

HEXAHYDROPHTHALIC ANHYDRIDE

CAS number: 85-42-7

Synonyms: 1,2-Cyclohexanedicarboxylic acid anhydride, cyclohexane-1,2-dicaboxylic anhydride, cis and trans mixture, HHPA, HHPAA, hexahydrophthalic acid anhydride, hexahydro-1,3-isobenzofurandione

Chemical formula: C₈H₁₀O₃

Workplace exposure standard (new)

TWA: — STEL: -Peak limitation: 0.005 mg/m³ (inhalable fraction) Notations: DSEN, RSEN IDLH:

Sampling and analysis: There is uncertainty regarding quantification of the recommended value with available sampling and/or analysis techniques.

Recommendation and basis for workplace exposure standard

A peak limitation of 0.005 mg/m³ (inhalable fraction) is recommended to protect for respiratory sensitisation and irritant effects in exposed workers.

Discussion and conclusions

Hexahydrophthalic anhydride (HHPA) is primarily used as a hardener in epoxy resin systems.

HHPA is a known respiratory sensitiser. The critical effects of exposure include asthma, allergic rhinitis and eye and upper respiratory tract irritation. Sensitisation is observed in workers exposed at 10 to 50 µg/m³. Workers exposed to less than 10 µg/m³ but with intermittent peak exposures above 50 µg/m³ (five minutes per week to fifteen minutes per day) had significantly higher levels of specific immunoglobin antibodies compared to others similarly exposed but without the peak exposures (ACGIH, 2018; HCOTN, 2010).

Given that the evidence demonstrates the potential for a severe health effect resulting from acute fluctuations in airborne concentration, a peak limitation of 0.005 mg/m³ is recommended as derived by ACGIH (2018). This concentration is cited as protective of sensitisation in exposed workers (ACGIH, 2018).

Recommendation for notations

Not classified as a carcinogen according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS).

Classified as a skin sensitiser and not a respiratory sensitiser according to the GHS.

A skin notation is not recommended based on the available evidence.

