MiCA White Paper KEETA (KTA)

Version 1.0 July 2025

White Paper in accordance with Markets in Crypto Assets Regulation (MiCAR) for the European Economic Area (EEA).

Purpose: seeking admission to trading in EEA.

Prepared and Filed by LCX.com

NOTE: THIS CRYPTO-ASSET WHITE PAPER HAS NOT BEEN APPROVED BY ANY COMPETENT AUTHORITY IN ANY MEMBER STATE OF THE EUROPEAN ECONOMIC AREA. THE PERSON SEEKING ADMISSION TO TRADING IS SOLELY RESPONSIBLE FOR THE CONTENT OF THIS CRYPTO-ASSET WHITE PAPER ACCORDING TO THE EUROPEAN ECONOMIC AREA'S MARKETS IN CRYPTO-ASSET REGULATION (MICA).

LCX is voluntarily filing a MiCA-compliant whitepaper for KEETA (KTA), even though KEETA is classified as "Other Crypto-Assets" under the Markets in Crypto-Assets Regulation (MiCA). Unlike Asset-Referenced Tokens (ARTs), Electronic Money Tokens (EMTs), or Utility Tokens, KEETA does not legally require a MiCA whitepaper. However, MiCA allows service providers to publish a whitepaper voluntarily to enhance transparency, regulatory clarity, and investor confidence.KTA is the native token of the Keeta Network – a high-performance Layer-1 blockchain designed for scalable financial applications – and plays a pivotal role in a novel ecosystem bridging traditional finance and decentralized technology ...

This document provides essential information about KEETA's characteristics, risks, and the framework under which LCX facilitates KEETA-related services in compliance with MiCA's regulatory standards.

This white paper has been prepared in accordance with the requirements set forth in Commission Implementing Regulation (EU) 2024/2984, ensuring that all relevant reporting formats, content specifications, and machine-readable structures outlined in Annex I of this regulation have been fully mapped and implemented, particularly reflected through the Recitals, to enable proper notification under the Markets in Crypto-Assets Regulation (MiCAR).

Copyright:

This white paper is under **copyright** of LCX AG Liechtenstein and may not be used, copied, or published by any third party without explicit written permission from LCX AG.

TABLE OF CONTENT 00

COMPLIANCE STATEMENTS	6
SUMMARY	7
A. PART A - INFORMATION ABOUT THE OFFEROR OR THE PERSON SEEKING	ADMISSION TO
TRADING	9
A.1 Name	9
A.2 Legal Form	9
A.3 Registered Address	9
A.4 Head Office	9
A.5 Registration Date	9
A.6 Legal Entity Identifier	9
A.7 Another Identifier Required Pursuant to Applicable National Law	g
A.8 Contact Telephone Number	9
A.9 E-mail Address	9
A.10 Response Time (Days)	9
A.11 Parent Company	9
A.12 Members of the Management Body	9
A.13 Business Activity	9
A.14 Parent Company Business Activity	10
A.15 Newly Established	10
A.16 Financial Condition for the past three Years	10
A.17 Financial Condition Since Registration	10
B. PART B - INFORMATION ABOUT THE ISSUER, IF DIFFERENT FROM THE OFF PERSON SEEKING ADMISSION TO TRADING	FEROR OR 11
B.1 Issuer different from offeror or person seeking admission to trading	11
B.2 Name	11
B.3 Legal Form	11
B.4 Registered Address	11
B.5 Head Office	11
B.6 Registration Date	11
B.7 Legal Entity Identifier	11
B.8 Another Identifier Required Pursuant to Applicable National Law	11
B.9 Parent Company	11
B.10 Members of the Management Body	11
B.11 Business Activity	11
B.12 Parent Company Business Activity	11
C. PART C - INFORMATION ABOUT THE OPERATOR OF THE TRADING PLATFO	RM IN CASES
WHERE IT DRAWS UP THE CRYPTO-ASSET WHITE PAPER AND INFORMATION	
PERSONS DRAWING THE CRYPTO-ASSET WHITE PAPER PURSUANT TO ARTIC	• • •
SECOND SUBPARAGRAPH, OF REGULATION (EU) 2023/1114	12
C.1 Name	12
C.2 Legal Form	12
C.3 Registered Address	12
C.4 Head Office	12
C.5 Registration Date	12

	C.6 Legal Entity Identifier	12
	C.7 Another Identifier Required Pursuant to Applicable National Law	12
	C.8 Parent Company	12
	C.9 Reason for Crypto-Asset White Paper Preparation	12
	C.10 Members of the Management Body	12
	C.11 Operator Business Activity	12
	C.12 Parent Company Business Activity	13
	C.13 Other persons drawing up the white paper under Article 6 (1) second subparagraph MiCA	13
	C.14 Reason for drawing up the white paper under Article 6 (1) second subparagraph MiCA	13
D.	PART D - INFORMATION ABOUT THE CRYPTO-ASSET PROJECT	14
	D.1 Crypto-Asset Project Name	14
	D.2 Crypto-Assets Name	14
	D.3 Abbreviation	14
	D.4 Crypto-Asset Project Description	14
	D.5 Details of all persons involved in the implementation of the crypto-asset project	14
	D.6 Utility Token Classification	14
	D.7 Key Features of Goods/Services for Utility Token Projects	14
	D.8 Plans for the Token	14
	D.9 Resource Allocation	14
	D.10 Planned Use of Collected Funds or Crypto-Assets	14
	PART E - INFORMATION ABOUT THE OFFER TO THE PUBLIC OF CRYPTO-ASSETS OR EIR ADMISSION TO TRADING	15
•••	E.1 Public Offering or Admission to Trading	15
	E.2 Reasons for Public Offer or Admission to Trading	15
	E.3 Fundraising Target	15
	E.4 Minimum Subscription Goals	15
	E.5 Maximum Subscription Goal	15
	E.6 Oversubscription Acceptance	15
	E.7 Oversubscription Allocation	15
	E.8 Issue Price	15
	E.9 Official Currency or Any Other Crypto-Assets Determining the Issue Price	15
	E.10 Subscription Fee	15
	E.11 Offer Price Determination Method	15
	E.12 Total Number of Offered/Traded Crypto-Assets	15
	E.13 Targeted Holders	15
	E.14 Holder Restrictions	15
	E.15 Reimbursement Notice	16
	E.16 Refund Mechanism	16
	E.17 Refund Timeline	16
	E.18 Offer Phases	16
	E.19 Early Purchase Discount	16
	E.20 Time-Limited Offer	16
	E.21 Subscription Period Beginning	16
	E.22 Subscription Period End	16
	E.23 Safeguarding Arrangements for Offered Funds/Crypto-Assets	16
	E.24 Payment Methods for Crypto-Asset Purchase	16
	L.24 Layment Methods for Orypto-Asset Lutohase	10

	E.25 Value Transfer Methods for Reimbursement	16
	E.26 Right of Withdrawal	16
	E.27 Transfer of Purchased Crypto-Assets	16
	E.28 Transfer Time Schedule	16
	E.29 Purchaser's Technical Requirements	16
	E.30 Crypto-asset service provider (CASP) name	16
	E.31 CASP identifier	16
	E.32 Placement Form	16
	E.33 Trading Platforms name	16
	E.34 Trading Platforms Market Identifier Code (MIC)	17
	E.35 Trading Platforms Access	17
	E.36 Involved Costs	17
	E.37 Offer Expenses	17
	E.38 Conflicts of Interest	17
	E.39 Applicable Law	17
	E.40 Competent Court	17
F. F	PART F - INFORMATION ABOUT THE CRYPTO-ASSETS	18
	F.1 Crypto-Asset Type	18
	F.2 Crypto-Asset Functionality	18
	F.3 Planned Application of Functionalities	18
	F.4 Type of white paper	18
	F.5 The type of submission	18
	F.6 Crypto-Asset Characteristics	18
	F.7 Commercial name or trading name	18
	F.8 Website of the issuer	18
	F.9 Starting date of offer to the public or admission to trading	18
	F.10 Publication date	18
	F.11 Any other services provided by the issuer	18
	F.12 Language or languages of the white paper	18
	F.13 Digital Token Identifier Code used to uniquely identify the crypto-asset or each of the seve crypto assets to which the white paper relates, where available	eral 18
	F.14 Functionally Fungible Group Digital Token Identifier, where available	19
	F.15 Voluntary data flag	19
	F.16 Personal data flag	19
	F.17 LEI eligibility	19
	F.18 Home Member State	19
	F.19 Host Member States	19
	PART G - INFORMATION ON THE RIGHTS AND OBLIGATIONS ATTACHED TO THE	
CR	YPTO-ASSETS	20
	G.1 Purchaser Rights and Obligations	20
	G.2 Exercise of Rights and Obligation	20
	G.3 Conditions for Modifications of Rights and Obligations	20
	G.4 Future Public Offers	20
	G.5 Issuer Retained Crypto-Assets	20
	G.6 Utility Token Classification	20
	G.7 Key Features of Goods/Services of Utility Tokens	20

	G.8 Utility Tokens Redemption	20
	G.9 Non-Trading Request	20
	G.10 Crypto-Assets Purchase or Sale Modalities	20
	G.11 Crypto-Assets Transfer Restrictions	20
	G.12 Supply Adjustment Protocols	20
	G.13 Supply Adjustment Mechanisms	20
	G.14 Token Value Protection Schemes	21
	G.15 Token Value Protection Schemes Description	21
	G.16 Compensation Schemes	21
	G.17 Compensation Schemes Description	21
	G.18 Applicable Law	21
	G.19 Competent Court	21
Н.	PART H – INFORMATION ON THE UNDERLYING TECHNOLOGY	21
	H.1 Distributed ledger technology	21
	H.2 Protocols and Technical Standards	22
	H.3 Technology Used	23
	H.4 Consensus Mechanism	23
	H.5 Incentive Mechanisms and Applicable Fees	24
	H.6 Use of Distributed Ledger Technology	24
	H.7 DLT Functionality Description	24
	H.8 Audit	24
	H.9 Audit Outcome	24
I. P	PART I – INFORMATION ON RISKS	25
	I.1 Offer-Related Risks	25
	I.2 Issuer-Related Risks	25
	I.3 Crypto-Assets-Related Risks	25
	I.4 Project Implementation-Related Risks	26
	I.5 Technology-Related Risks	26
	I.6 Mitigation Measures	26
	PART J – INFORMATION ON THE SUSTAINABILITY INDICATORS IN RELATION TO ADVER	SE
IMI	PACT ON THE CLIMATE AND OTHER ENVIRONMENT-RELATED ADVERSE IMPACTS	27
	J.1 Mandatory information on principal adverse impacts on the climate and other	
	environment-related adverse impacts of the consensus mechanism	27
	J.2 Supplementary information on principal adverse impacts on the climate and other environment-related adverse impacts of the consensus mechanism	28

01 DATE OF NOTIFICATION

2025-09-01

COMPLIANCE STATEMENTS

- This crypto-asset white paper has not been approved by any competent authority in any Member State of the European Economic Area. The offeror of the crypto-asset is solely responsible for the content of this crypto-asset white paper.
 - Where relevant in accordance with Article 6(3), second subparagraph of Regulation (EU) 2023/1114, reference shall be made to 'person seeking admission to trading' or to 'operator of the trading platform' instead of 'offeror'.
- This crypto-asset white paper complies with Title II of Regulation (EU) 2023/1114 and, to the best of the knowledge of the management body, the information presented in the crypto-asset white paper is fair, clear and not misleading and the crypto-asset white paper makes no omission likely to affect its import.
- O4 The crypto-asset referred to in this white paper may lose its value in part or in full, may not always be transferable and may not be liquid.
- 05 Not Applicable
- The crypto-asset referred to in this white paper is not covered by the investor compensation schemes under Directive 97/9/EC of the European Parliament and of the Council. The crypto-asset referred to in this white paper is not covered by the deposit guarantee schemes under Directive 2014/49/EU of the European Parliament and of the Council.

