ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem A
Starship Hakodate-maru
Input: ssh.txt

The surveyor starship Hakodate-maru is famous for her two fuel containers with unbounded
capacities. They hold the same type of atomic fuel balls.

There, however, is an inconvenience. The shapes of the fuel containers #1 and #2 are always
cubic and regular tetrahedral respectively. Both of the fuel containers should be either empty
or filled according to their shapes. Otherwise, the fuel balls become extremely unstable and
may explode in the fuel containers. Thus, the number of fuel balls for the container #1 should
be a cubic number (n? for some n = 0,1,2,3,...) and that for the container #2 should be a
tetrahedral number (n(n 4 1)(n +2)/6 for some n =0,1,2,3,...).

Hakodate-maru is now at the star base Goryokaku preparing for the next mission to create
a precise and detailed chart of stars and interstellar matters. Both of the fuel containers
are now empty. Commander Parus of Goryokaku will soon send a message to Captain Fu-
ture of Hakodate-maru on how many fuel balls Goryokaku can supply. Captain Future should
quickly answer to Commander Parus on how many fuel balls she requests before her ship leaves
Goryokaku. Of course, Captain Future and her officers want as many fuel balls as possible.

For example, consider the case Commander Parus offers 151200 fuel balls. If only the fuel
container #1 were available (i.e. if the fuel container #2 were unavailable), at most 148877 fuel
balls could be put into the fuel container since 148877 = 53 x 53 x 53 < 151200 < 54 x 54 x 54.
If only the fuel container #2 were available, at most 147440 fuel balls could be put into the
fuel container since 147440 = 95 x 96 x 97 /6 < 151200 < 96 x 97 x 98 / 6. Using both of
the fuel containers #1 and #2, 151200 fuel balls can be put into the fuel containers since
151200 = 39 x 39 x 39 + 81 x 82 x 83 /6. In this case, Captain Future’s answer should be
“1512007.

Commander Parus’s offer cannot be greater than 151200 because of the capacity of the fuel
storages of Goryokaku. Captain Future and her officers know that well.

You are a fuel engineer assigned to Hakodate-maru. Your duty today is to help Captain Future
with calculating the number of fuel balls she should request.

Input

The input is a sequence of at most 1024 positive integers. Each line contains a single integer.
The sequence is followed by a zero, which indicates the end of data and should not be treated
as input. You may assume that none of the input integers is greater than 151200.



Output

The output is composed of lines, each containing a single integer. Each output integer should be
the greatest integer that is the sum of a nonnegative cubic number and a nonnegative tetrahedral
number and that is not greater than the corresponding input number. No other characters should
appear in the output.

Sample Input

100

64

50

20
151200
0

Output for the Sample Input

99
64
47
20
151200



ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem B
e-Market
Input: market.txt

The city of Hakodate recently established a commodity exchange market. To participate in the
market, each dealer transmits through the Internet an order consisting of his or her name, the
type of the order (buy or sell), the name of the commodity, and the quoted price.

In this market a deal can be made only if the price of a sell order is lower than or equal to the
price of a buy order. The price of the deal is the mean of the prices of the buy and sell orders,
where the mean price is rounded downward to the nearest integer. To exclude dishonest deals,
no deal is made between a pair of sell and buy orders from the same dealer. The system of the
market maintains the list of orders for which a deal has not been made and processes a new
order in the following manner.

e For a new sell order, a deal is made with the buy order with the highest price in the list
satisfying the conditions. If there is more than one buy order with the same price, the
deal is made with the earliest of them.

e For a new buy order, a deal is made with the sell order with the lowest price in the list
satisfying the conditions. If there is more than one sell order with the same price, the deal
is made with the earliest of them.

The market opens at 7:00 and closes at 22:00 everyday. When the market closes, all the remaining
orders are cancelled. To keep complete record of the market, the system of the market saves all
the orders it received everyday.

The manager of the market asked the system administrator to make a program which reports the
activity of the market. The report must contain two kinds of information. For each commodity
the report must contain information on the lowest, the average and the highest prices of successful
deals. For each dealer, the report must contain information on the amounts the dealer paid and
received for commodities.

