

 PDS Advanced Report Writing Guide

Copyright © 2022, ACS Technologies. All Rights Reserved.

With the Advanced Report Writer (ARW), you can create customized reports from the ground up, using elements of

report design and programming.

You can embed code in reports to control and format the information that prints. You can also use Pascal scripting

language to create additional layout windows and control events around reports. Although some programming

knowledge is helpful, it's not required to create ARW reports.

Note

This guide assumes that you're familiar with the PDS program you're working in, basic mouse operation, as

well as standard Windows menus, toolbars, and command buttons.

Get Started

 Creating an Advanced Report

 Report Properties and Settings

 The Report Editor

 Objects

 Report Tree and Data Tree

 Templates

 Sub-Reports

 Groups

 Regions

 Embedding Code and Data

 Embedding Lists in Letters

 Creating Multiple Letters in One

 Printing Letters in Multiple Languages

 Scripting Language

 Accessing and Adding Screens

 Special Sorts

 Exporting Fields Using Scripting

 Importing Data With Scripting

 Appendix

 Exercises and Example Project

3

4

Creating an Advanced Report

Just like creating a regular report, there are two ways to create an advanced report. You can copy an existing

report and edit it in the ARW, or add a new advanced report from scratch.

Copying an Existing Report

It's easier to modify an existing report than to create a new one in the Advanced Report Writer.

1. On the Reports tab, locate a report that's similar to what you need.

2. Select the report, and click Copy.

3. Select the copied report, and click Adv. Script. If the Type isn't already Adv Report, change it and click

Save/OK > Close.

4. Click Next until you reach the layout window.

5. Click Modify the Report.

6. The Advanced Report Writer opens for you to edit your report.

See the rest of this guide for more on editing your report.

Adding a New Advanced Report

If there are no reports similar to what you need, you can create a new one.

1. On the Reports tab, click the report type you want to add.

2. In the Select Report window, locate the group where you want to add the report.

3. Click Add, then on the Advanced Reports tab, click the type you want to create.

4. The Advanced Report Writer opens for you to edit your new report.

See the rest of this guide for more on editing your report.

5

Report Properties and Settings

Each advanced report has a .udr file and an .ini file that contain information about the report's properties and

settings. You can edit these as needed.

Properties in UDR Files

The .udr file provides report properties,

defaults, and other data. Select the report,

click Adv. Script, and click the UDR File tab.

Each section is preceded by the type in

square brackets, such as [Prop] for the

Properties section. Each line is a different

setting with a format of Object =Setting,

such as Name=Family Directory.

Properties [Prop]

 Name= report name

 Desc= report description

 SkipMergeUp= 0 (false) or 1 (true)

Defaults [Default]
In this section, you can assign values you want the report to use the first time it is run.

 SortBy= Name, ID Number, or Second ID Number

 ForceSortBy= Name (The default sort is by Name and only name can be selected.)

 Landscape= 0 (landscape off) or 1 (landscape on)

 DisableScaling= 0 (enable scaling) or 1 (disable scaling; this works best for forms and certificates)

PageStyle= XYZ

 MarginStyle= XYZ

 LHStyle= XYZ (Letterhead style)

 DateFmtStyle= XYZ (Date Format style)

 InsideAddrStyle= XYZ (Inside Address style)

 ClosingStyle= XYZ

 LabelStyle= XYZ

After you run the report, the .ini file holds the values you entered. Those values can in turn be used to set XYZ,

which the report then uses as the default for that style. For example, PageStyle=362 defaults the report to

Compress Print. Check out other UDR Options to control your reports.

Information from the Last Run [LastInfo]
This section holds initialization variables and values used by the Pascal Script File. For more information about

these parameters, see Embedding Code and Data.

6

Field Information [Fields]
Listing reports contain a line for each field and its settings.

 Cols= number of columns

 ColValue#= field | width or indent | heading || indent total or 1 | label

For columns that are "New Column", Indent total is equal to 1. For columns that are "Same Column and Line",

Indent total is the total width of the column, including widths from the main New Column and indent values

from Same Column and Line.

For example, if you want column 1 to be a New Column with a width of 10 and column 2 to be a Same Column

and Line with a width of 3, enter the following:

 ColValue1= field|10|heading||1|label

 ColValue2= field|3|heading||13|label

A tilde (~) represents a soft carriage return in the heading.

Settings in INI Files

The first time you run an advanced report,

an .ini file is created. This file saves and

updates the printer, report, style, and other

settings each time you run the report.

Select the report, click Adv. Script, and

click the INI File tab.

Computer Name
One of the sections is the computer name,

such as "[Susie_98]" in the example

above. This section saves the last printer

settings used by this computer, including

the printer, orientation, paper size, paper

source, margin style, gray scale, page

style, and notes.

Last Info [LastInfo]
This section contains variables and values used in the Pascal Script File from the last time the report was run.

Last Run [LastRun]
This saves the built-in selection settings from the last time the report was run, such as UseSepStmt (use

separate statement) and UseEMail (prefer email).

7

The Report Editor

When you add a new advanced report or modify one, the ARW editor displays. The editor contains toolbars and

the workspace.

Toolbars

You use the buttons on the toolbars to insert objects into your report and format report elements. To view or hide a

toolbar, click View > Toolbars, and select or clear the toolbar.

The Workspace

When you open a new report, the workspace is divided into three bands: Header, Detail, and Footer. Objects in the

Header display at the beginning of each page of the report, and objects in the Footer display at the end of every

page. Objects in the Detail band print once for each item inside this band.

You can add two other bands, Title and Summary. Click Report > Title or Summary. The Title displays at the top

of the report, before the Header on the first page. The Summary displays at the very end of the report, before the

Footer on the last page.

To resize workspace bands, click and drag the gray bars up or down. You can set the band's height to readjust to

match its contents or stay static. Right-click the gray bar and select an option:

 DynamicHeight – The vertical size of the band fluctuates depending on the objects inside. This

eliminates white space between printed families.

 StaticHeight – The vertical size of the band remains constant, regardless of the size of the objects

inside. This creates extra white space between printed families.

8

Objects

Objects are pieces of information you can display in the report.

Tip

Click View > Toolbars to display additional toolbars to see all button options.

Generic Objects

Generic objects are not connected to a particular data field.

Label

 A label is an embedded piece of text that doesn't change when you print the report.

 Click the label button , and enter the label text in the input box.

 You can apply any text formatting (bold, italics, underline, color, highlight) on the label text, and you

can change the font style and size.

Memo

 A memo is a large box that can have multiple lines of text.

 Click the memo button .

 After you insert the memo object, right-click it, select Lines, then enter the text. Click Load to read in

text from an outside .txt file. Click Save to save the memo as a .txt file.

System Variable

 A system variable is a field like date or time.

 Click the system variable button , and select the type of variable you want.

 You can change the format of the variable. Right-click the object, select Display Format, then select a

display option.

Variable

 A variable is a numeric or string calculation that isn't in the data or in system variables.

 These can be used to create values from other values or fields. For example, a directory list has the

first letter of the last name at the top of the column. That letter is a variable calculated from the name

object.

 Click the variable button , then select the type of variable you want.

 To set the calculation, right-click the object and select Calculations. The Pascal programming dialog

box displays where you can enter embedded code.

Image

 Click the image button . Right-click the object, select Picture, and select the image you want.

 You can insert images such as scanned letterheads, signatures, clipart, and so on.

Shape

 Click the shape button , and select the type of shape you want.

Line

 Click the line button , and select where you want it to display.

9

Data-Sensitive Objects

Data-sensitive objects display actual program data in your report.

DBText

 The DBText object is directly connected to your database so it can display record information.

 Click the DBText button , and select the type of field category (called the "data pipeline") and the

field name.

 The data itself is usually larger than the object size. Right-click the object and select AutoSize to

automatically fit the data.

 If the data field you selected has a special format, such as dates or phone numbers, right-click it and

select Display Format.

DBMemo

 A DBMemo object is the same as a DBText field, but it's larger. These are designed for fields that use

multiple lines of text, such as phone lists, talent/ministry lists, and so on.

 Click the DBMemo button .

DBCalc
 The DBCalc object counts or totals a data-sensitive numbers, like financial fields.

 Click the DBCalc button, and select the field category and data field you want to base the calculation

on. Then, right-click the object, select Calculations, and select the Calculate Type.

 When you run the report, the result of the calculation displays on the selected field.

 This is normally added to the Summary band so the program can calculate based on all the data in the

Detail band.

DBImage

 The DBImage object displays a picture from your database, such as a member's picture.

 Click the DBImage button , and select the field category and data field you want. It should be an

image-based field, such as Mem Picture.

10

Selecting an Object

To select an object you added to the workspace, click the object. This creates a dark border around it, with small

black boxes in the corners and sides.

To select several objects at once, hold the Shift key as you click the objects. Or, you can click-and-drag a selection

box around them.

When you let go of the mouse, all items in the box are selected. The selected objects have small gray boxes in the

corners.

To deselect an object or objects, click any empty portion of the workspace.

Selecting Embedded Objects

Some objects are embedded within others. In this case, when you try to select the embedded object, you actually

select the entire thing.

To select an object embedded within another, hold the Ctrl key before using the mouse. If you accidentally select

the outside object, hold down the Shift key and click the object to deselect it.

Moving an Object

After you insert and select an object, the next step is to move it where you want it to display in the report. You can

click and hold it, drag it where you want it, then release the mouse button.

In order to line up an object with those near it, the ARW editor has minor adjustment buttons. To display these in

the editor, click View > Toolbars, and select Nudge, Size, and Align or Space.

Nudging

Use the nudge buttons to move an object exactly one pixel up , down , or right . You can also

hold down the Ctrl key and use the arrow keys on your keyboard.

, left

11

 – Aligns objects along their left edges. Align Left

 – Aligns objects in a vertical stack around a common center. Align Middle

 – Aligns objects along their right edges. Align Right

 – Aligns objects along their top edges. Align Top

 – Aligns side-by-side objects along a common center. Align Center

 – Aligns objects along their bottom edges. Align Bottom

 – Puts an equal amount of horizontal space between selected objects. Space Horizontally

Growing and Shrinking

Use the following buttons to grow or shrink several objects to the same size.

Aligning and Spacing

Use the following to align or space several objects. Objects align with the first object you select.

 Space Vertically – Puts an equal amount of vertical space between selected objects.

 Center Horizontally – Centers objects between the left and right margins.

 Center Vertically – Centers objects between the top and bottom margins.

 – Reduces widths of selected objects to match the narrowest one. Shrink Width to Smallest

 – Increases widths of selected objects to match the widest one. Grow Width to Largest

 – Lowers heights of selected objects to match the shortest one. Shrink Height to Smallest

 – Raises heights of selected objects to match the tallest one. Grow Height to Largest

12

Right-Clicking an Object

You can right-click an object to view and change its options or properties. An ellipsis [...] in the property name

indicates additional controls.

 Bring to Front/Send to Back – Moves object in front of or behind other objects.

 Double/Single – (Lines only) Changes the line to a single or double line.

 Autosize – Resizes object horizontally to match its contents. See also Stretch.

 BlankWhenZero – Prints a blank line instead of "0" if the object's value is zero.

 Calculations... – For DB fields, select the type of calculation (Sum, Count, Max, Min, Average). For

variables, modify the value or formula.

 CalcOrder – Indicates what order to calculate groups.

 CharWrap – Breaks words in the middle of the word when wrapping. See also WordWrap.

 DisplayFormat... – For DBText fields, set the format of the field, such as date format, number format, and

so on.

 ForceJustify – For Memo fields, justifies text to the left or right.

 KeepTogether – Does not split words when wrapping text inside a memo box.

 Lines... – In a Memo field, inserts the text of the memo.

 LookAhead – (Variables, DBCalc fields, and System Variables) Select when you need to display the

calculation result or variable before the objects that are used in it. For example, displaying the DBCalc field

Count in the Header, instead of the Footer or Summary. To use this, you must tell the report to run through

your database twice. Click Reports > Pass Setting > Two Pass.

 ParentHeight – (Lines only) Make object the same height as the workspace.

 ParentWidth – Make object the same width as the workspace.

 Position... – Indicates position of object in the workspace, as well as object's height and width.

 ReprintOnOverFlow – If any stretched object goes to a second page, it reprints on the next page.

 ReprintOnSubsequent – Reprints object the first time it occurs on subsequent pages.

 ResetGroup – Resets object's value to zero each time the group's breaking field value changes.

 ShiftRelativeTo... – (Memos and Sub-Reports) Keeps the position of object static with respect to another

object.

 ShiftwithParent – (Memos and Sub-Reports) Keeps the position of object static with respect to the

workspace band it's in.

 StretchwithParent – Resizes object horizontally to match the workspace.

 Stretch – Resizes object vertically to match its contents. See also Autosize.

 Timing... – (Variables only) Determines when variable is calculated relative to other variables.

 Transparent – Makes object transparent so objects behind it can be seen.

 Visible – Makes object visible. Turn this off if you're using a variable for calculations but don't want to see

the variable.

 Wordwrap – Does not break in the middle of the word. Wraps whole words only. See also Char Wrap.

13

Report Tree and Data Tree

You can use the Report Tree and Data Tree to find your objects and associate fields with them.

Report Tree

The Report Tree displays an outline of the report and the objects. Click View > Toolbars > Report Tree.

The Report Outline section breaks down the different sub-reports. The Object Outline displays each band and the

objects within them.

Useful Information

To rename sub-reports and objects, right-click the name and enter a more descriptive name (such as

FamilyName). Don't use spaces in the name.

