
Commentaries on
Problems

JUDGE TEAM
ACM ICPC 2016 ASIA TSUKUBA REGIONAL

Problem Set Design Objectives
 All the teams should be able to solve at least one

problem

 All the problems should be solved by at least one
team

 No team should be able to finish all the
problems too early

 The problem set should demand for expertise in
diverse areas

Problems and # of Teams Solved
A B C D E F G H I J K

45 45 45 35 24 8 26 3 6 4 1

0

5

10

15

20

25

30

35

40

45

50

A B C D E F G H I J K

problems solved & # teams
0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 9 8 6 11 7 1 1 1 1

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

Problem:

1 2 3 4 5

4 1 2 3 5

2 4 1 3 5

5 2 4 1 3

Request: “Move 4 to the head.”

Request: “Move 2 to the head.”

Request: “Move 5 to the head”.

↑ This is the answer! ↑

Given an integer sequence, execute the requested
operations to move elements to the head.

Key Points
The input is large.
◦ N (≦ 200000) elements
◦ M (≦ 100000) requests

It is too slow if you represented the sequence
as int[] or std::vector<int>, and really
moved the elements.

Possible Solution
Use a linked list.

Each rearrangement can be done in O(1) time.

1 2 3 4 5

Other Possible Solutions

Update only timestamps per each request. Sort at the end.

O(1) per each timestamp update, O(N log N) for sorting.

“Move 4, 2, and then 5.” 1 2 3 4 5
- 1 - 0 2

5 2 4 1 3
2 1 0 - -

 Reverse the list of requests, prepend to the initial sequence, and
remove duplicates. O(M+N).

Problem B:
Quality of Check Digits

Problem Summary
Count # of four-digit basic IDs 0000—9999 for which
the specified check-digit system doesn’t work well

◦ To detect human errors (typos) in IDs for a service
◦ Service ID = basic ID + a check digit

◦ Cf. ISBN, “My Number”, …

◦ A check digit = gen(basic ID)
◦ Error detection = check(service ID’) != 0
◦ Error detection quality depends on gen and check

2016
Basic ID

20163
Service ID

gen(2016) = 3 check(20163) = 0 OK

Error
detected!check(20173) = 920173typo

Solution: Brute-force!
Given: An operation (multiplication) table x : i * j = xij

gen(abcd) = (((0*a)*b)*c)*d

• check(a’b’c’d’e’) = ((((0*a’)*b’)*c’)*d’)*e’

genErrors generates 49 possibilities of common errors
◦ Altering a single digit (45 ways): 20163 -> 29163
◦ Transposing adjacent digits (at most 4 ways): 20163 -> 20613

for bID in [0000, …, 9999]:
sID = append(bID, gen(bID))
if !(all([check(sID’) != 0 for sID’ in genErrors(sID)])):

cnt += 1
print(cnt)

Take-home Message
The error detection used here is Damm algorithm
◦ Good check-digit algorithm
◦ Can detect all single-digit errors and all adjacent transposition errors
◦ But needs only decimal digits (0-9)

◦ Cf. MOD11 used on ISBN needs 0-9 and X

Problem C: Distribution Center

(This is a joke, not included in judge data.)

Problem C:
What you need to compute.
Count the number of entry points to each goal
◦ Goods go from left to right
◦ Goods can change its lane with cranes

3

Problem C:
Key points
The input size is large O(nm) algorithms will fail
◦ n (number of lanes) 200,000
◦ m (number of cranes) 100,000

The entry points are in continuous range
◦ Compute with the two numbers

1

3

D: Hidden Anagrams

What’s anagrams?
A word or a phrase that is formed by
rearranging the letters of another

p r g r a m m i n go

p r gr am m i n go

t r a n ii n g

n

What’s hidden anagrams?
For given two strings, a substring of one that is an
anagram of some substring of the other

i n t e r n a t i o a lr n a t i

abc ab bc a b c
cbd
cb
bd
c
b
d

A naïve solution: all-to-all
comparison

abc

cbd

 Simple but slow
Two strings of lengths 4,000 have more than 20
billion pairs of substrings of the same lengths

abc ab bc a b c
cbd

cb
bd

c
b
d

😄

😄
😄

A better solution: compare only when
substrings have the same summaries

a 31
b 90
c 67
d 43

z 98

aabc

baca

31+31+90+67=219

90+31+67+31=219
 Record a summary of every substring of one

string and examine every substring of the
other
 Use a hash table or a sorted list

