
ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem A

Sum of Consecutive Prime Numbers

Input: A.txt

Some positive integers can be represented by a sum of one or more consecutive prime numbers.
How many such representations does a given positive integer have? For example, the integer 53
has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations
2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is
3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.

Your mission is to write a program that reports the number of representations for the given
positive integer.

Input

The input is a sequence of positive integers each in a separate line. The integers are between 2
and 10 000, inclusive. The end of the input is indicated by a zero.

Output

The output should be composed of lines each corresponding to an input line except the last zero.
An output line includes the number of representations for the input integer as the sum of one
or more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input

2
3
17
41
20
666
12
53
0

1

Output for the Sample Input

1
1
2
3
0
0
1
2

2

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem B

Book Replacement

Input: B.txt

The deadline of Prof. Hachioji’s assignment is tomorrow. To complete the task, students have
to copy pages of many reference books in the library.

All the reference books are in a storeroom and only the librarian is allowed to enter it. To obtain
a copy of a reference book’s page, a student should ask the librarian to make it. The librarian
brings books out of the storeroom and makes page copies according to the requests. The overall
situation is shown in Figure 1.

Students queue up in front of the counter. Only a single book can be requested at a time. If a
student has more requests, the student goes to the end of the queue after the request has been
served.

In the storeroom, there are m desks D1, · · · ,Dm, and a shelf. They are placed in a line in this
order, from the door to the back of the room. Up to c books can be put on each of the desks. If
a student requests a book, the librarian enters the storeroom and looks for it on D1, . . . ,Dm in
this order, and then on the shelf. After finding the book, the librarian takes it and gives a copy
of a page to the student.

D1 D2 D3 Shelf

Counter

Students Librarian

StoreroomDoor

Figure 1: The Library

Then the librarian returns to the storeroom with the requested book, to put it on D1 according
to the following procedure.

• If D1 is not full (in other words, the number of books on D1 < c), the librarian puts the
requested book there.

3

• If D1 is full, the librarian

– temporarily puts the requested book on the non-full desk closest to the entrance or,
in case all the desks are full, on the shelf,

– finds the book on D1 that has not been requested for the longest time (i.e. the least
recently used book) and takes it,

– puts it on the non-full desk (except D1) closest to the entrance or, in case all the
desks except D1 are full, on the shelf,

– takes the requested book from the temporary place,

– and finally puts it on D1.

Your task is to write a program which simulates the behaviors of the students and the librarian,
and evaluates the total cost of the overall process. Costs are associated with accessing a desk
or the shelf, that is, putting/taking a book on/from it in the description above. The cost of an
access is i for desk Di and m + 1 for the shelf. That is, an access to D1, · · · ,Dm, and the shelf
costs 1, · · · ,m, and m + 1, respectively. Costs of other actions are ignored.

Initially, no books are put on desks. No new students appear after opening the library.

Input

The input consists of multiple datasets. The end of the input is indicated by a line containing
three zeros separated by a space. It is not a dataset.

The format of each dataset is as follows.

m c n
k1

b11 . . . b1k1

...
kn

bn1 . . . bnkn

Here, all data items are positive integers. m is the number of desks not exceeding 10. c is
the number of books allowed to put on a desk, which does not exceed 30. n is the number of
students not exceeding 100. ki is the number of books requested by the i-th student, which does
not exceed 50. bij is the ID number of the book requested by the i-th student on the j-th turn.
No two books have the same ID number. Note that a student may request the same book more
than once. bij is less than 100.

Here we show you an example of cost calculation for the following dataset.

3 1 2

4

3
60 61 62
2
70 60

In this dataset, there are 3 desks (D1,D2,D3). At most 1 book can be put on each desk. The
number of students is 2. The first student requests 3 books of which IDs are 60, 61, and 62,
respectively, and the second student 2 books of which IDs are 70 and 60, respectively.