SUMMARY

07 Warning

This summary should be read as an introduction to the crypto-asset white paper. The prospective holder should base any decision to purchase this crypto-asset on the content of the crypto-asset white paper as a whole and not on the summary alone. The offer to the public of this crypto-asset does not constitute an offer or solicitation to purchase financial instruments and any such offer or solicitation can be made only by means of a prospectus or other offer documents pursuant to the applicable national law.

This crypto-asset white paper does not constitute a prospectus as referred to in Regulation (EU) 2017/1129 of the European Parliament and of the Council (36) or any other offer document pursuant to Union or national law.

08 Characteristics of the crypto-asset

The KTA Keeta Token ("KTA") is a fungible and transferable crypto-asset issued on a distributed ledger, designed to support transactions, access services, and provide value exchange within the Keeta ecosystem and across external trading platforms. KTA does not constitute an asset-referenced token or an e-money token, as it is not backed by a reserve of assets nor pegged to any official currency. Instead, its value is determined entirely by market supply and demand, with price fluctuations reflecting investor sentiment, adoption, and overall market conditions. The total supply of KTA is capped at issuance, ensuring predictable token scarcity and fostering transparent tokenomics. KTA can be stored in compatible digital wallets and is fully transferable on authorised trading venues, enabling liquidity and accessibility for holders. The underlying blockchain infrastructure employs a secure and energy-efficient consensus mechanism that guarantees the integrity, immutability, and transparency of transactions. While KTA provides access to specific features and services within the Keeta ecosystem, it also functions as a tradable crypto-asset on exchanges, thereby combining internal platform use with external market transferability.

09 Not applicable

10 Key information about the offer to the public or admission to trading

This White Paper relates solely to the admission to trading of KTA on regulated trading platforms in the EEA. It does not constitute a new offer to the public within the meaning of Regulation (EU) 2023/1114. The total supply of KTA is fixed and capped at issuance, with a predetermined allocation plan covering public distribution, strategic partners, ecosystem development, and reserve funds. Tokens purchased during the public offering will be delivered to investors' designated digital wallets following the completion of standard onboarding, including Know-Your-Customer (KYC) and Anti-Money Laundering (AML) checks. Admission to trading will be facilitated through regulated trading platforms that meet MiCA's standards for transparency, market integrity, and investor protection. The issuer has established safeguards to ensure orderly trading, including measures to prevent market abuse and ensure equal treatment of token holders. Investors should note that the market value of KTA may fluctuate upon admission to trading, and no guarantee of liquidity or price stability can be provided.

Total offer amount	Not applicable
Total number of tokens to be offered to the public	Not applicable
Subscription period	Not applicable
Minimum and maximum subscription amount	Not applicable
Issue price	Not applicable
Subscription fees (if any)	Not applicable
Target holders of tokens	Not applicable
Description of offer phases	Not applicable
CASP responsible for placing the token (if any)	Not applicable
Form of placement	Not applicable
Admission to trading	LCX AG, Herrengasse 6, 9490 Vaduz, Liechtenstein

A. PART A - INFORMATION ABOUT THE OFFEROR OR THE PERSON SEEKING ADMISSION TO TRADING

A.1 Name

LCX

A.2 Legal Form

AG

A.3 Registered Address

Herrengasse 6, 9490 Vaduz, Liechtenstein

A.4 Head Office

Herrengasse 6, 9490 Vaduz, Liechtenstein

A.5 Registration Date

24.04.2018

A.6 Legal Entity Identifier

529900SN07Z6RTX8R418

A.7 Another Identifier Required Pursuant to Applicable National Law

FL-0002.580.678-2

A.8 Contact Telephone Number

+423 235 40 15

A.9 E-mail Address

legal@lcx.com

A.10 Response Time (Days)

020

A.11 Parent Company

Not applicable

A.12 Members of the Management Body

Full Name	Business Address	Function
Monty C. M. Metzger	Herrengasse 6, 9490 Vaduz, Liechtenstein	President of the Board
Katarina Metzger	Herrengasse 6, 9490 Vaduz, Liechtenstein	Board Member
Anurag Verma	Herrengasse 6, 9490 Vaduz, Liechtenstein	Director of Technology

A.13 Business Activity

LCX provides various crypto-asset services under Liechtenstein's Token and Trusted Technology Service Provider Act ("Token- und Vertrauenswürdige

Technologie-Dienstleister-Gesetz" in short "TVTG") also known as the Blockchain Act. These include custody and administration of crypto-assets, offering secure storage for clients' assets and private keys. LCX operates a trading platform, facilitating the matching of buy and sell orders for crypto-assets. It enables both crypto-to-fiat and crypto-to-crypto exchanges, ensuring compliance with AML and KYC regulations. LCX also supports token placements, marketing crypto-assets on behalf of offerors.

Under MiCA, LCX is classified as a Crypto-Asset Service Provider (CASP). LCX is not yet formally supervised under MiCA until the license is granted by the competent authority. LCX AG has applied for MiCA licensing on February 1, 2025, the first day of MiCA's implementation in Liechtenstein.

Under the TVTG framework, LCX provides:

- TT Depositary Custody and safekeeping of crypto-assets.
- TT Trading Platform Operator Operation of a regulated crypto-asset exchange.
- TT Exchange Service Provider Crypto-to-fiat and crypto-to-crypto exchange.
- Token Issuer Marketing and distribution of tokens.
- TT Transfer Service Provider Crypto-asset transfers between ledger addresses.
- Token Generator & Tokenization Service Provider Creation and issuance of tokens.
- Physical Validator Enforcement of token-based rights on TT systems.
- TT Verification & Identity Service Provider Legal capacity verification and identity registration.
- TT Price Service Provider Providing aggregated crypto-asset price information.

A.14 Parent Company Business Activity

Not applicable

A.15 Newly Established

false

A.16 Financial Condition for the past three Years

LCX AG has a strong capital base, with CHF 1 million (approx. 1,126,000 USD) in share capital (Stammkapital) and a solid equity position (KEETAkapital) in 2023. The company has experienced fluctuations in financial performance over the past three years, reflecting the dynamic nature of the crypto market. While LCX AG recorded a loss in 2022, primarily due to a market downturn and a security breach, it successfully covered the impact through reserves. The company has remained financially stable, achieving revenues and profits in 2021, 2023 and 2024 while maintaining break-even operations.

In 2023 and 2024, LCX AG strengthened its operational efficiency, expanded its business activities, and upheld a stable financial position. Looking ahead to 2025, the company anticipates positive financial development, supported by market uptrends, an inflow of customer funds, and strong business performance. Increased adoption of digital assets and service expansion are expected to drive higher revenues and profitability, further reinforcing LCX AG's financial position.

A.17 Financial Condition Since Registration

LCX AG has been financially stable since its registration, supported by CHF 1 million in share capital (Stammkapital) and continuous business growth. Since its inception, the company has expanded its operations, secured multiple regulatory registrations, and established itself as a key player in the crypto and blockchain industry.

While market conditions have fluctuated, LCX AG has maintained strong revenues and break-even operations. The company has consistently reinvested in its platform, technology, and regulatory compliance, ensuring long-term sustainability. The LCX Token has been a fundamental part of the ecosystem, with a market capitalization of approximately \$200 million USD and an all-time high exceeding \$500 million USD in 2022. Looking ahead, LCX AG anticipates continued financial growth, driven by market uptrends, increased adoption of digital assets, and expanding business activities.

B. PART B - INFORMATION ABOUT THE ISSUER, IF DIFFERENT FROM THE OFFEROR OR PERSON SEEKING ADMISSION TO TRADING

B.1 Issuer different from offeror or person seeking admission to trading

True

B.2 Name

Keeta Inc.

B.3 Legal Form

Corporation

B.4 Registered Address

30 North Gould Street, #47048, Sheridan, 82801, United States of America

B.5 Head Office

30 North Gould Street, #47048, Sheridan, 82801, United States of America

B.6 Registration Date

31 December 2022

B.7 Legal Entity Identifier

Not applicable

B.8 Another Identifier Required Pursuant to Applicable National Law

Not applicable

B.9 Parent Company

Not applicable

B.10 Members of the Management Body

Ty Schenk - Chief Executive Officer (CEO) @

Roy Keene - Chief Technology Officer (CTO) . .

Andrew Kalinowski - Chief Financial Officer (CFO) @

Josh Kleiman - Chief Compliance Officer & General Counsel ...

B.11 Business Activity

Keeta, Inc. is a technology company focused on developing Keeta Network, a next-generation blockchain platform for scalable "blockchain banking" solutions . The company's mission is to bridge traditional finance with decentralized ledger technology by providing a high-throughput, compliant, and secure infrastructure for transactions across multiple networks . Keeta's activities include core protocol development (blockchain software engineering), operation of network nodes (especially during early network bootstrapping), and development of user-facing applications such as a multi-asset wallet and decentralized exchange that leverage the Keeta Network . Keeta, Inc. also actively engages with financial institutions and regulatory bodies to ensure the Keeta Network meets requirements for Know-Your-Customer (KYC) and Anti-Money Laundering (AML) compliance, by integrating digital identity certificate issuance and other compliance tools directly into the blockchain protocol . The company is venture-funded, having raised approximately \$17 million in seed financing, and boasts notable backers including Eric Schmidt (former Google CEO) . This funding supports ongoing R&D, network security audits, and growth of the Keeta ecosystem.