 A naïve summary calculation may require
O(length3) operations that can be reduced to
O(length2) by removing duplicate ones

Symbols possibly appear in the original equation are
()+-*01=

o Replace all alphabetical letters in the input to these
symbols.
 At most 8! (= 40,320) patterns
 If 9 or more different letters are in the input, the

answer is 0.

o Parse each equation obtained by the replacement
 By recursive descent parsing algorithm, perhaps.
 Deal parse errors properly.
 Count only strings which is successfully parsed

and the equality holds.

E. Infallibly Crack Perplexing Cryptarithm

8 different symbols

not too many

Input: ICPC

Possible replacement (3 examples out of 8 3 patterns)

0=1= (I→0, C→=, P→1)

...Syntax Error

10=0 (I→1, C→0, P→=)

...Successfully parsed,

but the values of the both side are not equal.

-0=0 (I→-, C→0, P→=)

...Successfully parsed and the values are equal.

Example

Problem F:
Three Kingdoms of Bourdelot

Input
●A Hypothesis that p is an ancestor of q

●Documents
that can be
interpreted as
positive or
negative

Alice Bob
Bob Clare

Alice is NOT an ancestor of Bob
Bob is NOT an ancestor of Clare

Alice is an ancestor of Bob
Bob is an ancestor of Clare
positive

negative

OR

p=Alice q=Bobis an ancestor of

Problem
Can we assign 'positive' or 'negative'
such that the documents and the
hypothesis are not contradicting?

Clare is an ancestor of Bob

Alice is an ancestor of Bob
Bob is an ancestor of Clare
positive

p=Alice q=Bobis an ancestor of

Alice is an ancestor of Clare

positive

Contradicting!

positive

Problem
Can we assign 'positive' or 'negative'
such that the documents and the
hypothesis are not contradicting?

Clare is an ancestor of Bob

Alice is NOT an ancestor of Bob
Bob is NOT an ancestor of Clare

p=Alice q=Bobis an ancestor of

Alice is an ancestor of Clare

positive

Contradicting!

positive

negative

Problem
Can we assign 'positive' or 'negative'
such that the documents and the
hypothesis are not contradicting?

Clare is NOT an ancestor of Bob

Alice is an ancestor of Bob
Bob is an ancestor of Clare
positive

p=Alice q=Bobis an ancestor of

negative

OK!

Alice is an ancestor of Clare

positive

Solution
Calculate S = "set of true
ancestor-descendant pairs" greedily.

1.Put the hypothesis to S.
S = {<p, q>}

Clare is NOT an ancestor of Bob

Alice is an ancestor of Bob
Bob is an ancestor of Clare

p=Alice q=Bobis an ancestor of

Alice is an ancestor of Clare

S = {
<Alice, Bob>

}

Solution

Clare is NOT an ancestor of Bob

Alice is an ancestor of Bob
Bob is an ancestor of Clare

p=Alice q=Bobis an ancestor of

Alice is an ancestor of Clare

S = {
<Alice, Bob>
<Bob, Clare>
<Alice, Clare>

}
positive

positive

2.If an unlabeled document D has a pair in S,
then D must be positive.
–Label D positive and put the pairs in D to S.
–Take the transitive closure of S.
–Iterate until converges.

Solution

3.If S contains <x,y> and <y,x>
for some x and y, output "No".

Clearly contradicting
(by the first type of the contradictions)!

Solution
4.Otherwise, output "Yes".
We can make unlabeled documents negative.
 For any pair <x, y> in such a document,

it isn't contained in S
(otherwise the document would be labeled positive
in Step 2)

 Therefore it doesn't cause contradiction
of the second type of the contradictions.

Solution
Do NOT take transitive closure of a
document before Step 1.

A C
C B
B A

q=Bp=A

A C
C B
B A
negative

q=Bp=A

"Yes"

Solution
Do take transitive closure in Step 2.

A B
B C
C D

q=Bp=A

B D
D A

positive

positive

"No"

G: Placing Medals on
a Binary Tree

Problem Summary
Can we place a set of medals on a perfect binary tree ?