Input

The input contains several data sets. Each data set represents the record of the market on
one day. The first line of each data set contains an integer n (n < 1000) which is the number
of orders in the record. Each line of the record describes an order, consisting of the name of
the dealer, the type of the order, the name of the commodity, and the quoted price. They are
separated by a single space character.



The name of a dealer consists of capital alphabetical letters and is less than 10 characters in
length. The type of an order is indicated by a string, “BUY” or “SELL”. The name of a commodity
is a single capital letter. The quoted price is a positive integer less than 1000.

The orders in a record are arranged according to time when they were received and the first line
of the record corresponds to the oldest order.

The end of the input is indicated by a line containing a zero.

Output

The output for each data set consists of two parts separated by a line containing two hyphen
(*-7) characters.

The first part is output for commodities. For each commodity, your program should output the
name of the commodity and the lowest, the average and the highest prices of successful deals
in one line. The name and the prices in a line should be separated by a space character. The
average price is rounded downward to the nearest integer. The output should contain only the
commodities for which deals are made and the order of the output must be alphabetic.

The second part is output for dealers. For each dealer, your program should output the name
of the dealer, the amounts the dealer paid and received for commodities. The name and the
numbers in a line should be separated by a space character. The output should contain all the
dealers who transmitted orders. The order of dealers in the output must be lexicographic on
their names. The lexicographic order is the order in which words in dictionaries are arranged.

The output for each data set should be followed by a line containing ten hyphen (‘-’) characters.

Sample Input

3

PERLIS SELL A 300
WILKES BUY A 200
HAMMING SELL A 100

4

BACKUS SELL A 10
FLOYD BUY A 20
IVERSON SELL B 30
BACKUS BUY B 40

7

WILKINSON SELL A 500
MCCARTHY BUY C 300
WILKINSON SELL C 200
DIJKSTRA SELL B 100
BACHMAN BUY A 400
DIJKSTRA BUY A 600
WILKINSON SELL A 300



2

ABCD SELL X 10
ABC BUY X 15

2

A SELL M 100

A BUY M 100

0

Output for the Sample Input

A 150 150 150
HAMMING O 150
PERLIS 0 O
WILKES 150 O

A 15 15 15

B 35 35 35
BACKUS 35 15
FLOYD 15 O
IVERSON O 35

A 350 450 550
C 250 250 250
BACHMAN 350 0O
DIJKSTRA 550 0O
MCCARTHY 250 O
WILKINSON O 1150

X 12 12 12

ABC 12 0
ABCD 0 12



ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem C
Fishnet
Input: fishnet.txt

A fisherman named Etadokah awoke in a very small island. He could see calm, beautiful and
blue sea around the island. The previous night he had encountered a terrible storm and had
reached this uninhabited island. Some wrecks of his ship were spread around him. He found a
square wood-frame and a long thread among the wrecks. He had to survive in this island until
someone came and saved him.

In order to catch fish, he began to make a kind of fishnet by cutting the long thread into short
threads and fixing them at pegs on the square wood-frame (Figure 1). He wanted to know the
sizes of the meshes of the fishnet to see whether he could catch small fish as well as large ones.

The wood-frame is perfectly square with four thin edges one meter long: a bottom edge, a top
edge, a left edge, and a right edge. There are n pegs on each edge, and thus there are 4n pegs
in total. The positions of pegs are represented by their (x,y)-coordinates. Those of an example
case with n = 2 are depicted in Figures 2 and 3. The position of the ith peg on the bottom
edge is represented by (a;,0). That on the top edge, on the left edge and on the right edge are
represented by (b;,1), (0,¢;), and (1,d;), respectively. The long thread is cut into 2n threads
with appropriate lengths. The threads are strained between (a;,0) and (b;,1), and between
(0,¢;) and (1,d;) (i =1,...,n).

You should write a program that reports the size of the largest mesh among the (n +1)? meshes
of the fishnet made by fixing the threads at the pegs. You may assume that the thread he found
is long enough to make the fishnet and that the wood-frame is thin enough for neglecting its
thickness.

