and e and then check that e
was computed correctly as a function of a’. If the hashing is second-preimage-resistant, an incorrect
a’ will lead to a mismatch of e, which will be detected by the Verifier. This limitation is satisfied by
most common X-protocols; it is not essential and can be removed by having the Prover additionally
send a.

We show the steps of the prover and verifier given such a tree. While AND, OR, and THRESHOLD
composition of Y-protocols has been addressed in the literature before [CDS94], prover and verifier
algorithms have been described only for a single node, in terms of prover, verifier, and simulator
algorithms for its children. Recursively constructing code for an entire tree by dynamically con-
structing prover, verifier, and simulator code for each node is inefficient. Here we take a different
approach by explicitly describing how and in what order the protocol messages for each node of
the tree need to be computed and verified. We are not aware of any similar descriptions in the
literature.

Our description uses two kinds of tree traversal: bottom-up (also known as post-order) and top-
down (also known as preorder). In a bottom-up traversal, for each node, operations are recursively
applied to the children of the node before being applied to the node itself. In a top-down traversal,
for each node, operations are applied to the node itself before being recursively applied to each of
its children.

A.2 Proving

The Prover will know secret witnesses w for some of the leaves; for such leaves, it will choose
whether to produce real or simulated proofs according to the algorithm described in this section.
The Prover will simulate proofs for all other leaves.

Multiple provers There may be situations when the secret witnesses w at the leaves are dis-
tributed among several different provers, who will have to cooperate but will not have to reveal
the secrets to each other; in this case, we assume there is a main prover carrying out the steps
below, and we explain what the other provers need to do in order for the main prover to construct
the proof. We caution that the proofs will not be zero-knowledge to the other provers nor to an
adversary who can observe the communication between the provers—even just the existence of
communication will reveal which parts of the tree are real and which are simulated. Moreover,
if the main prover is malicious, it may be able to attack the other provers — see Step [9] below.
More sophisticated multi-party computation protocols to address this problem are available, but
are outside the scope of this paper.

Side-channel attacks Note that the algorithm described below does not attempt to be secure
against side channel attacks, such as, for example, timing attacks. It particular, it may take different
amounts of time depending on which nodes are real and which are simulated; a timing attacker
may therefore obtain information about the set of leaves for which the Prover knows the secrets.
If timing attacks are a concern, it is not enough to make sure that simulation and proving take
a similar amount of time for each atomic Y-protocol used in the leaves; implementations should
also make sure that tree traversals take the same amount of time regardless of where simulated
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and real ¥ protocols are located in the tree. In particular, implementations should avoid the use
of lazy-evaluation constructs, such as “forall” and “exists”.

The steps For each node in the tree, the prover will maintain a flag indicating whether it is
real or simulated. Each node will also have a t-bit challenge. The leaves will additionally have
two protocol values: a challenge and a response. The pseudocode below explains how these values
are computed. In the pseudocode below, the word “random” should be read to also allow securely
generated pseudorandom values.

The prover first has to decide which nodes will have real proofs (for which witnesses are required)
and which will be simulated. For example, in an OR proof, only one of the children will be real.
The prover will do so based on witnesses that are available, in three steps:

1. This step will mark as “real” every node for which the prover can produce a real proof. This
step may mark as “real” more nodes than necessary if the prover has more than the minimal
necessary number of witnesses (for example, more than one child of an OR). This will be
corrected in the next step. In a bottom-up traversal of the tree, do the following for each
node:

o If the node is a leaf, mark it “real” if the witness for it is available; else mark it “simu-
lated”

e If the node is OR, mark it “real” if at least one child is marked real; else mark it
“simulated”

e If the node is AND, mark it “real” if all of its children are marked real; else mark it
“simulated”

e If the node is THRESHOLD(k), mark it “real” if at least k of its children are marked
real; else mark it “simulated”

2. If the root of the tree is marked “simulated” then the prover does not have enough witnesses
to perform the proof. Abort.