 A medal engraved with d should be on a node of depth d

 One medal per node

 At most one medal on the paths from any nodes to the root

[2, 3, 1, 4] can be placed

Properties (1)

 If all medals are engraved d,
2d medals can be placed.

 Two d+1 medals can be
placed in place of one d.

11

22 22

21 medals

22 medals

d+1d+1

d

Properties (2)
1. We can place [x1, x2, …, xn] when

భ మ

2. For xi > n, we can place [x1, …, xi-1, xi, xi+1, …, xn]
iff we can place [x1, …, xi-1, n, xi+1, …, xn]

We can use min(n, xi) instead of xi

Naïve implementations
Using a bit array to represent the sum
◦ భ మ ల ల భ మ ఱ = 0.11001 (in binary)

◦ A bit array of length n + 1, [0,1,1,0,0,1,…..] for 0.11001...

◦ Add ೣ
and check if the result exceeds 1.0 or not

◦ O(n) for carry propagation (then cancelled) in the worst case
(e.g. [1,2,3,…,25000,24998,…,24998])

◦ O(n2) in total Too slow

Using BigDecimal or BigInteger (muliplied by 2n)
◦ O(n2) in total Too slow

01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10000 0000 0000 001

01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

Refinements
Recording the position of the first zero bit and the
max number on medals placed
◦ If the number on a new medal is less than the position of

the first zero and less than the max number on medals
placed, you can tell, without computing the sum, that the
medal cannot be placed

◦ When a new medal is placed, sum computation and
updating of the first zero bit position is needed

◦ O(n) for one addition in the worst case, but as carry
propagation clears consecutive one bits, the amortized total
cost remains O(n)

Representing consecutive ones as its range
◦ Consecutive ones represented by a pair [start, end]
◦ Update is in O(log n); Total cost is O(n log n)

H: Animal Companion in Maze

Problem Summary
Chase the monkey in a maze-like building
Repeat moving to an adjacent room randomly
Compute the longest time before he will be
confined
(He may have possibilities not to be confined)
of rooms:
of doors:
Each door is one-way or two-way

Compute the length of the longest path in the graph,
or find a cycle in the graph

When the graph has no cycle
The graph is Directed Acyclic Graph (DAG)

We don’t consider this as a cycle

When the graph has no cycle

After decomposing the graph into
Strongly-Connected Components,

each SCC is a tree with two-way edges only

The graph is almost a DAG

We can compute the longest distance using DP

Path lengths through SCCs
The longest distance through a strongly-connected

component can be computed with two DFSs
1. Take the max. of longest

distance through children
2. Propagate the longest

distance through parent

7/4

6 3

5

SCC SCC

SCC

4 2

7/4

6/5 8

6 7 9

SCC SCC

SCC

4 2

9

How to find a cycle
Easily detected by the decomposition to SCCs

If a one-way edge is in a SCC, it is in a cycle

If # of edges is more than or equal to
of vertices in a SCC, it has a cycle

Otherwise no cycle exists

Summary
 Decompose into SCCs
 Detect a cycle if exists
 Otherwise compute the longest distance

by DP
 The time complexity is

I: Skinny Polygon

Problem Summary
You are given two integers xbb and ybb (<=109). Find
one simple polygon such that:

Its bounding box is [0, xbb]×[0, ybb].

The number of vertices is 3 or 4.

Its area is <= 25000.

NOTE: This is quite smaller
than xbb and ybb.

When xbb and ybb are relatively prime
Let’s start from easy cases.

The area of triangle △OAB is |ad-bc|/2.

Suppose that a=xbb and b=ybb.

If xbb and ybb are relatively prime,
there exists c and d s.t. |ad-bc|=1.

You can find such c and d using extended Euclidean algorithm.

O

A=(a,b)

B=(c,d)

xbb

ybb

When xbb=ybb

What if xbb and ybb are not relatively prime?
Say, how about the case when xbb = ybb=10000?

In this case, the area of the quadrangle

in the figure to the right is 1, with vertices at

(0,0), (10000,9999), (1,1), and (9999,10000).

O

999
9

999
9

1

1

10000

10000

In general
Let g = GCD(xbb, ybb). We have two candidates.

There exists c and d s.t. |ad-bc|=g.
The area is g/2.

