
ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem A

Gift from the Goddess of Programming
Input: Standard Input
Time Limit: 30 seconds

The goddess of programming is reviewing a thick logbook, which is a yearly record of visitors
to her holy altar of programming. The logbook also records her visits at the altar.

The altar attracts programmers from all over the world because one visitor is chosen every
year and endowed with a gift of miracle programming power by the goddess. The endowed
programmer is chosen from those programmers who spent the longest time at the altar during
the goddess’s presence. There have been enthusiastic visitors who spent very long time at the
altar but failed to receive the gift because the goddess was absent during their visits.

Now, your mission is to write a program that finds how long the programmer to be endowed
stayed at the altar during the goddess’s presence.

Input

The input is a sequence of datasets. The number of datasets is less than 100. Each dataset is
formatted as follows.

n
M1/D1 h1:m1 e1 p1
M2/D2 h2:m2 e2 p2
...
Mn/Dn hn:mn en pn

The first line of a dataset contains a positive even integer, n ≤ 1000, which denotes the number
of lines of the logbook. This line is followed by n lines of space-separated data, where Mi/Di

identifies the month and the day of the visit, hi : mi represents the time of either the entrance
to or exit from the altar, ei is either I for entrance, or O for exit, and pi identifies the visitor.

All the lines in the logbook are formatted in a fixed-column format. Both the month and the
day in the month are represented by two digits. Therefore April 1 is represented by 04/01 and
not by 4/1. The time is described in the 24-hour system, taking two digits for the hour, followed
by a colon and two digits for minutes, 09:13 for instance and not like 9:13. A programmer is
identified by an ID, a unique number using three digits. The same format is used to indicate
entrance and exit of the goddess, whose ID is 000.

1

All the lines in the logbook are sorted in ascending order with respect to date and time. Because
the altar is closed at midnight, the altar is emptied at 00:00. You may assume that each time
in the input is between 00:01 and 23:59, inclusive.

A programmer may leave the altar just after entering it. In this case, the entrance and exit
time are the same and the length of such a visit is considered 0 minute. You may assume for
such entrance and exit records, the line that corresponds to the entrance appears earlier in the
input than the line that corresponds to the exit. You may assume that at least one programmer
appears in the logbook.

The end of the input is indicated by a line containing a single zero.

Output

For each dataset, output the total sum of the blessed time of the endowed programmer. The
blessed time of a programmer is the length of his/her stay at the altar during the presence of
the goddess. The endowed programmer is the one whose total blessed time is the longest among
all the programmers. The output should be represented in minutes. Note that the goddess of
programming is not a programmer.

Sample Input

14

04/21 09:00 I 000

04/21 09:00 I 001

04/21 09:15 I 002

04/21 09:30 O 001

04/21 09:45 O 000

04/21 10:00 O 002

04/28 09:00 I 003

04/28 09:15 I 000

04/28 09:30 I 004

04/28 09:45 O 004

04/28 10:00 O 000

04/28 10:15 O 003

04/29 20:00 I 002

04/29 21:30 O 002

20

06/01 09:00 I 001

06/01 09:15 I 002

06/01 09:15 I 003

06/01 09:30 O 002

06/01 10:00 I 000

06/01 10:15 O 001

06/01 10:30 I 002

06/01 10:45 O 002

2

06/01 11:00 I 001

06/01 11:15 O 000

06/01 11:30 I 002

06/01 11:45 O 001

06/01 12:00 O 002

06/01 12:15 I 000

06/01 12:30 I 002

06/01 12:45 O 000

06/01 13:00 I 000

06/01 13:15 O 000

06/01 13:30 O 002

06/01 13:45 O 003

0

Output for the Sample Input

45

120

3

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem B

The Sorcerer’s Donut
Input: Standard Input
Time Limit: 30 seconds

Your master went to the town for a day. You could have a relaxed day without hearing his
scolding. But he ordered you to make donuts dough by the evening. Loving donuts so much, he
can’t live without eating tens of donuts everyday. What a chore for such a beautiful day.

But last week, you overheard a magic spell that your master was using. It was the time to
try. You casted the spell on a broomstick sitting on a corner of the kitchen. With a flash of
lights, the broom sprouted two arms and two legs, and became alive. You ordered him, then he
brought flour from the storage, and started kneading dough. The spell worked, and how fast he
kneaded it!

A few minutes later, there was a tall pile of dough on the kitchen table. That was enough for
the next week. “OK, stop now.” You ordered. But he didn’t stop. Help! You didn’t know the
spell to stop him! Soon the kitchen table was filled with hundreds of pieces of dough, and he
still worked as fast as he could. If you could not stop him now, you would be choked in the
kitchen filled with pieces of dough.