B.12 Parent Company Business Activity

Not applicable

C. PART C - INFORMATION ABOUT THE OPERATOR OF THE TRADING PLATFORM IN CASES WHERE IT DRAWS UP THE CRYPTO-ASSET WHITE PAPER AND INFORMATION ABOUT OTHER PERSONS DRAWING THE CRYPTO-ASSET WHITE PAPER PURSUANT TO ARTICLE 6(1), SECOND SUBPARAGRAPH, OF REGULATION (EU) 2023/1114

C.1 Name

LCX AG

C.2 Legal Form

AG

C.3 Registered Address

Herrengasse 6, 9490 Vaduz, Liechtenstein

C.4 Head Office

Herrengasse 6, 9490 Vaduz, Liechtenstein

C.5 Registration Date

24.04.2018

C.6 Legal Entity Identifier

529900SN07Z6RTX8R418

C.7 Another Identifier Required Pursuant to Applicable National Law

FL-0002.580.678-2

C.8 Parent Company

Not Applicable

C.9 Reason for Crypto-Asset White Paper Preparation

LCX is voluntarily preparing this MiCA-compliant whitepaper for KEETA (KTA) to enhance transparency, regulatory clarity, and investor confidence. While KEETA does not require a MiCA whitepaper due to its classification as "Other Crypto-Assets", LCX is providing this document to support its role as a Crypto-Asset Service Provider (CASP) and ensure compliance with MiCA regulations in facilitating KEETA trading on its platform.

C.10 Members of the Management Body

Full Name	Business Address	Function
Monty C. M. Metzger	Herrengasse 6, 9490 Vaduz, Liechtenstein	President of the Board
Katarina Metzger	Herrengasse 6, 9490 Vaduz, Liechtenstein	Board Member
Anurag Verma	Herrengasse 6, 9490 Vaduz, Liechtenstein	Director of Technology

C.11 Operator Business Activity

LCX provides various crypto-asset services under Liechtenstein's Token and Trusted Technology Service Provider Act ("Token- und Vertrauenswürdige

Technologie-Dienstleister-Gesetz" in short "TVTG") also known as the Blockchain Act. These include custody and administration of crypto-assets, offering secure storage for clients' assets and private keys. LCX operates a trading platform, facilitating the matching of buy and sell orders for crypto-assets. It enables both crypto-to-fiat and crypto-to-crypto exchanges,

ensuring compliance with AML and KYC regulations. LCX also supports token placements, marketing crypto-assets on behalf of offerors.

Under MiCA, LCX is classified as a Crypto-Asset Service Provider (CASP). LCX is not yet formally supervised under MiCA until the license is granted by the competent authority. LCX AG has applied for MiCA licensing on February 1, 2025, the first day of MiCA's implementation in Liechtenstein.

Under the TVTG framework, LCX provides:

- TT Depositary Custody and safekeeping of crypto-assets.
- TT Trading Platform Operator Operation of a regulated crypto-asset exchange.
- TT Exchange Service Provider Crypto-to-fiat and crypto-to-crypto exchange.
- Token Issuer Marketing and distribution of tokens.
- TT Transfer Service Provider Crypto-asset transfers between ledger addresses.
- Token Generator & Tokenization Service Provider Creation and issuance of tokens.
- Physical Validator Enforcement of token-based rights on TT systems.
- TT Verification & Identity Service Provider Legal capacity verification and identity registration.
- TT Price Service Provider Providing aggregated crypto-asset price information.

C.12 Parent Company Business Activity

Not Applicable

C.13 Other persons drawing up the white paper under Article 6 (1) second subparagraph MiCA

Not Applicable

C.14 Reason for drawing up the white paper under Article 6 (1) second subparagraph MiCA

Not Applicable

D. PART D - INFORMATION ABOUT THE CRYPTO-ASSET PROJECT

D.1 Crypto-Asset Project Name

KEETA

D.2 Crypto-Assets Name

KEETA

D.3 Abbreviation

KTA

D.4 Crypto-Asset Project Description

Keeta Network is a Layer-1 blockchain platform designed for scalable, high-speed financial transactions and cross-network interoperability . The project's vision is to serve as a "unifying layer" where multiple blockchains and traditional payment systems can connect and transact seamlessly . Keeta Network's architecture is novel: it employs a Delegated Proof of Stake (dPoS) consensus mechanism on top of a hybrid Directed Acyclic Graph (DAG) ledger structure . In Keeta's DAG design, each user account maintains its own chain of transactions (forming an individual DAG), and inter-account interactions are represented as links between these DAGs . This design, coupled with client-directed validation (a two-step transaction confirmation process initiated by the sender), allows Keeta to achieve extremely high throughput without typical bottlenecks . The network is built to scale linearly with available hardware resources, leveraging cloud-native technologies (including serverless computing) to reach unprecedented performance levels .

D.5 Details of all persons involved in the implementation of the crypto-asset project

The KEETA project is a collaborative effort involving the core developers, the issuing foundation, and a decentralized community of node operators and users. Key parties include:

Full Name	Business Address	Function
KEETA Inc	30 North Gould Street, #47048, Sheridan, 82801, United States of America	Ecosystem Steward
Validators / Node Operators	Global	Transaction Validation
Community	Global	KEETA Community & KEETA Holders

D.6 Utility Token Classification

false

D.7 Key Features of Goods/Services for Utility Token Projects

Not applicable

D.8 Plans for the Token

Not applicable

D.9 Resource Allocation

Not applicable

D.10 Planned Use of Collected Funds or Crypto-Assets

Not applicable

E. PART E - INFORMATION ABOUT THE OFFER TO THE PUBLIC OF CRYPTO-ASSETS OR THEIR ADMISSION TO TRADING

E.1 Public Offering or Admission to Trading

ATTR

E.2 Reasons for Public Offer or Admission to Trading

LCX is voluntarily filing a MiCA-compliant whitepaper for KEETA (KEETA) to enhance transparency, regulatory clarity, and investor confidence. While KEETA is classified as "Other Crypto-Assets" under MiCA and does not require a whitepaper, this initiative supports compliance readiness and aligns with MiCA's high disclosure standards. By doing so, LCX strengthens its position as a regulated exchange, ensuring a trustworthy and transparent trading environment for KEETA within the EU's evolving regulatory framework. Additionally, this filing facilitates market access and institutional adoption by removing uncertainty for institutional investors and regulated entities seeking to engage with KEETA in a compliant manner. It further supports the broader market adoption and integration of KEETA into the regulated financial ecosystem, reinforcing LCX's role in shaping compliant and transparent crypto markets.

E.3 Fundraising Target

Not applicable

E.4 Minimum Subscription Goals

Not applicable

E.5 Maximum Subscription Goal

Not applicable

E.6 Oversubscription Acceptance

Not applicable

E.7 Oversubscription Allocation

Not applicable

E.8 Issue Price

Not applicable

E.9 Official Currency or Any Other Crypto-Assets Determining the Issue Price

Not applicable

E.10 Subscription Fee

Not applicable

E.11 Offer Price Determination Method

Not applicable

E.12 Total Number of Offered/Traded Crypto-Assets

As of mid-2025, approximately 406 million KTA tokens are in circulation out of a total initial supply of 1 billion KTA . The maximum supply at genesis was fixed at 1,000,000,000 KTA (1 billion), which were minted on the Keeta Network at launch. Notably, KTA's tokenomics follow an inflationary model – there is no immutable cap on supply beyond the initial 1 billion, as the protocol can introduce new tokens over time to reward validators or fund ongoing development . However, any increase beyond the 1 billion initial supply would occur gradually and according to the network's governance and emission schedule (see G.12/G.13 for details on supply adjustments). At the time of this writing, the live market capitalization of KTA is roughly in the range of \$450–\$480 million USD . The reflecting a market price around \$1.14–\$1.17 per

KTA. All 1 billion tokens were created at launch, but only ~40.6% are circulating; the remainder are locked in various allocations (team, reserves, etc.) and will vest over time (those allocations are described below).

E.13 Targeted Holders

ALL

E.14 Holder Restrictions

Not applicable

E.15 Reimbursement Notice

Not applicable

E.16 Refund Mechanism

Not applicable

E.17 Refund Timeline

Not applicable

E.18 Offer Phases

Not applicable

E.19 Early Purchase Discount

Not applicable

E.20 Time-Limited Offer

Not applicable

E.21 Subscription Period Beginning

Not applicable

E.22 Subscription Period End

Not applicable

E.23 Safeguarding Arrangements for Offered Funds/Crypto-Assets

Not applicable

E.24 Payment Methods for Crypto-Asset Purchase

KTA/EUR

E.25 Value Transfer Methods for Reimbursement

Not applicable

E.26 Right of Withdrawal

Not applicable

E.27 Transfer of Purchased Crypto-Assets

Not applicable

E.28 Transfer Time Schedule

Not applicable

E.29 Purchaser's Technical Requirements

Not applicable

E.30 Crypto-asset service provider (CASP) name

Not applicable

E.31 CASP identifier

Not applicable

E.32 Placement Form

NTAV

E.33 Trading Platforms name

LCX AG

E.34 Trading Platforms Market Identifier Code (MIC)

LCXE

E.35 Trading Platforms Access

KEETA is widely traded on numerous cryptocurrency exchanges globally. KEETA is not confined to any single trading venue; it can be accessed by retail and institutional investors worldwide through dozens of exchanges. LCX Exchange now supports KEETA trading (pair KTA/EUR). To access KEETA trading on LCX, users must have an LCX account and complete the platform's KYC verification, as LCX operates under strict compliance standards. Trading on LCX is available via its web interface and APIs to verified customers.

E.36 Involved Costs

Not applicable

E.37 Offer Expenses

Not applicable

E.38 Conflicts of Interest

Not applicable

E.39 Applicable Law

For admission to trading on LCX, the applicable law is **Liechtenstein law**, applied in accordance with MiCA and relevant EU regulations. For user interactions with the decentralized Keeta Network outside LCX, applicable law depends on the user's jurisdiction.

E.40 Competent Court

In case of disputes related to services provided by LCX, the competent court is: The Courts of Liechtenstein, with jurisdiction in accordance with Liechtenstein law and applicable EU regulations.

F. PART F - INFORMATION ABOUT THE CRYPTO-ASSETS

F.1 Crypto-Asset Type

Other Crypto-Asset

F.2 Crypto-Asset Functionality

The KTA Keeta Token ("KTA") is the native digital token that powers the Keeta Network and underpins its economic and governance framework. It functions primarily as a medium of exchange and a unit of value within the ecosystem. All operations on the Keeta blockchain, including asset transfers, decentralized exchange (DEX) trades, and token issuance, require payment of transaction fees in KTA. These fees, often referred to as "gas," ensure the efficient use of network resources, prevent spam, and effectively position KTA as the fuel enabling the network's high-speed transactions. Beyond its role as a transactional currency, KTA plays a critical part in securing the network through its delegated proof-of-stake (dPoS) consensus mechanism. Token holders can stake their KTA by delegating to validator nodes or by running validator nodes themselves, thereby contributing to block validation and consensus. The influence of each validator is proportional to the amount of KTA staked, and validators are rewarded through block rewards and potentially a share of transaction fees. This creates a direct link between network security and the value of the token, while offering holders the opportunity to earn rewards.

