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The United States shares limited maritime borders with
the Bahamas, Cuba, and Russia. With a population of more

than 331 million people, it is the third most populous
country in the world.

(Token-Level)

Which country is the third most populous?

Russia

Answer F1

https.//github.com/ lil-lab/bandit-ga
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Overview

How to continually improve extractive QA systems?

- User feedback is an effective bandit learning signal

- Reduce data need and adapts to changing world

- Potential for domain adaption

- Simulation experiments with 6 existing supervised datasets

In-Domain Simulation
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Scenario: very limited supervised training data 20
1) train an initial model on in-domain supervised data:

64 or 1024 examples 00

2) observe rewards and update the model on the fly 40

20

- Consistent performance gains on Wikipedia datasets
- Larger gains with weaker initial models 0

- Less effective with weaker initial models on datasets
with noisy simulation

In-Domain: Online vs. Offline
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Whereas the Lacey Act dealt with game animal management
and market commerce species,a major shift in focus occurred

by 1963 to habitat preservation instead of take regulations. A
provision was added by Congress in the Land and Water
Conservation Fund Act of...

in 1963 in U.S?

To habitat preservation

Instea

d of take regulations.

What shift happened in animal regulation
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Bandit Learning for Extractive QA
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Red numbers: performance of initial models trained on 64 or 1024 examples. Black numbers: simulation
performance. Horizontal grey lines: the supervised training performance.

Given the same initial model, compare online vs. offline setup: Setup SQUAD  HotpotQA NG NewsQA  TriviaQA  SearchQA
- Offline learning is slightly more effective with stronger 6arsim  816VS782 675vs663 61.8vs51.3  11vs31  17.5vs04  31vs13

initial models on Wikipedia datasets [-3.4] [-1.2] [-10.5] [+2.0] -17.1] -1.8]
- Offline learning fails on noisier datasets even with stronger 1004ssim 852Vs865 705vs732 679vs71.8 563Vs567  621vs7.5  70.3vs 41

Online F1 vs offline F1. Colored numbers: offline - online.
Domain Ada ptat|0n Simulation 100 5589 57 W squap | HotpotQA [l NQ B NewsQa [ TriviaQA  searchQa
-
Scenario: no supervised data available for the target domain s e I 57065 T o8
. . el . .. 63 l63 B . ——e 7
1) train an initial model on an existing dataset 60 65 67 I 65 30 o 58 68| (6768
. . . . 5C 615 60| = )
2) adapt the model to new domain with bandit learning '“’ 57 ” i PE 56
4() 45 46 A7
37 - o9
- Performance gains on 22/30 configurations 20 28 -
. o« 24
- Extrapolates well particularly on HotpotQA from TriviaQA 18 alalal6
-  Effectiveness depends on the relation between domains o
0
SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

Red numbers: performance of initial models trained on Y dataset (legend) on X dataset. Black numbers:
simulation performance after adapting to X dataset.

More In the paper:

- Sensitivity analysis to noisy user feedback

- Regret analysis: deficit suffered by the model relative to the optimal model
- Learning progression throughout the simulation