Wait, didn’t your master write his spells on his notebooks? You went to his den, and found the
notebook that recorded the spell of cessation.

But it was not the end of the story. The spell written in the notebook is not easily read by
others. He used a plastic model of a donut as a notebook for recording the spell. He split the
surface of the donut-shaped model into square mesh (Figure B.1), and filled with the letters
(Figure B.2). He hid the spell so carefully that the pattern on the surface looked meaningless.
But you knew that he wrote the pattern so that the spell “appears” more than once (see the next
paragraph for the precise conditions). The spell was not necessarily written in the left-to-right
direction, but any of the 8 directions, namely left-to-right, right-to-left, top-down, bottom-up,
and the 4 diagonal directions.

You should be able to find the spell as the longest string that appears more than once. Here,
a string is considered to appear more than once if there are square sequences having the string
on the donut that satisfy the following conditions.

• Each square sequence does not overlap itself. (Two square sequences can share some
squares.)

• The square sequences start from different squares, and/or go to different directions.

4

Figure B.1: The Sorcerer’s Donut Before
Filled with Letters, Showing the Mesh and 8
Possible Spell Directions

Figure B.2: The Sorcerer’s Donut After Filled
with Letters

Note that a palindrome (i.e., a string that is the same whether you read it backwards or forwards)
that satisfies the first condition “appears” twice.

The pattern on the donut is given as a matrix of letters as follows.

ABCD

EFGH

IJKL

Note that the surface of the donut has no ends; the top and bottom sides, and the left and right
sides of the pattern are respectively connected. There can be square sequences longer than both
the vertical and horizontal lengths of the pattern. For example, from the letter F in the above
pattern, the strings in the longest non-self-overlapping sequences towards the 8 directions are
as follows.

FGHE

FKDEJCHIBGLA

FJB

FIDGJAHKBELC

FEHG

FALGBIHCJEDK

FBJ

FCLEBKHAJGDI

Please write a program that finds the magic spell before you will be choked with pieces of donuts
dough.

5

Input

The input is a sequence of datasets. Each dataset begins with a line of two integers h and w,
which denote the size of the pattern, followed by h lines of w uppercase letters from A to Z,
inclusive, which denote the pattern on the donut. You may assume 3 ≤ h ≤ 10 and 3 ≤ w ≤ 20.

The end of the input is indicated by a line containing two zeros.

Output

For each dataset, output the magic spell. If there is more than one longest string of the same
length, the first one in the dictionary order must be the spell. The spell is known to be at least
two letters long. When no spell is found, output 0 (zero).

Sample Input

5 7

RRCABXT

AABMFAB

RROMJAC

APTADAB

YABADAO

3 13

ABCDEFGHIJKLM

XMADAMIMADAMY

ACEGIKMOQSUWY

3 4

DEFG

ACAB

HIJK

3 6

ABCDEF

GHIAKL

MNOPQR

10 19

JFZODYDXMZZPEYTRNCW

XVGHPOKEYNZTQFZJKOD

EYEHHQKHFZOVNRGOOLP

QFZOIHRQMGHPNISHXOC

DRGILJHSQEHHQLYTILL

NCSHQMKHTZZIHRPAUJA

NCCTINCLAUTFJHSZBVK

LPBAUJIUMBVQYKHTZCW

XMYHBVKUGNCWTLLAUID

EYNDCCWLEOODXYUMBVN

0 0

6

Output for the Sample Input

ABRACADABRA

MADAMIMADAM

ABAC

0

ABCDEFGHIJKLMNOPQRSTUVWXYZHHHHHABCDEFGHIJKLMNOPQRSTUVWXYZ

7

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem C

Weaker than Planned
Input: Standard Input
Time Limit: 30 seconds

The committee members of the Kitoshima programming contest had decided to use crypto-
graphic software for their secret communication. They had asked a company, Kodai Software,
to develop cryptographic software that employed a cipher based on highly sophisticated math-
ematics.

According to reports on IT projects, many projects are not delivered on time, on budget, with
required features and functions. This applied to this case. Kodai Software failed to implement
the cipher by the appointed date of delivery, and asked to use a simpler version that employed
a type of substitution cipher for the moment. The committee members got angry and strongly
requested to deliver the full specification product, but they unwillingly decided to use this inferior
product for the moment.

In what follows, we call the text before encryption, plaintext, and the text after encryption,
ciphertext.

This simple cipher substitutes letters in the plaintext, and its substitution rule is specified with
a set of pairs. A pair consists of two letters and is unordered, that is, the order of the letters
in the pair does not matter. A pair (A, B) and a pair (B, A) have the same meaning. In one
substitution rule, one letter can appear in at most one single pair. When a letter in a pair
appears in the plaintext, the letter is replaced with the other letter in the pair. Letters not
specified in any pairs are left as they are.

