

HEXACHLOROBUTADIENE

CAS number: 87-68-3

Synonyms: HCBD, hexachloro-1,3-butadiene

Chemical formula: C₄Cl₆

Structural formula: —

Workplace exposure standard (retained)

TWA: 0.02 ppm (0.21 mg/m³)

STEL: -

Peak limitation: —

Notations: Sk.

IDLH: —

Sampling and analysis: The recommended value is quantifiable through available sampling and analysis techniques.

Recommendation and basis for workplace exposure standard

A TWA of 0.02 ppm (0.21 mg/m³) is recommended to protect for kidney damage and eye and upper respiratory irritation in exposed workers.

Discussion and conclusions

Hexachlorobutadiene (HCBD) is a by-product of processes associated with the chlorination of hydrocarbons and has been used as a solvent for elastomers, heat transfer liquid, transformer and hydraulic fluid. HCBD has also been used as a pesticide with limited applications.

No human data are available. In animals, critical effects include kidney damage, carcinogenicity and possible irritation (ACGIH, 2018).

A two year feeding study in rats identified a NOAEL of 0.2 mg/kg/day for adverse kidney effects. Both ACGIH (2018) and DFG (2015) use this NOAEL as a starting point to calculate a TWA of 0.02 ppm (0.21 mg/m³) by different methods. The TWA of 0.02 ppm is retained and considered protective of kidney damage and irritation effects in exposed workers.

Recommendation for notations

Not classified as a carcinogen according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS). There is evidence of carcinogenicity in rats with unknown relevance to humans. A review of the carcinogenicity classification is recommended.

Not classified as a skin sensitiser or respiratory sensitiser according to the GHS.

A skin notation is recommended based on evidence in animals.

APPENDIX

Primary sources with reports

Source	Year set	Standard	
SWA	1991	TWA: 0.02 ppm (0.21 mg/m³)	
ACGIH	2001	TLV-TWA: 0.02 ppm (0.21 mg/m³)	

TLV-TWA recommended to minimise potential for kidney damage and provide a wide margin of protection against eye and upper respiratory irritation.

Summary of data:

NOAEL of 0.2 mg/kg/d corresponds to an equivalent TWA exposure of 1.4 mg/m³ (1.3 ppm) based on a 70 kg worker inhaling 10 m³ of air over an 8 h shift assuming 100% absorption.

ACGIH recommend TLV-TWA of 0.02 ppm on this basis without further explanation.

Human data:

• No human data presented.

Animal data:

- LD₅₀: 90 mg/kg for guinea pigs; 87–116 mg/kg for mice; 200–350 mg/kg for rats
- Absorbed through skin of rabbits; dosage causing death by dermal absorption are in the same range as by oral administration
- No adverse effects reported from short-term repeated inhalation studies in mice and rats repeatedly exposed at 24 mg/m³ (2.3 ppm) for 7 mo; no further information
- NOAEL of 0.2 mg/kg/d for kidney damage reported in rats; 2 yr feeding study
- Lifetime carcinogenic feeding response study in rats:
 - increased mortality (males), decreased body weight gain (males and females), urinary excretion of coproporphyrin (males and females) at highest dose 20 mg/kg/d
 - increased hyperplasia and neoplasia of renal tubular epithelium, neoplastic nodules in the kidneys shown to be adenomas or adenocarcinomas at 20 mg/kg/d
 - increased urinary excretion of coproporphyrin (females only) and hyperplasia of renal tubular epithelium but no neoplasms at 2 mg/kg/d
 - o no adverse effects at 0.2 mg/kg/d
 - o concluded dose-response effect on kidney with renal neoplasms only at a dose level higher than causing renal damage; A3 carcinogenicity notation applied.

Genotoxicity data:

- Negative in the Salmonella assay
- Negative in *Drosophila* test for sex-linked recessive lethal mutations
- Negative for the induction of chromosomal aberrations in cultured Chinese hamster ovary cells.