Figure 1. A wood-frame with 8 pegs.



\ Top edge
(bL,1) (b2,1)

(0,c2)
Left edge
(0,c2)

(a1,0) (a2,0)
Bottom edge

Figure 2. Positions of pegs (indicated by small black circles)

\ Top edge
(b1,2) (b2,1)

(1,d2)
(0,c2) (1d1)
Left edge
(0,c1) Right edge
0 (a1,0) (a2,0) 1 X

Bottom edge

Figure 3. A fishnet and the largest mesh (shaded)

Input

The input consists of multiple subproblems followed by a line containing a zero that indicates
the end of input. Each subproblem is given in the following format.

n
aip az - - ap
by by -+ by
Cl1 C2 -+ Cp
dy dy -+ d,
An integer n followed by a newline is the number of pegs on each edge. a1, ..., ap, b1, ...,
by, c1, ..., cp, d1, ..., d, are decimal fractions, and they are separated by a space character



except that a,, by, ¢, and d,, are followed by a newline. Each a; (i = 1,...,n) indicates the
x-coordinate of the ith peg on the bottom edge. Each b; (i = 1,...,n) indicates the z-coordinate
of the ith peg on the top edge. Each ¢; (i = 1,...,n) indicates the y-coordinate of the ith peg
on the left edge. Each d; (i = 1,...,n) indicates the y-coordinate of the ith peg on the right
edge. The decimal fractions are represented by 7 digits after the decimal point. In addition you
may assume that 0 <n <30, 0<a; <ars < ---<a,<1, 0<b <by<---<b, <1,
O0<ci<e<--<cp, <1l and 0<di <dy <---<dp<1.

Output

For each subproblem, the size of the largest mesh should be printed followed by a newline. Each
value should be represented by 6 digits after the decimal point, and it may not have an error
greater than 0.000001.

Sample Input

.4000000
.6000000
.3000000
.5000000

2

0.2000000 0.6000000

0.3000000 0.8000000

0.3000000 0.5000000

0.5000000 0.6000000

2

0.3333330 0.6666670

0.3333330 0.6666670

0.3333330 0.6666670

0.3333330 0.6666670

4

0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
2

0.5138701 0.9476283

0.1717362 0.1757412

0.3086521 0.7022313

0.2264312 0.5345343

1

0

0

0

0

0



Output for the Sample Input

0.215657
0.111112
0.078923
0.279223
0.348958



ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem D
77377
Input: press.txt

At the risk of its future, International Cellular Phones Corporation (ICPC) invests its resources
in developing new mobile phones, which are planned to be equipped with Web browser, mailer,
instant messenger, and many other advanced communication tools. Unless members of ICPC
can complete this stiff job, it will eventually lose its market share.

You are now requested to help ICPC to develop intriguing text input software for small mobile
terminals. As you may know, most phones today have twelve buttons, namely, ten number
buttons from “0” to “9” and two special buttons “x” and “#”. Although the company is very
ambitious, it has decided to follow today’s standards and conventions. You should not change
the standard button layout, and should also pay attention to the following standard button

assignment.

button letters button letters
2 a, b, c 6 m, n, o
3 d, e, f 7 p,q, T, S
4 g, hi 8 t,u, v
5 3k, 1 9 W, X, V, Z

This means that you can only use eight buttons for text input.

Most users of current ICPC phones are rushed enough to grudge wasting time on even a single
button press. Your text input software should be economical of users’ time so that a single
button press is sufficient for each character input. In consequence, for instance, your program
should accept a sequence of button presses “77377” and produce the word “press”. Similarly, it
should translate “77377843288866” into “press the button”.

Ummm... It seems impossible to build such text input software since more than one English
letter is represented by a digit! For instance, “77377” may represent not only “press” but also
any one of 768 (= 4 x 4 x 3 x 4 x 4) character strings. However, we have the good news that
the new model of ICPC mobile phones has enough memory to keep a dictionary. You may be
able to write a program that filters out false words, i.e., strings not listed in the dictionary.