For example, by substituting the plaintext

ABCDEFGHIJKLMNOPQRSTUVWXYZ

with the substitution rule {(A, Z), (B, Y)} results in the following ciphertext.

ZYCDEFGHIJKLMNOPQRSTUVWXBA

This may be a big chance for us, because the substitution rule seems weak against cracking.
We may be able to know communications between committee members. The mission here is to
develop a deciphering program that finds the plaintext messages from given ciphertext messages.

A ciphertext message is composed of one or more ciphertext words. A ciphertext word is
generated from a plaintext word with a substitution rule. You have a list of candidate words

8

containing the words that can appear in the plaintext; no other words may appear. Some words
in the list may not actually be used in the plaintext.

There always exists at least one sequence of candidate words from which the given ciphertext
is obtained by some substitution rule. There may be cases where it is impossible to uniquely
identify the plaintext from a given ciphertext and the list of candidate words.

Input

The input consists of multiple datasets, each of which contains a ciphertext message and a list
of candidate words in the following format.

n
word1
...
wordn
sequence

n in the first line is a positive integer, representing the number of candidate words. Each of the
next n lines represents one of the candidate words. The last line, sequence, is a sequence of one
or more ciphertext words separated by a single space and terminated with a period.

You may assume the number of characters in each sequence is more than 1 and less than or
equal to 80 including spaces and the period. The number of candidate words in the list, n, does
not exceed 20. Only 26 uppercase letters, A to Z, are used in the words and the length of each
word is from 1 to 20, inclusive.

A line of a single zero indicates the end of the input.

Output

For each dataset, your program should print the deciphered message in a line. Two adjacent
words in an output line should be separated by a single space and the last word should be
followed by a single period. When it is impossible to uniquely identify the plaintext, the output
line should be a single hyphen followed by a single period.

Sample Input

4

A

AND

CAT

DOG

Z XUW ZVX Z YZT.

9

2

AZ

AY

ZA.

2

AA

BB

CC.

16

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

ABCDEFGHIJKLMNO

A B C D E F G H I J K L M N O ABCDEFGHIJKLMNO.

0

Output for the Sample Input

A DOG AND A CAT.

AZ.

-.

A B C D E F G H I J K L M N O ABCDEFGHIJKLMNO.

10

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem D

Long Distance Taxi
Input: Standard Input
Time Limit: 30 seconds

A taxi driver, Nakamura, was so delighted because he got a passenger who wanted to go to a
city thousands of kilometers away. However, he had a problem. As you may know, most taxis in
Japan run on liquefied petroleum gas (LPG) because it is cheaper than gasoline. There are more
than 50,000 gas stations in the country, but less than one percent of them sell LPG. Although
the LPG tank of his car was full, the tank capacity is limited and his car runs 10 kilometer per
liter, so he may not be able to get to the destination without filling the tank on the way. He
knew all the locations of LPG stations.

Your task is to write a program that finds the best way from the current location to the desti-
nation without running out of gas.

Input

The input consists of several datasets, and each dataset is in the following format.

N M cap
src dest
c1,1 c1,2 d1
c2,1 c2,2 d2
...
cN,1 cN,2 dN
s1
s2
...
sM

The first line of a dataset contains three integers (N,M, cap), where N is the number of roads
(1 ≤ N ≤ 3000), M is the number of LPG stations (1 ≤ M ≤ 300), and cap is the tank capacity
(1 ≤ cap ≤ 200) in liter. The next line contains the name of the current city (src) and the name
of the destination city (dest). The destination city is always different from the current city.
The following N lines describe roads that connect cities. The road i (1 ≤ i ≤ N) connects two
different cities ci,1 and ci,2 with an integer distance di (0 < di ≤ 2000) in kilometer, and he can
go from either city to the other. You can assume that no two different roads connect the same
pair of cities. The columns are separated by a single space. The next M lines (s1, s2, . . . , sM)

11

indicate the names of the cities with LPG station. You can assume that a city with LPG station
has at least one road.

The name of a city has no more than 15 characters. Only English alphabet (‘A’ to ‘Z’ and ‘a’
to ‘z’, case sensitive) is allowed for the name.

A line with three zeros terminates the input.

Output

For each dataset, output a line containing the length (in kilometer) of the shortest possible
journey from the current city to the destination city. If Nakamura cannot reach the destination,
output “-1” (without quotation marks). You must not output any other characters.

The actual tank capacity is usually a little bit larger than that on the specification sheet, so
you can assume that he can reach a city even when the remaining amount of the gas becomes
exactly zero. In addition, you can always fill the tank at the destination so you do not have to
worry about the return trip.