DFG 2015 MAK: 0.02 ppm (0.22 mg/m³)

Summary of additional data:

- Insufficient human data to derive MAK
- Irritating to the eyes, nose and respiratory tract in rats at 25 ppm; respiratory distress 100 ppm; sub-chronic repeated inhalation exposure

Source Year set Standard

- NOAEL of 0.2 mg/kg/d in rats for body weight and kidney effect; 2 yr feeding study
- Lowest dose of 0.2 mg/kg/d in mice caused renal toxicity in 13 wk feeding study; calculated BMDL of 0.1 mg/kg/d
- Metabolic similarities between rats and humans (compared to mice) warrant use of rat NOAEL over mice
- Transfer of NOAEL of 0.2 mg/kg/d:
 - 7/5 to account for animal daily exposure compared to 5 d work week
 - 1:4 species-specific correction factor; toxicokinetic difference between rats and humans
 - o assumed oral absorption (100%), body weight (70 kg) and respiratory volume (10 m³)
 - extrapolated to an equivalent inhalation exposure of 0.49 mg/m³ (0.045 ppm); divided by 2 according to DFG methodology
 - MAK 0.02 ppm (0.22 mg/m³).

SCOEL	NA	NA		
No report.				
OARS/AIHA	NA	NA		
No report.				
HCOTN	NA	NA		
No report.				

Secondary source reports relied upon

Source	Year Add	litional information
IARC	1000	 Weak evidence for genotoxicity in mammalian cells in vitro Mutagenicity results in bacteria are unclear.
NTP ✓	2000	Observations of mutagenicity in bacteria under conditions that favour the GSH/mercapturate/b-lyase pathway
		Genotoxicity in mammalian cells
		 Genotoxicity in vivo DNA binding in rats and mice.

Carcinogenicity — non-threshold based genotoxic carcinogens

Is the chemical mutagenic?

Is the chemical carcinogenic with a mutagenic mechanism of action?

Insufficient data

Insufficient data are available to determine if the chemical is a non-threshold based genotoxic carcinogen.

Notations

Source	Notations
SWA	Skin
HCIS	NA

Source	Notations
NICNAS	NA
EU Annex	NA
ECHA	NA
ACGIH	Carcinogenicity – A3, Skin
DFG	Carcinogenicity – 4, H (skin)
SCOEL	NA
HCOTN	NA
IARC	Carcinogenicity – Group 3
US NIOSH	NA

NA = not applicable (a recommendation has not been made by this Agency); — = the Agency has assessed available data for this chemical but has not recommended any notations

Skin notation assessment

Calculation				
Adverse effects in human case study:				
Dermal LD ₅₀ ≤1000 mg/kg:	yes			
Dermal repeat-dose NOAEL ≤200 mg/kg:				
Dermal LD_{50} /Inhalation LD_{50} <10:				
<i>In vivo</i> dermal absorption rate >10%:				
Estimated dermal exposure at WES > 10%:				
		consider assig	gning a skin ı	notation

IDLH

Is there a suitable IDLH value available? No

Additional information

Molecular weight:	260.76
Conversion factors at 25°C and 101.3 kPa:	1 ppm = 10.67 mg/m^3 ; 1 mg/m ³ = 0.094 ppm
This chemical is used as a pesticide:	✓
This chemical is a biological product:	
This chemical is a by-product of a process:	✓
A biological exposure index has been recommended by these agencies:	□ ACGIH □ DFG □ SCOEL

Workplace exposure standard history

Year	Standard
Click here to enter year	

References

American Conference of Industrial Hygienists (ACGIH®) (2018) TLVs® and BEIs® with 7th Edition Documentation, CD-ROM, Single User Version. Copyright 2018. Reprinted with permission. See the *TLVs® and BEIs® Guidelines section* on the ACGIH website.

Deutsche Forschungsgemeinschaft (DFG) (2016) Hexachlorbutadien – MAK value documentation.

International Agency for Research on Cancer (IARC) (1999) Hexachlorobutadiene. IARC Monographs on the evaluation of the carcinogenic risk to humans.

National Toxicology Program (NTP) (2000) NTP-RoC: Hexachlorobutadiene.