14

Data Tree

The Data Tree displays information about fields. It's divided into the Data tab and the Layout tab. Click View >

Toolbars > DataTree.

Data Tab

The Data tab displays available fields and field categories.

The top section outlines the data categories, such as Fam, FamKeyword, and so on. The bottom section lists the

fields that belong to the selected category and information about the field.

You can drag-and-drop a data field directly from the Data Tree into your report. The program automatically creates

a label for the field, which you can modify.

Layout Tab

You can indicate if and how a label is included when a data field is dropped from the Data Tree.

Select All to add a label at the same time the field is created. Select a Vertical or Tabular style. Select Grid to

display the field and/or label in a grid. Click Font to change the font style and color.

Or, if you only want a field to be created, select Field and set its properties. If you only want a label to be created,

select Label and set its properties.

15

Templates

Use report format templates to quickly set up a report with predefined headers and footers. Open the advanced

report writer editor, and click Templates on the title bar.

Available Templates

PDS Easy List Template

Use this template to apply the header and footer information of predefined listing reports to your ARW report. In

your report, click Templates > PDS Easy List. After making selections, click Build.

You can modify, rearrange, or remove any of this. The template provides a starting point.

PDS Header-Footer Template

This template places the listing style header and footer around the Detail bands you created. Click Templates >

PDS Header/Footer.

16

The Owner Name label displays the parish name as it's entered in the License Information window. The Report

Title label displays the report name as it's entered in the Name field on the report Overview window. Depending on

the page style, you can position the date and page number (system variables), and the note (label) in the header or

footer. The template allots fields for either.

Fonts and Page Style

All regular objects in an advanced report have a customized font. If you want a field to have the same font you

selected for the page style, right-click the object and select Font Changes.

Preview

To see how your report will print, click the Preview tab. To print the report, click the Printer icon. To view the report

at different sizes, click the sizing icons. To scroll through pages of the report, click the arrow buttons.

The page style is set in your report's layout window.

17

Sub-Reports

A sub-report is a report within a report. For example, you can have a main report with a list of family names and a

sub-report with a list of family members in each family.

Click the SubReport button , then click where you want to add it in the workspace. A tab displays at the bottom

of the window, initially called "PDSSubReport1: No Data Pipeline Assigned".

The sub-report automatically sizes to match the workspace width. To manually resize it, right-click the object, and

click ParentWidth.

You can nest sub-reports inside other sub-reports.

Data Pipeline

The data pipeline determines which data fields your sub-report can use. Click the sub-report object and select the

data category from the drop-down list.

Modifying a Sub-Report

To modify the contents, click the sub-report's tab at the bottom of the workspace.

You can insert objects in a sub-report the same way you do in the main report. Anything in the Detail band is

repeated once for each item.

18

Groups

A group is a special type of band that contains a Detail band surrounded by a Header and Footer. You can use a

group to keep the objects of the Detail band together on a page, or to indicate when to start the next Detail band on

the next page.

For example, let's say you have the family name, address, and email in the Detail band. As the report prints, a

family's information may be split between two pages. If you create a group around the Detail band, the family

information will always print together.

Adding a Group

To add a group, click Report > Groups, and select a field as the Break On point. When the report is processed,

the program sees this field and knows to keep that group together.

 Data Field – Includes all available fields within the data pipeline in the Groups drop-down list, even if

they're not used in the report.

 Custom Field – Includes only objects in the report in the Groups drop-down list.

In the Groups drop-down list, select a field, then click Add. The field name displays as "Group[x]:fieldname" or

"Group[x]:objectname". The number within the brackets [] is the group's break hierarchy. Groups with a lower

number take priority over groups with higher numbers. For example, Group[0] is kept together first, followed by

Group[1], then Group[2], and so on.

You can add multiple group break points, and you can mix Data Field and Custom Field groups.

Other Group Options

You can select how the new group prints on the report.

 Start new page — Starts each group on a new page.

 Reset page number — If you start each group on a new page, this resets the page number.

 New page when less than — When the space remaining at the bottom of the page (not including the

bottom margin) is less than the value you enter, a new page is started.

 Keep group together — Keeps everything in the group together on one page.

 Reprint group headers on subsequent pages — Prints the group header information at the

beginning of each page. For more information, see the section below.

19

Group Header and Footer

These print at the top and bottom of each group, just as the Header and Footer prints at the top and bottom of each

page. For example, if the Group Header has a series of labels to identify columns, these labels print above each

family.

In the example below, Fam Unique ID is selected as the group Break On value.

Each unique family is treated as a group with the header printed above it.

20

Regions

A region is a group of objects that are handled as a unit. It differs from a group because it doesn't encompass the

entire Detail band and has no break points. It differs from a sub-report because it doesn't have its own tab or its

own Header, Detail, or Footer bands, and it cannot have a different data pipeline than the band it's in.

All objects in the region share the properties you give to the region. For example, if the region is visible, then all

objects in the region are visible.

Adding a Region

Click the Region icon , and click in the workspace. Then, drag-and-drop objects into the region. If you move the

region, all objects inside move with it. Drag-and-drop objects outside of the region to remove them.

By default, regions have an outline. To remove it, right-click the region and select Transparent.

Right-Clicking a Region

You can right-click a region to view and change its options or properties. An ellipsis [...] in the property name

indicates additional controls.

 Bring to Front/Send to Back – Moves region in front of or behind its objects. If you don't select Send

to Back, when you move the region over other objects, those objects are blocked.

 KeepTogether – Keeps all parts of a region together on one page.

 ParentHeight – Makes region the same height as the workspace.

 ParentWidth – Makes region the same width as the workspace.

 Position... – Indicates region's position in the workspace, as well as region's height and width.

 ReprintOnOverFlow – If any stretched region goes to a second page, it reprints on the next page.

 ShiftRelativeTo... – Keep region's position relative to another sub-report or object.

 ShiftWithParent – Keep region's position relative to the workspace.

 Stretch – Expand region to encompass its objects when the report prints.

 StretchWithParent – Expand region to match the workspace when the report prints.

 Transparent – Turn off the outline around a region.

 Visible – Make region and its contents visible or hidden.

21

Embedding Code and Data

You can embed pieces of code in your advanced reports. Embedded code is a list of instructions for the computer.

You can also embed data. The code uses and manipulates the data to perform complicated functions in the report.

Code Editor

You can enter code for an event or object. There are a few ways to get to the code editor. Right-click an object and

select Do Before Print or Get Text. If the object is a variable, right-click it, and select Calculations. To open the

code editor for global variables, click Embedded Code > Define Global Variables or click Embedded Code >

Initialize Global Variables.

Below is an example of what might display in the Do Before Print code editor.

After you enter codes for events and objects, click Embedded Code > View All Embedded Code and select an

event or object to view. When opened this way, the code editor indicates which event or object the code belongs to

in the procedure name. Below is the same code as the example above, but viewed from the View Embedded Code

menu. Note the procedure name is added as "Label1OnPrint" at the top.

22

Code

PDS uses the Pascal language to create advanced reports. In Pascal, code is divided into routines. Each routine

can be a single statement or a group of statements. Each statement must end with a semicolon. It helps to indent

parts of code so routines are easier to read.

Most of the code embedded in a report is associated with an event or an object. Right-click an object to see the

attributes and the events, which display at the bottom. Select an event in the list to open the code editor for that

event.

By default, the code editor has a BEGIN...END statement, and it also inserts additional code to help you with a

particular object. For example, in the Get Text event of a label, the code editor automatically inserts a TEXT:=

statement since you're most likely going to set the text of the label.

BEGIN-END Statements

Use BEGIN...END statements to group other statements or to create a block of statements. Indent the statements

inside the block for easier reading.

Local Variable Declarations

To create local variables, add a declaration statement before the very first BEGIN in an event. Begin the variable

declaration with "var" then list the variable names and types. Separate names and types with a colon, and separate

individual variables with a semicolon. If you have multiple variables of the same type, enter the names separated

by commas, then a colon, then the type.

Assignment Statements

Use assignment statements to set a value into a variable or attribute. It can be a simple value or a complex

calculation. Enter the variable, followed by a colon and equal sign, then the value or calculation.

IF-THEN Statements

An IF statement tells the program that if a condition exists, run a set of instructions.

This statement is made up of the word "if", a comparison or calculation that can be evaluated as true or false, the

word "then", and finally a statement or group of statements to run if the IF condition is true.

var
 MyName: string;
 ItemCount, ItemMax: integer;

begin
end;

a:=5; {assign a value}
Total:=Total+100.00; {assign a calculation}
Label1.Caption:='The Family is inactive'; {assign a string}

23

CASE Statements

If you have several IF statements, use a CASE statement to make your code easier to read. This can replace a

series of IF...THEN statements.

if (Mem['Mem Age']>=21) then {If a member is age 21 or older then...}
 begin
 Label1.Caption:='Can Supervise'; {they can supervise.}
 Label1.Visible:=true;
 end;

You can also use an ELSE statement to indicate what to do when the IF condition is not true.

if (Mem['Mem Age'].=21)
 then
 begin
 Label1.Caption:='Can Supervise';
 Label1.Visible:=true;
 end;
 else {Else, if the member is under 21...}
 begin
 Label1.Caption:='Cannot Supervise'; {they can't supervise,}
 Label1.Visible:=true;
 Label1.Font.Color:=clRed; {and label displays text in red.}
 end;

 Series of IF-THEN-ELSE statements

if i=1
 then month:='January'
else if i=2
 then month:='February'
else if i=3
 then month:='March'
else if i=4
 then month:='April'
else if i=5
 then month:='May'
else
 month:='Other';

Instead of the code above, you can use a CASE statement:

case i of
 1: month:='January';
 2: month:='February';
 3: month:='March';
 4: month:='April';
 5: month:='May';
 else month:='Other';
end;

24

WHILE Loops

Use a WHILE loop to run a set of instructions multiple times while a condition exists.

The code above takes a variable string "s" and pads it with leading zeroes, making the value "s" at least then

characters long.

REPEAT-UNTIL Loops

The REPEAT-UNTIL loop is similar to the WHILE loop, but it tests the condition after running the statement, and it

repeats the statement(s) until the condition is true.

FOR Loops

If you need to run a group of statements a specific number of times, use the FOR loop. You must declare an

integer variable to use in the FOR statement.

If you want to jump in increments other than 1, use "step".

i:=10-length(s);
while i>1 do
 begin
 s:='0'+s;
 i:=i-1;
 end;

Repeat
 s:='0'+s;
 i:=i-1;
until i=0;

s:='';
for i:=1 to 9 do
 begin
 s:=s+chr(48+i); {chr(48) is the zero character, 0}
 end;

{ this code is the same as saying s:='123456789' }

You can use "down to" if you want to go backwards.

s:='';
for i:=9 down to 1 do
 begin
 s:=s+chr(48+i)
 end;

{ this code is the same as saying s:='987654321' }

s:=''
for i:=1 to 9 step 2 do
 begin
 s:s=chr(48+i)
 end;

{ this code is the same as saying s:='13579' }

25

Built-In Procedure Statements

There are two built-in procedures: MessageBeep and ShowMessage(str). The MessageBeep generates a beep

sound, and the ShowMessage() displays a dialog box with the message you enter in the parentheses. It can be a

literal string, a string variable, or a string calculation.

There are other built-in routines, but they deal with scripting language.

26

Conditions, Calculations, and Comments

Conditions

The conditions used in the IF, WHILE, and REPEAT statements can be simple comparisons or complex

calculations. The following are common comparison operations used in IF statements:

 > Greater than

 >= Greater than or equal to

 = Equal to

 < Less than

 <= Less than or equal to

 <> Not equal to

You can also use the following Boolean operations:

 And — Both or all conditions must be true.

 Or — Either or any conditions must be true.

 Xor — Only one of the conditions can be true.

 Not — None of the conditions can be true.

You must use parentheses when combining Boolean operations with comparison operations. For example, to use

i>2 and y<3, you must enter:

Calculations

You can insert calculations in assignment statements and conditions. It can be made up of a single item, called a

literal, such as "5", "Test", "true", or "10.2".

More commonly, a calculation is an equation with reference to object attributes or to a host of built-in routines.

Comments

A particular section of code can seem obvious at first but may be confusing later. To make code easier to read and

understand, it's good practice to enter comments. This is especially helpful if others view your code. To enter a

comment, enter text inside brackets {}.

(i>2) and (y<3)

{ In this code, only those over 21 can supervise. }

if (Mem['Mem Age']>=21)
 then Label1.Caption:='Can Supervise';

27

Testing, Viewing, and Printing the Code

Testing the Code

You can test the code for syntax errors and items, such as uninitialized variables. Click Embedded Code > Test

All Embedded Code.

The following are common errors:

 Leaving off a semicolon at the end of a statement.

 Including a semicolon on the line before an ELSE statement.

 Setting the attribute in one case, but not resetting it in the alternate case.

Useful Information

For example, you want the color of a label to be red when a value is over $100. You must set the label

color to red, but you must also set the color to black in other cases. Otherwise, once the program finds

the first value over $100, all remaining records will be red too, even if the values are less than $100.

 Misspelling the field name.

 Not setting up or initializing global variables.

Sometimes inserting a Boolean field inside an IF, WHILE, or REPEAT statement does not work. Instead of

inserting the Boolean field inside the statement, insert the value into a string first.

Viewing the Code

To view embedded code you created, click Embedded Code > View All Embedded Code, and select the event

you want to view.

Printing the Code

You can print all embedded code in one report. This is useful for easily finding errors and effectively tracking the

flow of variables. Click Embedded Code > Print All Embedded Code.