KTA also has an important governance dimension. Although governance is currently managed by the core team, the long-term vision is to decentralize decision-making through on-chain governance powered by KTA. Holders will be able to vote on proposals for network upgrades, parameter adjustments, and other critical protocol decisions, either directly or via their chosen validators. This ensures that the community will play a meaningful role in shaping the network's future. In addition, KTA is designed to be deeply integrated into the applications built on top of Keeta. For instance, the Keeta Wallet is expected to use KTA as the base currency for facilitating swaps between crypto, fiat, and tokenized stocks. On the native Keeta DEX, KTA may serve as a primary quote asset or be paired with other tokens to provide liquidity, while in the future it could also be used as collateral in decentralized finance (DeFi) applications or to access premium features, depending on developer adoption.

Finally, KTA functions as a value bridge and incentive mechanism within the broader digital economy. It is envisioned as an intermediary asset for cross-chain swaps and as a potential reserve asset supporting tokenized real-world assets. At the same time, KTA may be used to incentivize participation and innovation in the ecosystem, for example through developer grants, staking rewards, or ecosystem growth programs. Collectively, these roles make KTA a versatile and essential token at the heart of the Keeta Network, serving transactional, security, and incentive functions.

F.3 Planned Application of Functionalities

KTA is already in use on a fully operational network, and its core functionalities described above are active. Looking ahead, the planned applications of KTA's functionalities are focused on expanding and integrating its role in a broader financial context:

While KTA provides utility within the ecosystem, it does not constitute a Utility Token under Article 3(1)(8) of MiCA, as its access rights are not contractually guaranteed nor tied to specific, identifiable goods or services.

scenarios, KTA could be used to pay fees or as an intermediary asset in cross-chain swaps, making it a linchpin of cross-network liquidity.

- Keeta Wallet & Multi-Asset Integration: The forthcoming official Keeta Wallet (a flagship application) will allow users to manage crypto, fiat, stocks, and identity in one interface . KTA will be the backbone for this wallet's on-chain operations e.g., converting one asset to another may involve a KTA transaction behind the scenes. The wallet is expected to hide blockchain complexity for end-users, but each action (like tokenizing a stock or sending funds to a bank) will utilize KTA in some form (fee or swap). This expands KTA's use to everyday financial transactions, if the wallet achieves its vision of a seamless multi-asset experience.
- Smart Contracts and "Rule Engine" Development: Currently, Keeta does not use Ethereum-like smart contracts but rather built-in "rule engines" and permissions for compliance and tokenization. In the future, Keeta's development roadmap may introduce more programmable features (the whitepaper hints at extensible operations). If/when that occurs, KTA might be used to deploy or execute these on-chain programs. Planned upgrades will likely maintain KTA as the gas for any new operation type. Additionally, if governance tokens or stablecoins are launched on Keeta as separate assets, KTA's role may include governance over those via staking or fee discounts.
- Ecosystem Growth & Partnerships: Keeta, Inc. plans to partner with financial
 institutions to use the network for settlements and asset issuance. In such cases, KTA
 would be applied as the settlement token or fee token in those enterprise use cases.
 For example, a bank issuing a tokenized bond on Keeta might need to hold KTA for
 fees and could integrate KTA into its processes. While these plans depend on
 partnership development, they indicate potential growth in KTA's institutional usage.

F.4 Type of white paper

OTHR

F.5 The type of submission

NEWT

F.6 Crypto-Asset Characteristics

Keeta (KTA) is a fungible and transferable blockchain token that underpins the Keeta Network, a public and permissionless distributed ledger. Ownership of KTA is recorded directly on this blockchain, with transfers validated through the network's consensus mechanism, ensuring that no central authority can alter balances unilaterally and that all transactions are subject to cryptographic verification. The Keeta Network's technical design, based on a combination of Delegated Proof-of-Stake (dPoS) and Directed Acyclic Graph (DAG) structures, allows KTA transactions to be processed with extremely high speed and efficiency, typically finalizing in less than half a second and incurring negligible fees. Unlike proof-of-work systems, the network does not rely on energy-intensive mining, and unlike traditional proof-of-stake protocols, it avoids long block intervals, making KTA well-suited for high-volume microtransactions and real-time financial interactions.

The token was fully pre-mined at launch, with a fixed genesis supply of one billion units. While there is no ongoing mining, the protocol allows for new issuance through controlled inflation designed to incentivize validators, with governance able to adjust inflation rates to balance security and economic sustainability. At present, approximately 40.6% of the total supply is in circulation, while the remainder is allocated to stakeholders under vesting arrangements. The network does not feature an automatic burning mechanism, meaning the total supply will remain constant or gradually increase unless tokens are destroyed voluntarily or future governance introduces supply-reducing mechanisms.

On its native chain, KTA functions as the core unit of account and does not follow the ERC-20 or other external token standards, though bridged versions of KTA exist on other platforms, such as a token contract on the Base network, to enable interoperability and exchange trading. These bridged tokens mirror the value of mainnet KTA and allow integration with ecosystems like Ethereum, while KTA on the Keeta chain supports native token standards including custom user token creation. KTA is divisible to 18 decimal places and is compatible with Keeta-native wallets as well as certain multi-chain wallets that integrate the Keeta protocol.

F.7 Commercial name or trading name

KTA

F.8 Website of the issuer

https://keeta.com/

F.9 Starting date of offer to the public or admission to trading

2025-10-01

F.10 Publication date

2025-10-01

F.11 Any other services provided by the issuer

Not applicable

F.12 Language or languages of the white paper

English

F.13 Digital Token Identifier Code used to uniquely identify the crypto-asset or each of the several crypto assets to which the white paper relates, where available

Not available (none currently assigned)

F.14 Functionally Fungible Group Digital Token Identifier, where available

Not applicable

F.15 Voluntary data flag

true

F.16 Personal data flag

false

F.17 LEI eligibility

false

F.18 Home Member State

Liechtenstein

F.19 Host Member States

Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden.

G. PART G - INFORMATION ON THE RIGHTS AND OBLIGATIONS ATTACHED TO THE CRYPTO-ASSETS

G.1 Purchaser Rights and Obligations

Holding KTA does not entitle the owner to any contractual claim against Keeta, Inc. or any other party (no dividends, no profit share, no redemption guarantee). The rights of a KTA holder are fundamentally technical and network-based: owners have the right to use their KTA to initiate transactions on the Keeta Network (e.g., transferring tokens, interacting with on-chain features) and to participate in network activities like staking and governance voting. These rights are enforced by the network's consensus rules and cryptography, not by legal contract. Every KTA holder is responsible for managing their own tokens (typically via private keys). Ownership of KTA is evidenced by the ability to sign transactions with the private key of the address holding the tokens – this confers the right to transfer or spend those tokens.

Holders also have the ability (but not obligation) to stake KTA to support validators, which in turn gives them potential rights to network rewards (if the protocol distributes staking rewards) proportional to their contribution. If governance proposals are introduced, KTA holders may gain the right to vote or signal on changes. However, these are governance privileges rather than guaranteed rights; they depend on the network implementing such mechanisms.

G.2 Exercise of Rights and Obligation

Since the rights attached to KTA are mainly of a decentralized/network nature, their exercise is done on-chain. A KTA holder exercises their rights by executing a transaction via a compatible wallet:

To transfer KTA (exercising the right of transfer), the holder uses their private key to sign a transfer transaction specifying the recipient address and amount, and then broadcasts it to the network. The obligation to pay a fee in KTA is automatically deducted from the amount or charged separately as per network rules. Once validators confirm the transaction, the new owner obtains the KTA and the transfer right is thereby exercised.

To stake KTA (exercising governance/security participation rights), the holder uses a staking or delegation transaction, pointing their KTA to a validator's address. By doing so, they are exercising the right to support network operations. They then have a corresponding expectation (though not legally enforced, but by protocol) to receive a share of rewards if their validator performs duties correctly. Unstaking typically involves a waiting period defined by the protocol.

Any governance votes or similar would be exercised by signing and submitting a vote transaction with the KTA holder's keys.

Obligations like paying network fees are automatically enforced by the network; if a user attempts to send a transaction without sufficient KTA to cover the fee, the transaction will be invalid. Thus, compliance with network rules is a prerequisite to exercising any right.

G.3 Conditions for Modifications of Rights and Obligations

The "rights" inherent to KTA (as a decentralized token) can only be modified through changes to the Keeta Network protocol itself. This means any alteration in how KTA functions (e.g., introducing a new utility, changing fee mechanics, adding a burning mechanism, or altering staking rules) would require a network governance process or upgrade. In practical terms, changes would likely be initiated by Keeta's core developers via a software update or proposal, then adopted by validators (and community) via consensus. Because Keeta employs a delegated consensus, modifications to core token rights would necessitate broad agreement among stakeholders (validators especially). A significant change might even involve a hard fork, where token holders could choose which chain to support.

Keeta, Inc. by itself cannot unilaterally change the token's fundamental properties once the network is live – any changes must be encoded in an update that the network adopts. For example, if introducing a new inflation schedule, the proposal would be communicated and validators would have to run new node software supporting that. If the majority (by stake or weight) agrees, the network would shift to the new rules; if not, the change fails. This decentralized governance ensures no single actor can arbitrarily alter the token's behavior or holders' rights.

However, it should be noted that early in the network's life, centralization might be higher – the core team may effectively have outsized influence on validators (or operate many of them), so in practice initial changes may be coordinated by Keeta, Inc. with validators' cooperation. Over time as more independent validators join, true decentralized governance strengthens.

G.4 Future Public Offers

Not applicable

G.5 Issuer Retained Crypto-Assets

Not applicable

G.6 Utility Token Classification

No

G.7 Key Features of Goods/Services of Utility Tokens

Not applicable

G.8 Utility Tokens Redemption

Not applicable

G.9 Non-Trading Request

True

G.10 Crypto-Assets Purchase or Sale Modalities

Not applicable

G.11 Crypto-Assets Transfer Restrictions

Not applicable

G.12 Supply Adjustment Protocols

The supply of KTA is managed by protocol rules that allow controlled inflation and incorporate vesting of pre-allocated tokens. KTA's maximum supply at genesis was 1 billion. Thereafter, supply adjustments occur via:

Vesting Schedule Releases: A large portion of KTA was allocated to Community/Ecosystem (50%), Team (20%), Early Investors (20%), and Foundation Treasury (10%) at genesis ...

These tokens were not all put into circulation immediately. Instead, they are subject to vesting schedules (typically spanning 1-3+ years, varying by category). Vesting is enforced via smart

contracts (referred to in audit documents as "treasury vesting" contracts) . At set intervals (e.g., monthly or quarterly), portions of these tokens unlock and become transferable, effectively increasing the circulating supply even though total supply remains the same. The protocols here involve time-locked smart contracts that automatically release tokens to the respective parties when conditions are met. For instance, team tokens might unlock 1/24th each month over 2 years. The vesting mechanism ensures an orderly release rather than a sudden flood, aiming to protect the market from oversupply shocks.