APPENDIX

Primary sources with reports

No report ACGH 2013 TLV-Ceiling: 0.005 mg/m³ (inhalable fraction and vapour) TLV-Ceiling recommended to minimise sensitisation of workers from peak occupational exposures even when otherwise exposed at low concentrations. Summary of data: TLV-Ceiling for all isomers. Human data: • Causes immunologic respiratory disease in humans; IgE and IgG-mediated diseases; including sensitisation, asthma, allergic rhinitis, haemorrhagic rhinitis, hypersensitivity pneumonitis, and ocular and upper respiratory tract irritation • Exposure at lower mean levels with occasional peak exposure resulted in the development of the presence of specific IgE or IgG to an HHPA-human serum albumin (HSA) conjugate • TWA exposures >50 µg/m³ in workers resulted in significant increase in levels of specific IgE and IgG antibodies to HHPA-HAS • Workers exposed at <10 µg/m³ with intermittent peak exposures >50 µg/m³ (5 min/wk to 15 min/d) had significantly higher levels of specific IgE antibodies than workers similarly exposed without the peak exposure serus • no significant difference between workers with mean exposure of 10 µg/m³ without the peaks and the control group without exposure • Study of mixed exposure HHPA and isomer methylhexahydrophthalic anhydride (MHHPA) • total organic acid anhydride exposure levels of <10 µg/m³ resulted in HHPA without irrigation of the eyees at 30 sec; irrigation after 4 sec resulted in severe but reversible irritation • Corrosive based on Draize test; 6 rabbits with 100 mg of undiluted HHPA wit	Source	Year set	Standard
ACGIH 2015 TLV-Ceiling: 0.005 mg/m³ (inhalable fraction and vapour) TLV-Ceiling recommended to minimise sensitisation of workers from peak occupational exposures even when otherwise exposed at low concentrations. Summary of data: TLV-Ceiling for all isomers. Human data: • Causes immunologic respiratory disease in humans; IgE and IgG-mediated diseases; including sensitisation, asthma, allergic rhinitis, haemorrhagic rhinitis, hypersensitivity pneumonitis, and ocular and upper respiratory tract irritation • Exposure at lower mean levels with occasional peak exposure resulted in the developmen of the presence of specific IgE or IgG to an HHPA-human serum albumin (HSA) conjugate • TWA exposures >50 µg/m³ in workers resulted in significant increase in levels of specific IgE and IgG antibodies to HHPA-HAS • Workers exposed at <10 µg/m³ with intermittent peak exposure s>50 µg/m³ (5 min/wk to 15 min/d) had significantly higher levels of specific IgE antibodies than workers similarly exposed without the peak exposures: • no significant difference between workers with mean exposure of 10 µg/m³ without the peaks and the control group without exposure • Study of mixed exposure HIPA and isomer methylhexahydrophthalic anhydride (MHHPA) • exposure appeared to be TWA, major peak exposures was not determined. Animal data: • No deaths over 24 h in rabbits dosed with dermal application of 2,000 mg/kg to abraded skin • Corrosive based on Draize test; 6 rabbits with 100 mg of undiluted HHPA without irriga	SWA	NA	NA
 TU-Ceiling recommended to minimise sensitisation of workers from peak occupational exposures even when otherwise exposed at low concentrations. Summary of data: TU-Ceiling for all isomers. Hapten that binds to endogenous proteins in the lung forming an antigen Causes immunologic respiratory disease in humans; IgE and IgG-mediated diseases; including sensitisation, asthma, allergic rhinitis, haemorrhagic rhinitis, hypersensitivity pneumonitis, and ocular and upper respiratory tract irritation Exposure at lower mean levels with occasional peak exposure resulted in the development of the presence of specific IgE or IgG to an HHPA-human serum albumin (HSA) conjugate TWA exposures >50 µg/m³ in workers resulted in significant increase in levels of specific IgE and IgG antibodies to HHPA-HAS Workers exposed at <10 µg/m³ with intermittent peak exposures >50 µg/m³ (5 min/wk to 15 min/d) had significantly higher levels of specific IgE antibodies than workers similarly exposed without the peak exposures: no significant difference between workers with mean exposure of 10 µg/m³ without the peaks and the control group without exposure Study of mixed exposure HHPA and isomer methylhexahydrophthalic anhydride (MHHPA). total organic acid anhydride exposure levels of <10 µg/m³ resulted in HHPA sensitisation as indicated by skin-prick test exposure appeared to be TWA, major peak exposures was not determined. Animal data: No deaths over 24 h in rabbits dosed with dermal application of 2,000 mg/kg to abraded skin corrosive based on Draize test; 6 rabbits with 100 mg of undiluted HHPA without irrigatior and with irrigation of the eyes at 30 sec; irrigation after 4 sec resulted in severe but reversible irritation Positive res	No report		
 even when otherwise exposed at low concentrations. Summary of data: TLV-Ceiling for all isomers. Human data: Hapten that binds to endogenous proteins in the lung forming an antigen Causes immunologic respiratory disease in humans; IgE and IgG-mediated diseases; including sensitisation, asthma, allergic minitis, haemorrhagic rhinitis, hypersensitivity pneumonitis, and ocular and upper respiratory tract irritation Exposure at lower mean levels with occasional peak exposure resulted in the development of the presence of specific IgE or IgG to an HHPA-human serum albumin (HSA) conjugate TWA exposures >50 µg/m³ in workers resulted in significant increase in levels of specific IgE and IgG antibodies to HHPA-HAS Workers exposed at <10 µg/m³ with intermittent peak exposures >50 µg/m³ (5 min/wk to 15 min/d) had significantly higher levels of specific IgE antibodies than workers similarly exposed without the peak exposures: o no significant difference between workers with mean exposure of 10 µg/m³ without the peaks and the control group without exposure Study of mixed exposure HHPA and isomer methylhexahydrophthalic anhydride (MHHPA) total organic acid anhydride exposure levels of <10 µg/m³ resulted in HHPA sensitisation as indicated by skin-prick test exposure appeared to be TWA, major peak exposures was not determined. Animal data: No deaths over 24 h in rabbits dosed with dermal application of 2,000 mg/kg to abraded skin Corrosive based on Draize test; 6 rabbits with 100 mg of undiluted HHPA without irrigatior and with irrigation of the eyes at 30 sec; irrigation after 4 sec resulted in severe but reversible irritation Positive response for sensitisation in animals. DFG 1995 Not assigned 	ACGIH	2015	TLV-Ceiling: 0.005 mg/m ³ (inhalable fraction and vapour)
No further information.	even when of Summary of o TLV-Ceiling fo Human data: • Hapte • Caus incluo pneur • Expos of the • TWA IgE a • Work 15 mi expos • n • Study • to s • e Animal data: • No de skin	herwise expo data: or all isomers en that binds the es immunolog ling sensitisation monitis, and consumeration sure at lower presence of exposures >5 and IgG antibo ers exposed a n/d) had sign sed without the o significant of eaks and the of mixed expo total organic a ensitisation a xposure apperation eaths over 24 sive based of with irrigation of sible irritation ve response to	sed at low concentrations. to endogenous proteins in the lung forming an antigen gic respiratory disease in humans; IgE and IgG-mediated diseases; tion, asthma, allergic rhinitis, haemorrhagic rhinitis, hypersensitivity boular and upper respiratory tract irritation mean levels with occasional peak exposure resulted in the development specific IgE or IgG to an HHPA-human serum albumin (HSA) conjugate 50 µg/m ³ in workers resulted in significant increase in levels of specific dies to HHPA-HAS at <10 µg/m ³ with intermittent peak exposures >50 µg/m ³ (5 min/wk to ificantly higher levels of specific IgE antibodies than workers similarly the peak exposures: difference between workers with mean exposure of 10 µg/m ³ without the control group without exposure bosure HHPA and isomer methylhexahydrophthalic anhydride (MHHPA): cid anhydride exposure levels of <10 µg/m ³ resulted in HHPA s indicated by skin-prick test eared to be TWA, major peak exposures was not determined. h in rabbits dosed with dermal application of 2,000 mg/kg to abraded n Draize test; 6 rabbits with 100 mg of undiluted HHPA without irrigation of the eyes at 30 sec; irrigation after 4 sec resulted in severe but for sensitisation in animals.
	DFG	1995	Not assigned
SCOEL NA NA	No further info	ormation.	
	SCOEL	NA	ΝΑ