Sample Input

6 3 34

Tokyo Kyoto

Tokyo Niigata 335

Tokyo Shizuoka 174

Shizuoka Nagoya 176

Nagoya Kyoto 195

Toyama Niigata 215

Toyama Kyoto 296

Nagoya

Niigata

Toyama

6 3 30

Tokyo Kyoto

Tokyo Niigata 335

Tokyo Shizuoka 174

Shizuoka Nagoya 176

Nagoya Kyoto 195

Toyama Niigata 215

Toyama Kyoto 296

Nagoya

Niigata

Toyama

0 0 0

12

Output for the Sample Input

846

-1

13

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem E

Driving an Icosahedral Rover
Input: Standard Input
Time Limit: 60 seconds

After decades of fruitless efforts, one of the expedition teams of ITO (Intersolar Tourism Or-
ganization) finally found a planet that would surely provide one of the best tourist attractions
within a ten light-year radius from our solar system. The most attractive feature of the planet,
besides its comfortable gravity and calm weather, is the area called Mare Triangularis. Despite
the name, the area is not covered with water but is a great plane. Its unique feature is that it is
divided into equilateral triangular sections of the same size, called trigons. The trigons provide
a unique impressive landscape, a must for tourism. It is no wonder the board of ITO decided
to invest a vast amount on the planet.

Despite the expected secrecy of the staff, the Society of Astrogeology caught this information
in no time, as always. They immediately sent their president’s letter to the Institute of Science
and Education of the Commonwealth Galactica claiming that authoritative academic inspections
were to be completed before any commercial exploitation might damage the nature.

Fortunately, astrogeologists do not plan to practice all the possible inspections on all of the
trigons; there are far too many of them. Inspections are planned only on some characteristic
trigons and, for each of them, in one of twenty different scientific aspects.

To accelerate building this new
tourist resort, ITO’s construction
machinery team has already suc-
ceeded in putting their brand-new
invention in practical use. It is
a rover vehicle of the shape of an
icosahedron, a regular polyhedron
with twenty faces of equilateral tri-
angles. The machine is customized
so that each of the twenty faces ex-
actly fits each of the trigons. Con-
trolling the high-tech gyromotor in-
stalled inside its body, the rover can
roll onto one of the three trigons
neighboring the one its bottom is
on.

Figure E.1: The Rover on Mare Triangularis

Each of the twenty faces has its own function. The set of equipments installed on the bottom
face touching the ground can be applied to the trigon it is on. Of course, the rover was meant

14

Figure E.2: The Coordinate System

Figure E.3: Face Numbering

to accelerate construction of the luxury hotels to host rich interstellar travelers, but, changing
the installed equipment sets, it can also be used to accelerate academic inspections.

You are the driver of this rover and are asked to move the vehicle onto the trigon specified by
the leader of the scientific commission with the smallest possible steps. What makes your task
more difficult is that the designated face installed with the appropriate set of equipments has to
be the bottom. The direction of the rover does not matter.

The trigons of Mare Triangularis are given two-dimensional coordinates as shown in Figure E.2.
Like maps used for the Earth, the x axis is from the west to the east, and the y axis is from the
south to the north. Note that all the trigons with its coordinates (x, y) has neighboring trigons
with coordinates (x − 1, y) and (x + 1, y). In addition to these, when x + y is even, it has a
neighbor (x, y + 1); otherwise, that is, when x+ y is odd, it has a neighbor (x, y − 1).

Figure E.3 shows a development of the skin of the rover. The top face of the development
makes the exterior. That is, if the numbers on faces of the development were actually marked
on the faces of the rover, they should been readable from its outside. These numbers are used
to identify the faces.

When you start the rover, it is on the trigon (0, 0) and the face 0 is touching the ground. The
rover is placed so that rolling towards north onto the trigon (0, 1) makes the face numbered 5
to be at the bottom.

As your first step, you can choose one of the three adjacent trigons, namely those with coor-
dinates (−1, 0), (1, 0), and (0, 1), to visit. The bottom will be the face numbered 4, 1, and 5,
respectively. If you choose to go to (1, 0) in the first rolling step, the second step can bring
the rover to either of (0, 0), (2, 0), or (1,−1). The bottom face will be either of 0, 6, or 2,
correspondingly. The rover may visit any of the trigons twice or more, including the start and

15

the goal trigons, when appropriate.

The theoretical design section of ITO showed that the rover can reach any goal trigon on the
specified bottom face within a finite number of steps.

Input

The input consists of a number of datasets. The number of datasets does not exceed 50.

Each of the datasets has three integers x, y, and n in one line, separated by a space. Here, (x, y)
specifies the coordinates of the trigon to which you have to move the rover, and n specifies the
face that should be at the bottom.