3. This step will change some “real” nodes to “simulated” to make sure each node has the right
number of simulated children. In a top-down traversal of the tree, do the following for each
node:

e If the node is OR marked “real”, mark all but one of its children “simulated” (the node
is guaranteed by step [1] to have at least one “real” child). Which particular child is left
“real” is not important for security; the choice can be guided by efficiency or convenience
considerations.

e If the node is THRESHOLD(k) marked “real”, mark all but & of its children “simulated”
(the node is guaranteed, by the previous step, to have at least k& “real” children). Which
particular ones are left “real” is not important for security; the choice can be guided by
efficiency or convenience considerations.

e If the node is marked “simulated”, mark all of its children “simulated”

Now the prover will compute protocol values for every node, as follows:
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4. In a top-down traversal of the tree, compute the challenges e for simulated children of every
node, as follows:

e If the node is marked “real”, then each of its simulated children gets a fresh uniformly
random challenge in {0,1}!. (Note that a real AND node has no simulated children, so
this step applies only to real OR and THRESHOLD nodes.)

e If the node is marked “simulated”, let eg be the challenge computed for it. All of its
children are simulated, and thus we compute challenges for all of them, as follows:

— If the node is AND, then all of its children get eg as the challenge

— If the node is OR, then each of its children except one gets a fresh uniformly random
challenge in {0,1}!. The remaining child gets a challenge computed as an XOR of
the challenges of all the other children and eg.

— If the node is THRESHOLD(k), assume it has n children numbered from 1 to n.
There are two possible algorithms. The first algorithm is faster than the second.
However, it is also faster than the algorithm for a “real” THRESHOLD node; there-
fore, if a timing attack on the prover is a possibility, then it should not be used,
because the timing attack may be able to distinguish a “real” THRESHOLD node
from a “simulated” one.

(a) The faster algorithm is as follows. Pick n — k fresh uniformly random values
Q- Gn_k from {0,1} and let gy = ep. Viewing 1,2,...,n and qo, ..., qn_#k
as elements of GF(2!), evaluate the polynomial Q(z) = 3 ¢;z* over GF(2%) at
points 1,2,...,n to get challenges for child 1, 2,...,n, respectively.

(b) The algorithm with better resistance to timing attacks is as follows. Pick n — k
fresh uniformly random values ey, ..., e, as challenges for the children number
1,...,n—k. Let ig = 0. Viewing 0,1,2,...,n and eq,...,e,_ as elexments of
GF(2"), find (via polynomial interpolation) the lowest-degree polynomial Q(z) =
Z?:_ok a;z’ over GF(2') that is equal to e; at j for each j from 0 to n — k (this
polynomial will have n — k + 1 coefficients, and the lowest coefficient will be eg).
Set the challenge at child j for n — k < j < n to equal Q(j).

5. For every leaf marked “simulated”, use the simulator of the X-protocol for that leaf to compute
the commitment a and the response z, given the challenge e that is already stored in the leaf.

6. For every leaf marked “real”, use the first prover step of the Y-protocol for that leaf to
compute the necessary randomness r and the commitment a. In case of multiple provers
responsible for different leaves, each prover individually computes the randomness r for that
leaf; the provers send their commitments a to the main prover (note that the existence of this
communication, if observed the adversary, will reveal to the adversary which leaves are real).

7. Convert the tree to a string s for input to the Fiat-Shamir hash function. The conversion
should be such that the tree can be unambiguously parsed and restored given the string.
For each non-leaf node, the string should contain its type (AND, OR, or THRESHOLD(k)).
For each leaf node, the string should contain the -protocol statement being proven and the
commitment. The string should not contain information on whether a node is marked “real”
or “simulated”, and should not contain challenges, responses, or the real/simulated flag for
any node.
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8. Compute the challenge for the root of the tree as the Fiat-Shamir hash of s (and, if applicable,
the associated data, such as the message being signed).