Put a vertex to (xbb/g, ybb/g).
The area is (xbb/g+ybb/g)/2.

Choose smaller one. The area is at most
√(g/2 * (xbb/g+ybb/g)/2) = √(xbb + ybb)/2 <= 25000.

Computational complexity is logarithmic to xbb and ybb. (very quick)

J: Cover the Polygon with Your Disk

Calculating Intersection Area Size

1. Find intersections of the peripherals of the polygon and the disk
2. Find polygon vertices covered by the disk
3. Sum up the area sizes of the fan shapes and triangles

Finding the Disk Position
Giving the Max Area

Several efficient algorithms are known to find the
maximum of unimodal functions in 2-D spaces

 Steepest descent

 Downhill simplex (Nelder–Mead)

 Quasi-Newton (BFGS)

 Evolution strategy (CMA-ES)

As the time limitation is not so severe, any of the
methods listed above are OK

Problem K:
Black and White Boxes

The Game of Black and White Boxes

Given piles of black and white boxes

 Two players: Alice and Bob

 First player is decided by a fair random draw

Alice selects a black box and removes the box with the above

Bob selects a white box and remove the box with the above

 If no box to remove is left, one loses the game

Alice (black) plays first Bob wins
Bob (white) plays first Bob wins

Four Possibilities
The game is a perfect information game

 The winner is determined by the configuration & the first player

1. Alice First Alice Wins & Bob First Alice Wins: Alice-Wins

2. Alice First Alice Wins & Bob First Bob Wins: First Player-Wins

3. Alice First Bob Wins & Bob First Alice Wins: Second Player-
Wins

4. Alice First Bob Wins & Bob First Bob Wins: Bob-Wins

Configuration is Fair First Player-Wins or Second Player-Wins

Problem K
Given a candidate set of piles

Pick a number of piles to arrange an initial
configuration:
◦ The configuration is fair
◦ The number of boxes is maximized.

Constraints:
◦ The number of piles
◦ The size of each pile

Alice (black) plays first Bob-Wins
Bob (white) plays first Alice-Wins

 Fair configuration of size 7

Colorless version = Nim

If there are no color, this is the Nim

The winner of the Nim is computed by
bit-wise XOR
(01 xor 10 xor 10 = 01 ≠ 0 second player wins)

We have to seek a similar relation
for our colored problem!

Idea
1. If we have a number for each pile such that

iff configuration is fair,

2. the problem is solved by the subset sum problem:

3. which can be solved in time by enumerating
the half of candidates OK for

Question: Does there exist such number ?
How to compute it?

Play with Small Examples 1
= +1 (black wins)

= -1 (white wins)

(empty) = 0 (second player wins)

= 0 since it is fair

In general, alternate color alternate sign = 0

(Proof: strategy stealing)

Play with Small Examples 2

 = +3 because is fair

If = x then = -x because is fair

(proof by strategy stealing;
if the first player plays the first part,
the second player plays the alternate second part)

Play with Small Examples 3

 … Black wins, but, how significantly black wins?

 is fair = 1/2 (i.e., weaker than)

Similarly, = 1/4, = 1/8, …,

Play with Small Examples 4
= 3/4

= 5/8

= = 5/4

You have to guess the formula from the examples!

Solution

Formula
Add ±1 for each contiguous black/white box
from the bottom

Then add ±1/2, ±1/4, ±1/8, … for each black/white box

= 1 + 1 + 1 – 1/2 + 1/4 + 1/8 – 1/16 – 1/32 = 89/32

number of boxes, number of piles ≦ 40
 |numbers| are in [2-40, 211] represented in
double type or long long type multiplied by 240

Conclusion of Analysis
The configuration can be mapped to a real number
of the form such that
◦ Alice wins
◦ Bob wins
◦ Second player wins

i.e., This game has no “First Player-Wins” configurations

The union of two states is mapped to

By computing this number, the problem is
easily solved by Subset-Sum

Take Home Message:
General Theory for Two Player Game
If a game has no “First Player-Wins” configurations,
the configuration of the game can be mapped to
real numbers of the form such that
◦ Alice-Wins
◦ Bob-Wins
◦ Second Player-Wins

The union of two states is mapped to

Such numbers are called the Surreal Numbers

If you are interested in,
read Conway: “On Numbers And Games”