The end of the input is indicated by a line containing three zeros.

Output

The output for each dataset should be a line containing a single integer that gives the minimum
number of steps required to set the rover on the specified trigon with the specified face touching
the ground. No other characters should appear in the output.

You can assume that the maximum number of required steps does not exceed 100. Mare Tri-
angularis is broad enough so that any of its edges cannot be reached within that number of
steps.

Sample Input

0 0 1

3 5 2

-4 1 3

13 -13 2

-32 15 9

-50 50 0

0 0 0

Output for the Sample Input

6

10

9

30

47

100

16

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem F

City Merger
Input: Standard Input
Time Limit: 60 seconds

Recent improvements in information and communication technology have made it possible to
provide municipal service to a wider area more quickly and with less costs. Stimulated by this,
and probably for saving their not sufficient funds, mayors of many cities started to discuss on
mergers of their cities.

There are, of course, many obstacles to actually put the planned mergers in practice. Each city
has its own culture of which citizens are proud. One of the largest sources of friction is with
the name of the new city. All citizens would insist that the name of the new city should have
the original name of their own city at least as a part of it. Simply concatenating all the original
names would, however, make the name too long for everyday use.

You are asked by a group of mayors to write a program that finds the shortest possible name
for the new city that includes all the original names of the merged cities. If two or more
cities have common parts, they can be overlapped. For example, if “FUKUOKA”, “OKAYAMA”,
and “YAMAGUCHI” cities are to be merged, “FUKUOKAYAMAGUCHI” is such a name that include
all three of the original city names. Although this includes all the characters of the city name
“FUKUYAMA” in this order, it does not appear as a consecutive substring, and thus “FUKUYAMA”
is not considered to be included in the name.

Input

The input is a sequence of datasets. Each dataset begins with a line containing a positive integer
n (n ≤ 14), which denotes the number of cities to be merged. The following n lines contain the
names of the cities in uppercase alphabetical letters, one in each line. You may assume that
none of the original city names has more than 20 characters. Of course, no two cities have the
same name.

The end of the input is indicated by a line consisting of a zero.

Output

For each dataset, output the length of the shortest possible name of the new city in one line.
The output should not contain any other characters.

17

Sample Input

3

FUKUOKA

OKAYAMA

YAMAGUCHI

3

FUKUOKA

FUKUYAMA

OKAYAMA

2

ABCDE

EDCBA

4

GA

DEFG

CDDE

ABCD

2

ABCDE

C

14

AAAAA

BBBBB

CCCCC

DDDDD

EEEEE

FFFFF

GGGGG

HHHHH

IIIII

JJJJJ

KKKKK

LLLLL

MMMMM

NNNNN

0

Output for the Sample Input

16

19

9

9

5

70

18

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem G

Captain Q’s Treasure
Input: Standard Input
Time Limit: 30 seconds

You got an old map, which turned out to be drawn by the infamous pirate “Captain Q”. It
shows the locations of a lot of treasure chests buried in an island.

The map is divided into square sections, each of which has a digit on it or has no digit. The
digit represents the number of chests in its 9 neighboring sections (the section itself and its 8
neighbors). You may assume that there is at most one chest in each section.

Although you have the map, you can’t determine the sections where the chests are buried. Even
the total number of chests buried in the island is unknown. However, it is possible to calculate
the minimum number of chests buried in the island. Your mission in this problem is to write a
program that calculates it.

Input

The input is a sequence of datasets. Each dataset is formatted as follows.

h w
map

The first line of a dataset consists of two positive integers h and w. h is the height of the map
and w is the width of the map. You may assume 1 ≤ h ≤ 15 and 1 ≤ w ≤ 15.

The following h lines give the map. Each line consists of w characters and corresponds to a
horizontal strip of the map. Each of the characters in the line represents the state of a section
as follows.

‘.’: The section is not a part of the island (water). No chest is here.

‘*’: The section is a part of the island, and the number of chests in its 9 neighbors is not known.

‘0’–‘9’: The section is a part of the island, and the digit represents the number of chests in its
9 neighbors.

You may assume that the map is not self-contradicting, i.e., there is at least one arrangement of
chests. You may also assume the number of sections with digits is at least one and at most 15.

A line containing two zeros indicates the end of the input.

19

Output

For each dataset, output a line that contains the minimum number of chests. The output should
not contain any other character.

Sample Input

5 6

*2.2**

..*...

..2...

..*...

*2.2**

6 5

.*2*.

..*..

..*..

..2..

..*..

.*2*.

5 6

.1111.

**...*

33....

**...0

.*2**.

6 9

....1....

...1.1...

....1....

.1..*..1.