No Automatic Burning: The Keeta Network currently does not burn any portion of transaction fees or tokens as part of its economic model (unlike some networks that have deflationary fee burns). Therefore, aside from someone intentionally sending tokens to an unspendable address (which is not a protocol feature but a user action), there is no protocol-driven decrease in total supply. All transaction fees collected go to validators or are simply paid and stay in circulation; none are destroyed. The absence of a burn means net supply trajectory is neutral-to-increasing.

G.13 Supply Adjustment Mechanisms

KTA's economic model relies on both algorithmic mechanisms and governance processes to adjust supply over time:

Algorithmic Inflation Mechanism: The network's code includes a mechanism for generating new KTA in each block or epoch for validator rewards. For example, a certain number of KTA per block could be created. This is an automated mechanism once parameters are set. Initially, the inflation might be fixed or follow a schedule (declining over time, perhaps). If Keeta's design follows similar projects, it might target a long-term inflation rate (say 2-10% annually) to balance token availability and demand. The mechanism ensures that even as usage grows, validators are compensated without needing to rely solely on transaction fees. This is important given Keeta's fees are extremely low – inflation provides the security budget. The distribution of newly minted KTA is typically to validators in proportion to their stake, sometimes with a portion to delegators after taking a validator commission. This aligns network incentives.

Governance & Manual Adjustments: The Keeta community (currently largely the core team and major stakeholders) can update the supply mechanisms via governance if needed. For instance, if economic conditions warrant, they could vote to modify the inflation rate. Mechanistically, this would involve pushing a protocol upgrade to change the block reward calculation. Another example: if the community decided to introduce a burn (say burning a fraction of fees to curb supply growth), they could implement that via an upgrade. Conversely, they could decide to mint an additional allocation for some purpose (like fund a new development fund), but that would be highly sensitive and would require broad consensus to avoid devaluing tokens. The existence of governance means supply mechanisms are not rigid forever; they can evolve responsibly.

Emergency Mechanisms: Though not explicitly planned, many networks have emergency failsafes. Keeta's design might include the ability to pause token releases in extraordinary cases (e.g., if a critical bug was found in a vesting contract or if a validator exploit was inflating supply unexpectedly). This would presumably be executed by the core devs in tandem with validators if needed, to protect the network. There is no indication of such events, but we note that the system relies on continued operation of code as intended.

To illustrate the current state: total supply = 1,000,000,000 KTA. Circulating ~406,000,000. The difference (~594,000,000) is locked. Over the next few years, that locked portion will gradually unlock. Meanwhile, if an inflation of say 5% was active from launch, after one year total supply might be ~1,050,000,000 (50M new). Combined with unlocked tokens, circulating could increase significantly – but all per known schedules.

The net effect of these mechanisms is a controlled expansion of KTA's supply. Investors should monitor announcements from Keeta on any changes to supply policy. All adjustments are done transparently via on-chain actions viewable by the public.

G.14 Token Value Protection Schemes

False

G.15 Token Value Protection Schemes Description

Not Applicable

G.16 Compensation Schemes

False

G.17 Compensation Schemes Description

Not Applicable

G.18 Applicable Law

For admission to trading on LCX, the applicable law is **Liechtenstein law**, applied in accordance with MiCA and relevant EU regulations. For user interactions with the decentralized Keeta Network outside LCX, applicable law depends on the user's jurisdiction.

G.19 Competent Court

In case of disputes related to services provided by LCX, the competent court is: The Courts of Liechtenstein, with jurisdiction in accordance with Liechtenstein law and applicable EU regulations.

H. PART H – INFORMATION ON THE UNDERLYING TECHNOLOGY

H.1 Distributed ledger technology

Ledger Structure: Every account in Keeta maintains its own chain of transactions (an account-chain). When an account initiates a transaction, it appends a new "block" (or node) to its own chain. If the transaction involves another account, a virtual link is formed between the two account-chains, creating a DAG overall. This allows multiple accounts to update their states concurrently without waiting in a single global queue. In essence, Keeta's DAG allows many "micro-blocks" to be processed in parallel, drastically improving throughput. This design draws inspiration from previous DAG-based ledgers (like Nano or IOTA) but with unique twists for consistency and compliance.

Consensus Mechanism: Keeta uses Delegated Proof of Stake (dPoS) consensus. Specifically, it employs a two-step client-directed validation process . When a user sends a transaction, they effectively pre-validate it by ensuring it's not conflicting (e.g., double spending from their account). Then, the network's validators (the delegated nodes) collectively confirm the transaction order and finality. The consensus likely resembles PBFT-style rounds or Avalanche-like voting on DAG tips, albeit optimized. Validators in Keeta are selected by stake weight (KTA staking as noted). A small fixed set or rotating set of validators might produce checkpoints or "anchor blocks" that solidify the ledger state. This approach yields fast finality (often under 1 second) since there's no lengthy block mining or deep chain re-orgs – once validators reach consensus on a batch of transactions, those are final. Forks are highly unlikely under normal operation because transactions are presumed non-conflicting due to account-specific ordering and because validators coordinate on a single history.

Performance and Scalability: The design is inherently scalable. The network throughput scales with the computing resources (horizontally in cloud infrastructure) because more transactions can be processed in parallel as long as they involve different accounts. KeetaNet was tested to achieve near linear scaling up to hardware limits . The claimed capacity is 10,000,000+ TPS (10 million) with 400ms settlement for individual transactions . These figures are theoretical maxima under ideal conditions (likely using a high-performance cloud environment). Real-world throughput will depend on network node count and network latency. Nonetheless, even a small fraction of that (e.g., 100k TPS) would surpass today's major blockchains by orders of magnitude.

To handle such volume, KeetaNet leverages cloud providers and serverless technology . This suggests nodes can dynamically allocate more processing (like spawning serverless functions to validate incoming transactions concurrently). It's a cloud-optimized blockchain – many nodes likely run on cloud instances and can autoscale.

KEETA Whitepaper: https://keeta.com/keetanet-whitepaper-20250312.pdf

Public block explorer: https://basescan.io

KEETA Main repository: https://github.com/keetanetwork

KEETA Developer portal: https://static.test.keeta.com/docs/

H.2 Protocols and Technical Standards

The Keeta Network is built on a layered protocol architecture that combines performance, security, and compliance. Its consensus mechanism is a customized delegated proof-of-stake (dPoS) model with PBFT-like finality, where a limited number of elected validators confirm transactions deterministically in near real time. This approach eliminates energy-intensive mining, provides sub-second transaction finality, and ensures resilience against faulty or malicious nodes through Byzantine fault tolerance. Transactions on Keeta are structured with clear operational parameters, cryptographically signed using elliptic curve cryptography, and recorded on a public, permissionless distributed ledger that supports both native token operations and the creation of additional tokens via built-in administrative functions. While KTA is the core unit on the native chain, bridged representations exist on external ecosystems to facilitate interoperability and exchange trading, maintaining parity with the mainnet supply.

The network's communication layer relies on standard internet protocols with cryptographic authentication, while validator and user identity are reinforced through integration of X.509 certificates, aligning the system with conventional public key infrastructure practices. This design ensures that validators are identifiable entities and provides optional compliance-ready features for users. Keeta emphasizes efficiency and scalability, leveraging DAG-based transaction flows and multi-threaded validation to support high throughput and low costs suitable for microtransactions and real-time use cases. Although it does not currently support general-purpose smart contracts, the protocol is designed for extensibility through upgradeable transaction types and governance-driven parameter changes. Planned developments include enhanced on-chain governance, interoperability modules to connect with other blockchains, and additional financial primitives to expand native functionality. Together, these elements create a network that balances speed and innovation with regulatory alignment, technical robustness, and long-term sustainability.

H.3 Technology Used

The token standard is native: when a new token is created, it is identified by an ID and then all balances are tracked in ledger state under that ID. Operations exist to modify supply (TOKEN_ADMIN_SUPPLY to mint/burn by authorized accounts (a)) and to modify balances in special cases (TOKEN_ADMIN_MODIFY_BALANCE for force transfers if authorized) (a) (a). These administrative operations are gated by permissions that might require the account performing them to have a certain flag or certificate (like being the token's issuer or an address with "Network Keyed Account" privileges as the whitepaper suggests).

Interoperability Standards: Keeta likely plans to implement or adhere to standards for interoperability such as the Digital Token Identifier (DTI) as evidenced by references to it in energy reporting context , and possibly messaging standards for connecting with other chains (maybe considering protocols like Interledger or its own bridging contracts). Since it's not EVM-compatible out of the box, bridging to EVM chains might involve a separate set of contracts on those chains (like the Base chain contract for KTA mentioned.).

Smart Contracting and Extensibility: While the base layer doesn't have user-written smart contracts like Ethereum, Keeta's architecture allows adding new transaction types or operations via upgrades. The "Hooks" concept in XRP (a feature XRPL was adding) is referenced in XRP's whitepaper – Keeta might in future consider similar "programmable hooks" that allow users to attach small scripts to accounts or transactions for custom logic. The current technical documentation doesn't list such a feature, but given the trend, it could be on the roadmap to increase flexibility. For now, most functionality (DEX, tokenization, etc.) is achieved with built-in operations that are carefully coded and audited (this mitigates the risk of user-deployed contract bugs).

Compliance & Identity Standards: Integration with X.509 certificates indicates using standard public key infrastructure (PKI) where a Certificate Authority (CA) signs a certificate binding an identity to a public key. The fact that every representative (validator) has an X.509 certificate suggests that validators must be known entities, adding trust. Regular user accounts can also get certificates from KYC providers. The network has an internal standard for handling these certs (likely storing a hash or attestation on-chain, possibly in account metadata). It could follow the emerging standards of Decentralized Identity (DID), but the mention is explicitly X.509, a classical standard, chosen presumably for compatibility with existing institutional processes.

Underlying Cryptography: Keeta uses well-established cryptographic standards: it likely employs Elliptic Curve cryptography (such as Ed25519 or secp256k1) for signing transactions. Hash functions are probably used for transaction IDs and address derivation (SHA-256 or blake2, etc.). Given the focus on non-PoW, there's no mining puzzle, so cryptography is mainly for security, not consensus difficulty. The design would consider protection against Sybil attacks via staking, and network messages likely incorporate signatures to prevent impersonation.

Sustainability and Efficiency: (This crosses into part J, but technically:) The protocol is very efficient computationally; validating a transaction is akin to processing a database update rather than heavy computation. Without PoW, node energy usage mostly comes from normal server operations. The network's protocols allow nodes to scale out – e.g., use multiple CPU cores or servers to validate different account-chains concurrently, which is a modern approach to utilize multi-core processors, unlike traditional blockchains which are mostly single-threaded due to linear block production.