The calculation of the cost for this dataset is done as follows. First, for the first request of the
first student, the librarian takes the book 60 from the shelf and puts it on D1 and the first
student goes to the end of the queue, costing 5. Next, for the first request of the second student,
the librarian takes the book 70 from the shelf, puts it on D2, moves the book 60 from D1 to D3,
and finally moves the book 70 from D2 to D1, costing 13. Similarly, the cost for the books 61,
60, and 62, are calculated as 14, 12, 14, respectively. Therefore, the total cost is 58.

Output

For each dataset, output the total cost of processing all the requests, in a separate line.

Sample Input

2 1 1
1
50
2 1 2
1
50
1
60
2 1 2
2
60 61
1
70
4 2 3
3
60 61 62
1
70
2
80 81
3 1 2
3
60 61 62
2

5

70 60
1 2 5
2
87 95
3
96 71 35
2
68 2
3
3 18 93
2
57 2
2 2 1
5
1 2 1 3 1
0 0 0

Output for the Sample Input

4
16
28
68
58
98
23

6

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem C

Colored Cubes

Input: C.txt

There are several colored cubes. All of them are of the same size but they may be colored
differently. Each face of these cubes has a single color. Colors of distinct faces of a cube may or
may not be the same.

Two cubes are said to be identically colored if some suitable rotations of one of the cubes give
identical looks to both of the cubes. For example, two cubes shown in Figure 2 are identically
colored. A set of cubes is said to be identically colored if every pair of them are identically
colored.

A cube and its mirror image are not necessarily identically colored. For example, two cubes
shown in Figure 3 are not identically colored.

You can make a given set of cubes identically colored by repainting some of the faces, whatever
colors the faces may have. In Figure 4, repainting four faces makes the three cubes identically
colored and repainting fewer faces will never do.

Your task is to write a program to calculate the minimum number of faces that needs to be
repainted for a given set of cubes to become identically colored.

Input

The input is a sequence of datasets. A dataset consists of a header and a body appearing in this
order. A header is a line containing one positive integer n and the body following it consists
of n lines. You can assume that 1 ≤ n ≤ 4. Each line in a body contains six color names
separated by a space. A color name consists of a word or words connected with a hyphen (-).
A word consists of one or more lowercase letters. You can assume that a color name is at most
24-characters long including hyphens.

A dataset corresponds to a set of colored cubes. The integer n corresponds to the number of
cubes. Each line of the body corresponds to a cube and describes the colors of its faces. Color
names in a line is ordered in accordance with the numbering of faces shown in Figure 5. A line

color1 color2 color3 color4 color5 color6

corresponds to a cube colored as shown in Figure 6.

The end of the input is indicated by a line containing a single zero. It is not a dataset nor a
part of a dataset.

7

red green

blue

yellow

magenta
cyan

magenta red

blue

yellow

cyan
green

Figure 2: Identically colored cubes

red green

blue

yellow

magenta
cyan

cyan green

blue

yellow

magenta
red

Figure 3: cubes that are not identically colored

scarlet green

blue

yellow

magenta
cyan

red
blue pink

green

magenta

cyan
lemon

red

yellow

purple red

blue

yellow

cyan
green

magenta

Figure 4: An example of recoloring

8

1 2

3

4

5 6

Figure 5: Numbering of faces

color111
color222

color333

color444

color555
color666

Figure 6: Coloring

Output

For each dataset, output a line containing the minimum number of faces that need to be repainted
to make the set of cubes identically colored.

Sample Input

3
scarlet green blue yellow magenta cyan
blue pink green magenta cyan lemon
purple red blue yellow cyan green
2
red green blue yellow magenta cyan
cyan green blue yellow magenta red
2
red green gray gray magenta cyan
cyan green gray gray magenta red
2
red green blue yellow magenta cyan
magenta red blue yellow cyan green
3
red green blue yellow magenta cyan
cyan green blue yellow magenta red
magenta red blue yellow cyan green
3
blue green green green green blue
green blue blue green green green
green green green green green sea-green
3
red yellow red yellow red yellow
red red yellow yellow red yellow
red red red red red red
4
violet violet salmon salmon salmon salmon

9

violet salmon salmon salmon salmon violet
violet violet salmon salmon violet violet
violet violet violet violet salmon salmon
1
red green blue yellow magenta cyan
4
magenta pink red scarlet vermilion wine-red
aquamarine blue cyan indigo sky-blue turquoise-blue
blond cream chrome-yellow lemon olive yellow
chrome-green emerald-green green olive vilidian sky-blue
0

Output for the Sample Input

4
2
0
0
2
3
4
4
0
16

10

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem D

Organize Your Train

Input: D.txt

In the good old Hachioji railroad station located in the west of Tokyo, there are several parking
lines, and lots of freight trains come and go every day.