1.1***1.1

.1..*..1.

9 9

*4*4*4*4*

*4*4*4*4*

*4*4*4*4*

*4*4*4***

0 0

20

Output for the Sample Input

6

5

5

6

23

21

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem H

ASCII Expression
Input: Standard Input
Time Limit: 30 seconds

Mathematical expressions appearing in old papers and old technical articles are printed with
typewriter in several lines, where a fixed-width or monospaced font is required to print characters
(digits, symbols and spaces). Let us consider the following mathematical expression.(

1− 4

32

)2

×−5 + 6

It is printed in the following four lines:

4 2

(1 - ----) * - 5 + 6

2

3

where “- 5” indicates unary minus followed by 5. We call such an expression of lines “ASCII
expression”.

For helping those who want to evaluate ASCII expressions obtained through optical character
recognition (OCR) from old papers, your job is to write a program that recognizes the structure
of ASCII expressions and computes their values.

For the sake of simplicity, you may assume that ASCII expressions are constructed by the
following rules. Its syntax is shown in Table H.1.

(1) Terminal symbols are ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘+’, ‘-’, ‘*’, ‘(’, ‘)’, and ‘ ’.

(2) Nonterminal symbols are expr, term, factor, powexpr, primary, fraction and digit. The
start symbol is expr.

(3) A “cell” is a rectangular region of characters that corresponds to a terminal or nonterminal
symbol (Figure H.1). In the cell, there are no redundant rows and columns that consist
only of space characters. A cell corresponding to a terminal symbol consists of a single
character. A cell corresponding to a nonterminal symbol contains cell(s) corresponding to
its descendant(s) but never partially overlaps others.

(4) Each cell has a base-line, a top-line, and a bottom-line. The base-lines of child cells of the
right-hand side of rules I, II, III, and V should be aligned. Their vertical position defines
the base-line position of their left-hand side cell.

22

Table H.1: Rules for constructing ASCII expressions (similar to Backus-Naur Form)
The box indicates the cell of the terminal or nonterminal symbol that corresponds to a rectan-
gular region of characters. Note that each syntactically-needed space character is explicitly

indicated by the period character denoted by . , here.

(I) expr ::= term | expr . + . term | expr . - . term

(II) term ::= factor | term . * . factor

(III) factor ::= powexpr | fraction | - . factor

(IV) powexpr ::= primary | primary
digit

(V) primary ::= digit | (. expr .)

(VI) fraction ::=
expr

expr

(VII) digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

top → 4

base → 1 - - - - -

2

bottom→ 3

4

base→ - - - -

2

3

top → 2

base&
bottom

→ 3
top
base&
bottom

→ 3

expr fraction powexpr digit

Figure H.1: Top, base, bottom lines: expr 1− 4
32
, fraction 4

32
, powexpr 32, and digit 3.

(5) powexpr consists of a primary and an optional digit. The digit is placed one line above the
base-line of the primary cell. They are horizontally adjacent to each other. The base-line
of a powexpr is that of the primary.

(6) fraction is indicated by three or more consecutive hyphens called “vinculum”. Its dividend
expr is placed just above the vinculum, and its divisor expr is placed just beneath it.
The number of the hyphens of the vinculum, denoted by wh, is equal to 2 +max(w1, w2),
where w1 and w2 indicate the width of the cell of the dividend and that of the divisor,
respectively. These cells are centered, where there are ⌈(wh − wk)/2⌉ space characters to
the left and ⌊(wh − wk)/2⌋ space characters to the right, (k = 1, 2). The base-line of a
fraction is at the position of the vinculum.

(7) digit consists of one character.

23

For example, the negative fraction −3
4 is represented in three lines:

3

- ---

4

where the left-most hyphen means a unary minus operator. One space character is required
between the unary minus and the vinculum of the fraction.

The fraction 3+4×−2
−1−22

is represented in four lines:

3 + 4 * - 2

2

- 1 - 2

where the widths of the cells of the dividend and divisor are 11 and 8 respectively. Hence
the number of hyphens of the vinculum is 2 + max(11, 8) = 13. The divisor is centered by
⌈(13− 8)/2⌉ = 3 space characters (hyphens) to the left and ⌊(13− 8)/2⌋ = 2 to the right.

The powexpr (42)3 is represented in two lines:

2 3

(4)

where the cell for 2 is placed one line above the base-line of the cell for 4, and the cell for 3 is
placed one line above the base-line of the cell for a primary (42).

Input

The input consists of multiple datasets, followed by a line containing a zero. Each dataset has
the following format.

n
str1
str2
...
strn

n is a positive integer, which indicates the number of the following lines with the same length
that represent the cell of an ASCII expression. strk is the k-th line of the cell where each space
character is replaced with a period.