Input

The input consists of multiple data sets, each of which represents a dictionary and a sequence
of button presses in the following format.

10



n
word;

wordy,
sequence

n in the first line is a positive integer, representing the number of words in the dictionary. The
next n lines, each representing a word in the dictionary, only contain lower case letters from ‘a’ to
‘z’. The order of words in the dictionary is arbitrary (not necessarily in the lexicographic order).
No words occur more than once in the dictionary. The last line, sequence, is the sequence of
button presses, and only contains digits from ‘2’ to ‘9’.

You may assume that a dictionary has at most one hundred words and that the length of each
word is between one and fifty, inclusive. You may also assume that the number of input digits
in the sequence is between one and three hundred, inclusive.

A line containing a zero indicates the end of the input.

Output

For each data set, your program should print all sequences that can be represented by the input
sequence of button presses. Each sequence should be a sequence of words in the dictionary, and
should appear in a single line. The order of lines does not matter.

Two adjacent words in a line should be separated by a single space character and the last word
should be followed by a single period (‘.’).

Following those output lines, your program should also print a terminating line consisting solely
of two hyphens (“-=7). If there are no corresponding sequences of words, your program should
only print the terminating line.

You may assume that for each data set the number of output lines is at most twenty, excluding
the terminating line.

Sample Input

5

push

press

the

button

bottom
77377843288866
4

i

am

11



going

go
42646464

Output for the Sample Input

press the button.
i am going.
1 am go go 1i.

12



ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem E
Beehives
Input: hive.txt

Taro and Hanako, students majoring in biology, have been engaged long in observations of
beehives. Their interest is in finding any egg patterns laid by queen bees of a specific wild
species. A queen bee is said to lay a batch of eggs in a short time. Taro and Hanako have never
seen queen bees laying eggs. Thus, every time they find beehives, they find eggs just laid in hive
cells.

Taro and Hanako have a convention to record an egg layout: they assume the queen bee lays
eggs, moving from one cell to an adjacent cell along a path containing no cycles. They record
the path of cells with eggs. There is no guarantee in biology for them to find an acyclic path in
every case. Yet they have never failed to do so in their observations.

(gt
ChD

Figure 1. Figure 2.

There are only six possible movements from a cell to an adjacent one, and they agree to write
down those six by letters a, b, c, d, e, and f counterclockwise as shown in Figure 2. Thus the
layout in Figure 1 may be written down as “faafd”.

Taro and Hanako have investigated beehives in a forest independently. Each has his/her own
way to approach beehives, protecting oneself from possible bee attacks.

They are asked to report on their work jointly at a conference, and share their own observation
records to draft a joint report. At this point they find a serious fault in their convention. They
have never discussed which direction, in an absolute sense, should be taken as “a”, and thus
Figure 2 might be taken as, e.g., Figure 3 or Figure 4. The layout shown in Figure 1 may be
recorded differently, depending on the direction looking at the beehive and the path assumed:
“bcbdb” with combination of Figure 3 and Figure 5, or “bccac” with combination of Figure 4
and Figure 6.

A beehive can be observed only from its front side and never from its back, so a layout cannot
be confused with its mirror image.

Since they may have observed the same layout independently, they have to find duplicated

13



records in their observations (Of course, they do not record the exact place and the exact time
of each observation). Your mission is to help Taro and Hanako by writing a program that checks
whether two observation records are made from the same layout.

0 an
G e

Figure 3. Figure 4.
Figure 5. Figure 6.

Input

The input starts with a line containing the number of record pairs that follow. The number is
given with at most three digits.

Each record pair consists of two lines of layout records and a line containing a hyphen. Each
layout record consists of a sequence of letters a, b, c, d, e, and f£. Note that a layout record may
be an empty sequence if a queen bee laid only one egg by some reason. You can trust Taro and
Hanako in that any of the paths in the input does not force you to visit any cell more than once.
Any of lines in the input contain no characters other than those described above, and contain
at most one hundred characters.

Output

For each pair of records, produce a line containing either “true” or “false”: “true” if the two
records represent the same layout, and “false” otherwise. A line should not contain any other
characters.

