

STYRENE, MONOMER

CAS number: 100-42-5

Synonyms: Cinnamene, ethenyldenzene, ethylbenzol, phenylethylene, vinylbenzene

Chemical formula: C₈H₈

Structural formula: —

Workplace exposure standard (amended)

TWA: 20 ppm (85 mg/m³) STEL: 40 ppm (170 mg/m³) Peak limitation: —

Notations:

IDLH: 700 ppm

Sampling and analysis: The recommended value is quantifiable through available sampling and analysis techniques.

Recommendation and basis for workplace exposure standard

A TWA of 20 ppm (85 mg/m³) is recommended to protect for effects to the central and peripheral nervous systems and irritation to the mucous membrane and upper respiratory tract in exposed workers.

A STEL of 40 ppm (170 mg/m³) is recommended to protect for acute effects on the central and peripheral nervous system and mucous membrane and upper respiratory tract irritation in exposed workers.

Discussion and conclusions

Styrene is used in the manufacture of polystyrene plastics, protective coatings, styrenated polyesters, copolymer resins with acrylonitrile and butadiene and as a chemical intermediate. It has also been used in paints, sealers and other surface coatings.

Critical effects of exposure are on the central and peripheral nervous system and also irritation of the mucous membrane and upper respiratory tract.

Indications of central and peripheral neurologic, optic and irritant actions are reported in humans exposed at the workplace at airborne concentrations greater than 50 ppm. Headache, fatigue, nausea and dizziness are reported after exposure at concentrations greater than 100 ppm (ACGIH, 2018). Simple reaction times are increased, and coordination is decreased in controlled studies of volunteers inhaling 50 ppm for one hour and 380 ppm for 30 minutes. Increased reaction times are observed in 106 workers exposed at 13 to 101 ppm compared to other groups of workers not exposed to styrene. Reduced attention and reduced manual dexterity are reported among styrene workers exposed at TWA of 72 to 168 ppm (ACGIH, 2018). A significant decrease in colour vision perception among workers exposed is reported at concentration greater than 50 ppm compared to controls. Colour vision deficiencies are reported as being transient. Clinical and workplace evaluations of 900

employees found a threshold for ocular and conjunctival irritation at 50 ppm with another study in humans noting obvious ocular and upper respiratory tract irritation occurring at concentrations greater than 200 ppm (ACGIH, 2018). No histological alterations are observed in nasal biopsies from styrene workers exposed at 50 to 60 ppm for seven years (NICNAS, 2013). It is reported as an irritant in the upper respiratory tract of rodents at concentrations as low as 50 ppm (ACGIH, 2018).

Based on the weight of evidence indicating adverse effects starting at 50 ppm, the TWA of 20 ppm derived by ACGIH is recommended to protect for central and peripheral nervous system effects and for irritation effects.

The evidence from short-term effects as low as 50 ppm in humans warrants a STEL of 40 ppm as derived by ACGIH.

Recommendation for notations

Not classified as a carcinogen according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS).

Not classified as a skin sensitiser or respiratory sensitiser according to the GHS.

A skin notation is not recommended based on the available evidence.

APPENDIX

Primary sources with reports

Source	Year set	Standard		
SWA	1991	TWA: 50 ppm (213 mg/m³); STEL: 100 ppm (426 mg/m³)		
Adopted from A	ACGIH.			
ACGIH	2001	TLV-TWA: 20 ppm (85 mg/m³); TLV-STEL: 40 ppm (170 mg/m³)		
Recommended effects and for Summary of da	I TLV-TWA a mucous mer ita:	Ind TLV-STEL are intended to minimise the potential for CNS and PNS nbrane and respiratory irritation.		
Basis of TWA a	and SIEL:	central and peripheral neurologic, ontic and irritant actions in humans		
 Clear II >50 pp Heada Eviden conduct 	m in the wor che, fatigue, ce concernir ction included	kplace nausea and dizziness consistently reported post 100 ppm exposure ig influence of occupational styrene exposure on sensory nerve		
 5–10% information exposulation loss of 	reductions i ation; reduce ire at 50–100 colour discri	n sensory nerve conduction after exposure at ≥100 ppm, no further d peripheral nerve conduction velocity and sensory amplitude after) ppm; slowed reaction time appears to begin at >50 ppm; significant mination		
 Colour reducti 	vision deficie	encies transient with improvement occurring 1 mo to 2 yr after sure: no further information		
 Not cle reactio ATSDF Mucou No furt 	 Not clear if changes in visual acuity or peripheral nerve conduction velocity and slowed reaction time relate to average exposures or high, peak exposures (215–469 ppm) ATSDR (1992) calculated an oral "minimal risk level" for styrene exposure of 2 mg/kg/d Mucous membrane irritation reported to begin at 45 ppm to as high as 180 ppm in humans. No further information 			
Clearly	irritant in up	per respiratory tract at concentrations as low as 50 ppm in rodents.		
Human data: • Epiden	niologic data	considered inadequate to determine possible contribution of styrene		
Clinica conjun after cl	l and workpla ctival irritatio	ace evaluations of 900 employees found threshold for ocular and n at 50 ppm. No evidence for hepatic or haematologic abnormalities ure at 5–200 ppm		
 No inclusion operation No signation 	 No increase in chemical-specific mortality among 560 adult males employed in styrene operations at 1–20 ppm for at least 5 yr; similar findings in other study; no further details No significant increase in total or cause-specific mortality among workers in 			
styrene peak c	styrene-butadiene plants with up to 33 yr of mean styrene concentration of 2 ppm with peak concentrations of about 12 ppm			
No spe outcom	 No specific associations between reproductive failure or excess risk of adverse pregnancy outcome and occupational exposure 			
Simple volunte 35	 Simple reaction times increased, and coordination decreased in controlled studies of volunteers exposed to: 350 ppm (via mouth tube) for 30 min 			
o 38	0 ppm for 1 h	1 5 h		
o 15	0 ppm for 1.5	5 h		
 50 Contro in all five 	 50 ppm for 1 h Controlled inhalation with 300 ppm (<i>via</i> mouth tube) for 1 h reduced ocular tracking abilities in all five volunteers but no changes in balance or coordination were noted 			

Source	Year set	Standard		
source • • • • • • • • • • • • • • • •	Increased reaction to identified from a sur ○ 106 employees w ○ 27 employees w ○ 27 employees w ○ 7 workers with r ○ 10 employees w workplace air st Reaction times of w increased compared Reduced attention a 72–168 ppm, no furth Marginal improvement concentrations reduced Frank ocular and up 10 males and 8 fem 4 men and 2 woment ○ no changes in E ○ the other 3 peop after inhaling ≥1 A significant decrease compared with control Significant reduction 15 ppm compared to Variable (2–8%) red information Dermal penetration another study (consideration A 50% reduction in the No ototoxicity identific Rats exposed for 6 for ○ reduced body w	imes compared to ot nmary of different stu- with exposures of 13 with exposures of 13 with exposures of 13 with exposures of 15 with mean exposures nean exposures of 1 with elevated urinary by yrene at 65–110 ppm orkers exposed at TV with those exposed at TV with those e	her groups of workers no idies: -101 ppm of 92 ppm (range = 52– 0 ppm mandelic acid concentra n) VA ≤235 ppm (with brief at TWA ≤139 ppm; no fi among styrene workers in time for 17 men after r , no further details irritation at concentration h/d, 3–4 d/w for 4 w at 2 bool: eadache and dizziness at erpreted as reflecting boo suity principally affecting workers exposed at TWA ation observed in 36 styr ripheral nerve conduction /h reported (hand dipped by evaporation) indicate rred in mice that inhaled at 50 or 200 ppm, 6 h/d f fetimes at 50, 200, 500 of ased food consumption	ot exposed to styrene 117 ppm) tions (approximating exposures at 1,500 ppm) urther information exposed at TWA of mean workplace air ns >200 ppm 20–125 ppm of which only 20–125 ppm of which only tt ≥75 ppm and nausea oredom) blue-yellow range A >50 ppm, ene workers exposed at in velocities; no further I in styrene) however ed (9–15 mg/cm²/h). 160 ppm for 3 min or 13 wk or 1000 ppm: at 500 and 1000 ppm
	 no treatment-rel tumours per ani atrophy and deg medial nasal tur 	ated increase in num mal observed when generation of the olfa binates, ethmoid/dor	bers of animals with tun compared to concurrent ctory epithelium (dorsal sal turbinates) at all styr	nours or numbers of controls septum, dorsal meatus, ene concentrations
	o no NOAEL coul	d be identified.		
Insuffic	ient data to recomme	nd a Skin or sensory	v notation.	
DFG	1987	МАК: 20 ррт (86 mg/m³)	
Summa	ary of additional data:			
•	Metabolises to styre	ne-7,8-oxide, a direc	t alkylating agent	

- In 4 studies with mice, styrene induced lung tumours, both after oral administration and following inhalation exposure; in 9 studies with rats was not carcinogenic; no further details
- Given this information, considered genotoxic and with carcinogenic potential to humans, however, the risk for humans may be evaluated
- The risk of developing cancer during a lifetime as a result of 40 yr occupational exposure to a concentration of styrene in air of 20 ppm is smaller than the unavoidable risk caused by

Source	Year set	Standard	
endog inform	enous ethyle ation.	ne oxide, for which a value of	~1/10,000 has been estimated; no further
SCOEL	NA	NA	
No report.			
OARS/AIHA	NA	NA	
No report.			
HCOTN	NA	NA	
No report.			

Secondary source reports relied upon

Source		Year	Additional information
NICNAS	•	2013	 Acute inhalation in humans is associated with eye/skin/throat irritation and neurological findings at high concentrations; NOAEC (men, inhalation) of 216 ppm (1 h) and 99 ppm (7 h) reported; no further information
			 No histological alterations observed in nasal biopsies from styrene workers exposed to 50–60 ppm for 7 yr; no further information
			• A 10 yr mortality score determined using 6678 male rubber- factory workers which were exposed to the chemical. Results showed elevated incidence of haemopoietic and lymphatic cancer:
			 incidence of cancer increased with years of exposure the incidence in workers with a 2-yr history and 5 yr history was 4.4 and 5.6 times higher, respectively, than the general population
			Based on <i>in vivo</i> no convincing evidence of significant mutagenic potential
			• The results from <i>in vitro</i> assays (including the Ames test and <i>in vitro</i> chromosome aberration studies in mammalian cells) suggest the chemical possesses some genotoxic potential <i>in vitro</i> . Metabolic activation is required for this activity.

Carcinogenicity — non-threshold based genotoxic carcinogens

The chemical is not a non-threshold based genotoxic carcinogen.	
Is the chemical carcinogenic with a mutagenic mechanism of action?	No
Is the chemical mutagenic?	Insufficient data

Notations

Source	Notations
SWA	

Source	Notations
HCIS	
NICNAS	Carc. Cat 3
EU Annex	NA
ECHA	—
ACGIH	Carcinogenicity – A4
DFG	Carcinogenicity – 5
SCOEL	NA
HCOTN	-
IARC	Carcinogenicity – Group 2A
US NIOSH	NA

NA = not applicable (a recommendation has not been made by this Agency); — = the Agency has assessed available data for this chemical but has not recommended any notations

Skin notation assessment

Calculation

Adverse effects in human case study:	no
Dermal LD₅₀ ≤1000 mg/kg:	
Dermal repeat-dose NOAEL	
≤200 mg/kg:	
Dermal LD_{50} /Inhalation LD_{50}	
<10:	
In vivo dermal absorption rate	
>10%:	
Estimated dermal exposure at	no
WES >10%:	
	a skin notation is not warranted

IDLH

Is there a suitable IDLH value available?

Yes

Additional information

Molecular weight:	104.15
Conversion factors at 25°C and 101.3 kPa:	1 ppm = 4.26 mg/m ³ ; 1 mg/m ³ = 0.23 ppm
This chemical is used as a pesticide:	
This chemical is a biological product:	
This chemical is a by-product of a process:	

Molecular weight:	104.15			
Conversion factors at 25°C and 101.3 kPa:	1 ppm = 4.26 mg/m ³ ; 1 mg/m ³ = 0.23 ppm			
This chemical is used as a pesticide:				
A biological exposure index has been recommended by these agencies:	✓ ACGIH	✓ DFG		

Workplace exposure standard history

Year	Standard
Click here to enter year	

References

American Conference of Industrial Hygienists (ACGIH[®]) (2018) TLVs[®] and BEIs[®] with 7th Edition Documentation, CD-ROM, Single User Version. Copyright 2018. Reprinted with permission. See the <u>TLVs[®] and BEIs[®] Guidelines section</u> on the ACGIH website.

Deutsche Forschungsgemeinschaft (DFG) (2003) Styrene – MAK value documentation.

European Chemicals Agency (ECHA) (2019) Styrene - REACH assessment.

Health Council of the Netherlands (HCOTN) (2001) Styrene. Health-based calculated occupational cancer risk values. The Hague: Health Council of the Netherlands; publication no. 2001/08OSH.

International Agency for Research on Cancer (IARC) (In prep.) Styrene. IARC Monographs on the evaluation of the carcinogenic risk to humans.

National Industrial Chemicals Notification and Assessment Scheme (NICNAS) (2013) Benzene, ethenyl: Human health tier II assessment – IMAP report.

US National Institute for Occupational Safety and Health (NIOSH) (1994) Immediately dangerous to life or health concentrations – Styrene.