You may assume that n ≤ 20 and that the length of the lines is no more than 80.

24

Output

For each dataset, one line containing a non-negative integer less than 2011 should be output.
The integer indicates the value of the ASCII expression in modular arithmetic under modulo
2011. The output should not contain any other characters.

There is no fraction with the divisor that is equal to zero or a multiple of 2011.

Note that powexpr x0 is defined as 1, and xy (y is a positive integer) is defined as the product
x× x× · · · × x where the number of x’s is equal to y.

A fraction x
y is computed as the multiplication of x and the inverse of y, i.e., x× inv(y), under

modulo 2011. The inverse of y (1 ≤ y < 2011) is uniquely defined as the integer z (1 ≤ z < 2011)
that satisfies z × y ≡ 1 (mod 2011), since 2011 is a prime number.

Sample Input

4

........4...2..........

(.1.-.----.)..*.-.5.+.6

........2..............

.......3...............

3

...3.

-.---

...4.

4

.3.+.4.*.-.2.

..........2..

...-.1.-.2...

2

...2..3

(.4..).

1

2.+.3.*.5.-.7.+.9

1

(.2.+.3.).*.(.5.-.7.).+.9

3

.2....3.

4..+.---

......5.

3

.2......-.-.3.

4..-.-.-------

..........5...

25

9

............1............

..............1..........

.1.+.-------------------.

................1........

......1.+.-------------..

..................1......

...........1.+.-------...

................1.+.2....

15

.................2......

................---.....

.......2.........5....3.

.(.---------.+.-----.)..

.....7...........3......

....---.+.1.............

.....4..................

.......2................

......---...............

.......5.......2....2...

...(.-----.+.-----.)....

.......3.......3........

..............---.......

...............4........

2

.0....2....

3..+.4..*.5

20

............2............................2......................................

...........3............................3.......................................

..........----.........................----.....................................

............4............................4......................................

.....2.+.------.+.1...............2.+.------.+.1................................

............2............................2......................................

...........2............................2........................2..............

..........----.........................----.....................3...............

............2............................2.....................----.............

...........3............................3........................4..............

(.(.----------------.+.2.+.3.).*.----------------.+.2.).*.2.+.------.+.1.+.2.*.5

............2............................2.......................2..............

...........5............................5.......................2...............

..........----.........................----....................----.............

............6............................6.......................2..............

.........------.......................------....................3...............

............3............................3......................................

26

..........----.........................----.....................................

............2............................2......................................

...........7............................7.......................................

0

Output for the Sample Input

501

502

1

74

19

2010

821

821

1646

148

81

1933

27

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem I

Encircling Circles
Input: Standard Input
Time Limit: 30 seconds

You are given a set of circles C of a variety of radii (radiuses) placed at a variety of positions,
possibly overlapping one another. Given a circle with radius r, that circle may be placed so that
it encircles all of the circles in the set C if r is large enough.

There may be more than one possible position of the circle of radius r to encircle all the member
circles of C. We define the region U as the union of the areas of encircling circles at all such
positions. In other words, for each point in U , there exists a circle of radius r that encircles that
point and all the members of C. Your task is to calculate the length of the periphery of that
region U .

Figure I.1 shows an example of the set of circles C and the region U . In the figure, three circles
contained in C are expressed by circles of solid circumference, some possible positions of the
encircling circles are expressed by circles of dashed circumference, and the area U is expressed
by a thick dashed closed curve.

Figure I.1: Example of the Circle Set

28

Input

The input is a sequence of datasets. The number of datasets is less than 100.

Each dataset is formatted as follows.

n r
x1 y1 r1
x2 y2 r2
...
xn yn rn

The first line of a dataset contains two positive integers, n and r, separated by a single space.
n means the number of the circles in the set C and does not exceed 100. r means the radius of
the encircling circle and does not exceed 1000.

Each of the n lines following the first line contains three integers separated by a single space.
(xi, yi) means the center position of the i-th circle of the set C and ri means its radius.

You may assume −500 ≤ xi ≤ 500, −500 ≤ yi ≤ 500, and 1 ≤ ri ≤ 500.

The end of the input is indicated by a line containing two zeros separated by a single space.

Output

For each dataset, output a line containing a decimal fraction which means the length of the
periphery (circumferential length) of the region U .

The output should not contain an error greater than 0.01. You can assume that, when r changes
by ϵ (|ϵ| < 0.0000001), the length of the periphery of the region U will not change more than
0.001.

If r is too small to cover all of the circles in C, output a line containing only 0.0.

No other characters should be contained in the output.