All freight trains travel at night, so these trains containing various types of cars are settled in
your parking lines early in the morning. Then, during the daytime, you must reorganize cars
in these trains according to the request of the railroad clients, so that every line contains the
“right” train, i.e. the right number of cars of the right types, in the right order.

As shown in Figure 7, all parking lines run in the East-West direction. There are exchange
lines connecting them through which you can move cars. An exchange line connects two ends
of different parking lines. Note that an end of a parking line can be connected to many ends of
other lines. Also note that an exchange line may connect the East-end of a parking line and the
West-end of another.

Parking Line 0

West end East end

Parking Line 1

West end East end

Parking Line 2

West end East end

0E-1E

1E-2E

0W-2E

0W-2W

: exchange lines

0W-1W

Figure 7: Parking lines and exchange lines

Cars of the same type are not discriminated between each other. The cars are symmetric, so
directions of cars don’t matter either.

You can divide a train at an arbitrary position to make two sub-trains and move one of them
through an exchange line connected to the end of its side. Alternatively, you may move a whole
train as is without dividing it. Anyway, when a (sub-) train arrives at the destination parking
line and the line already has another train in it, they are coupled to form a longer train.

Your superautomatic train organization system can do these without any help of locomotive
engines. Due to the limitation of the system, trains cannot stay on exchange lines; when you

11

start moving a (sub-) train, it must arrive at the destination parking line before moving another
train.

In what follows, a letter represents a car type and a train is expressed as a sequence of letters.
For example in Figure 8, from an initial state having a train “aabbccdee” on line 0 and no trains
on other lines, you can make “bbaadeecc” on line 2 with the four moves shown in the figure.

a a b b c c d e e

a ab b

c c d e e

a ab ba ab b

c c

e e d

d e e

c c

a ab b d e e c c

move to line2 west move to line1 east

move to line2 east

move to line2 eastmove to line2 east

line 0

line 1

line 2

line 0

line 1

line 2

line 0

line 1

line 2

line 0

line 1

line 2

line 0

line 1

line 2

Figure 8: An example movement sequence

To cut the cost out, your boss wants to minimize the number of (sub-) train movements. For
example, in the case of Figure 8, the number of movements is 4 and this is the minimum.

Given the configurations of the train cars in the morning (arrival state) and evening (departure
state), your job is to write a program to find the optimal train reconfiguration plan.

Input

The input consists of one or more datasets. A dataset has the following format:

12

x y
p1P1 q1Q1

p2P2 q2Q2
...
pyPy qyQy

s0

s1
...
sx−1

t0
t1
...
tx−1

x is the number of parking lines, which are numbered from 0 to x−1. y is the number of exchange
lines. Then y lines of the exchange line data follow, each describing two ends connected by the
exchange line; pi and qi are integers between 0 and x − 1 which indicate parking line numbers,
and Pi and Qi are either “E” (East) or “W” (West) which indicate the ends of the parking lines.

Then x lines of the arrival (initial) configuration data, s0, · · · , sx−1, and x lines of the departure
(target) configuration data, t0, · · · tx−1, follow. Each of these lines contains one or more lowercase
letters “a”, “b”, · · ·, “z”, which indicate types of cars of the train in the corresponding parking
line, in west to east order, or alternatively, a single “-” when the parking line is empty.

You may assume that x does not exceed 4, the total number of cars contained in all the trains
does not exceed 10, and every parking line has sufficient length to park all the cars.