 Example of using Boolean inside IF-THEN

 var
 v: string;
 begin
 v:Inv['Inv Is Reconciled'];
 if v='Yes'
 then Label1.Caption:='reconciled'
 else Label1.Caption:='';
 end;

28

Data

There are many types of data. It can be a number, a string of letters for a name, or a financial amount. The

following are useful types of data:

 Integer – A whole number between -2,147,483,648 and 2,147,483,647.

 String – A series of characters, which can include numerical digits.

 Currency – A decimal financial amount between -922,337,203,685,477.5808 and

922,337,203,685,477.5807.

 Byte – A single 8-bit byte, 0 to 255.

 Boolean – A true or false value.

You can do different things with each type of data. For example, you can subtract 2 from an integer, but you cannot

subtract 2 from a string of numbers. Some of the built-in operations are detailed in the Calculations section.

Storing Data

In reports, you can store data in three places: data fields, objects, and data variables.

Data Fields

You assign values to data fields. For example, you assign an age to a member. The data field for member age is

Mem['Mem Age'].

This data field is from the Mem table and the field is Mem Age. In the code editor, click Insert a Data Field to view

a list of all available data fields.

29

Objects

Objects are areas you insert in a report that hold information. For example, a label is an object that holds the text of

what is printed for that label.

Attributes

The pieces of information that an object holds are called attributes. These can include the color, text, visibility,

position, name, and other properties. Right-click an object to see all its attributes. Or, in the code editor, click Insert

an Object Attribute to view a list of available objects and attributes.

Every object has a name, such as Label, DBText, Line, and a unique number. For example, the first label you add

is named "Label1", the second is "Label2", and so on. You can reference objects in the code using its name. To

change an object's name, click View > Toolbars > Report Tree, right-click the object, and click Rename. Object

names can only contain letters.

Note

When you rename an object, you must also update the name in any embedded code you already entered.

Otherwise, an error displays and the report won't run.

You can modify an attribute based on a condition or calculation. For example, you can change a label's text to red

if the Mem Age field value is less than 5 using an IF-THEN statement.

Events

Objects also have their own list of events that you can add code to. For example, a label has an event called

GetText, and you can attach code that runs when the computer needs to know what the text of the label is.

Data Variables

Variables are temporary boxes that hold the data you define and enter in the code.

Useful Information

There is also a type of object called a variable. These are not the same thing.

There are two types of variables that only differ in how long they exist.

 Global variables exist as long as the report is running. To define or initialize a global variable, click

Embedded Code > Define Global Variable or Initialize Global Variables.

 Local variables are created in the event code and only exist as long as the event is used.

 Code Example to Change Color Attribute

procedure Label1OnPrint;
begin
 Label1.Caption:=Copy(Mem['Mem Name'],1,1);
 if Mem['Mem Age']<5
 then Label1.Color:=clRed;
end;

30

Embedding Lists in Letters

An embedded list is an advanced report inserted into a letter.

For example, the financial report "Billing Statement" has several embedded lists inside a letter.

To insert an embedded list into a letter, enter the name of the ARW report in triangle brackets <> as <List:

reportname>. For example, <List: All Pledges> prints the total of all families for all pledges for the selected funds.

To view the underlying structure of an embedded list, click File > Edit List Selections, select the embedded list,

and click Open. You can modify the list in the editor.

You can also create new embedded lists. You must save it as List-filename.RTM in the program's report directory,

such as C:\PDSOffice\Data\Reports\PDS.

31

Creating Multiple Letters in One

You can use the IF-ELSE-END structure in a letter to create multiple letters in one, printing different paragraphs of

text depending on the conditions you set up.

For example, the financial report "Letter to Those Pledging" is set up this way. Different paragraphs print

depending on the family's Fund Totals Payment Percentage.

If the percentage is greater than or equal to 95, the first paragraph prints in the letter. If it's between 80 and 85

percent, the second paragraph prints. And if it's less than 80, the third paragraph prints. This way, you can print the

same letter for all families instead of one letter for each percentage.

IF Statement Format

In a letter, the IF statement format is a little different than in an advanced report. The IF is surrounded by triangle

brackets <>, and fields must have the format Category['fieldname']. The comparison symbols used in letters are

the same as in advanced reports:

 > Greater than

 >= Greater than or equal to

 = Equal to

 < Less than

 <= Less than or equal to

 <> Not equal to

32

Using ELSE, AND, and OR

Use ELSE and ELSE-IF statements to print a different paragraph when the IF condition isn't met.

 Example using ELSE-IF

< if Fam['Fam Number of Children']>0>
 You are invited to the Children's Day celebration.
< else if (Fam['Fam Number of Children']=0) and (Fam['Fam Number of Members']>0)>
 You are invited to the Adult celebration.
< else if Fam['Fam Number of Members']=1>
 You are invited to the Singles Dance.
< end >

Make sure you account for all conditions. Otherwise, a blank line prints for some families.

 Example using ELSE to cover unmet conditions

< if Fam['Fam Number of Children']>1>

 You are invited to the Children's Day celebration.
< else if Fam['Fam Number of Children']=1>
 You are invited to the Families with Only Children celebration.
{ If you stop there, a blank line will print for families with no children. }

{ You need one final ELSE statement to cover all other cases :}
< else>
 You are invited to the Non-Parents celebration.
< end>

Use AND and OR to test multiple conditions in an IF statement. Enclose conditions in parentheses.

 Example using AND

{ Both conditions must be true for the text to print. }

< if (Fam['Fam Number of Children']>0) and (Fam['Fam City']='Phoenix, AZ')>

 You are invited to the Children's Day celebration in Phoenix Municipal Park.
< else if (Fam['Fam Number of Children']>0) and (Fam['Fam City']='Florence, SC')>

 You are invited to the Children's Day celebration in Florence City Park.
< end >

 Example using OR

{ Either or any of the conditions can be true for the text to print. }

< if (Fam['Fam Suffix']='Jr.') or (Fam['Fam Suffix']='Sr.')>

 You are invited to the Association of Suffix Holders (ASH) celebration.
< else if (Fam['Fam Suffix']='II') or (Fam['Fam Suffix']='III')>
 You are invited to the Association of Seconds and Thirds (AST) celebration.
< end >

33

Printing Letters in Multiple Languages

You can print the same letter for each family in their selected language. Use LANGUAGE statements to enter

different versions of a letter in the same report.

Useful Information

The program doesn't translate text into different languages, but there are many free websites that translate

for you.

Requirements for Using Multiple Languages

The following are requirements to keep in mind if you want to use the Multiple Languages feature:

 In the Members window, you must select the language for the head of each family you intend to use in

the letter.

 If you have members who have a main language and secondary language (for example,

English/Spanish, Spanish/English), list the language you want to use in letters first.

 You must spell the language exactly the same in each combination.

Modifying Reports

You can modify the following parts of the report to print in different languages.

Inside Address Style

In the Letter Layout window, select the Inside Address Style you want to adjust, then click Edit Style. Click Edit

Text, and enter the text for each language you want to use. For example:

The example code tells the program to do several things:

 Look for the first male family member with "Spanish" selected in the Language field.

 Print the word "Estimados" if the salutation contains Sr. é Sra.

Print the plural "Estimados" if the salutation contains S/S.

 Print the singular "Estimado" if the salutation doesn't contain S/S.

 Print the feminine "Estimada" for females.

 Print "Dear" if the member has "English" selected in the Language field.

< Language: Spanish(Male)>
 <if pos('Sr. é Sra.',Fam['Fam Formal Sal'])>0>
 Estimados <Fam Formal Sal>,
 <else if pos('S/S',Fam['Fam Formal Sal'])>0>
 Estimados <Fam Formal Sal>
 <else>
 Estimado <Fam Formal Sal>
< end >

< Language: Spanish(Female)>
 Estimada<Fam Formal Sal>,
< end >

< Language: English >
 Dear <Fam Formal Sal>,
< end >

34

You can include as many languages as you want. Insert a language field, such as <Language: French>,

<Language: Vietnamese>, and so on. Then enter the text of the inside address in that language.

Text of the Letter

In the Letter Layout window, click Modify the Body of the Letter. The example below prints text in Spanish and

English.

You can include as many languages as you want. Insert a language field, such as <Language: French>,

<Language: Vietnamese>, and so on. Then enter the text of the letter in that language.

Closing Style

In the Letter Layout window, click Edit Style under Closing Style, and click Edit Text. The example below prints

the closing in Spanish and English.

You can include as many languages as you want. Insert a language field, such as <Language: French>,

<Language: Vietnamese>, and so on. Then enter the text of the closing in that language.

< Language: Spanish >
 Este es un ejemplo de carta escrita en español.
< end >

< Language: English >
 This is a sample letter written in English.
< end >

< Language: Spanish >
 Sinceramente,
 Sr. Robert Jones
 Administrador de Oficinas
< end >

< Language: English >
 Sincerely,
 Mr. Robert Jones
 Office Administrator
< end >

35

Scripting Language

With embedded code, you can control the internal elements of a report. But with scripting, you can also control

outside elements, like:

 Ask users about what's going to be in the report, so the report is customized. This eliminates the

need to have multiple similar reports.

 Create an export or import of data. In this case, you might not generate any sort of printout.

 Sort or manipulate the data in a way that's not designed into the system.

When you run the report, the script is activated. PDS uses the Pascal scripting language, which is what you used

when you embedded code. However, there are some differences.

Accessing the Script

In the Select Report window, select the advanced report you want to modify, and click Adv. Script. Click the

Pascal Script File tab. In this text box, you can create or edit the script code. The following are differences

between writing script and embedded code:

 All the code of a script is in one location. There isn't a separate window for each routine.

 You must enter all of the code, including the procedure declarations.

 Field names are different.

 Errors may not display until you run the report. Click Check Code to find simple syntax errors.

Scripting Objects

In reports, objects are items you insert into the ARW editor. In scripts, objects are more complicated. Everything on

your screen and everything in the program tables are objects.

For example, the family table is an object that's stored in another object called a "datamodule" (DM). To go to the

first family, enter the following line in the script:

PDSDMData.FamTbl.First; // Tells program to access the PDSDMData datamodule,
 // find the FamTbl object, then run "First" routine.

36

Scripting Events

In the script, you can attach code to events that happen as the program runs. Include a procedure or function in the

script with the name of the event you want to handle.

Tip

To automatically insert the header, being line, and end line, click Add Event and select the procedure or

function you want.

Procedures and Functions You Can Use

These are listed in the order the program executes them.

Procedure or Function When the Program Executes It

procedure
AfterCreateReport;

Called after you select the report.

procedure
AfterLoadReport;

Called after you load the report.

procedure
CreateExternalData;

Called after AfterLoadReport. This gives you a chance to set up tables for the
report. This isn't where you add records to the tables since you haven't attached
selections yet, but you can create the tables.

function BeforeReport:
boolean;

Called after you click Preview. This way, you can detect any problems with
selected values and cancel the report. To cancel, enter "Result:=false;".

procedure
BeforeSelectReport;

Called before you attach simple filters.

procedure
AfterSelectReport;

Called after you attach simple filters.

procedure
BeforeSelectionsBuilt;

Called before additional selections are built. You can modify the SQL in the
SelectTbl here to add any filters that are needed.

procedure
AfterSelectionsBuilt;

Called after you add additional selections. Several things are done in this event
since all tables have attached selections.

function
PrintDefaultReport:
boolean;

Called before you print. Use this with the BeforeSetupPrint event to tell the
program that this isn't a normal report. If you're running an export or import (where
no report is printed), add this event then enter "Result:=false;". Add
BeforeSetupPrint with "Result:=false;" so the preview window doesn't display.

function
BeforeSetupPrint:
boolean;

See above description.

procedure
BeforePrintReport;

Called before you print.

procedure
AfterPrintReport;

Called after you print the report.

procedure AfterReport;
Called after the report, even if it wasn't designed to print anything (like an export
report).

procedure
FreeExternalData;

Called at the end of the report. Free any data tables that you created in the script
(usually in the CreateExternalData event).

procedure
BeforeDestroyReport;

Called at the very end.

Two Special Events You Can Use in PDS Church, Formation, and School Office

Procedure When the Program Executes It

37

procedure
OrderMailTbl;

Called after you add an entry to the Mail table.

The Mail table is used for special sorts where you include billing addresses and courtesy
copies. To speed up the program, this procedure isn't called unless there's a line in the UDR
file that reads "OrderMailTbl=1". You also need to set "ForceMailTbl=1". Inside the
OrderMailTbl event, set PDSDMData.MailTblKey.AsString to the value you want to sort by.

procedure
CallAfterCalc;

Called after the Family table finishes its calculations for each family. To speed up the
program, this procedure isn't called unless there's a line in the script that reads
"UseCallAfterCalc:=true;". This is usually in the AfterCreateReport event.

Script Code Statements

In the Code section, there's information about Pascal statements. In addition to the statements discussed in that

section, scripting language has a few more statement types.

With Statements

If you have several objects, you can nest With statements, or you can separate objects with commas. Also use a

With statement for an attribute that has its own attributes, such as font.

Use a With statement to set several object attributes.

 Label1 Attributes

// Note that the label object has several attributes
Label1.Caption:='Test';
Label1.Top:=100;
Label1.Left:=200;
Label1.Width:=100;

Instead of listing each attribute, use a With statement:

 With Statement

With Label1 do
 begin
 Caption:='Test';
 Top:=100;
 Left:=200;
 Width:=100;
 end;

38

Try-Finally and Try-Except

Use these to handle error conditions.