9. Perform a top-down traversal of only the portion of the tree marked “real” in order to compute
the challenge e for every node marked “real” below the root and, additionally, the response z
for every leaf marked “real” (note that nodes marked “simulated” have all their descendants
marked “simulated” and all the challenges for these descendants already computed, so there
is no need to recurse down “simulated” nodes, unless timing attacks are a concern). For every
node, do the following:

e If the node is a non-leaf marked “real” whose challenge is ey, proceed as follows:

— If the node is AND, let each of its children have the challenge eg

— If the node is OR, it has only one child marked “real”. Let this child have the
challenge equal to the XOR of the challenges of all the other children and eg

— If the node is THRESHOLD(k), number its children from 1 to n. Let i1,... %,
be the indices of the children marked “simulated” and ey,...,e,_ be their cor-
responding challenges. Let i9 = 0. Viewing 0,1,2,...,n and eq,...,e,_; as ele-
ments of GF(2!), find (via polynomial interpolation) the lowest-degree polynomial
Q(z) = Z?:_Ok a;z’ over GF(2') that is equal to e; at i; for each j from 0 to n — k
(this polynomial will have n — k + 1 coefficients, and the lowest coefficient will be
eg). For child number ¢ of the node, if the child is marked “real”, compute its chal-
lenge as Q(i) (if the child is marked “simulated”, its challenge is already Q(i), by

construction of Q).

e If the node is a leaf marked “real”, compute its response z according to the second
prover step of the Y-protocol given the randomness r used for the commitment a, the
challenge e, and witness w. In case of multiple provers, the main prover will send the
relevant challenges to other provers, who will respond with the relevant z. It is crucial
for security that the provers do not respond to more than one challenge e for a given
commitment a. Again, like in Step [6] the mere existence of this communication reveals
which leaves are real and which are simulated. Moreover, if the main prover chooses
the challenge e maliciously for another prover, the zero-knowledge property of the other
prover’s secret is not preserved (although, for most »-protocols, no useful information
about the other prover’s secret will be revealed for any, even maliciously chosen, e; but
a malicious choice of e may make side-channel attacks easier).

10. Output the proof consisting of the following information:

e The challenge of the root node

For every OR node: the challenges of all of its children but the rightmost

e For every THRESHOLD node: the coefficients ¢ . ..¢q,— of the polynomial Q(z) (ex-
cluding ag)

The responses for every leaf node
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A.3 Verifying

For each node in the tree, the verifier will obtain a ¢-bit challenge e by either reading it directly
from the proof or by using other information provided in the proof. For the leaves, the verifier will
also read the response z from the proof and will re-compute, using the challenge and the response,
the commitment a. Finally, verifier will hash the whole tree and will check that the hash value
matches the challenge of the root node.

Note that, unlike the prover, the verifier has no way of knowing which nodes are real and which
are simulated. In fact, making sure that the verifier cannot tell the difference between real and
simulated nodes is one of the security goals of the protocol.

The pseudocode below details the verifier’s steps.

1.

2.

Read the root challenge from in the proof.

In a top-down traversal of the tree, obtain the challenges for the children of every non-leaf
node by reading them from the proof or computing them, as follows. Let ey be the challenge
in the node.

e If the node is AND, then all of its children get ey as the challenge

e If the node is OR, then each of its children except rightmost reads its challenge from the
proof. The rightmost child gets a challenge computed as an XOR of the challenges of
all the other children and eg.

e If the node is THRESHOLD(k), let the number of its children be n. Assume the chil-
dren are numbered from 1 to n. Let gg = eg and read the values q1, ..., g,_r from the
proof. Viewing 1,2,...,n and qq, ..., ¢,k as elements of GF(2!), evaluate the polyno-
mial Q(x) = Y ¢;x* over GF(2%) at points 1,2, ..., n to get challenges for child 1,2, ..., n,
respectively.

For every leaf node, read the response z provided in the proof.

. For every leaf node, compute the commitment a from the challenge e and response z, per the

verifier algorithm of the leaf’s Y-protocol. If the verifier algorithm of the ¥-protocol for any
of the leaves rejects, then reject the entire proof.

Convert the tree to a string s for input to the Fiat-Shamir hash function, using the same
conversion as the prover in Step [7]

Accept the proof if the challenge at the root of the tree is equal to the Fiat-Shamir hash of s
(and, if applicable, the associated data). Reject otherwise.
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