You may also assume that each dataset has at least one solution and that the minimum number
of moves is between one and six, inclusive.

Two zeros in a line indicate the end of the input.

Output

For each dataset, output the number of moves for an optimal reconfiguration plan, in a separate
line.

13

Sample Input

3 5
0W 1W
0W 2W
0W 2E
0E 1E
1E 2E
aabbccdee
-
-
-
-
bbaadeecc
3 3
0E 1W
1E 2W
2E 0W
aabb
bbcc
aa
bbbb
cc
aaaa
3 4
0E 1W
0E 2E
1E 2W
2E 0W
ababab
-
-
aaabbb
-
-
0 0

Output for the Sample Input

4
2
5

14

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem E

Mobile Computing

Input: E.txt

There is a mysterious planet called Yaen, whose space is 2-dimensional. There are many beautiful
stones on the planet, and the Yaen people love to collect them. They bring the stones back home
and make nice mobile arts of them to decorate their 2-dimensional living rooms.

In their 2-dimensional world, a mobile is defined recursively as follows:

• a stone hung by a string, or

• a rod of length 1 with two sub-mobiles at both ends; the rod
is hung by a string at the center of gravity of sub-mobiles.
When the weights of the sub-mobiles are n and m, and their
distances from the center of gravity are a and b respectively,
the equation n × a = m × b holds.

n m

ba

For example, if you got three stones with weights 1, 1, and 2, here are some possible mobiles
and their widths:

21

1

width = 1 + (1/3)

2 1

1

width = 1 + (2/3)

2

1 1

width = 1 + (1/2)

Given the weights of stones and the width of the room, your task is to design the widest possible
mobile satisfying both of the following conditions.

• It uses all the stones.

• Its width is less than the width of the room.

You should ignore the widths of stones.

In some cases two sub-mobiles hung from both ends of a rod might
overlap (see the figure on the right). Such mobiles are acceptable.
The width of the example is (1/3) + 1 + (1/4). 2 1 31

15

Input

The first line of the input gives the number of datasets. Then the specified number of datasets
follow. A dataset has the following format.

r
s
w1
...
ws

r is a decimal fraction representing the width of the room, which satisfies 0 < r < 10. s is the
number of the stones. You may assume 1 ≤ s ≤ 6. wi is the weight of the i-th stone, which is
an integer. You may assume 1 ≤ wi ≤ 1000.

You can assume that no mobiles whose widths are between r − 0.00001 and r + 0.00001 can be
made of given stones.

Output

For each dataset in the input, one line containing a decimal fraction should be output. The
decimal fraction should give the width of the widest possible mobile as defined above. An
output line should not contain extra characters such as spaces.

In case there is no mobile which satisfies the requirement, answer −1 instead.

The answer should not have an error greater than 0.00000001. You may output any number of
digits after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

5
1.3
3
1
2
1
1.4
3
1
2
1
2.0
3
1

16

2
1
1.59
4
2
1
1
3
1.7143
4
1
2
3
5

Output for the Sample Input

-1
1.3333333333333335
1.6666666666666667
1.5833333333333335
1.7142857142857142

17

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem F

Atomic Car Race

Input: F.txt

In the year 2020, a race of atomically energized cars will be held. Unlike today’s car races, fueling
is not a concern of racing teams. Cars can run throughout the course without any refueling.
Instead, the critical factor is tire (tyre). Teams should carefully plan where to change tires of
their cars.

The race is a road race having n checkpoints in the course. Their distances from the start are a1,
a2, · · ·, and an (in kilometers). The n-th checkpoint is the goal. At the i-th checkpoint (i < n),
tires of a car can be changed. Of course, a team can choose whether to change or not to change
tires at each checkpoint. It takes b seconds to change tires (including overhead for braking and
accelerating). There is no time loss at a checkpoint if a team chooses not to change tires.

A car cannot run fast for a while after a tire change, because the temperature of tires is lower
than the designed optimum. After running long without any tire changes, on the other hand,
a car cannot run fast because worn tires cannot grip the road surface well. The time to run
an interval of one kilometer from x to x + 1 is given by the following expression (in seconds).
Here x is a nonnegative integer denoting the distance (in kilometers) from the latest checkpoint
where tires are changed (or the start). r, v, e and f are given constants.