H.4 Consensus Mechanism

The Keeta Network, which underpins the KTA token, employs a Delegated Proof-of-Stake (dPoS) consensus mechanism with PBFT-like finality. In this system, KTA holders can delegate their tokens to trusted validator nodes, which are elected to participate in transaction validation and block production. Validators operate in coordinated rounds, proposing and confirming batches of transactions, with finality achieved once a supermajority of validators have signed off. This deterministic model enables transactions to be finalized in sub-second timeframes, avoiding the probabilistic confirmations typical of proof-of-work blockchains. The consensus mechanism ensures both efficiency and security, as it is Byzantine Fault Tolerant and capable of maintaining correct operation even if a minority of validators act dishonestly. Unlike proof-of-work, the Keeta protocol does not rely on energy-intensive mining, and unlike traditional proof-of-stake, it avoids long block intervals by using continuous message exchanges among a limited set of elected validators. Incentives for validators include transaction fees and protocol-defined token issuance, aligning their interests with network security. This approach allows the Keeta Network to deliver high throughput, fast finality, and sustainable operation, while ensuring that governance remains anchored in the participation of KTA stakeholders through staking and validator election.

H.5 Incentive Mechanisms and Applicable Fees

The incentive model of the Keeta Network is designed to maintain security, efficiency, and long-term sustainability while rewarding active participation from token holders. At the heart of this model lies the staking process, where KTA tokens can be delegated to validator nodes or used directly by individuals who operate their own validators. Validators are responsible for validating transactions, maintaining consensus, and safeguarding the integrity of the network. In return for these responsibilities, they earn rewards in the form of newly issued KTA tokens through controlled protocol inflation and, where applicable, a share of the transaction fees generated on the network. Delegators who contribute their stake to trusted validators also

share proportionally in these rewards, ensuring that token holders, regardless of technical capacity, can participate in and benefit from network security.

The inflation mechanism is intentionally moderate and subject to adjustment through Keeta's governance framework, striking a balance between incentivizing validators and protecting the token's long-term value. Unlike proof-of-work systems that rely on energy-intensive mining, Keeta's delegated proof-of-stake approach channels incentives directly into honest validator behavior without requiring wasteful resource expenditure. Transaction fees, which must be paid in KTA, apply to every network activity, from simple token transfers to more complex operations such as token issuance, decentralized exchange trades, or smart financial primitives as they are introduced. These fees are designed to remain extremely low—typically fractions of a cent—to facilitate microtransactions and support real-time, high-volume usage without creating economic friction for participants.

Unlike networks that burn collected fees to reduce supply, Keeta recycles fees back into the validator incentive pool. This ensures that every transaction directly supports the ongoing operation and security of the system, aligning the interests of users with those of validators. Beyond validator rewards, KTA also functions as an instrument to foster broader ecosystem growth. Allocations of tokens may be directed toward liquidity programs, developer grants, adoption incentives, or strategic partnerships, extending the incentive framework beyond purely technical operations into long-term ecosystem development.

By combining inflationary rewards, transaction fees, and ecosystem-focused incentives, Keeta establishes a holistic economic model that sustains validator engagement, empowers token holders to participate in governance and security, and ensures that network usage remains both affordable and scalable. This incentive and fee framework makes KTA not only the operational fuel of the network but also a mechanism to encourage sustainable growth, active participation, and transparent alignment between all stakeholders.

H.6 Use of Distributed Ledger Technology

True

H.7 DLT Functionality Description

The KTA token operates on the Keeta Network, a purpose-built distributed ledger designed to deliver high-performance transaction processing, transparency, and security. The Keeta blockchain combines a delegated proof-of-stake (dPoS) consensus mechanism with a directed acyclic graph (DAG) structure, enabling parallel transaction validation and near-instant settlement with deterministic finality. Every transaction is cryptographically signed, time-stamped, and recorded on the public, permissionless ledger, ensuring immutability and verifiability of ownership and transfers. Unlike energy-intensive proof-of-work blockchains, Keeta's DLT achieves consensus through elected validators, making it more sustainable while preserving Byzantine fault tolerance and resistance to malicious activity. The ledger natively supports the issuance and management of tokens, decentralized exchange operations, and other built-in financial primitives through standardized transaction types, reducing reliance on complex external smart contracts and lowering systemic risk. Interoperability is facilitated through bridged representations of KTA on external ecosystems, which mirror the mainnet supply and allow integration with networks such as Ethereum or Base. The system's architecture also integrates compliance features, including X.509 certificate-based identity verification for validators and optional user certification, aligning the DLT with institutional requirements for trust and transparency. Collectively, these functionalities establish the Keeta Network as a scalable, sustainable, and compliant distributed ledger infrastructure, with KTA serving as its native token for security, transaction processing over its ecosystem.

H.8 Audit

True

H.9 Audit Outcome

Cyberscope Audit Summary:

Keeta's smart contract audit is referenced on the Cyberscope platform, which tracks security assessments and ratings. While detailed findings are not publicly disclosed via that summary page, it confirms the project has undergone at least one smart contract audit and is being monitored for security ratings, on-chain behavior, and KYC/AML compliance status.

https://www.cyberscope.io/audits/coin-keeta

CertiK / Skynet Monitoring:

Keeta is indexed on CertiK's Skynet portal, which provides ongoing security insights, including audits, bug bounty reports, and risk monitoring. Although a full public audit report is not available via the portal, Keeta appears to be under active monitoring. This implies that the platform has passed initial security checks and is subject to continuous oversight.

https://skynet.certik.com/projects/keeta

I. PART I - INFORMATION ON RISKS

I.1 Offer-Related Risks

Market & Distribution Risks. Once admitted to trading, KTA's price will be determined by market supply and demand on exchanges (like LCX, LBank, Poloniex, etc.). KTA's market price has shown high volatility. Since its launch in March 2025 at \$0.06, it surged over 70x, reaching above \$1.14 by June 2025 . Such rapid appreciation can reverse quickly; investors could face sharp declines. KTA trades in a global 24/7 market that is often speculative. This volatility risk means holders must be prepared for significant price swings (±30% or more in a day is possible in crypto markets). Liquidity can also vary – while KTA had decent volume (~\$20M daily as of mid-2025) , there's no guarantee liquidity will remain. In extreme scenarios, liquidity might dry up and holders could struggle to sell large amounts without moving the market price adversely (slippage). Additionally, because KTA is newly listed, price discovery is ongoing, and technical trading factors (like momentum, listings on new exchanges, or crypto market sentiment) could dominate its price action rather than fundamentals.

No Fundraising/No Refund: Because this is not a traditional "offer" with fundraising, investors buying KTA on exchanges do so from other holders, not the issuer. This means there are no protections like refund rights (cooling-off periods) that one might have in a primary offering. Once you purchase on the market, you cannot return the token to any issuer for a refund if you change your mind. Your only exit is selling on the market, which could be at a loss if prices moved against you.

Concentration of Holdings: A risk in trading context is that significant portions of KTA are held by early investors or the team (as noted, 20% team, 20% early investors, etc.). If one of these big holders decides to sell a large amount when their tokens vest, it could flood the market and depress the price. The team and investor tokens unlock gradually, but coordinated sales or even the anticipation of such sales can create downward pressure ("supply overhang"). It's important for traders to be aware of vesting schedules (e.g., if a big tranche unlocks on a certain date, increased volatility might occur around then).

No Formal Rights: Since this is not a prospectus-based offer, investors do not have certain protections. For example, there's no right of withdrawal or prospectus liability regime. If the

information in this white paper turned out to be misleading, there's uncertainty about legal recourse. Purchasers rely on the voluntary disclosures and reputation of the project, which is a risk compared to regulated securities offerings.

I.2 Issuer-Related Risks

Regulatory Risk (Issuer): Keeta, Inc. is a relatively young startup (founded 2022) focused on developing the Keeta Network. As with any startup, it faces operational risks including reliance on key personnel (the expertise of Ty Schenk, Roy Keene, etc., is critical – loss of one or more key team members could slow development significantly). The company's financial health is a factor; it raised \$17M seed, which must be managed to fund ongoing development until perhaps more funding or revenue. If Keeta, Inc. were to run into financial distress (e.g., unable to raise further capital, or if the broader market downturn reduces its treasury value), the development and support of the network could suffer. Network progress largely depends on the issuer's resources at this stage – for code updates, partnerships, and technical support.

Centralization of Decision-Making: In these early days, a lot of decisions (network upgrades, partnerships with financial institutions, etc.) are made by Keeta, Inc. The interests of the company may not always perfectly align with the interests of all KTA holders. For example, the company could prioritize features that appeal to enterprise users at the expense of decentralization which community users value, potentially affecting network usage and thus token value. Or if the company enters a partnership, they might agree to certain compliance measures that could restrict some current token holders' usage (like blacklisting addresses not KYC'd). While these decisions are presumably made to grow value, they create risk of conflicts of interest or changes in network policy that some holders might view negatively.

Technology & Execution Risk: The issuer might not successfully achieve all technical goals. If, for instance, the network encounters scaling bottlenecks or technical bugs the team can't readily solve, the performance might fall short of the promises (10M TPS is theoretical; if actual is much lower due to unforeseen issues, it could reduce confidence). Or if the unified Keeta Wallet is delayed or fails to deliver, the adoption may suffer. Essentially, there's execution risk that the issuer doesn't manage to fully realize the ambitious roadmap, which could stall momentum and negatively impact KTA's utility² and market perception.

Reputational Risk: As a relatively new project touted as innovative, KEETA carries reputational risk. If the team fails to meet roadmap targets (like adding new AVSs or decentralizing governance), or if they communicate poorly, their credibility could suffer. Negative perceptions can cause participants (stakers, developers, etc.) to exit, which loops back to impacting the token's success.

Competition: This risk straddles issuer and project – Keeta competes with many other blockchains and fintech solutions. If bigger players (existing L1s like Solana, or new entrants) implement similar features or outperform Keeta, the project might struggle to gain market share. The issuer's ability to form strategic partnerships (with banks, etc.) is a key competitive factor. Failure to do so (or if competitors do so faster) could limit KTA's real-world usage.

In summary, although KTA isn't "backed" by the issuer in a traditional sense, the issuer's fortunes and actions are tightly interwoven with the token's success. Keeta, Inc. failure or misstep could indirectly translate to loss of value or utility for KTA . On the flip side, holders rely on the issuer to keep pushing the network forward – a dependency that gradually reduces as the network decentralizes, but is currently significant.

While KTA provides utility within the ecosystem, it does not constitute a Utility Token under Article 3(1)(8) of MiCA, as its access rights are not contractually guaranteed nor tied to specific, identifiable goods or services.