No report.

Source	Year set	Standard		
OARS/AIHA	NA	NA		
No report.				
HCOTN	2010	Not assigned		
Summary of ac	ditional data	:		
 Evalua 	tion of 14 cy	clic acid anhydrides including HHPA		
 Sites critical effects as irritation of mucous membranes of the eyes and airways and sensitisation-induced work-related diseases 				
 Sensitisation in workers exposed to HHPA levels of 10–50 µg/m³ 				
Allergic contact dermatitis not likely				
Calcula	ated sensitisa	ation risk in workers:		
	VA of 0.007 µ posure	ug/m ³ corresponds to an additional risk of 0.1% due to occupational		
	VA of 0.07 μថ posure	g/m ³ corresponds to an additional risk of 1% due to occupational		
		additional to those caused by occupational exposure on top of the risk to HHPA in the general population.		

Secondary source reports relied upon

Source		Year	Additional information
NICNAS	~	2016	Complaint of nasal pain and rhinorrhoea in 1 worker following exposure to MHHPA
			 Evidence of respiratory sensitisation in workers; same evidence as primary sources
			Critical health effect is respiratory sensitisation
			A skin sensitiser and severely irritating to the eyes
			Could pose an unreasonable risk to workers unless adequate control measures to minimise dermal and inhalational exposure are implemented
			Low acute toxicity all routes in animals.

Carcinogenicity - non-threshold based genotoxic carcinogens

Is the chemical mutagenic?

No

The chemical is not a non-threshold based genotoxic carcinogen.

Notations

Source	Notations
SWA	NA
HCIS	Skin sensitisation – category 1
	Respiratory sensitisation – category 1

Source	Notations
NICNAS	NA
EU Annex	Skin sensitisation – category 1 Respiratory sensitisation – category 1
ECHA	NA
ACGIH	RSEN
DFG	Sa (respiratory sensitiser)
SCOEL	NA
HCOTN	NA
IARC	NA
US NIOSH	NA

NA = not applicable (a recommendation has not been made by this Agency); — = the Agency has assessed available data for this chemical but has not recommended any notations

Skin notation assessment

Calculation

Adverse effects in human case study:	no
Dermal LD ₅₀ ≤1000 mg/kg:	no
Dermal repeat-dose NOAEL ≤200 mg/kg:	
Dermal LD_{50} /Inhalation LD_{50} < 10:	
In vivo dermal absorption rate >10%:	
Estimated dermal exposure at WES >10%:	

a skin notation is not warranted

IDLH

Is there a suitable IDLH value available?

No

Additional information

Molecular weight:	154.17
Conversion factors at 25°C and 101.3 kPa:	1 ppm = Number mg/m ³ ; 1 mg/m ³ = Number ppm
This chemical is used as a pesticide:	
This chemical is a biological product:	
This chemical is a by-product of a process:	
A biological exposure index has been recommended by these agencies:	

Workplace exposure standard history

Year	Standard
Click here to enter year	

References

American Conference of Industrial Hygienists (ACGIH[®]) (2018) TLVs[®] and BEIs[®] with 7th Edition Documentation, CD-ROM, Single User Version. Copyright 2018. Reprinted with permission. See the <u>TLVs[®] and BEIs[®] Guidelines section</u> on the ACGIH website.

Deutsche Forschungsgemeinschaft (DFG) (1995) Hexahydrophthalic anhydride/Methyltetrahydrophthalic anhydride – MAK value documentation.

Health Council of the Netherlands (HCOTN) (2010) Cyclic acid anhydrides. Health-based recommended occupational exposure limit. The Hague: Health Council of the Netherlands; publication no. 2010/02OSH.

Tenth Adaptation to Technical Progress Commission Regulation (EU) No 2017/776 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures (the CLP Regulation).