1/(v − e × (x − r)) (if x ≥ r)
1/(v − f × (r − x)) (if x < r)

Your mission is to write a program to determine the best strategy of tire changes which minimizes
the total time to the goal.

Input

The input consists of multiple datasets each corresponding to a race situation. The format of a
dataset is as follows.

n
a1 a2 . . . an

b
r v e f

18

The meaning of each of the input items is given in the problem statement. If an input line
contains two or more input items, they are separated by a space.

n is a positive integer not exceeding 100. Each of a1, a2, · · ·, and an is a positive integer satisfying
0 < a1 < a2 < . . . < an ≤ 10000. b is a positive decimal fraction not exceeding 100.0. r is a
nonnegative integer satisfying 0 ≤ r ≤ an − 1. Each of v, e and f is a positive decimal fraction.
You can assume that v − e × (an − 1 − r) ≥ 0.01 and v − f × r ≥ 0.01.

The end of the input is indicated by a line with a single zero.

Output

For each dataset in the input, one line containing a decimal fraction should be output. The
decimal fraction should give the elapsed time at the goal (in seconds) when the best strategy is
taken. An output line should not contain extra characters such as spaces.

The answer should not have an error greater than 0.001. You may output any number of digits
after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

2
2 3
1.0
1 1.0 0.1 0.3
5
5 10 15 20 25
0.15
1 1.0 0.04 0.5
10
1783 3640 3991 4623 5465 5481 6369 6533 6865 8425
4.172
72 59.4705 0.0052834 0.0611224
0

Output for the Sample Input

3.5397
31.9249
168.6682

19

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem G

Network Mess

Input: G.txt

Gilbert is the network admin of Ginkgo company. His boss is mad about the messy network
cables on the floor. He finally walked up to Gilbert and asked the lazy network admin to illustrate
how computers and switches are connected. Since he is a programmer, he is very reluctant to
move throughout the office and examine cables and switches with his eyes. He instead opted
to get this job done by measurement and a little bit of mathematical thinking, sitting down in
front of his computer all the time. Your job is to help him by writing a program to reconstruct
the network topology from measurements.

There are a known number of computers and an unknown number of switches. Each computer
is connected to one of the switches via a cable and to nothing else. Specifically, a computer
is never connected to another computer directly, or never connected to two or more switches.
Switches are connected via cables to form a tree (a connected undirected graph with no cycles).
No switches are ‘useless.’ In other words, each switch is on the path between at least one pair
of computers.

All in all, computers and switches together form a tree whose leaves are computers and whose
internal nodes switches (See Figure 9).

Gilbert measures the distances between all pairs of computers. The distance between two com-
puters is simply the number of switches on the path between the two, plus one. Or equivalently,
it is the number of cables used to connect them. You may wonder how Gilbert can actually
obtain these distances solely based on measurement. Well, he can do so by a very sophisticated
statistical processing technique he invented. Please do not ask the details.

You are therefore given a matrix describing distances between leaves of a tree. Your job is to
construct the tree from it.

Input

The input is a series of distance matrices, followed by a line consisting of a single ‘0’. Each
distance matrix is formatted as follows.

N
a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

20

Figure 9: Computers and Switches

N is the size, i.e. the number of rows and the number of columns, of the matrix. aij gives the
distance between the i-th leaf node (computer) and the j-th. You may assume 2 ≤ N ≤ 50 and
the matrix is symmetric whose diagonal elements are all zeros. That is, aii = 0 and aij = aji

for each i and j. Each non-diagonal element aij (i �= j) satisfies 2 ≤ aij ≤ 30. You may assume
there is always a solution. That is, there is a tree having the given distances between leaf nodes.

Output

For each distance matrix, find a tree having the given distances between leaf nodes. Then output
the degree of each internal node (i.e. the number of cables adjoining each switch), all in a single
line and in ascending order. Numbers in a line should be separated by a single space. A line
should not contain any other characters, including trailing spaces.

21

Sample Input

4
0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0

4
0 2 4 4
2 0 4 4
4 4 0 2
4 4 2 0

2
0 12
12 0

0

Output for the Sample Input

4
2 3 3
2 2 2 2 2 2 2 2 2 2 2

22

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem H

Bingo

Input: H.txt

A Bingo game is played by one gamemaster and several players. At the beginning of a game,
each player is given a card with M × M numbers in a matrix (See Figure 10).

N12N11 N13 N1M

N22N21 N23

N32N31 N33

NM2NM1 NM3

N2M

N3M

NMM

Figure 10: A Card

Figure 11: Bingo patterns of 4×4 card

As the game proceeds, the gamemaster announces a series of numbers one by one. Each player
punches a hole in his card on the announced number, if any.

When at least one ‘Bingo’ is made on the card, the player wins and leaves the game. The ‘Bingo’
means that all the M numbers in a line are punched vertically, horizontally or diagonally (See
Figure 11).

23

1

10 9

16
2312

7

5 1821

2 16
2722 13

8

5

4 19

28
2 5
14

Bingo

2

11

5

initial
state

punch

punch

punch

punch

punch

Bingo

Card1 Card2 Card4Card3

20 6
25

15
2
11

23 26

3
17

11
11

24

1

10 9

16
2312

7

5 1821

2 16
2722 13

8

5

4 19

28
2 5
14

20 6
25

15
2
11

23 26

3
17

11
11

24

1

10 9

16
2312

7

5 1821

2 16
2722 13

8

5

4 19

28
2 5
14

20 6
25

15
2
11

23 26

3
17

11
11

24

23 1

10 9

16
2312

7

5 1821

2 16
2722 13

8

5

4 19

28
2 5
14

20 6
25

15
2
11

23 26

3
17

11
11

24

1

10 9

16
2312

7

5 1821

2 16
2722 13

8

5

4 19

28
2 5
14

20 6
25

15
2
11

23 26

3
17

11
11

24

16

1

10 9

16
2312

7

5 1821

2 16
2722 13

8

5

4 19

28
2 5
14

20 6
25

15
2
11

23 26

3
17

11
11

24

Bingo Bingo
Figure 12: Example of Bingo Game Process

24

The gamemaster continues announcing numbers until all the players make a Bingo.

In the ordinary Bingo games, the gamemaster chooses numbers by a random process and has no
control on them. But in this problem the gamemaster knows all the cards at the beginning of
the game and controls the game by choosing the number sequence to be announced at his will.

Specifically, he controls the game to satisfy the following condition.

Cardi makes a Bingo no later than Cardj, for i < j. (∗)

Figure 12 shows an example of how a game proceeds. The gamemaster cannot announce ‘5’
before ‘16’, because Card4 makes a Bingo before Card2 and Card3, violating the condition (∗).

Your job is to write a program which finds the minimum length of such sequence of numbers for
the given cards.

Input

The input consists of multiple datasets. The format of each dataset is as follows.

P M
N1

11 N1
12 . . . N1

1M N1
21 N1

22 . . . N1
2M . . . N1

M1 N1
M2 . . . N1

MM

N2
11 N2

12 . . . N2
1M N2

21 N2
22 . . . N2

2M . . . N2
M1 N2

M2 . . . N2
MM

...
NP

11 NP
12 . . . NP

1M NP
21 NP

22 . . . NP
2M . . . NP

M1 NP
M2 . . . NP

MM

All data items are integers. P is the number of the cards, namely the number of the players. M
is the number of rows and the number of columns of the matrix on each card. Nk

ij means the
number written at the position (i, j) on the k-th card. If (i, j) �= (p, q), then Nk

ij �= Nk
pq. The

parameters P , M , and N satisfy the conditions 2 ≤ P ≤ 4, 3 ≤ M ≤ 4, and 0 ≤ Nk
ij ≤ 99.

The end of the input is indicated by a line containing two zeros separated by a space. It is not
a dataset.

Output

For each dataset, output the minimum length of the sequence of numbers which satisfy the
condition (∗). Output a zero if there are no such sequences. Output for each dataset must be
printed on a separate line.

Sample Input

4 3
10 25 11 20 6 2 1 15 23

25

5 21 3 12 23 17 7 26 2
8 18 4 22 13 27 16 5 11
19 9 24 2 11 5 14 28 16
4 3
12 13 20 24 28 32 15 16 17
12 13 21 25 29 33 16 17 18
12 13 22 26 30 34 17 18 15
12 13 23 27 31 35 18 15 16
4 3
11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39
41 42 43 44 45 46 47 48 49
4 4
2 6 9 21 15 23 17 31 33 12 25 4 8 24 13 36
22 18 27 26 35 28 3 7 11 20 38 16 5 32 14 29
26 7 16 29 27 3 38 14 18 28 20 32 22 35 11 5
36 13 24 8 4 25 12 33 31 17 23 15 21 9 6 2
0 0

Output for the Sample Input

5
4
12
0

For your convenience, sequences satisfying the condition (∗) for the first three datasets are shown
below. There may be other sequences of the same length satisfying the condition, but no shorter.

11, 2, 23, 16, 5
15, 16, 17, 18
11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 43

26

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2005–11–04

Problem I

Shy Polygons

Input: I.txt

You are given two solid polygons and their positions on the xy-plane. You can move one
of the two along the x-axis (they can overlap during the move). You cannot move it in other
directions. The goal is to place them as compactly as possible, subject to the following condition:
the distance between any point in one polygon and any point in the other must not be smaller
than a given minimum distance L.

We define the width of a placement as the difference between the maximum and the minimum
x-coordinates of all points in the two polygons.

Your job is to write a program to calculate the minimum width of placements satisfying the
above condition.

Let’s see an example. If the polygons in Figure 13 are placed with L = 10.0, the result will be
100. Figure 14 shows one of the optimal placements.

x

y

Figure 13: Initial position of the two polygons

Input

The input consists of multiple datasets. Each dataset is given in the following format.

L
Polygon1

Polygon2

27

x

y

Figure 14: One of the optimal placements (L = 10.0)

L is a decimal fraction, which means the required distance of two polygons. L is greater than
0.1 and less than 50.0.

The format of each polygon is as follows.

n
x1 y1

x2 y2
...
xn yn

n is a positive integer, which represents the number of vertices of the polygon. n is greater than
2 and less than 15.

Remaining lines represent the vertices of the polygon. A vertex data line has a pair of nonneg-
ative integers which represent the x- and y-coordinates of a vertex. x- and y-coordinates are
separated by a single space, and y-coordinate is immediately followed by a newline. x and y are
less than 500.

Edges of the polygon connect vertices given in two adjacent vertex data lines, and vertices given
in the last and the first vertex data lines. You may assume that the vertices are given in the
counterclockwise order, and the contours of polygons are simple, i.e. they do not cross nor touch
themselves.

Also, you may assume that the result is not sensitive to errors. In concrete terms, for a given
pair of polygons, the minimum width is a function of the given minimum distance l. Let us
denote the function w(l). Then you can assume that |w(L ± 10−7) − w(L)| < 10−4.

The end of the input is indicated by a line that only contains a zero. It is not a part of a dataset.

28

Output

The output should consist of a series of lines each containing a single decimal fraction. Each
number should indicate the minimum width for the corresponding dataset. The answer should
not have an error greater than 0.0001. You may output any number of digits after the decimal
point, provided that the above accuracy condition is satisfied.

Sample Input

10.5235
3
0 0
100 100
0 100
4
0 50
20 50
20 80
0 80
10.0
4
120 45
140 35
140 65
120 55
8
0 0
100 0
100 100
0 100
0 55
80 90
80 10
0 45
10.0
3
0 0
1 0
0 1
3
0 100
1 101
0 101
10.0
3
0 0

29

1 0
0 100
3
0 50
100 50
0 51
0

Output for the Sample Input

114.882476
100
1
110.5005

30