I.3 Crypto-Assets-Related Risks

Risks inherent to the token and crypto market. Extreme Volatility & Speculation: Like many crypto-assets, KEETA's price can swing wildly in short periods. News, sentiment on social media, macro crypto trends, or whales trading can cause rapid pumps or dumps. Investors could lose a large portion of value in days or hours. The entire crypto market is highly speculative; KEETA, being new and tied to an experimental protocol, is especially so.

Lack of Intrinsic Value: KEETA does not represent a claim on assets or guaranteed cash flows. Its value is primarily driven by the expectation of its utility in the network and speculative demand. If the market loses confidence in KEETA or if another project outcompetes it, KEETA could theoretically plummet to near zero. There is no floor supported by fundamentals like revenue or asset backing.

Concentration of Holdings: A relatively small number of participants (foundation, team, early investors) hold a large portion of KEETA (even if locked currently). Post-lockup, if these holders sell large amounts, it can flood supply and depress price. Additionally, whales or large holders currently in circulation could coordinate to manipulate price (pump-and-dump schemes). The distribution of KEETA is likely not very broad yet, which magnifies manipulation risk.

Smart Contract Risk: KEETA and its ecosystem heavily rely on smart contracts. While audited, no contract is 100% immune to bugs or exploits. A vulnerability in the KEETA token contract or staking contracts could be catastrophic (e.g., an infinite mint bug or a flaw that lets an attacker steal staked funds). If such a hack occurs, trust in the token would collapse. Even though audits were clean, the risk is non-zero. Furthermore, integration with other DeFi (if people use KEETA in lending platforms etc.) introduces additional smart contract risk outside the project's control.

Bridging Risk: If KEETA becomes available on other chains via bridges, those introduce risk. A bridge hack (common in crypto) could lead to loss of bridged KEETA or affect the token's reputation (as with many tokens suffering from bridge incidents). While currently KEETA is mainly on Ethereum, the team or community might deploy it cross-chain which adds complexity and risk.

General Crypto Market Risk: KEETA's price and adoption can be heavily affected by the overall crypto market conditions. In a broad downturn (bear market), investors often flee altcoins to safer assets like Bitcoin or to fiat. Liquidity and interest in KEETA could dry up regardless of project performance. Conversely, regulatory actions against larger crypto players or market events (exchange failures, etc.) could cause contagion impacting KEETA.

I.4 Project Implementation-Related Risks

Market Risk: As already touched, KTA's price is highly volatile. Being a mid-cap crypto (market cap ~\$0.45B) . it is subject to general crypto market swings. If the crypto market enters a bear phase, KTA could lose substantial value regardless of its individual progress. Conversely, hype cycles might inflate it beyond sustainable value. Holders face the risk of large losses if market sentiment turns or if macroeconomic factors hit crypto (like interest rate changes, regulatory crackdowns, etc.). There is also liquidity risk – while KTA is listed on several exchanges, extreme events (exchange hacks, regulatory bans) could slice liquidity, making it hard to trade without huge slippage. If many holders rush to exit at once (panic selling), the lack of buy orders could lead to a price collapse.

Technology and Network Security Risk: Although Keeta has been audited and uses robust consensus, no system is infallible. Potential technical risks include:

Software bugs: A critical bug in the consensus code or token logic could, in worst case, cause a chain halt or an unintended minting of tokens. For instance, if a bug allowed an attacker to bypass signature checks or exploit the DAG ordering to double-spend, it could undermine trust. The Halborn audit was one security measure, but that covered specific contracts; the core consensus might not have had a third-party audit disclosed. If a bug were exploited (say someone finds a way to create tokens out of thin air or prevent others' transactions), KTA's value would plummet, and the network could require emergency patches or even a hard fork to fix.

Network attacks: With dPoS, a collusion attack is possible if an attacker gathers enough delegated stake (maybe by convincing many holders to delegate to their validators or outright buying stake) to control consensus. If an attacker managed, say, >67% of stake, they could alter transaction ordering, execute double-spends, or censor transactions. Such control is very expensive to gain (they'd have to purchase a massive portion of supply at skyrocketing prices), so it's more a theoretical risk. More plausible is a partial attack – e.g., controlling 34-50% might disrupt consensus (make it difficult to reach quorum, stalling the network).

Centralization & Governance risk: Because KTA is new, the initial distribution of stake might not be very decentralized. It's possible a few entities (the team, top investors) collectively hold a majority of stake, meaning the network is effectively centralized in their hands initially. This is a risk if those entities act maliciously or get compromised. Also, if Keeta, Inc. retains significant control, the network might suffer from a single-point-of-failure (if something happens to the company or if an insider goes rogue, they could, for example, subvert validators under their influence).

Smart contract risks on Keeta: If users create tokens or use atomic swaps on Keeta's built-in DEX, there could be logic edge cases. The complexity of features like ACLs (permissions on tokens) might result in unforeseen loopholes (though these would more likely affect those tokens than KTA itself). But imagine if a malicious token created on Keeta exploited a client vulnerability when viewed in wallets – those indirect risks exist as the platform grows.

Quantum Computing (future risk): As with all modern blockchains, Keeta's cryptography (ECDSA/EdDSA) could be broken by a sufficiently powerful quantum computer, potentially in a decade or more unless networks upgrade to quantum-resistant algorithms. If not proactively addressed, this could in the long term allow attackers to forge signatures and steal tokens. This risk is not immediate, but it's noted in forward-looking risk assessments . The mitigation would be to upgrade cryptography in time.

Custodial Risks: Many KTA holders might keep tokens on exchanges or custodial wallets for convenience. Those introduce counterparty risk – if an exchange holding KTA is hacked or insolvent, users could lose their tokens. For instance, if someone leaves KTA on an exchange that later gets breached, the attacker could steal the deposit (just as with any crypto). Self-custody has its own risk: if you lose your private key or recovery phrase, your KTA is lost permanently. There's no password reset in blockchain. This is a classic crypto-asset risk – user security practices (or exchange security) are crucial.

I.5 Technology-Related Risks

Private Key Management & User Error: As with any crypto, one of the biggest risks is user error. If a KTA holder misplaces their private key or recovery phrase, their tokens are lost forever – no recovery possible. Similarly, if a user is careless and falls for phishing scams or uses malware-infected devices, their private key could be stolen, leading to theft of their KTA. Because Keeta promotes a unified wallet that might hold multiple assets, a compromise could have even broader impact (imagine losing not just KTA but also other assets linked). While this is not unique to KTA, it's a tech-related risk that every holder faces. The responsibility on the

user is high; not everyone is adept at secure key management, which could hamper mainstream adoption (some might prefer custodial solutions, reintroducing custodian risk).

Novel Protocol Risks: Keeta's protocol is less battle-tested than, say, Bitcoin or Ethereum. It hasn't gone through years of real-world testing yet. There could be protocol-specific risks that only emerge under stress:

Network Congestion: If suddenly a huge burst of activity occurs (say a popular app on Keeta triggers thousands of tx per second), there might be bottlenecks unobserved in testing. Perhaps some component (like network bandwidth, or the ordering of cross-account transactions) hits a limit and causes slowdowns. If transactions back up or delays increase from 0.4s to many seconds or minutes, it undermines the user experience and trust, especially since low latency is a selling point. Congestion could also spike fees – Keeta's model likely has low base fees, but if capacity is reached, does it degrade gracefully? If not well-handled, heavy usage could hamper performance, ironically making "scalable" network sluggish in worst moments.

Validator Centralization: Over time, if many holders simply delegate to a handful of popular validators (common in dPoS, where a few validators often gather most votes due to brand or incentives), the network might effectively run on few nodes. This concentration can reduce security (easier to collude or attack few nodes) and resilience (outage of one major validator could have bigger effect). It's a social dynamic risk in tech operation.

Software Complexity: Keeta's combination of DAG + dPoS + compliance features makes it a complex system. Complexity can hide bugs or attack surfaces. For example, the interplay of ACL (permissions) with normal transaction flow might have corner cases. Or the DAG aspect might allow tricky scenarios where timing of transactions from different accounts matter – could an attacker exploit timing to create inconsistent views among validators? There's risk of subtle consensus bugs (like those that afflicted some other blockchains early on, e.g., Stellar had an inflation bug early on, Solana had outages due to consensus bugs).

Lack of Smart Contracts (if that's a limitation): While not having arbitrary smart contracts reduces certain risks (no user-deployed contract vulnerabilities like those leading to DeFi hacks on Ethereum), it also means if someone wants to implement new functionality, they rely on core updates rather than doing it themselves in a contract. This could slow down innovation on Keeta or force projects to interact with off-chain systems. However, as a risk: if developers try to circumvent lack of smart contracts by using off-chain or centralized components, that could introduce new points of failure or trust that compromise the overall security or reliability of applications built on Keeta.

Dependency on Cloud Providers: Since Keeta is cloud-optimized, if a large portion of validators run on the same cloud (say AWS or Google Cloud), an outage or policy change there is a risk. There have been instances where infura (hosting many Ethereum nodes) outages caused widespread issues. If, hypothetically, AWS had an outage in the region where majority of Keeta validators run, the network could halt until they recover. Or if cloud providers decided to not allow crypto nodes (unlikely, but who knows if policy shifts), it could force migration and downtime.

Privacy and Transparency: Transactions on Keeta are pseudonymous and publicly visible (like most blockchains). While identity isn't on-chain unless voluntarily linked via certificate, patterns can be analyzed. Users should know that their transaction history could be traced by observers, especially since compliance features likely encourage identity linkage. If someone's address is known (tagged via KYC certificate possibly), their activities could be monitored – raising privacy concerns. Conversely, if users try to avoid compliance by not getting certified, they might be unable to interact with certain parts of the network. So there's a risk around

privacy: either losing some privacy by complying or losing functionality by staying pseudonymous – which could deter some users if not balanced well.

Third-Party Service Dependence: The broader user experience depends on services like block explorers, wallet providers, etc. Being new, those tools might be immature. Risk: if the official explorer goes down, users have trouble verifying transactions; if the official wallet has a bug (like calculating balances wrong due to DAG complexity), users might make wrong decisions. As the ecosystem matures, these get ironed out, but early on, hiccups can cause confusion and potentially loss (imagine a wallet glitch showing an incorrect balance leading someone to think a send failed when it didn't, etc.). Also, integration into hardware wallets might not be immediate – users keeping KTA on a Ledger or Trezor might not have that option yet, meaning they store keys in software wallets which are generally less secure.

Counterparty Risk in Cross-Chain Integrations: If Keeta integrates with other blockchains (e.g., a bridge to Ethereum or Base chain), those bridges often carry risk (numerous hacks have occurred on cross-chain bridges). If a significant portion of KTA or assets flows through a bridge and that bridge is compromised, it could indirectly hurt KTA's ecosystem or reputation. For example, if a wrapped KTA on Ethereum gets hacked, it might not directly affect mainnet KTA supply, but it would hurt confidence and those who used it would incur losses.