Sample Input

1 10

5 5 7

2 12

5 5 7

8 6 3

3 10

3 11 2

29

2 1 1

2 16 3

3 15

-5 2 5

9 2 9

5 8 6

3 38

-25 -10 8

30 5 7

-3 35 11

3 39

-25 -10 8

30 5 7

-3 35 11

3 800

-400 400 2

300 300 1

300 302 1

3 800

400 -400 2

300 300 1

307 300 3

8 147

130 80 12

130 -40 12

-110 80 12

-110 -40 12

70 140 12

70 -100 12

-50 140 12

-50 -100 12

3 493

345 154 10

291 111 75

-275 -301 46

4 55

54 0 1

40 30 5

27 36 10

0 48 7

3 30

0 3 3

-3 0 4

400 0 3

3 7

2 3 2

-5 -4 2

30

-4 3 2

3 10

-5 -4 5

2 3 5

-4 3 5

4 6

4 6 1

5 5 1

1 7 1

0 1 1

3 493

345 154 10

291 111 75

-275 -301 46

5 20

-9 12 5

0 15 5

3 -3 3

12 9 5

-12 9 5

0 0

Output for the Sample Input

81.68140899333463

106.81415022205297

74.11215318612639

108.92086846105579

0.0

254.85616536128433

8576.936716409238

8569.462129048667

929.1977057481128

4181.124698202453

505.09134735536804

0.0

46.82023824234038

65.66979416387915

50.990642291793506

4181.124698202453

158.87951420768937

Figure I.2: Last Dataset of the Sample Input

31

ACM International Collegiate Programming Contest
Asia Regional Contest, Fukuoka, 2011–11–13

Problem J

Round Trip
Input: Standard Input
Time Limit: 30 seconds

Jim is planning to visit one of his best friends in a town in the mountain area. First, he leaves
his hometown and goes to the destination town. This is called the go phase. Then, he comes
back to his hometown. This is called the return phase. You are expected to write a program to
find the minimum total cost of this trip, which is the sum of the costs of the go phase and the
return phase.

There is a network of towns including these two towns. Every road in this network is one-way,
i.e., can only be used towards the specified direction. Each road requires a certain cost to travel.

In addition to the cost of roads, it is necessary to pay a specified fee to go through each town
on the way. However, since this is the visa fee for the town, it is not necessary to pay the fee on
the second or later visit to the same town.

The altitude (height) of each town is given. On the go phase, the use of descending roads is
inhibited. That is, when going from town a to b, the altitude of a should not be greater than
that of b. On the return phase, the use of ascending roads is inhibited in a similar manner. If
the altitudes of a and b are equal, the road from a to b can be used on both phases.

Input

The input consists of multiple datasets, each in the following format.

n m
d2 e2
d3 e3

...
dn−1 en−1

a1 b1 c1
a2 b2 c2

...
am bm cm

Every input item in a dataset is a non-negative integer. Input items in a line are separated by
a space.

32

n is the number of towns in the network. m is the number of (one-way) roads. You can assume
the inequalities 2 ≤ n ≤ 50 and 0 ≤ m ≤ n(n − 1) hold. Towns are numbered from 1 to n,
inclusive. The town 1 is Jim’s hometown, and the town n is the destination town.

di is the visa fee of the town i, and ei is its altitude. You can assume 1 ≤ di ≤ 1000 and
1 ≤ ei ≤ 999 for 2 ≤ i ≤ n− 1. The towns 1 and n do not impose visa fee. The altitude of the
town 1 is 0, and that of the town n is 1000. Multiple towns may have the same altitude, but
you can assume that there are no more than 10 towns with the same altitude.

The j-th road is from the town aj to bj with the cost cj (1 ≤ j ≤ m). You can assume 1 ≤ aj ≤ n,
1 ≤ bj ≤ n, and 1 ≤ cj ≤ 1000. You can directly go from aj to bj , but not from bj to aj unless
a road from bj to aj is separately given. There are no two roads connecting the same pair of
towns towards the same direction, that is, for any i and j such that i ̸= j, ai ̸= aj or bi ̸= bj .
There are no roads connecting a town to itself, that is, for any j, aj ̸= bj .

The last dataset is followed by a line containing two zeros (separated by a space).

Output

For each dataset in the input, a line containing the minimum total cost, including the visa fees,
of the trip should be output. If such a trip is not possible, output “-1”.

Sample Input

3 6

3 1

1 2 1

2 3 1

3 2 1

2 1 1

1 3 4

3 1 4

3 6

5 1

1 2 1

2 3 1

3 2 1

2 1 1

1 3 4

3 1 4

4 5

3 1

3 1

1 2 5

2 3 5

3 4 5

4 2 5

33

3 1 5

2 1

2 1 1

0 0

Output for the Sample Input

7

8

36

-1

34