The Try-Finally statement tells the program to "Try" to do something, and no matter what happens, perform what is

in the "Finally" section.

Try-Finally and Try-Except are rarely required, but they make reports better able to tolerate problems without giving

the user unexpected error messages.

 Try-Finally Statement

// This code will "Try" to create a file named A:\test.txt, then write a few lines
// of text to it. No matter what happens (for example, if the disk is full),
// the program will "Finally" run the CloseFile statement.
var
 FOut: Text;
begin
 Assign(FOut,'A:\Test.txt');
 Try
 Rewrite(FOut);
 Write(FOut,'Test');
 Write1n(FOut,' The end of a line');
 Finally
 CloseFile(FOut);

 end;
end;

The Try-Except is similar, but the "Except" statement only runs if an error occurs.

 Try-Except Statement

// If you "Try" to divide two numbers, you must have an "Except"
// in case the denominator is zero.
var
 i, j: integer;
begin
 i:=5;
 j:=0;
 Try
 i:=i div j;
 Except // If there was no "Except" statement, an unexpected error would display.
 ShowMessage('Cannot do '+
 IntToStr(i)+'/'+IntToStr(j));
 end;
end;

39

Exit, Break, Continue, and Goto

These statements control the flow of the program when a situation arises.

"Exit" tells the program to close the current procedure or event and return to whatever called it.

Use the Break and Continue statements inside of loops. "Break" tells the program to jump out of the loop.

"Continue" tells the program to go to the bottom of the loop.

Use the Goto statement to put a label in, then go to that label.

 Example of Exit, Break, Continue, and Goto

// You rarely use all four statements together,
// so this example doesn't perform an actual function.
Procedure Test;
Label TryBackwards; // define a Label for the Goto
var
 i, j: integer;
begin
 if PDSDMData.FamTbl.RecordCount=0
 then exit; // get out of this routine completely
 j:=0;
 for i:=1 to 5 do
 begin
 PDSDMData.FamTbl.First;
 if PDSDMData.MemTbl.RecordCount=0
 then continue; // get the next i
 while not PDSDMData.FamTbl.Eof do
 begin
 if PDSDMData.MemTbl.RecordCount=1
 then break; // get out of the while loop
 if PDSDMData.MemTbl.RecordCount=1

 then goto TryBackwards; // jump to the label
 j:=j+1;
 PDSDMData.FamTbl.Next;
 end;
 TryBackwards:
 PDSDMData.FamTbl.Last;
 while note PDSDMData.FamTbl.Bof do
 begin
 j:=j+1;
 PDSDMData.FamTbl.Prior;
 end;
 end;
end;

40

Detecting Errors

In the Advanced Script dialog box, on the Pascal Script File tab, there is a Check Code button. This checks for

simple syntax errors, but it can't detect complex errors. When you run the report, if there's an error, a dialog box

displays with as much information as possible.

This tells you what to fix in the code. In the example above, the program tells you it expected to read a semicolon

(;) on line 38, character 10.

Common Problems

The following are a few things you need to be aware of in scripting:

 The program can crash more when you write scripts. There are less protections, so the report is more

likely to do something that freezes the program. PDS recommends using newer operating systems.

 It's easy to make a mistake when you enter an event name. The program doesn't tell you when an

event name is misspelled or incorrect. If you have this problem, put a ShowMessage command in the

procedure when you first add the event to make sure everything you think is running is actually running.

 If you don't initialize your variables, you will have problems when writing scripts.

41

Accessing and Adding Screens

You can use scripts to ask users questions, then you can use the answers to customize a report. In this section,

you will learn about script routines and objects.

You can learn a great deal from the program's predefined reports. In Member Involvement reports, you can see

how to make layout screens.

Simple Messages and Questions

In the Scripting Events section, you learned how to notify the user with a ShowMessage statement. An easy way to

get information from a user is to prompt the user with a dialog box that has buttons they can click, such as "Yes",

"No", "Cancel", "OK", and so on. To display a dialog box with button options, use the built-in function,

PDSMessageDlg:

 S is the message you want to display.

 MessageType controls the dialog box caption and the icon that displays.
mtWarning contains a yellow exclamation point.
mtError contains a red stop sign.
mtInformation contains a blue "i".
mtConfirmation contains a green question mark.
mtCustom has no icon. The message box caption is the application's executable file name.

 ButtonSet lists buttons that display in the dialog box. These are in the MkSet function call.
mbYes shows "Yes".
mbNo shows "No".
mbOK shows "OK".
mbCancel shows "Cancel".
mbAbort shows "Abort".
mbRetry shows "Retry".
mbIgnore shows "Ignore".
mbAll shows "All".
mbNoToAll shows "No to All".
mbYesToAll shows "Yes to All".
mbHelp shows "Help".

 HelpContext is the function that returns which button the user clicks.
mrNone – The user clicked the "X" in the top right corner of the dialog box.
mrYes – User cicked "Yes".
mrNo – User clicked "No".
mrOK – User clicked "OK".
And so on for the rest of the buttons.

Useful Information

For the purposes of this guide, always enter 0 for the HelpContext function.

 PDSMessageDlg(S, MessageType, ButtonSet, HelpContext);

42

For example, to prompt the user with a message that asks if they're sure, enter the following:

If you need to have more than one button, you can save the result in an integer. For example:

If there's more than one question or if the response requires the user to enter text, you can create a new window in

the report wizard. This is referred to as the second layout window.

if PDSMessageDlg('Are you sure?', mtConfirmation, MkSet(mbYes,mbNo), 0)=mrYes
 then ShowMessage('You said Yes')
 else ShowMessage('You did not say Yes');
end;

var
 i: integer;

begin
 i:=PDSMessageDlg('What should we do?', mtError, MkSet(mbRetry, mrIgnore), 0);
 if i=mrRetry
 then ShowMessage('You clicked Retry')
 else if i=mrIgnore
 then ShowMessage('You clicked Ignore')
 else ShowMessage('You clicked the X');
end;

43

Screen Routines in the ScrnIO

To simplify scripting, the program comes with a library of common routines. The Screen Input/Output library

(ScrnIO.pas) is located in the Reports folder of the program. At the top of the script, enter the following:

The examples below use the variable names "S", "L", "E", and "N". You don't have to use these variable

names. You can use the names of the variables you have declared or literals of the right type. You also don't

have to put in the variable types, such as "string" or "TCheckbox". They are only used here as examples.

ScrnIO adds the following routines to the script:

NewScreenPage; — Adds a new window to the report wizard and sets everything up to use it. This routine

initializes all internal variables used to position fields.

AddPhone(S: string; L: TLabel; E: TDBPhone; N: integer); — Adds a label and edit box formatted for a

phone number.

AddDate(S: string; L: TLabel; E: TDBDateBtn; N: integer); — Adds a label and edit box that is formatted for

a date and has a calendar button.

AddAmt(S: string; L: TLabel; E: TDBAmount; N: integer); — Adds a label and edit box that is formatted for

an amount and has a calculator button.

Uses
 scrnio;

Useful Information

AddHeading(S: string; L: TLabel); — Adds an "S" heading label. The actual label object is returned to you in the
variable you declare as "L". For example:

AddHeading('Talent/Ministry Options:', My Label);

The code above creates the following:

AddHeadingCheckBox(S: string; E: TCheckBox); — Adds a heading label with a checkbox.

AddLabel(S: string; L: TLabel); — Adds a simple label to the window.

AddEdit(S: string; L: TLabel; E: TEdit; N: integer); — Adds a label and edit box. "N" is equal to the

maximum number of characters entered.

44

AddTotal(S: string; L: TLabel; E: TDBAmount; N: integer); — Adds a label and edit box formatted for an

amount. It's similar to AddAmt, but it doesn't have a calculator button, and the field is unavailable so a user

cannot enter an amount. Use this to display an amount that is the sum of other boxes in the window.

AddRadioButtonGroup(S: string; List: string; E: TRadioGroup); — Adds a radio button group.

"S" is the group caption and "List" is the list of radio buttons. Separate each list item with a comma, for

example, 'Red, Yellow, Blue'. The object is returned in the last item. You can determine which radio button the

user selects in the E.ItemIndex, where "E" is the name of the TRadioGroup object you declared and used as

the third parameter.

that indicate to include ALL or include ANY of the items in a table. You can turn off the "OR" that displays

between the radio buttons with IncOr.

AddLine(N: integer); — Adds a line of "equals signs" as a separator. "N" is the number of equals signs.

AddBlank; — Adds a blank line below the last object placed on the window.

AddPage(Pg: LMDAssistPage; N: integer); — Adds a new page to the report wizard. It's similar to

NewScreenPage, but it returns the new page object in the variable you enter as "Pg". "N" is the position of the

new page and is usually set to "3". Use this if you need access to the page object.

AddIncAll(S1,S2: string; IncOr: boolean; E1,E2: TRadioButton); — Adds a pair of radio buttons

AddCheckBox(S: string; E: TCheckBox); — Adds a checkbox with a caption.

AddRadioButton(S: string; E: TRadioButton); — Adds a radio button with a caption.

AddDropDown(S: string; L: TLabel; E: TComboBox; N: integer); — Adds a drop-down list with a

caption. "N" is equal to the maximum number of characters.

45

Screen Objects

The routines listed in the Screen Routines in the ScrnIO section create objects, then add them to the screen.

Before you can use any of the routines, you must declare the objects you're going to have on the screen. You

declare the object you want to use in a "var" statement at the top of the script. The following are common object

types:

 TLMDAssistPage – Page in the wizard.

 TLabel – Label on the screen.

 TEdit – String edit field.

 TComboBox – String edit field with a drop-down list.

 TDBDateBtn– Date edit field with a calendar button. You can attach this to a database field.

 TDBAmount– Amount edit field with a calculator button. You can attach this to a database field.

 TDBPhone – Phone edit field. You can attach this to a database field.

 TCheckBox – Single checkbox with a caption.

 TRadioButton – Single radio button with a caption.

 TRadioGroup – Set of radio buttons with a caption.

 TButton – Simple button.

 TPDSDBGrid – Grid. You can attach this to a database field.

Other Objects

You can place other objects on a screen, such as buttons and grids. You can find examples of these objects in the

Member Involvement reports.

Like embedded code, objects in the script can have events, too. For example, if you add a button to a screen, you

can also add an event that executes when a user clicks the button.

When you create an object that isn't in the Screen Input/Output library (ScrnIO), you must set its attributes. The

main attribute you must set is the "Parent", which tells the program where the object displays. Usually, this is the

new page that you created, called "CurPage".

 Code to enter in the script to create a button

procedure MyBtnOnClick(Sender: Tobject);
 begin
 ShowMessage('Button clicked');
 end;

procedure AfterReportLoad;
 var
 MyBtn: TButton;
 begin
 NewScreenPage;
 MyBtn:=TButton.Create(CurForm);
 MyBtn.Caption:='My Button';
 MyBtn.Top:=10;
 MyBtn.Left:=10;
 MyBtn.Width:=30;
 MyBtn.Height:=10;
 MyBtn.Parent:=CurPage;
 AttachEvent(MyBtn, 'OnClick', 'MyBtnOnClick', false);
 {AttachEvent connects an event to the procedure you want to run for an object.}
 end;

46

Communicating with the Report

After you create a new window in the report wizard where users can enter information, you must have a way to

relay that information to the report. Add the following two routines to the script:

These routines send information to the report, and the report can even send information back to the script. The

integer "i" is equal to the number of parameters, which you can set from 0 to 32000. Each value of "i" is a different

parameter, and each parameter is a string. These routines are available in the script and in the embedded code.

For example, write the following in the script:

"EditName" is an edit object that displays on the screen. In embedded code, you could have a GetText event of a

label. For example:

The report prints the value entered on the screen. The program can pass any type of value between the script and

the report, but it converts the value to a string before sending it. Usually, the program uses it as a string in the

embedded code, but sometimes it needs it in its original form, so it converts it back in the embedded code. This is

often true for dates when you want to use the date in some sort of comparison.

The most common place to put the setting of the parameter in the script is in the AfterSelectReport event, because

when the program gets to that event, the user cannot change anything on the screen. If there are many parameters

to pass, you can create a procedure, such as the following:

You must also add a call to the new SetParams routine at the bottom of the AfterLoadReport event, after the code

to write to the INI file. You need this call so the preview report will work inside the Advance Report Writer editor.

After you insert the SetParams routine, you must include embedded code in the report so the report will use the

parameters.

procedure PDSSetParam(i: integer; s: string);
function PDSGetParam(i: integer): string;

begin
 PDSSetParam(0,EditName.Text);
end;

begin
 Text:=PDSGetParam(0);
end;

procedure SetParams;
begin
 {PUT THE ITEMS INTO PARAMETER FOR THE REPORT}
 PDSSetParam(0,UpperCase(OwnerName));
 if SepPageCBYes.Checked
 then PDSSetParam(1,'Yes')
 else PDSSetParam(1,'No');
 if PageNumCBYes.Checked
 then PDSSetParam(2,'Yes')
 else PDSSetParam(2,'No');
 if FonCBYes.Checked
 then PDSSetParam(4,'Yes')
 else PDSSetParam(4,'No');
 PDSSetParam(5,MemGroup.ItemIndex);
 PDSSetParam(6,AgeGradeGrp.ItemIndex);
end;

procedure AfterSelectReport;
begin

 SetParams;
end;

47

Other Objects

You can place other objects on a screen, such as buttons and grids. You can find examples of these objects in the

Member Involvement reports.

Like embedded code, objects in the script can have events, too. For example, if you add a button to a screen, you

can also add an event that executes when a user clicks the button. To create a button, enter the following in the

script:

The AttachEvent procedure connects an event to the procedure you want to run for a given object.

When you create an object that is not in the Screen Input/Output library (ScrnIO), you must set its attributes. The

main attribute you must set is the "Parent", which tells the program where the object displays. Usually, this is the

new page that you created, called "CurPage".

Positioning Objects

When you create an object, you must set the top, left position, width, and height of the object as it displays on the

screen. In the Screen Input/Output Library (ScrnIO), the following variables are declared. Use these to set object

attributes:

 FontH – Height of the font.

 LabelT – Top of the next label object. Each time you place a ScrnIO object on the screen, the program

moves this down the amount you enter for LabelN. If you use this variable, increment it by LabelN. For

example, LabelT:=LabelT+LabelN;.

 LabelH – Height of a standard label object.

 LabelL – Left position of the label object.

 LabelN – Increment to the next line. Usually, this equals the EditN.

 EditT – Top of the next edit object. Each time you place a ScrnIO object on the screen, the program

moves this down the amount you enter for EditN. If you use this variable, increment it by EditN. For

example, EditT:=EditT+EditN;.

 EditH – Height of a standard edit object.

 EditL – Left position of the edit object.

 EditW – Width of the edit object.

 EditN – Increment to the next line. Usually, this equals the LabelN.

 procedure MyBtnOnClick(Sender: Tobject);
 begin
 ShowMessage('Button clicked');
 end;

 procedure AfterReportLoad;
 var
 MyBtn: TButton;
 begin
 NewScreenPage;
 MyBtn:=TButton.Create(CurForm);
 MyBtn.Caption:='My Button';
 MyBtn.Top:=10;
 MyBtn.Left:=10;
 MyBtn.Width:=30;
 MyBtn.Height:=10;
 MyBtn.Parent:=CurPage;
 AttachEvent(MyBtn, 'OnClick', 'MyBtnOnClick', false);
 end;

48

Change these values in order to control where the object is placed. For examples of this, view the Member

Involvement reports.

Useful Information

You can position objects without using these variables. However, if you use these variables, they adjust

according to the user's screen size. If you position objects any other way, make sure you test the screen at

different sizes.

49

Special Sorts

When performing special sorts, you must use scripts. There are several tables you can use to sort:

 A Select Table is built into the program for sorts using SQL (Structured Query Language).

 A Mail Table is used for ZIP Code sorts, email sorts, courtesy copy sorts, billing address sorts, and any
family/member sort that doesn't have SQL.

 Memory Tables are database tables that reside in program memory.

 Database Tables hold more information than memory tables, and you can connect them to existing tables.

Select Table

The easiest way to perform a special sort is to set up the SelectTbl. This is a table built into the program for sorts

using SQL. If it's set to active, the program knows to use it.

To make the code easier to read, enter the SQL statements on different lines. Also, place spaces at the end of

each line so the words don't run together in your report.

In SQL, you must include a field that links the SelectTbl to the main table of the report type you're writing. For

example, if you're writing a family report, you must include the FamRecNum field, and if you're writing a member

report, you must include the MemRecNum field. The program uses that field to connect with all other tables. The

program gets the first record of the SelectTbl, then uses the FamRecNum or MemRecNum field to find the correct

family or member record. Once the program locates the record, it links it to the other tables.

You can also add conditions to the WHERE clause of the SQL, which tells the report to filter the families or

members before it prints. Add conditions when you want to filter data without the user entering a selection.

Mail Table

In PDS Church, Formation, and School, you can perform a special sort with the MailTbl. This is a table created in

the user's temporary folder, and it isn't based on SQL.

For each family or member in your report, a record is added to this table. It's used for ZIP Code sorts, email sorts,

courtesy copy sorts, billing address sorts, and any family or member sort that doesn't have SQL. The table can

have more than one entry per family.

 Example: Sort a member report by date family registered using SQL

procedure AfterSelectReport;
begin
 DM.SelectTbl.Sql.Text:=
 'Select '+
 ' Mem.MemRecNum, '+
 ' Fam.DateRegistered '+
 'from '+
 ' Mem, Fam '+
 'where '+
 ' Fam.FamRecNum=Mem.FacRecNum '+
 'order by '+
 ' DateRegistered';
 DM.SelectTbl.Active:=true;
end;

50

To use the MailTbl, add the following lines to the [Default] section of the UDR File:

The OrderMailTbl event executes each time the program is ready to add an item to the MailTbl. Then, you can

enter you own key value...

...and set it to a value or calculation. When this event executes, all tables are set up and ready to use, including the

FamTbl and MemTbl.

Example

You can view an example of this in PDS Church Office by copying the financial report, Listing in Order by Amount,

and clicking the Pascal Script File tab.

In this report, the script resets the Sort Order drop-down list so it includes only two items. The UDR File tab

displays:

The code above tells the program to use separate statements, build and use the mail table to sort, and call for

script routines for each entry in the MailTbl. It also sets the default page style to Compressed Format.

OrderMailTbl=1
ForceMailTbl=1

PDSDMData.MailTblKey.AsString

[Default]
CanUseSepStmt=1
ForceMailTbl=1
OrderMailTbl=1
PageStyle=360

51

Memory Tables

You may need to store data temporarily in a report. You could store it in a variable, but sometimes the data is too

large. In that case, use a memory table, which is a database table that resides in program memory. It isn't stored

on a disk, but you can save and load memory tables if needed.

For example, in a financial statement, you include a note that has the family's current rate and terms, as well as the

date of the last donation. You could make an ARW report that does this, but it will calculate the values in a sub-

report or an embedded list. This makes it difficult to have the values display where you want them.

You can extend the report to have new fields, which is where the memory table comes in. Access a memory table

the same as accessing other data fields. You can even use the tables in selections.

Declaring, Initializing, and Assigning Variables

Before using memory tables, you must declare, initialize, and assign the variables you need. To implement a table,

you need three variables: the table, the datasource, and the pipeline.

You must initialize the variables in the AfterCreateReport procedure. Otherwise, the report stops.

After initializing, you must assign values.

 Code to declare variables

var
 {Table tells the program what the fields are and how database is ordered and indexed}
 NewFieldTbl: TkbmMemTable;
 {Datasource is a special connection that connects database to screen fields}
 NewFieldDS: TDataSource;
 {Pipeline is the connection between datasource and report builder}
 NewFieldPL: TppDBPipeline;

 Code to initialize variables

procedure AfterCreateReport;
begin
 {Set variables to "nil", which means they have nothing in them}
 NewFieldTbl:= nil;
 NewFieldDS:= nil;
 NewFieldPL:= nil;
end;

 Code to assign variables

procedure CreateExternalData;
begin
 {Create a new memory table}
 NewFieldTbl:= TKbmMemTable.Create(DMReport);
 with NewFieldTbl do
 begin
 {Set up the memory table}

52

After running the report, you need to get rid of the table using the FreeExternalData event.

 FieldDefs.Clear; {We don't need this line, but it doesn't hurt}

 {Set up the field to sort by}
 FieldDefs.Add('Order', ftInteger, 0, False);

 {Set up the new fields to calculate}
 FieldDefs.Add('TermsAndRate', ftString, 40, False);
 FieldDefs.Add('Terms', ftString, 40, False);
 FieldDefs.Add('Rate", ftCurrency, 0, False);
 FieldDefs.Add('LastDate', ftDate, 0, False);

 {Set up the index (not really used for this table)}
 IndexDefs.Add('','Order',MKSet(ixPrimary));
 NewFieldTbl.IndexFieldNames:= 'Order';
 CreateTable;
 Active:= true;
 end;

 {Create the data source}
 NewFieldDS:= TDataSource.Create(DMReport);
 NewFieldDS.DataSet:= NewFieldTbl;

 {Create the pipeline}
 NewFieldPL:= TppDBPipeline.Create(DMReport);
 NewFieldPL.Name:= 'NewFieldPL';
 NewFieldPL.UserName:= 'NewField'; {this is the name users see}
 NewFieldPL.DataSource:= NewFieldDS;
 NewFieldPL.AutoCreateFields:= true;

 {Add in the first and only record}
 NewFieldTbl.Append;
 NewFieldTbl.FieldByName('Order').AsInteger:=0;
 NewFieldTbl.FieldByName('TermsAndRate').AsString:= '';
 NewFieldTbl.FieldByName('Terms').AsString:= '';
 NewFieldTbl.FieldByName('Rate').AsCurrency:= 0;
 NewFieldTbl.Post;
 {Tell program to call CallAfterCalc after moving from one family to the next}
 UseCallAfterCalc:= true;
end;

 Code to free external data

procedure FreeExternalData;
begin
 {Only removes items that aren't equal to "nil"}
 if assigned(NewFieldTbl)
 then NewFieldTbl.Free;
 if assigned(NewFieldDS)
 then NewFieldDS.Free;
 if assigned(NewFieldPL)
 then NewFieldPL.Free;
end;

53

Attaching and Building the Tables

After adding a new table, you must make it accessible to reports and selections.

Now define what should happen after a family or member record is added to the table.

 Code to add tables to program

{ Add tables to the program's list of tables}
procedure AttachNewTables;
begin
 AddTable(NewFieldTbl, NewFieldDS, 'NewField', 'Order', 'Fam', 'FamRecNum', '');
 {The first parameter (NewFieldTble) is the table you want to add}
 {Second (NewFieldDS) is the table's datasource}
 {Third ('NewField') is the name that displays to users}
 {Fourth ('Order') is the indexed field you want to use}
 {Fifth ('Fam') is the table that this table is linked to}
 {Sixth ('FamRecNum') is field in table that matches third parameter's value}
 {The seventh parameter ('') is always blank}
end;

 Code to build the table

{ Calculate the value of the new fields }
procedure CallAfterCalc; {Called every time we get a new family}
var
 s, s1: string;
 i: integer;
 d, d1: date;
begin
 {Loop through the CalcFund and CalcFundHist tables to find the latest payment}
 {And loop through CalcFundAct to find the first activity with recurring charge}
 {Then store it in the NewField table}
 s:= '';
 d:= 0;

 with PDSDMCalc.CalcFundTbl do
 begin
 First;
 while not eof do
 begin
 if PDSDMCalc.CalcFundHistTblActFund.AsInteger<9 then
 begin
 d1:= PDSDMCalc.CalcFundHistTblFEDate.AsDateTime;
 if d1>d
 then d:= d1;
 end;
 Next;
 end;
 end;
 {Get the last recurring description}
 if s='' then
 with PDSDMCalc.CalcFundActTbl do
 begin
 First;
 while (s='') and not eof do
 begin
 s1:=trim(PDSDMCalc.CalcFundActTblRecurDesc.AsString);
 if s1<>''
 then s:=s1;
 Next;
 end;

54

In PDS Church Office, there are built-in optimizations that speed up reports. After a family is read, it is not

recalculated. However, there may be times you want to recalculate it after it's connected.

 end;
 Next;
 end;
 First; {Move back to the first record in case anything depends on that}
 end;

 {There's only a single record, so edit it and put in the new values}
 NewFieldTbl.Edit;
 NewFieldTbl.FieldByName('Order').AsInteger:= PDSDMData.FamTblFamRecNum.AsInteger;
 NewFieldTbl.FieldByName('TermsAndRate').AsString:= s;
 i:= pos('',s);
 if i<>0 then
 begin
 NewFieldTbl.FieldByName('Terms').AsString:= copy(s,i+1,40);
 s:= CleanAmount(copy(s,1,i);
 NewFieldTbl.FieldByName('Rate').AsCurrency:= StrToCurr(s);
 end;
 else
 begin
 NewFieldTbl.FieldByName('Terms').AsString:= s;
 NewFieldTbl.FieldByName('Rate').AsCurrency:= 0;
 end;
 if d=0
 then d:=now;
 NewFieldTbl.FieldByName('LastDate').AsDateTime:= d;
 NewFieldTbl.Post;

end;

 Code to recalculate records

{ You can trick the program into thinking it hasn't seen the first record yet }
procedure PrintDefaultReport;
begin
 {Force the program to recalculate just before report starts to print}
 {If we don't do that, the first record is wrong}
 PDSDMCalc.MainCurCalcFamRec:= 0;
 PDSDMData.FamTbl.First;
end;

55

Database Tables

A database table holds more information than a memory table, and you can connect it to an existing table. For

example, in the Member Involvement reports, there are tables that retrieve the ministries and ministry statuses.

You can use these tables in a set of grids to select ministries to print. In this case, you don't need to have a

pipeline because the table is just for use in the layout window, not in the report.

In the example below, the code states the following:

 The database table is connected to the MinType.db file. The table is connected to the same database

that the family table is connected to, and it's indexed by its description.

 There are three field objects (FieldName). One is attached to the Description; one is attached to the

MinDescRec, which is a unique integer identifier for each record in the description; and one is a calculated

Boolean field called "Selected".

Useful Information

Instead of making three separate variables, MinSelFld was used three times because you don't need

use the field variables themselves.

Exporting Fields Using Scripting

In reports, you can export fields. To export information in a precise way and create complex formations, use

scripting.

{ Build Table }
MinTbl:=TwwTable.Create(CurForm);
MinTbl.Active:=false;
MinTbl.TableType:=ttParadox;
MinTbl.DatabaseName:=PDSDMData.FamTbl.DatabaseName;
MinTbl.TableName:='MinType.db';
MinTbl.IndexFieldNames:='Description';
MinTbl.FieldDefs.Update;
MinSelFld:=TBooleanField.Create(CurForm);
MinSelFld.FieldName:='Selected';
MinSelFld.Calculated:=true;
MinSelFld.Dataset:=MinTbl;
MinSelFld:=TStringField.Create(CurForm);
MinSelFld.FieldName:='Description';
MinSelFld.FieldKind:=fkData;
MinSelFld.Dataset:=MinTbl;
MinSelFld:=TIntegerField.Create(CurForm);
MinSelFld.FieldName:='MinDescRec';
MinSelFld.FieldKind:=fkData;
MinSelFld.Dataset:=MinTbl;
MinDS:=TwwDataSource.Create(CurForm);
MinDS.DataSet:=MinTbl;
MinDS.Active:=true;

56

Exporting Events

When you create an export report, there are three additional events:

 BeforeBuildExport: boolean – Called before the program runs the export. Use this with the
PrintDefaultReport event to tell the program this is not a normal export. You will write to the file, so
none of the built-in code for writing is needed.

 AfterBuildExport – Called after the program runs the internal export. If you are handling the export,
then it's called right after the BeforeBuildExport event.

 FinishBuildingExport: boolean – Usually, after the export, a dialog displays notifying you that the
export is complete. If you don't want a default dialog box to display, set this event to false.

Simple Export

Using the three additional events, you can create a simple export.

1. In family reports, click Add > Export.

2. In the List of Fields to Print, click Save/OK to exit. You can come back to add fields.

3. In the Overview window, click Back.

4. In the Select Report window, click Adv. Script, then click the Pascal Script File tab.

5. Enter the following code:

 Creates a TextFile.

 Assigns the name that you have on the Export Properties window, then creates the file. If

the file already exists, it overwrites it.

 Inserts family names into the file, each family beginning on a new line.

 Closes the file. In the script, you could have included any fields or performed any calculation to

obtain the information to export.

6. Click Save File.

var
 f: TextFile;

function PrintDefaultReport: boolean;
begin
 result:=false; {We will create the file in AfterBuildExport}
end;

function BeforeBuildExport: boolean;
begin
 result:=false; {We will create the file in AfterBuildExport}
end;

procedure AfterBuildExport;
begin
 {Begin the export}
 AssignFile(f,RepBlg.ExpFileName.Text);
 Rewrite(f);
 try
 with PDSDMData.FamTbl do
 begin
 First;
 while not EOF do
 begin

 write(f,PDSDMData.FamTbl['NameFormat1']);
 writeln(f,'');
 Next;
 end;
 end;
 finally
 CloseFile(f);
 end;
end;

Useful Information

This code does the following:

57

Improving the Export

In the simple event, dialog boxes display as the program builds the file so you know where you are in the process.

If you cancel, it completes the process before canceling it. To avoid this, add the following code before the Next

statement.

You may want to hide a few items in the Export Properties window.

 Code to avoid completing the process before canceling

{ ... code from procedure AfterBuildExport... }
 begin
 write(f,PDSDMData.FamTbl['NameFormat1']);
 writeln(f,'');
 {Add this code before the Next statement:}
 ExportLabel.Caption:='Family: '+ PDSDMData.FamTblName.AsString;
 {This sets the caption of the dialog box's export label}
 Application.ProcessMessages;
 if ExportLabel.Caption:='Stopping...'
 {The program watches this label until it says "Stopping"}
 then exit;
 Next;
 end;
 end;
 finally
 CloseFile(f);
 end;
end;

 Code to hide button and drop-down lists

{ Add this code after the AfterBuildExport procedure }

procedure AfterLoadReport;
begin
 {Make the report dialog look better}
 RepDlg.Label33.Caption:='My Export:';
 RepDlg.GroupBox15.Visible:= false; {hide Modify List of Fields to Export button}
 RepDlg.Label35.Visible:= false; {hide label}
 RepDlg.ExpTypeCB.Visible:= false; {hide drop-down list}
end;

58

Formatting Your Export

To position fields in the file, use a fixed-width format. You must create helper routines that output your fields in the

fixed format then pad them to the proper width.

 Code to output information in fixed-width format

{ Helper routine that outputs strings with a fixed width of N bytes }

procedure ExportStr(s: string; n: integer);
var
 i: integer;
begin
 s:= copy(s,l,n);
 while length(s)<n do
 s:=s+' ';
 for i:=1 to n do
 Write(f,s[i]);
end;

 Code to right-justify fields

{ Helper routine that outputs and right-justifies integers }

procedure ExportInt(i: integer; n: integer);
var
 s: string;
begin
 s:=IntToStr(i);
 s:=copy(s,l,n);
 while (length(s)<n) do
 s:=' '+s;
 for i:=1 to n do
 Write(f,s[i]);
end;

59

For fixed-width fields, work with a "File of Bytes" instead of a TextFile. TextFile assumes the data is broken down

by lines and have a 32,000 byte limit to the line length. File of bytes isn't limited.

 Code for helper routine and file of bytes

{ In this example, there are two fields: name and number of members }
{ The name is 40 bytes. The number of members is 20 bytes wide and right-justified }

var
 f: File of bytes;

function PrintDefaultReport: boolean;
begin
 result:= false; {We will create the file in AfterBuildExport}
end;

function BeforeBuildExport: boolean;
begin
 result:= false; {We will create the file in AfterBuildExport}
end;

procedure ExportStr(s: string; n: integer);
var
 i: integer;
begin
 s:= copy(s,l,n);
 while length(s)<n do
 s:=s+' ';
 for i:= to n do
 Write(f,s,[i]);
end;

procedure ExportInt(i: integer, n: integer);
var
 s: string;
begin
 s:=IntToStr(i);
 s:=copy(s,l,n);
 while (length(s)<n) do
 s:=' '+s;
 for i:=1 to n do
 Write(f,s[i]);
end;

procedure AfterBuildExport;
begin
 {Build the export}
 AssignFile(f,RepDlg.ExpFilename.Text);
 Rewrite(f);
 try
 with PDSDMData.FamTbl do
 begin
 First;
 while not EOF do
 begin
 ExportStr(PDSDMData.FamTbl['NameFormat1'],40);
 ExportInt(PDSDMData.FamTbl['NumMem',10);
 Next;
 end;
 end;
 finally
 CloseFile(f);
 end;
end;

60

 Code to hide last dialog box

Adding a Summary

If you want to tell users what was exported, you can display a printable summary.

Then, at the end of the AfterBuildExport routine, add the following:

Finally, add a FinishBuildExport event that tells the program not to display the last dialog box:

 Code to create and display a summary

procedure BuildSummary;
var
 ErrorRepDlg: TErrorRepDlg;
begin
 {Show next form}
 ErrorRepDlg:= TErrorRepDlg.Create(Self);
 try
 PDSFixupDlg(ErrorRepDlg);
 ErrorRepDlg.RTFText.ReadOnly:= false;
 ErrorRepDlg.DetailBtn.Visible:= false;
 ErrorRepDlg.SummaryBtn.Caption:= '&Print';
 ErrorRepDlg.RTFText.Clear;
 MainRTF:= ErrorRepDlg.RTFText;
 MainFontName:= 'New Courier';

 ClearTabs; {clear tab stops}
 SetTab(3*1440,0) {tab stop at 3 inches}
 SetTab(4*1440,0) {tab stop at 4 inches}

 {Here is what we want to say}
 println('Summary');
 println('');
 println(DateToStr(Now));
 println('');
 println('');

 {Get the dialog ready}
 ErrorRepDlg.ReportTitle:= 'Export Data for XYZ';
 ErrorRepDlg.ReportSettingsFileName:= trim(DMReport.RepTblFileName.AsString)+'.ini';
 ErrorRepDlg.ProcExpLabel.Caption:= 'Export Completed';
 ErrorRepDlg.PrintExpLabel.Caption:= '';
 ErrorRepDlg.RTFText.ReadOnly:= true;
 ErrorRepDlg.RTFText.CPPosition:= 0;
 PDSShowDlg(ErrorRepDlg);

 finally
 PDSFreeDlg(ErrorRepDlg);
 end;
end;

BuildSummary;

function FinishBuildExport: boolean;
begin
 Result:= false; {We already showed the summary, so we're finished}
end;

61

Exporting to OLE

You can export to a file, but you can also export to an OLE server, like Microsoft® Excel or Word.

Importing Data With Scripting

You can import data using a script. Creating an import is similar to creating an export, but instead of exporting the

data to a disk, it's read into the program. You can import text and fixed-width data, display progress to the user,

and add a summary to the end of the import.

Useful Information

You must have extensive knowledge of the data you're importing. Someone without programming

knowledge can import simple items, but you need a programmer when importing complicated items.

You can assign the file variable to the file name. Instead of doing a "rewrite" (which is what you performed in the

export to delete the file and create a new file), do a "reset", which opens the file. First, you must check to make

sure the file is there.

In the import, the program loops through the file and uses "readln" to read the next line into the string. Then, you

can use the information. For example, assume the disk contains the families' ID numbers, a comma, and a number

that is put in the families' geographical area. You must read in the line, break it into two parts, look up the family by

ID, then insert the new value.

 Code to export to a spreadsheet

{ This is a short routine that opens Excel and creates a spreadsheet }

function PrintDefaultReport: boolean;
begin
 result:= false; {We will create the file in AfterBuildExport}
end;

function BeforeBuildExport: boolean;
begin
 result:= false; {We will create the file in AfterBuildExport}
end;

procedure AfterBuildExport;
var
 v: OLEVariant;
begin
 v:= CreateOleObject('Excel.Application');
 v.Visible:= true;
 v.Workbooks.Add;
 v.ActiveSheet.Cells(5,1).Font.Size:= 20; {Gives the text a font size of 20}
 {Insert text in cell position "5,1" which is spreadsheet cell A5}
 v.ActiveSheet.Cells(5,1):= 'PDS Ledger Data';
end;

62

 Example of importing data

var
 f: TextFile;

function PrintDefaultReport: boolean;
begin
 result:=false; {We will create the file in AfterBuildExport}
end;

function BeforeBuildExport: boolean;
begin
 result:=false; {We will create the file in AfterBuildExport}
end;

procedure AfterBuildExport;
label OpenTheFile;
var
 s: string;
 id, area: string;
 I: integer;
begin
 {Build the export}
 OpenTheFile: AssignFile(F,'a:\temp.txt');

 try
 Reset(f);
 except
 if PDSMessageDlg('Cannot open file.',mtError,mkSet(mbCancel,mbRetry),0)=mrRetry
 then goto OpenTheFile
 else exit;
 end;
 try
 while not eof(f) do
 begin
 try
 Readln(f,s);
 I:=pos(',',s);
 except
 I:=0;
 end;

 if I<>0 then
 begin
 Id:=copy(s,1,I-1);
 {The ID number is in ParKey and is right justified}
 Id:=copy(' '+id,length(id)+1,10);
 Area:=Copy(s,I+1,length(s));
 if PDSDMData>FamTbl.Locate('ParKey' ,id,mkset(loCasInsensitive)) then
 begin
 PDSDMData.FamTbl.edit;
 PDSDMData.FamTblAreaNumber.AsString:=area;
 PDSDMData.FamTbl.post;
 end;
 end;
 end;
 finally
 CloseFile(f);
 end;
end;

63

Manipulating the Data

You can manipulate data without pulling the information in from a file. For example, if you entered family names in

the program incorrectly, you could change all family names data manipulation.

You can perform many advanced tasks with scripts. Below is one example.

 Example of manipulating data

{ This is a small report that adds a financial entry }
{ to fund 1 Offering of $999.54 to family ID number 1}

uses
 AdvRep; {Uses a procedure found in AdvRep.pas}

procedure AfterCreateReport;
begin
 if AddHistEntry(false,
 '1',
 'ParKey',
 '1',
 StrToDate('01/28/15'),
 999.54,
 'Offering',
 '1234',
 0)
 then showmessage('Success')
 else showmessage('Failed');
end;

64

Appendix

The appendix contains lists and tables related to ARW reports.

 Built-In Routines

 Formation Embedded Lists

 UDR Options

65

Built-In Routines

See the code below associated with each built-in routine:

Boolean Operations

Operation Description

b1 and b2

b2 or b2

b1 xor b2 exclusive or

not b2

Conversions

Conversion Type

Chr(i) string

CurrToStr(c) string

DateTimeToStr(dt) string

DateToStr(d) string

FloatToStr(f) string

IntToStr(i) string

RGB(ir,ig,ib) integer

StrToCur(s) currency

StrToDate(s) Tdate

StrToDateTime(s) TDateTime

StrToFloat(s) extended

StrToInt(s) integer

StrToIntDef(s,i) integer

StrToTime(s) TDateTime

TimeToStr(t) string

66

Date-Time Operations

Operation Type

CurrentDate TDate

CurrentDateTime TDateTime

CurrentTime TDateTime

DayOfWeek(d) integer

DecodeDate(d,iy,im,id)

DecodeTime(t,ih,im,is,ims)

EncodeDate(iy,im,id) TDate

EncodeTime(ih,im,is,ims) TDateTime

Formatting

Code Type

FormatCurr(s,c) string

FormatDateTime(s,dt) string

FormatFloat(s,f) string

FormatMaskText(s1,s2) string

FormatString(s1,s2) string

Fund History Activity Types

Value Description

-2 System Rate Change

-1 Rate Change

0 Payment - Deductible

1 PayDown - Deductible

2 Additional Gift - Deductible

3 Non-Cash - Deductible

4 Quid Pro Quo - Non-deducitble

5 Payment - Non-deductible

6 PayDown - Non-deductible

7 Credit - Non-deductible

8 Payment from Last Year - Non-deductible

67

9 Recurring Charge

10 Charge

11 Refund - Deductible

12 Refund - Non-deductible

13 Hours Pledged

14 Hours Completed

15 Hours Remaining

16 Balance

17 Group Total

18 Ignore

Math Routines

Routine Type

ArcTan(x) extended

Cos(x) extended

Cosh(x) extended

Cotan(x) extended

Exp(x) extended

Frac(x) extended

Int(x) extended

IntPower(x,i) extended

Ln(x) extended

Power(x1,x2) extended

Round(x) integer

Sin(x) extended

Sqr(x) extended

Sqrt(x) extended

Tan(x) extended

Tanh(x) extended

Trunc(x) integer

68

Member Type Values

In embedded code, Mem.['Mem Type Number'].
In script, PDSDMData.MemTbl['MemberNum'].

Value Description

0 Head

1 Spouse

2 Adult

3 Young Adult

4 Child

5 Other

Fund Period Values

In embedded code, CalcRate.['Calc Rate Terms Period'].
In script, PDSDMData.CalcRateTbl['FDPeriod'].

Value Description

0 Weekly

1 Weekly on Sunday

2 Weekly on Monday

3 Weekly on Tuesday

4 Weekly on Wednesday

5 Weekly on Thursday

6 Weekly on Friday

7 Weekly on Saturday

8 Monthly

9 BiMonthly - every 2 months

10 SemiMonthly - twice a month

11 Quarterly

12 Semiannually - twice a year

13 Annually

14 Special

69

PDS Built-In Routines

Routine Type

MainOverflow

MainHeaderVisible boolean

MainHeaderSetVisible(b)

MainFooterVisible boolean

MainFooterSetVisible(b)

PDSGetCrossTabRowCount integer

PDS Scripting Routines

Routine Type

PDSGetParam(i) string

PDSSetParams(i,s)

CallFunc(s) string

CallFundP1(s,i1) string

CallFundP2(s,i1,i2) string

Simple Math Operations

Operation Description

i1+i2 add

i1-i2 subtract

i1*i2 multiply

i1/i2 divide

i1 div i2 integer division

i1 mod i2 remainder

-i1 unary minus

String Operations

Operation Description

s1+s2 string concatenation

Capitalize(s) string

Copy(s,i1,i2) string

70

Delete(s,i1,i2)

Fixed(s) string

FixedName(s) string

FixedAddress(s) string

FixedCity(s) string

Insert(s1,s2,1)

Length(s) integer

LowerCase(s) string

Pos(s1,s2) integer

Trim(s) string

TrimLeft(s) string

TrimRight(s) string

UpperCase(s) string

71

Formation Embedded Lists

Below are the predefined embedded lists for PDS Formation Office.

Code Description

<List: All Pledges> Total of all families for all pledges for selected funds

<List: Comm> Communion data for each member

<List: Confirm> Confirmation data for each member

<List: Coupon Bottom> Prints a return coupon at the bottom of the letter

<List: Coupon Top> Prints a return coupon at the top of the letter

<List: Delinq> Family's delinquency information

<List: Fam Sched> Class schedule for all students in the family

<List: Fund Month> Fund name and total paid each month

<List: Gifts> Additional gifts totals

<List: Grp List> Fund groups with Due, Paid, "Balance for stmt"

<List: Grp List 2> Fund groups with Due,"Total Tax deduct.", balance

<List: Grp List 3> Fund groups sowing Amt Paid only

<List: Hist List> Activity history for the selected fund

<List: Hour List> Hours due, completed, balance (similar to Grp List)

<List: IRS Note> Prints a special tax note at the end of tax statements

<List: Mem Amt> Member of family and amount each has paid

<List: Receipt History With Desc> Activity history with date and description

<List: Running Total> Activity history with cumulative due/paid totals

<List: Simple Totals> Total Pledged, Paid, Balance for all selected funds

72

UDR Options

Under [Default] in the UDR file, you can use the following code to control your report.

For Use in Fund Reports

Code Description

FundLimit = xxx The number of funds the report can print.

IncludeFundIncludeHist=1

UseSepRecapDate=1

RelaxDates=1

FuncType=1 Tells the program what functions are available on the Fund Selection window.

 0-4 items: Don't include, use in month, group totals only, itemize

 1-2 items: Don't include, include group

 2-3 items: Don't include, include group, itemize

 other-2 items: Don't include, include group, and in months

For Use in PDS Church Office and Formation Office Reports

Code Description

FamType=YNNYYN Y - Active, N - Inactive, N - Loose, Y - Fund, Y - Student, N - Teacher

MemType=YN Y - Active, N - Inactive

CanUseEMail=1 Tells the program to create email options in the Sortation section on the Selection
Information tab.

CanSkipEMail=1

CanLog=1

CanUseCC=1

CanUseBulk=1

DisableScaling=1 Tells the program not to reposition items to take up available paper size.

UseBap=1

ForceMailTbl=1 Tells the program to build the mail table.

OrderMailTbl=1

UseBap=1 Tells the program to use the place of baptism as the address, city/state, and ZIP code.

73

For Use in PDS Church Office Reports

Code Description

CanUseSepStmt=1 Tells the program to treat members with separate stmt selected differently.

CanUseSepMem=1

For Use in PDS Ledger/Payroll Reports

Code Description

CRasNeg=1 Make credits as negative debits.

TrnType=1NNNNNNNNNNN Indicates which transaction types are included by default on the Transaction
Selections tab.

ForceTrnType=1xxxxNxxxx

CoaType=YYYNNNNYNYYY Indicates which COA types are included by default on the Chart of Accounts
selections tab.

ForceCoaType=YYYxxxxNxxxx

IsBalanceSheet=1 Indicates the report is a balance sheet.

IsIncomeStmt=1 Indicates the report is an income statement.

IsGeneralLedger=1 Indicates the report is a general ledger report.

IsCashFlow=1 Indicates the report is a cash flow report.

JustBeginningBalances=1 Indicates to use only the Beginning Balance values.

74

Exercises and Example Project

We've included some exercises and a sample project so you can practice writing advanced reports.

 Exercise 1 - Create a new advanced report

 Exercise 2 - Create a family report with member sub-report

 Exercise 3 - Create a region with labels and data fields

 Exercise 4 - Create an embedded list report

 Project - Build a Family Directory report

75

Exercise 1

Create a new advanced report using the PDS Header/Footer template. Include the following fields and options:

 Family ID, in bold black text

 Family Name, next to the ID, in bold blue text

 Family Address Block, beneath the Family Name, in regular text (hint: use DBMemo)

 Family Phone List, next to Family Address Block, in regular text (hint: use DBMemo)

 Family Home Email, beneath Family Address Block, and ShiftWithParent

In the Summary band, add a count of families.

Here's how to do it!

1. On the ribbon, click Reports > Family Reports.

2. In the Select Report window, click Add.

3. In the Add Report window, click the Advanced Reports tab, and click Report.

4. Click the Templates menu, and select PDS Header/Footer.

5. In the top left corner of the Detail band, insert a DBText object. In the drop-down lists, select Fam and

Fam ID/Env Number. Bold the text.

6. Next to the Family ID, insert a DBText object. Select Fam and Fam Name. Right-click the object and

select AutoSize. Bold the text and change the font color to blue.

7. Directly beneath the Family Name, insert a DBMemo object. Select Fam and Fam Address Block.

Right-click the object and select Stretch.

8. Next to the Address Block, insert a DBMemo object. Select Fam and Fam Phone List. Right-click the

object and select Stretch.

9. Directly beneath the Address Block, insert a DBText object. Select Fam and Fam Email Home.

Right-click the object and select AutoSize.

10. Click the Report menu, and select Summary.

11. In the Summary band, insert a DBCalc object. Right-click it, select Calculations, select Count, and

click OK. Select Fam and Fam Unique ID. Right-click the object and click AutoSize.

12. Preview the report.

76

Exercise 2

Create a family report with a sub-report of member names.

Here's how to do it!

1. Create a new ARW report.

2. In the Detail band of the main report, insert a DBText object, and select Fam and Fam Name. Right-click

the object and select AutoSize.

3. In the Detail band, insert a SubReport object beneath the Fam Name.

4. Select the sub-report, and select Mem as the data pipeline name.

5. Click the PDS SubReport1:Mem tab at the bottom of the workspace.

6. To turn off the Title and Summary bands, click Report > Title, then click Report > Summary.

7. In the Detail band of the sub-report, insert a DBText object, and select Mem and Mem Name. Right-click

the object and select AutoSize. Using the horizontal ruler, place the object at 0.5 in, then manually resize

the Detail band to the height of the object.

8. Preview the report.

77

Exercise 3

Using the report you created in Exercise 1, create a region next to the Family Phone List, and include the following

objects:

 A label and data field for Date Registered.

 A label and data field for Geographic Area.

 A label and data field for Family Status.

 Place a line object under each data field. This creates a "fill-in-the-blanks" area. If the data has

already been entered in the program, it displays on these lines. If the data is not in the program, the

lines are blank and ready to be completed.

Here's how to do it!

1. Either copy or modify the report from the first exercise.

2. On the Listing Layout window, click Modify the Report.

3. In the Detail band, insert a Region object beside the Family Phone List.

4. Inside the Region object, insert 3 Label objects and enter the appropriate text for each.

5. Beside the labels, still inside the Region object, insert DBText objects, and select Fam Date Registered,

Fam Geog. Area, and Fam Family Status.

6. Insert a Line object under each DBText object. Resize as needed.

7. Preview the report.

78

Exercise 4

Create an embedded list report of members and their ages, then insert it into a family letter report.

Here's how to do it!

1. In Family Reports, expand Letters/Statements and select Family Welcome Letter.

2. In the Letter Layout window, click Modify the Body of the Letter.

3. Click File > Edit List Selections. Enter List-MemList.rtm, and click Open.

4. In the ARW editor, remove the header and footer bands, and add the Title band.

5. In the top-left corner of the Detail band, insert a DBText object. Select Mem and Mem Name Format 1.

Right-click the object and select AutoSize.

6. In the Detail band, next to the Member Name, insert another DBText object. Right-click it, select

Position, and enter "2.5" for Left. Click Apply > OK. Select Mem and Mem Age. Right-click it and

select AutoSize.

7. Click and drag the Detail band so there is no white space below the Member Name and Age.

8. In the top-left of the Title band, insert a Label object. Enter "Member Name" and bold the text.

9. In the Title band, next to Member Name, insert another Label object. Right-click it, select Position, and

enter "2.5" for Left. Click Apply > OK. Enter "Member Age" and bold the text.

10. Click and drag the Title band so there is no white space below Member Name and Age.

11. Save your work, and close the editor.

12. In the letter editor, insert a few blank lines at the bottom, and enter <List: MemList>.

13. Click OK, then complete the remaining steps in the report wizard.

14. Preview the report.

79

Project - Building the Family Directory

In this project, you will create a Family Directory report.

There are three parts to this project:

 Part 1 - Add a new report, set the header, add details, add a sub-report, and add a group.

 Part 2 - Create and initialize global variables, add embedded code, and run the report.

 Part 3 - Add screen routines, declare objects, create a new screen, save and load screen information,

and communicate with the report.

80

Part 1 - Start the Report

To start the project, we'll add a new advanced report and set up the Header and Detail bands with family

information. We'll also add a sub-report of members, and group each family together.

Use what you learned in the Report Editor, Sub-Reports, Groups, and Regions sections to complete these steps.

Steps

Start the Report

1. In Family Reports, click Add.

2. Click the Advanced Reports tab, then click Report.

3. Click File > Close, then Yes to save the report.

Useful Information

For this project, we want to name the report before we start working on it. However, you can name a

report at any point during the creative process.

4. In the Overview window, change the report name to "Family Directory Tutorial", and change the

description to "Family Directory built from scratch".

5. Click Next. Select your printer settings, then click Next.

6. Click Modify the Report. Now that the report is saved, we can start creating it.

The Header

1. In the editor, click the Report menu and click Data. Select Fam, and click OK.

2. In the Header band, insert a System Variable object. Center the value inside of the object. In the drop-

down list at the top, select PageNo.

3. Right-click the object and select Position. Enter "3.5" for Left, "0" for Top, and "1" for Width. Click Apply

> OK.

4. Right-click the Header band and select Position. Enter "0.1875" for Height. Click Apply > OK.

After completing these steps, your report should look like this:

81

The Detail

Next, we will add the Family Name, Address Block, and Phone List to the Detail band. We'll leave space for a

column heading letter, taken from the first letter of the last name, which we'll add later.

1. In the Detail band, insert a DBText object. Left-align the text. In the drop-down list at the top, select

Fam and Fam Name.

2. Right-click the object and select Position. Enter "0.125" for Left, "0.25" for Top, and "3" for Width. Click

Apply > OK.

3. In the Detail band, beneath the Fam Name, insert a DBMemo object. In the drop-down list, select Fam

and Fam Address Block.

4. Right-click the object and select Position. Enter "0.25" for Left, "0.5" for Top, "3" for Width, and "0.2" for

Height. Click Apply > OK.

5. Right-click it again and select Stretch.

6. In the Detail band, beneath the Fam Address Block, insert a DBMemo object. In the drop-down list,

select Fam and Fam Phone List.

7. Right-click the object and select Position. Enter "0.25" for Left, "0.6875" for Top, "3" for Width, and "0.2"

for Height. Click Apply > OK.

8. Right-click it again and select Stretch.

9. Right-click it again and select ShiftRelativeTo, select DBMemo1, and click OK.

Useful Information

ShiftRelativeTo positions the object based on another object. In this case, we want to keep the Phone

List below the Address Block, no matter how many lines the address has. This way, the objects won't

print on top of each other.

10. Preview the report.

After completing these steps, your report should look like this:

82

Add the Sub-Report

Next, we'll add a member sub-report to the Detail band.

1. In the Detail band, beneath the Fam Phone List, insert a SubReport. In the drop-down list, select Mem.

2. Right-click the sub-report and select ParentWidth to turn off the automatic horizontal stretching.

3. Right-click it again and select Position. Enter "0.5" for Left, "0.875" for Top, and "3" for Width. Click

Apply > OK.

4. Right-click it again and select ShiftRelativeTo, select DBMemo2, and click OK.

After completing these steps, your report should look like this:

83

Set Up the Sub-Report

Now that we have a sub-report, we can add the appropriate objects to it.

1. Click the PDSSubReport1: Mem tab at the bottom.

2. Turn off the Title and Summary bands from the Report menu.

3. Right-click the Detail band and select DynamicHeight to move the band vertically to match the objects

inside.

4. In the Detail band, insert a DBText object. In the drop-down lists, select Mem and Mem Name.

5. Right-click the object and select Position. Enter 0 for Left and Top, and 2 for Width. Click Apply > OK.

6. Right-click it again and select AutoSize.

7. Next to Mem Name, insert another DBText object. In the drop-down lists, select Mem and Mem Age.

8. Right-click the object and select Position. Enter "2.125" for Left, "0" for Top, and "0.375" for Width. Click

Apply > OK.

9. Next to Mem Age, insert another DBText object. In the drop-down lists, select Mem and Mem Grade.

10. Right-click the object and select Position. Enter "2.625" for Left, "0" for Top, and "0.875" for Width. Click

Apply > OK.

11. Preview the report.

After completing these steps, your report should look like this:

84

Add the Group

When we print this directory, we don't want to split a family across a page. To avoid this, we can create a group.

1. Click the Main: Fam tab at the bottom.

2. Click the Report menu and click Groups. Select Fam.Fam Unique ID, and click Add.

Useful Information

Fam.Fam Unique ID identifies each family in a unique way. If you select Fam Name instead, the group

can't differentiate families with the same name.

3. By default, the Keep group together option is selected. Click OK.

4. Click File > Save. Complete the steps in the wizard to see the finished report.

After completing these steps, your report should look like this:

85

Finished Product

We have finished creating the basic Family Directory report. When you print, the final report should look like this:

Now, we can take a look at adding to the report in Part 2.

86

Part 2 - Add Embedded Code

In Part 1 of this project, we created the Family Directory report from scratch. In this part, we'll add a label to the

Detail band above the Family Name that contains the first letter of the family's last name. This letter displays at the

top of the page or when the letter changes.

To do this, you will create and initialize global variables, and add embedded code to events. Use what you learned

in the Embedding Code and Data section to complete the steps.

Steps

Open the Report

In Family reports, locate the Family Directory Tutorial report you created in Part 1, and click Next. On the layout

window, click Modify the Report.

Create Global Variables

1. Click the Embedded Code menu, and select Define Global Variables.

2. Enter the following variables and types:

FirstChar represents the first letter of each family name as it's encountered by the report. CurRec

represents the current family record the report focuses on.

3. Click Save.

Useful Information

87

Initialize Global Variables

1. Click the Embedded Code menu, and select Initialize Global Variables.

2. Between the BEGIN and END statements, do the following:

 Set FirstChar equal to a null character, which is represented by two single quotes with no space in

between. This is not a double quote.
 Set CurRec equal to zero.

3. Click Save.

Inactive Families

We can add embedded code so that the word "Inactive" prints next to inactive families.

1. In the editor, select the DBText1 object for Family Name.

2. Right-click it and select Get Text.

3. Above the BEGIN statement, create a local variable "s", which is a string type to represent whether the

family is inactive.

4. Inside the BEGIN-END statement, set "s" equal to the Fam Fam Inactive field. You can enter this

manually or click Insert a Data Field to select the field from the Fam table.

5. Add an IF-THEN-ELSE statement that says, "if 's' is equal to 'yes', then the text of the field is equal to

itself plus the word 'inactive', else the text is equal to itself."

Tip

Use colon-equals (:=) in assignment statements, instead of regular equals (=).

88

6. Click Save.

Note the following about this block of code:

 The equals (=) used to compare "s" to "Yes" is not preceded by a colon (:). You don't use colons in

comparison statements.

 The IF and THEN statements are not followed by a semicolon (;). You only use a semicolon after the

last statement of a block.

 The ELSE statement assigns Text equal to itself. This is the text of DBText1. You must provide

direction for the code when the IF statement is false. Otherwise, the text will be blank.

Create the New Label

1. In the Detail band, above Family Name, insert a Label object.

2. Bold the label text.

3. Right-click the label and select Do Before Print.

4. Enter the following code:

Try using Insert Data Field and Insert an Object Attribute instead of manually entering the code.

5. Click Save.

Tip

89

Here's what the code is doing:

 Assigns the caption of Label1 equal to the first letter of Fam Fam Name. The Copy(s,i,j) command takes

string "s" and copies "j" letters, starting at position "i".

 If the family's unique ID number is not equal to the current record, then:

o If the caption of Label1 (the first letter of the current family's last name) is not already equal to the

variable FirstChar:

 Then turn on the visibility of Label1 because it has found a new letter.

 Else turn off the visibility of Label1 because this family has the same initial letter as the

previous family.

 Regardless of the results of the IF statement, set CurRec equal to the current family's ID number. Set

FirstChar equal to the current value of Label1.

 In other words, if the last initial of the current family is the same as the previous family, the label is not

printed. If it's different, the label prints, then sets this family's ID and initial as the new test values, then

uses those to test the next family.

Run the Report

1. In the editor, click File > Save, then File > Close.

2. Click Next.

3. In the Select Families window, select Name as the sort order.

4. Preview the report.

5. When you're ready, print the report.

Finished Product

After completing these steps, when you print the report, it should look like this:

Now, we can learn to add a layout window to further customize the report in Part 3.

90

Part 3 - Add a Layout Window

In Part 1 and Part 2, we created the Family Directory report and added last name initials at the beginning of each

group of families.

In this last part, we'll add a layout window to the report wizard.

Steps

Add the Screen Routines

The program has a library of common routines you can insert into your script.

1. In the Select Report window, select the Family Directory Tutorial report we created.

2. Click Adv. Script at the bottom of the window.

3. Click the Pascal Script File tab.

4. Enter the following code in the text box:

5. Click Save File.

Declare the Objects

1. On the Pascal Script File tab, enter the following code below the routine:

2. Click Save File.

91

Create the New Window

1. On the Pascal Script File tab, place the cursor below the existing code.

2. Click Add Event and select AfterLoadReport.

Useful Information

The AfterLoadReport event executes before you get to the window but after the report is created.

3. Between the BEGIN and END statements, enter the following:

4. Click Save File.

5. Click Close.

6. In the report wizard, click Next until you see the new Additional Layout window we created.

92

Save and Load Window Information

Now we want to save the information so we have the same values next time we run the report.

The program saves report values right before the report is finished in the BeforeDestroyReport in the INI file. If the

program stops due to an error before it read the old values, we don't want to save the values because the good

values will be overwritten with blank values.

1. Go back to the Select Report window, select the report, and click Adv. Script at the bottom.

2. On the Pascal Script File tab, add a variable called "FieldsRead".

5. Below the AfterCreateReport event, click Add Event and select BeforeDestroyReport.

6. In the procedure, enter the following:

3 .
4 .

Below the variables code, click and select Add Event AfterCreateReport.

Between the BEGIN and END statements, initialize FieldsRead to "False".

93

8. Now we need to tell the program to read the INI file after the AfterLoadReport event.

Useful Information

It's important to place the code directly after the AfterLoadReport event because the object must already

exist. That way, the program doesn't need to keep temporary variables around to hold the items stored

in the INI file. It can directly load them into the screen objects.

On the Pascal Script File tab, enter the following code at the end of (but still within) the AfterLoadReport event:

7 . Click Save File.

9 . Click Save File.

94

Communicate with the Report

Now that we have a new window where a user can enter information, we must have a way to relay that information

to the report.

1. On the Pascal Script File tab, enter the following code for the SetParams procedure below the variables:

2. Directly below the SetParams event, click Add Report and select AfterSelectReport. Enter the

following code:

3. In the AfterLoadReport event, at the end of the try statement, add a call to the new SetParams routine:

95

4. Click Save File, then Close.

5. Click Next until you reach the layout window, then click Modify the Report.

6. Right-click the PageNo object and select Do Before Print. Enter the following code, then click Save:

7. Right-click the Fam Phone List object and select Do Before Print. Enter the following code, then click

Save:

96

8. At the bottom, click the PDSSubReport1: Mem tab.

9. Right-click the Mem Age object and select Do Before Print. Enter the following code, then click Save.

10. Right-click the Mem Grade object and select Do Before Print. Enter the following code, then click Save.

After completing these steps, the highlighted options below on the Additional Layout window will work.

11 . Right-click the Detail band and select Enter the following code, then click Save. Do Before Print.

97

Begin Each Letter on a New Page

To start each letter on a new page, we want to treat each letter as a group.

1. In the Advanced Report Writer, click the Main: Fam tab.

2. Click the Report menu and select Groups.

3. Select to break on Custom Field, and in the Groups drop-down list, select Label1: Label1.

4. Select Start new page, and click OK.

5. Right-click the Group Header and select Get Break Value. Enter the following code, then click Save:

After completing these steps, you can select to print new letters on a separate page.

6 . Click > , then > . File Save File Close

98

Finished Product

Congratulations, you've completed the project! Not only do we have a complete Family Directory report, but now

users have a few more options to customize it. Use the skills you learned to build and customize other reports.

 Final code for the Pascal Script File

// NOTE: This does not include the code for the Do Before Print events for the objects

Uses
 scrnio;
var
 FieldsRead: boolean;
 NewPage1: TLMDAssistPage;
 PageLabel,
 CNLabel: TLabel;
 FonCBYes,
 SepPageCBYes,
 PageNumCBYes: TCheckBox;
 AgeGradeGrp,
 MemGroup: TRadioGroup;

procedure SetParams;
begin
 //PUT THE ITEMS INTO PARAMETER FOR THE REPORT
 PDSSetParam(0,UpperCase(OwnerName));
 if SepPageCBYes.Checked
 then PDSSetParam(1,'Yes')
 else PDSSetParam(1,'No');
 if PageNumCBYes.Checked
 then PDSSetParam(2,'Yes')
 else PDSSetParam(2,'No');
 if FonCBYes.Checked

99

 then PDSSetParam(4,'Yes')
 else PDSSetParam(4,'No');
 PDSSetParam(5,MemGroup.ItemIndex);
 PDSSetParam(6,AgeGradeGrp.ItemIndex);
end;

procedure AfterSelectReport;
begin
 SetParams;
end;

procedure AfterCreateReport;
begin
 FieldsRead:=false;
end;

procedure BeforeDestroyReport;
var
 IniFile:TIniFile;
begin
 if FieldsRead then
 begin
 // ACCESS INI FILE save the values
 IniFile:=TIniFile.Create(trim(DMReport.MainRepName)+'.ini');
 IniFile.WriteInteger('LastInfo','MemGroup',MemGroup.ItemIndex);
 IniFile.WriteInteger('LastInfo','AgeGradeGrp',AgeGradeGrp.ItemIndex);
 IniFile.WriteBool('LastInfo','ChkPgNum',PageNumCBYes.Checked);
 IniFile.WriteBool('LastInfo','ChkSepPg',SepPageCBYes.Checked);
 IniFile.WriteBool('LastInfo','FonYes',FonCBYes.Checked);
 IniFile.Free;
 IniFile:=nil;
 end;
end;

procedure AfterLoadReport;
begin
 NewScreenPage;
 AddHeading('Page Layout Options:',PageLabel);
 AddCheckBox('Print names beginning with a new letter '+ 'on a separate page',SepPageCBYes);
 AddCheckBox('Print page numbers',PageNumCBYes);
 AddCheckBox('Print phone numbers',FonCBYes);
 AddBlank;
 AddRadioButtonGroup('Member Printing Options ',
 'Do Not Print Members,'+
 'Print Only Adults,'+
 'Print Only Children,'+
 'Print Children && Adults',MemGroup);
 AddBlank;
 AddRadioButtonGroup('Member Information Options ',
 'Do Not Print Age or Grade,'+
 'Print Member Grade,'+
 'Print Member Age',AgeGradeGrp);
 AddBlank;
 MemGroup.ItemIndex:=3; //Set 'Children & Adults' as default, counting 0-3.
 AgeGradeGrp.ItemIndex:=2; //Set Member Age as default
 // READ INI FILE set the initial values
 try
 IniFile:=TIniFile.Create(trim(DMReport.MainRepName)+'.ini');
 MemGroup.ItemIndex:=IniFile.ReadInteger('LastInfo','MemGroup',0);
 AgeGradeGrp.ItemIndex:=IniFile.ReadInteger('LastInfo','AgeGradeGrp',0);
 PageNumCBYes.Checked:=IniFile.ReadBool('LastInfo','ChkPgNum',true);
 SepPageCBYes.Checked:=IniFile.ReadBool('LastInfo','ChkSepPg',true);
 FonCBYes.Checked:=IniFile.ReadBool('LastInfo','FonYes',true);
 FieldsRead:=true;
 SetParams;

100

 finally
 IniFile.Free;
 IniFile:=nil;
 end;
end;