Given these technology-related risks, what are mitigations? Keeta's team is actively addressing some:

- They've had audits done (reducing bug risk).
- They presumably throttle transaction throughput gradually rather than hitting a cliff (to manage congestion).
- They likely encourage validator distribution and plan for backup validators.
- They will need to implement slashing or other security improvements if not present.
- For key management, perhaps the Keeta Wallet might implement user-friendly recovery features (maybe social recovery or multi-sig) to reduce single point of failure for users – but details unknown.

Overall, technology risks revolve around the newness and complexity of the Keeta protocol and the usability/security trade-offs for end-users . Users and investors should be aware that while groundbreaking, the tech may face challenges when scaled or attacked, and they should keep software updated and follow best practices to mitigate personal risk.

I.6 Mitigation Measures

Technical Risk Mitigations: The Keeta Network's architecture itself is a form of risk mitigation in the blockchain context:

By using dPoS with a limited validator set, the network avoids the unpredictability and energy waste of PoW, reducing the chance of 51% mining attacks and eliminating high energy costs. Finality within seconds prevents double-spending issues prevalent in slower chains ...

The high throughput capacity means the network is unlikely to get congested under normal foreseeable loads, mitigating the risk of network overload. Even if usage spikes, the network can handle magnitudes more transactions than older chains, thus users won't face extreme delays or fee spikes that we've seen on Ethereum at times. This capacity provides a buffer against DDoS via transaction spam – it would take a gigantic amount of spam to clog 10M TPS, and any spammer must pay fees (even if low, at huge volume it becomes costly).

Security Audits: As noted, Keeta engaged Halborn for auditing critical components like the vesting smart contracts, ensuring that known vulnerabilities were addressed . By resolving

the critical and medium findings prior to launch, the project closed potential loopholes that might have been exploited for financial gain (such as the critical issue related to premature state updates which could have prevented token distribution – now fixed (30). The team will likely continue auditing new features (for instance, if they roll out the Keeta Wallet or any bridging contracts, those should be audited too).

Continuous Monitoring: Platforms like CertiK Skynet provide continuous security assessment and real-time alerts for the project [36]. A solid Skynet score (~80) indicates robust contract security and operational security practices so far, and Skynet will monitor for any suspicious on-chain activity or code changes that could introduce risk. LCX and Keeta teams can act on these insights.

Bug Bounty Program: It's likely (though not explicitly confirmed here) that Keeta will either have or join a bug bounty program to encourage responsible disclosure of any new vulnerabilities by security researchers. Many serious bugs in crypto projects have been caught by bounty hunters and fixed before exploitation, which significantly mitigates the risk of zero-day exploits.

Quantum-Resistance Research: As part of long-term risk management, the project is aware of future threats like quantum computing. While not urgent, they can prepare by researching and perhaps testing post-quantum signature schemes. The mention of ongoing cryptographic research suggests they keep an eye on such developments, meaning when the time comes, they could upgrade the signature scheme (like moving to RSA-3072 or lattice-based cryptography for addresses via a network amendment).

Private Key Best Practices: The Keeta Wallet (or any official tooling) likely will incorporate best practices to help users: for instance, enforcing strong passphrases, offering optional multi-factor or multisig setups (if a user wants to require two devices to sign, etc.), and clear warnings to users about phishing. Good UI/UX design can prevent many user mistakes (like highlighting clearly when copying addresses, providing confirmation screens showing exactly what a transaction will do to avoid sending to wrong address, etc.).

Operational Risk Mitigations:

Decentralization & Redundancy: Although dPoS can centralize, Keeta mitigates some centralization risk by making validator identity public and requiring them to hold certificates . This transparency means any validator misbehavior could be traced to a real entity, who could then face repercussions (legal or reputational). That deters malicious activity. Keeta, Inc. also likely runs some seed nodes globally distributed to ensure the network remains well-connected. If one region's nodes go offline, others keep the network alive.

Gradual Token Release: The structured vesting of large token allocations is itself a mitigation against market shocks. Rather than, say, 50% of tokens hitting the market at once, they unlock incrementally, giving the market time to absorb them. Moreover, the team and early investors are presumably aligned with project success, so they are incentivized not to dump tokens. Often teams communicate lock-up periods and adhere to them to give confidence (e.g., "Team won't sell any tokens until at least X date, and even then in small portions"). We expect Keeta's team to follow responsible treasury management to not spook the market.

Ecosystem Support and Community Building: To mitigate adoption risks, Keeta, Inc. is likely using part of its community reserve (50% allocation) to fund development grants, hackathons, or liquidity incentives. This will help attract developers and users to build on and use the network, addressing the cold start problem. A robust ecosystem can insulate against competition – if many projects rely on Keeta, it becomes more entrenched.

Partnerships and Advisors: Having Eric Schmidt as an investor/advisor is itself a mitigation – it lends credibility and possibly opens doors to partnerships. The advisory might include seasoned financial or security experts guiding the project to avoid pitfalls. The \$17M funding ensures they have runway to execute plans (mitigating short-term financial risk).

Risk Disclosure & Community Communication:

The act of publishing this comprehensive white paper under MiCA itself serves as a mitigation: it ensures all known risks are transparently disclosed so that users can make informed decisions (reducing legal risk and aligning with consumer protection).

The team's active communication (via Discord, Twitter, etc.) can quickly address rumors or issues, preventing misinformation-fueled panic. If, say, a minor network issue occurred, prompt updates from the team mitigates fear and uncertainty.

Contingency Planning: It can be expected that Keeta's dev team has contingency plans for various scenarios (like if a validator keys compromise, they have a procedure to replace that validator quickly; or if an exchange is hacked, they might coordinate to freeze those funds if possible until matters resolved given compliance tools). Also, they likely have a plan for catastrophic failures: e.g., if a bug halts the chain, they have snapshots and a method to restart without significant data loss.

In combination, these measures significantly reduce the likelihood or impact of risks:

- The technological measures (efficient consensus, audits, monitoring) safeguard against many network attacks and bugs .

Investors and users should still practice caution, but they can take some confidence that both the Keeta team and LCX have thoughtfully implemented numerous safeguards to protect the network's integrity, the token's value, and the users' interests. Continuous improvement is expected – as the crypto landscape evolves, so will the risk management strategies. Both Keeta and LCX are committed to ongoing enhancements in security, transparency, and compliance as part of their strategy to integrate into the global financial ecosystem responsibly

J. PART J - INFORMATION ON THE SUSTAINABILITY INDICATORS IN RELATION TO ADVERSE IMPACT ON THE CLIMATE AND OTHER ENVIRONMENT-RELATED ADVERSE IMPACTS

Adverse impacts on climate and other environment-related adverse impacts.

J.1 Information on principal adverse impacts on the climate and other environment-related adverse impacts of the consensus mechanism

The Keeta Network relies on a delegated proof-of-stake (dPoS) consensus mechanism combined with DAG-based transaction processing. Such models are generally regarded as less energy-intensive than proof-of-work systems, as they avoid computationally costly mining and instead depend on validator nodes elected by token holders. While this design may be comparatively more efficient in terms of energy use per transaction, it does not eliminate environmental impact altogether, and aggregate consumption depends on the scale of network activity and the infrastructure chosen by validators. As Keeta operates its own consensus protocol rather than relying on an external blockchain, overall energy usage will reflect the

cumulative operation of its validator set, server hosting practices, and the hardware efficiency of participants.

General information		
S.1 Name Name reported in field A.1	LCX	
S.2 Relevant legal entity identifier Identifier referred to in field A.2	529900SN07Z6RTX8R418 KEETA	
S.3 Name of the crypto-asset Name of the crypto-asset, as reported in field D.2	RELIA	
S.4 Consensus Mechanism The consensus mechanism, as reported in field H.4	Keeta is present on the following networks: Base, Keeta. Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1. Keeta Network utilizes a Delegated Proof of Stake (dPoS) consensus mechanism, designed to achieve rapid transaction processing while maintaining decentralization. In this system, stakeholders elect delegates who are responsible for validating transactions and producing new blocks. The network's architecture includes a structured five-step block validation process, enhancing both security and efficiency. Additionally, Keeta integrates a Directed Acyclic Graph (DAG) structure.	
S.5 Incentive Mechanisms and Applicable Fees Incentive mechanisms to secure transactions and any fees applicable, as reported in field H.5	Keeta is present on the following networks: Base, Keeta. Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates	

incentives to use base rather than the L1, i.e. Ethereum, itself. To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour. Keeta's economic model is centered around its native token, KTA, which serves multiple functions within the ecosystem. Validators and delegators are incentivized through block rewards and transaction fees, encouraging active participation in network security and governance. 2024-05-18 S.6 Beginning of the period to which the disclosure relates 2025-05-18 S.7 End of the period to which the disclosure relates Mandatory key indicator on energy consumption 3.55542 kWh per year S.8 Energy consumption Total amount of energy used for the validation of transactions and the maintenance of the integrity of the distributed ledger of transactions, expressed per calendar vear Sources and methodologies For the calculation of energy consumptions, the S.9 Energy consumption sources and so called "bottom-up" approach is being used. Methodologies The nodes are considered to be the central factor for the energy consumption of the Sources and methodologies used in relation to the network. These assumptions are made on the information reported in field S.8 basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine

all implementations of the asset of question in scope and we update the mappings regularly,

based on data of the Digital Token Identifier Foundation.

J.2 Supplementary information on principal adverse impacts on the climate and other environment-related adverse impacts of the consensus mechanism

Supplementary key indicators on	energy and GHG emissions
S.10 Renewable energy consumption	14.770208242%
Share of energy used generated from renewable sources, expressed as a percentage of the total amount of energy used per calendar year, for the validation of transactions and the maintenance of the integrity of the distributed ledger of transactions.	
S.11 Energy intensity	0.00000 kWh
Average amount of energy used per validated transaction	
S.12 Scope 1 DLT GHG emissions – Controlled	0.00 tCO2e per year
Scope 1 GHG emissions per calendar year for the validation of transactions and the maintenance of the integrity of the distributed ledger of transactions	
S.13 Scope 2 DLT GHG emissions – Purchased	1873.14310 tCO2e/a
Scope 2 GHG emissions, expressed in tCO2e per calendar year for the validation of transactions and the maintenance of the integrity of the distributed ledger of transactions	
S.14 GHG intensity	0.00000 kgCO2e per transaction
Average GHG emissions (scope 1 and scope 2) per validated transaction	
Sources and meti	hodologies
S.15 Key energy sources and methodologies	To determine the proportion of renewable energy usage, the locations of the nodes are to
Sources and methodologies used in relation to the information reported in fields S.10 and S.11	be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined.

S.16 Key GHG sources and methodologies

Sources and methodologies used in relation to the information reported in fields S.12, S.13 and S.14

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined.