

VINYL BROMIDE

CAS number: 593-60-2

Synonyms: Bromoethene, bromoethylene, ethylene bromo

Chemical formula: C₂H₃Br

Workplace exposure standard (interim)

TWA: 0.5 ppm (2.2 mg/m³)

STEL: -

Peak limitation: —

Notations: Carc. 1B

IDLH: —

Sampling and analysis: The recommended value is quantifiable through available sampling and analysis techniques.

Recommendation and basis for workplace exposure standard

A TWA of 0.5 ppm (2.2 mg/m³) is recommended in the interim to protect for the risk of cancer in exposed workers.

A priority review of the data in the next scheduled review of the workplace exposure standards is recommended.

Discussion and conclusions

Vinyl bromide is used primarily in polymers as a flame retardant in the production of acrylic fibres for carpet-backing material. It is also used as an intermediate in organic synthesis and in the manufacture of polymers, copolymers, flame retardants, pharmaceuticals and fumigants.

The critical effect of exposure is cancer.

No human studies of vinyl bromide toxicity are available. Treatment-related increases in liver angiosarcomas and Zymbal gland squamous cell carcinomas was reported in all the exposed groups in a two-year inhalation study in rats exposed at 0, 10, 50, 250 or 1,250 ppm. Statistically significant increase in hepatocellular adenomas and carcinomas was also observed in some dose groups. Vinyl bromide caused DNA damage in mice treated *in vivo* and has been reported to be mutagenic in bacteria. Metabolites formed DNA adducts as in vinyl chloride. It has been suggested that the chemical may be a more potent carcinogen than vinyl chloride (ACGIH, 2018; SCOEL, 2008). SCOEL (2008) and NICNAS (2016) cite the critical effects to humans as carcinogenicity and genotoxicity and IARC (2008) class it as probably carcinogenic to humans. For the purposes of this assessment, vinyl bromide is assumed to be a non-threshold-based genotoxic carcinogen.

No appropriate inhalation unit risk or slope factor is available to calculate a risk-based TWA. As such, an interim TWA of 0.5 ppm, cited by the ACGIH (2018) as protective of the cancer endpoint, is recommended. A priority assessment in the next review of the workplace exposure standards is recommended.

Recommendation for notations

Classified as a carcinogen category 1B according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS).

Not classified as a skin sensitiser or respiratory sensitiser according to the GHS.

There are insufficient data to recommend a skin notation.

APPENDIX

Primary sources with reports

Source	Year set	Standard
SWA	1991	TWA: 5 ppm (22 mg/m³)
ACGIH	2001	TLV-TWA: 0.5 ppm (2.2 mg/m³)
	with vinyl chlorid of data: No human toxid Structurally like Carcinogenicity bromide is a mo Vinyl bromide n mutagenic viny	city studies available e vinyl chloride, a known human carcinogen v studies in rats for vinyl bromide and vinyl chloride indicate vinyl ore potent carcinogen at equivalent exposure levels netabolised to 2-bromoethylene oxide, which is structurally similar to I chloride metabolite 2-chloroethylene oxide, by both rat and human
•	concentrations No case of ang	s metabolised in vitro ≈50% faster than vinyl chloride at saturating
• Human dat •	As vinyl bromid 0.5 ppm is reco a:	le may be a more potent carcinogen than vinyl chloride, a TLV–TWA of
	further informat Liquid contact t	
Animal data	evaporation.	
•	Results of stud by inhalation in o decrease ir	h body weight at all exposure concentrations
	10 ppm	mortality followed correlated with 50, 250 and 1,250 ppm but not at mas, primarily of the liver, caused in both male and female rats in all 4 roups
	0/144, 7/12	of liver angiosarcoma in the 0, 10, 50, 250 and 1250 ppm groups were 20, 36/120, 61/120 and 43/120, respectively, among males
	 increased i 	giosarcomas also found in lung, spleen, nasal cavity and mesentery ncidence of primary hepatocellular neoplasms seen in males exposed and in females exposed at 10, 50 and 250 ppm
		dose-response relationship at highest dose for each of the tumour site o early mortality and termination of rats in the 1250 ppm group at 72 whether the second sec
• Genotoxicit	exposed at 200	endent increases in ATPase-deficient foci in hepatocytes in newborn rat 00 ppm 8 h/d, 5 d/wk from their first day of life up to 15 wk of age.

Source	Year set	Standard				
•	•	<i>. typhimurium</i> strains TA1530 and TA100 and tradescantia strains in the sence of rat, mouse or human metabolic activation systems				
•	A dose-dependent increase in the number of revertants per plate observed in <i>S. typhimurium</i> strains TA1530 or TA100 in the presence of liver S9 from phenobarbital-treated mice with or without cofactors for a NADPH generating system					
•	A direct-acting mutagen in TA1530:					
	 the addition of mouse liver S9 enhanced the mutagenic effect, indicating a microsome-dependent formation of metabolites which are more mutagenic than the parent compound 					
•	S9 preparations from human liver specimens active in converting vinyl bromide to mutagens in <i>S. typhimurium</i> strains TA1530 or TA100:					
	o the ave	rage activity was lower than that in rats				
•	• More potent than vinyl chloride in causing mutations in <i>S. typhimurium</i> and in forming adducts.					
Insufficient	data to assign a	skin or sensitiser notation of TLV-STEL.				
mouncient	uala lo assign a	skirtor sensitiser hotation of TEV-STEE.				
DFG	NA	ΝΑ				
No report.						
SCOEL	2008	Not assigned				
	2008 of additional data					
	f additional data	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and				
	f additional data No local tumour observed up to	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and				
	of additional data No local tumour observed up to o examin Applied to the s	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d:				
	of additional data No local tumour observed up to o examin Applied to the s o no skin	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site skin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk:				
	of additional data No local tumour observed up to o examin Applied to the s o no skin o sites ot	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site skin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk: tumours observed				
	f additional data No local tumou observed up to o examin Applied to the s o no skin o sites ot Refers to 2 yr ra	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site kin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk: tumours observed her than skin not examined and test material volatile				
	of additional data No local tumour observed up to o examin Applied to the s o no skin o sites ot Refers to 2 yr ra Considered clea	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site skin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk: tumours observed her than skin not examined and test material volatile at inhalation study cited by ACGIH (2018) arly carcinogenic in experimental animals occupationally relevant low exposure range appears to be ≈3 times				
Summary o	f additional data No local tumour observed up to o examin Applied to the s o no skin o sites ot Refers to 2 yr ra Considered clea Concludes that more active tha Quantitative ass	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site skin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk: tumours observed her than skin not examined and test material volatile at inhalation study cited by ACGIH (2018) arly carcinogenic in experimental animals occupationally relevant low exposure range appears to be ≈3 times				
Summary o	f additional data No local tumour observed up to o examin Applied to the s o no skin o sites of Refers to 2 yr ra Considered clea Concludes that more active tha Quantitative as exposure for wo	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site skin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk: tumours observed her than skin not examined and test material volatile at inhalation study cited by ACGIH (2018) arly carcinogenic in experimental animals occupationally relevant low exposure range appears to be ≈3 times n vinyl chloride sessment of available data and use of PBPK modelling infers inhalation				
Summary o	f additional data No local tumour observed up to o examin Applied to the s o no skin o sites of Refers to 2 yr ra Considered clea Concludes that more active tha Quantitative as exposure for wo	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site skin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk: tumours observed her than skin not examined and test material volatile at inhalation study cited by ACGIH (2018) arly carcinogenic in experimental animals occupationally relevant low exposure range appears to be ≈3 times n vinyl chloride sessment of available data and use of PBPK modelling infers inhalation orking lifetime to 1 ppm the hepatic angiosarcoma risk of 9x10 ⁻⁴ .				
Summary of	f additional data No local tumour observed up to o examin Applied to the s o no skin o sites of Refers to 2 yr ra Considered clea Concludes that more active tha Quantitative as exposure for wo	: rs in mice injected subcutaneously with 25 mL 1/wk for 48 wk and 420 d: ation of animals for pathological lesions limited to the injection site skin of 30 female mice at 15 mg (in 0.1 mL acetone) 3/wk for 60 wk: tumours observed her than skin not examined and test material volatile at inhalation study cited by ACGIH (2018) arly carcinogenic in experimental animals occupationally relevant low exposure range appears to be ≈3 times n vinyl chloride sessment of available data and use of PBPK modelling infers inhalation orking lifetime to 1 ppm the hepatic angiosarcoma risk of 9x10 ⁻⁴ .				

Secondary source reports relied upon

Source		Year	Additional information
NICNAS	\checkmark	2016	Mutagenic in S. typhimurium

Source	Yea	r Additional information
		 In a comet assay in male mice, 2,000 mg/kg induced statistically significant DNA damage in all examined organs (stomach, liver, kidney, bladder, lung and brain) except bone marrow
		Refers to 2-yr inhalation study in rats (ACGIH, 2018)
		 Critical health effects include systemic long-term effects - carcinogenicity and mutagenicity.
IARC	✓ 200	 In limited studies in female mice, neither induced nor initiated skin tumours after dermal application and did not cause injection-site tumours after repeated subcutaneous injection
		 In an inhalation study in rats, dose-related increase in the incidence of liver angiosarcomas and Zymbal gland carcinomas, liver neoplastic nodules; hepatocellular carcinoma also noted
		 Bromoethylene oxide and bromoacetaldehyde are known metabolites that form DNA adducts similar to those formed by metabolites of vinyl chloride
		 No epidemiological data relevant to carcinogenicity of vinyl bromide available
		• Sufficient evidence in experimental animals for carcinogenicity
		 Probably carcinogenic to humans (Group 2A)
		 Overall evaluation, Working Group took into consideration that all available studies showed a consistently parallel response between vinyl bromide and vinyl chloride
		• For practical purposes should be considered to act similarly to the human carcinogen vinyl chloride.

Carcinogenicity — non-threshold based genotoxic carcinogens

Is the chemical mutagenic?	Yes				
Is the chemical carcinogenic with a mutagenic mechanism of action?	Yes				
The chemical is a non-threshold based genotoxic carcinogen.					
Is a cancer slope factor or inhalation unit risk value available?	No				

Notations

Source	Notations
SWA	Carc. 1B
HCIS	Carcinogenicity – category 1B
NICNAS	NA
EU Annex	NA
ECHA	Carc. 1B
ACGIH	Carcinogenicity – A2

Source	Notations
DFG	NA
SCOEL	Carcinogenicity – A
HCOTN	NA
IARC	Carcinogenicity – Group 2A
US NIOSH	NA

NA = not applicable (a recommendation has not been made by this Agency); — = the Agency has assessed available data for this chemical but has not recommended any notations

Skin notation assessment

Insufficient evidence to recommend a skin notation.

IDLH

Is there a suitable IDLH value available? No

Additional information

Molecular weight:	106.95			
Conversion factors at 25°C and 101.3 kPa:	1 ppm = 4.45 mg/m ³ ; 1 mg/m ³ = 0.23 ppm			
This chemical is used as a pesticide:				
This chemical is a biological product:				
This chemical is a by-product of a process:				
A biological exposure index has been recommended by these agencies:				

Workplace exposure standard history

Year		Standard		
Click here to enter year				

References

American Conference of Industrial Hygienists (ACGIH[®]) (2018) TLVs[®] and BEIs[®] with 7th Edition Documentation, CD-ROM, Single User Version. Copyright 2018. Reprinted with permission. See the <u>TLVs[®] and BEIs[®] Guidelines section</u> on the ACGIH website.

European Chemicals Agency (ECHA) (2019) Vinyl bromide - REACH assessment.

EU Scientific Committee on Occupational Exposure Limits (SCOEL) (2008) Recommendation from the Scientific Committee on Occupational Exposure Limits for vinyl bromide. SCOEL/SUM/155.

International Agency for Research on Cancer (IARC) (2008) Vinyl bromide. IARC Monographs on the evaluation of the carcinogenic risk to humans.

NICNAS (2016) Ethene, bromo-: Human health tier II assessment