Sample Input

5
faafd
bcbdb

14



bcbdb
bccac

faafd
aafdd

aaafddd
aaaeff

aaedd
aafdd

Output for the Sample Input

true
true
false
false
false

15



ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem F
Young, Poor and Busy
Input: young.txt
Ken and Keiko are young, poor and busy. Short explanation: they are students, and ridden with
part-time jobs. To make things worse, Ken lives in Hakodate and Keiko in Tokyo. They want to
meet, but since they have neither time nor money, they have to go back to their respective jobs

immediately after, and must be careful about transportation costs. Help them find the most
economical meeting point.

Ken starts from Hakodate, Keiko from Tokyo. They know schedules and fares for all trains, and
can choose to meet anywhere including their hometowns, but they cannot leave before 8am and
must be back by 6pm in their respective towns. Train changes take no time (one can leave the
same minute he/she arrives), but they want to meet for at least 30 minutes in the same city.

There can be up to 100 cities and 2000 direct connections, so you should devise an algorithm
clever enough for the task.

Input
The input is a sequence of data sets.

The first line of a data set contains a single integer, the number of connections in the timetable.
It is not greater than 2000.

Connections are given one on a line, in the following format.
Start_city HH: MM Arrival_city HH: MM price

Start_city and Arrival_city are composed of up to 16 alphabetical characters, with only the first
one in upper case. Departure and arrival times are given in hours and minutes (two digits each,

“w,”

separated by “:”) from 00:00 to 23:59. Arrival time is strictly after departure time. The price
for one connection is an integer between 1 and 10000, inclusive. Fields are separated by spaces.

The end of the input is marked by a line containing a zero.

Output

The output should contain one integer for each data set, the lowest cost possible. This is the
total fare of all connections they use.

If there is no solution to a data set, you should output a zero.

16



The solution to each data set should be given in a separate line.

Sample Input

5

Hakodate 08:15 Morioka 12:30 2500
Morioka 14:05 Hakodate 17:30 2500
Morioka 15:30 Hakodate 18:00 3000
Morioka 14:30 Tokyo 17:50 3000
Tokyo 08:30 Morioka 13:35 3000

4

Hakodate 08:15 Morioka 12:30 2500
Morioka 14:04 Hakodate 17:30 2500
Morioka 14:30 Tokyo 17:50 3000
Tokyo 08:30 Morioka 13:35 3000

18

Hakodate 09:55 Akita 10:53 3840
Hakodate 14:14 Akita 16:09 1920
Hakodate 18:36 Akita 19:33 3840
Hakodate 08:00 Morioka 08:53 3550
Hakodate 22:40 Morioka 23:34 3550
Akita 14:23 Tokyo 14:53 2010
Akita 20:36 Tokyo 21:06 2010
Akita 08:20 Hakodate 09:18 3840
Akita 13:56 Hakodate 14:54 3840
Akita 21:37 Hakodate 22:35 3840
Morioka 09:51 Tokyo 10:31 2660
Morioka 14:49 Tokyo 15:29 2660
Morioka 19:42 Tokyo 20:22 2660
Morioka 15:11 Hakodate 16:04 3550
Morioka 23:03 Hakodate 23:56 3550
Tokyo 09:44 Morioka 11:04 1330
Tokyo 21:54 Morioka 22:34 2660
Tokyo 11:34 Akita 12:04 2010

0

Output for the Sample Input

11000
0
11090

17



ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem G
Nim

Input: nim.txt

Let’s play a traditional game Nim. You and I are seated across a table and we have a hundred
stones on the table (we know the number of stones exactly). We play in turn and at each turn,
you or I can remove one to four stones from the heap. You play first and the one who removed
the last stone loses.

In this game, you have a winning strategy. To see this, you first remove four stones and leave
96 stones. No matter how I play, I will end up with leaving 92-95 stones. Then you will in turn
leave 91 stones for me (verify this is always possible). This way, you can always leave 5k + 1
stones for me and finally I get the last stone, sigh. If we initially had 101 stones, on the other
hand, I have a winning strategy and you are doomed to lose.

Let’s generalize the game a little bit. First, let’s make it a team game. Each team has n players
and the 2n players are seated around the table, with each player having opponents at both
sides. Turns round the table so the two teams play alternately. Second, let’s vary the maximum
number of stones each player can take. That is, each player has his/her own maximum number
of stones he/she can take at each turn (The minimum is always one). So the game is asymmetric
and may even be unfair.

In general, when played between two teams of experts, the outcome of a game is completely
determined by the initial number of stones and the maximum number of stones each player can
take at each turn. In other words, either team has a winning strategy.

You are the head-coach of a team. In each game, the umpire shows both teams the initial
number of stones and the maximum number of stones each player can take at each turn. Your
team plays first. Your job is, given those numbers, to instantaneously judge whether your team
has a winning strategy.

Incidentally, there is a rumor that Captain Future and her officers of Hakodate-maru love this
game, and they are killing their time playing it during their missions. You wonder where the
stones are? Well, they do not have stones but do have plenty of balls in the fuel containers!

Input

The input is a sequence of lines, followed by the last line containing a zero. Each line except
the last is a sequence of integers and has the following format.

TLSMl M2 Mgn

18



where n is the number of players in a team, S the initial number of stones, and M; the maximum
number of stones ith player can take. 1st, 3rd, 5th, - -- players are your team’s players and 2nd,
4th, 6th, --- the opponents. Numbers are separated by a single space character. You may
assume 1 <n <10, 1 < M; <16,and 1 < § < 213,

Output

The output should consist of lines each containing either a one, meaning your team has a winning
strategy, or a zero otherwise.

Sample Input

1101 4 4
1100 4 4
3978765143
0

Output for the Sample Input

19



ACM International Collegiate Programming Contest
Asia Regional Contest, Hakodate, 2001-11-11

Problem H
Super Star
Input: stars.txt

During a voyage of the starship Hakodate-maru (see Problem A), researchers found strange
synchronized movements of stars. Having heard these observations, Dr. Extreme proposed a
theory of “super stars”. Do not take this term as a description of actors or singers. It is a
revolutionary theory in astronomy.

According to this theory, stars we are observing are not independent objects, but only small
portions of larger objects called super stars. A super star is filled with invisible (or transparent)
material, and only a number of points inside or on its surface shine. These points are observed
as stars by us.

In order to verify this theory, Dr. Extreme wants to build motion equations of super stars and
to compare the solutions of these equations with observed movements of stars. As the first step,
he assumes that a super star is sphere-shaped, and has the smallest possible radius such that
the sphere contains all given stars in or on it. This assumption makes it possible to estimate
the volume of a super star, and thus its mass (the density of the invisible material is known).

You are asked to help Dr. Extreme by writing a program which, given the locations of a number
of stars, finds the smallest sphere containing all of them in or on it. In this computation, you
should ignore the sizes of stars. In other words, a star should be regarded as a point. You may
assume the universe is a Euclidean space.

Input
The input consists of multiple data sets. Each data set is given in the following format.
n

1 Y1~

T2 Y2 22

Tn Yn 2n

The first line of a data set contains an integer n, which is the number of points. It satisfies the
condition 4 < n < 30.

The locations of n points are given by three-dimensional orthogonal coordinates: (x;, v;, 2;)
(i = 1,...,n). Three coordinates of a point appear in a line, separated by a space character.

20



Each value is given by a decimal fraction, and is between 0.0 and 100.0 (both ends inclusive).
Points are at least 0.01 distant from each other.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the radius of the smallest sphere containing all given points should be printed,
each in a separate line. The printed values should have 5 digits after the decimal point. They
may not have an error greater than 0.00001.

Sample Input

4

10.00000 10.00000 10.00000
20.00000 10.00000 10.00000
20.00000 20.00000 10.00000
10.00000 20.00000 10.00000
4

10.00000 10.00000 10.00000
10.00000 50.00000 50.00000
50.00000 10.00000 50.00000
50.00000 50.00000 10.00000
0

Output for the Sample Input

7.07107
34.64102

21



